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Abstract

Greybox fuzzing is one of the fuzzing techniques that has been

extensively researched and used in practice. Plenty of publications

propose improvements to greybox fuzzing. However, the extent to

which these improvements really work and generalize is not yet

understood: our preliminary study of the recent literature in grey-

box fuzzing shows that most papers evaluate their fuzzers in terms

of runtime code coverage or bug-finding capability, although the

improvements made are to the internal components (or internals)

of the fuzzer. Results drawn from such experiments are insufficient

to judge the impact the changes in the fuzzer’s internals have on

its performance.

To understand fuzzing better, we thus propose to evaluate fuzzers

more in depth. To this extent, we suggest to develop (1) a fuzzing-

specific visualization framework to support different analytic tasks

that is scalable across multiple fuzzers and facilitates effective com-

parison of fuzzing internals, and (2) an evaluation specification to

automate the evaluation process using visualization analysis.

Realizing this vision will allow us to finally answer the following

questions: How can one effectively visualize and compare fuzzing

internals? And what internal changes between the fuzzers are re-

sponsible for their performance deviations?
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Figure 1: General process of greybox fuzzing.
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1 Introduction

Fuzzing is a frequently used security-testing technique [2, 11, 51].

A fuzzer repeatedly generates inputs and executes the target ap-

plication using these inputs, with the aim to find abnormal behav-

iors such as crashes or vulnerabilities. Greybox fuzzing (GF) uses

runtime information, such as code coverage, to improve its input

generation to increase runtime code coverage and find crashes or

vulnerabilities. Figure 1 shows the general GF process.

A fuzzer1 starts by executing the target application with the

provided set of initial seeds.2 During the execution, the target is

monitored for interesting behaviour such as crashes or new run-

time code coverage (Execution/Monitoring). After each execution,

interesting seeds are stored in the seed queue. The search strategy

algorithm selects a seed from the queue (Seed queue) and mutates

it further with the hope that the mutants will trigger interesting

behaviours (Mutation). This process continues until a stopping

criterion such as a timeout is reached.

Numerous publications focus on improving GF in different areas

[1, 4, 8, 12, 14, 16, 19, 22, 23, 25, 31, 32, 35, 37, 38, 40ś45, 49, 50, 52];

however, none focus on explaining why or how the improvements

work. Our preliminary study of 20 publications in GF shows that

most claimed improvements are evaluated in terms of code coverage

or bug-finding capability. Although it is tempting to infer that a

fuzzer is efficient if it finds more bugs or executes more code, it

is rather hard to understand how much any such results, when

1In the context of this paper, fuzzer refers to a tool that performs greybox fuzzing.
2A seed is an input that a fuzzer uses to execute the target application.
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measured in terms of code coverage and bug detection, can be

attributed to the investigated changes. A deeper understanding

of the internal components (or internals) of fuzzing enables the

development of better fuzzers and better evaluations.

To study the process in depth, some of the literature also focuses

on visualizing different outcomes of a fuzzing campaign [7, 15, 48].

However, these visualizations only capture the high-level informa-

tion such as covered code, the call graph, and interesting inputs

generated over time. While this helps in visualizing the effects of

fuzzing as a whole, it does not foster the understanding of the effects

on the internals where improvements are made. Hence, łhow does

fuzzing work?" or specifically, łwhat effects do alleged improvements

to a fuzzer’s internals have?" still remain open questions.

We build up on this observation and formulate the main goals for

our work as follows: (1) How can we effectively visualize and com-

pare the internals of fuzzing? (2) What internal changes between

the fuzzers are responsible for their performance deviations?

2 Motivation

2.1 Insufficient Evaluations

We conducted a preliminary study to capture the necessary informa-

tion to (1) categorize greybox fuzzing into different (internal) stages

with respect to the claims/improvements made in the publications

and (2) map the claims/improvements and evaluation metrics to

these extracted stages.

GF Internal Stage Categorization. Wehave carefully read different

claims made in the literature and survey publications ([20, 26, 27,

30, 47]) in the area of greybox fuzzing to divide the fuzzing process

into the internal stages as shown in the Figure 2: instrumentation

modifies the target in order to get feedback from runtime [5, 21];

initial seeds are necessary to kick-start the fuzzing campaign and

they influence the overall campaign [13, 21, 33]; search strategy

decides which seed to select next from the seed queue using some

heuristics [17]; power schedule assigns energy (number of muta-

tions) to the selected seed using some heuristics (e.g., increased

coverage) [47]; mutations apply different set of mutation strategies

such as havoc, splice, etc., to the selected seed and produces a set

of mutants until the assigned energy is exhausted [6, 26]; execution

executes these mutants on the instrumented target, monitors for

desired performance [30] and adds the interesting mutants (e.g.,

that provide increased coverage) to the seed queue.

Mapping information. Our preliminary study3 consists of litera-

ture in the area of greybox fuzzing that provide improvements to

at least one of the internal stages (Figure 2). We looked into each

publication, especially, the introduction section where, the authors

list their claims (contributions) and the evaluation section where the

authors mention the metrics using which the claims are evaluated.

For example, based on the following text in the introduction sec-

tion of [31], "We define innovative mutation operators that work on

the...." and "We introduce a novel validity-based power schedule that

enables...", we categorize the claims tomutations and power schedule

internal stages; based on the following text in the evaluation sec-

tion of the same publication ([31]), "we investigate whether... exposes

3Our artifact [18] contains the list of 20 reviewed papers and the information on how
the claims and the metrics are categorized and mapped to the internal stages.
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Figure 2: Internal stages of greybox fuzzing that influence

the fuzzing performance.

[9] Instrumentation(C)

[1] Initial Seeds(C)

[9] Search Strategy(C)

[10] Power Schedule(C)

[12] Mutations(C)

[1] Execution(C)

[6] Instrumentation(M)

[1] Search Strategy(M)
[1] Power Schedule(M)

[3] Mutations(M)

[31] Execution(M)

Loading [MathJax]/extensions/MathMenu.js

Figure 3: Relationship between the number of claims (C) and

the frequency with which a given evaluation metric (M) was

used with respect to internal fuzzing stages.

more unique crashes than..." or "whether ... explores more paths than

... in the given time budget." or "we investigate the number of bugs

found by each technique...", we categorize the evaluation metrics to

the execution internal stage. We followed the same approach for

all the publications in our preliminary study to extract a map of

claims and evaluation metrics to the internal stages.

Using this mapping, we can discover the discrepancies between

them. For example, one can easily find out if the claim and its corre-

sponding evaluation metric(s) fall in the same internal stage or not.

Figure 3 shows this information as the relationship between the

number of claims (C) and evaluation metrics (M) with respect to

the internal stages. This figure shows that most claims on improve-

ments to fuzzing internal stages are evaluated with metrics that fall

into the execution stage, such as code coverage, path coverage, time

to exposure of a crash, etc., which do not correspond to the internal

fuzzing data. A recent study of 250 fuzzing publications from the

top conferenes also revealed that 77% of the approaches are eval-

uated using code coverage metrics and 71% evaluated using bug

finding capability [34]. While we are not claiming that the current

evaluations are incorrect, they are insufficient to fully understand

the effect that the evaluated change to the fuzzer has within that

fuzzer.
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2.2 Visualizing fuzzing internals

Visualization helps in enhancing the human understanding of a

phenomenon [29]. Consider an example of the visualization analy-

sis workflow, shown in Figure 4, to visualize and compare different

mutation phases in fuzzers. Figure 4a shows the runtime code cov-

erage over time for two fuzzers, AFLFast [3] and AFLVanilla (a

variant of AFLFast after replacing AFLFast’s search strategy with

the one from AFL 1.94b [46]), on the target program cxxfilt.4 The

fuzzing campaign is run for 24 hours and is repeated five times (one

line for each run is shown for both fuzzers).

One can then visualize and compare only one run of the fuzzer

(first run is highlighted with black solid line in the graph). We can

see that AFLFast has slightly better coverage than AFLVanilla. The

coverage growth is also steadily increasing between the 2nd hour

and 7th hour (marked with an ellipse in the graph), which can be

selected by the user to look into the underlying data.

Different mutants generated in the mutation phases are respon-

sible for the coverage growth over time. Figure 4b captures exactly

this information for the selected area in Figure 4a. It shows the

distribution of coverage gain from different mutants generated in

the two mutation phases, havoc and splice [6], for the two fuzzers.

From the left half of the Figure 4b, it is not very evident which

fuzzer has better coverage gain in the havoc mutation phase, when

we consider the median values (marked with blue circle). However,

when we look at the corresponding utilization ratio (ratio of the

number of mutations that found the latest new coverage to the total

number of mutations) shown in Figure 4c, it is clear that in the

havoc mutation phase AFLFast shows a favourable performance.

For the splice mutation phase, both Figures 4b (right half) and 4c

show that AFLVanilla performs better. In Figure 4b we can also see

that only few mutants have non-zero coverage gain, especially in

the havoc mutation phase. To analyze deeper, one can visualize

these mutants and their lineages.

But such a deeper analysis of fuzzing internals is impossible

without proper visualizations. Furthermore, it is tedious and rela-

tively hard to analyze the plots for each run and identify patterns

across multiple runs. This is why we need a framework that can

effectively visualize and summarize the information from multiple

fuzzing runs and facilitate different analytic tasks. The visualiza-

tions should also be linked together and should coordinate with

each other based on the user interactions. For example, the user

should be able to select different areas in the plots to enable dy-

namic visualization and analysis. We believe such a framework can

support both fuzzer users and developers: it helps fuzzer users not

only to select a better fuzzer for their use case but also provides

detailed insights on its internal workings; fuzzer developers can

use such analyses for introspection and evaluation purposes.

No current visualization framework provides an infrastructure

to visualize the internals of fuzzing and facilitate comparison be-

tween different fuzzers. The plots mentioned above are drawn using

ggplot2 [36], which provides an infrastructure to create static visu-

alizations and is domain-agnostic. The visualizations in Figure 4

are only for demonstration purposes and should not be treated as

the final design. We plan to develop a visualization framework for

fuzzing by following the methodology detailed in Section 3.

4https://sourceware.org/binutils/docs/binutils/c_002b_002bfilt.html

3 Proposed Methodology and Evaluation

To systematically (re-)evaluate and understand fuzzing better, we

propose to develop an evaluation framework for fuzzing. Figure 5

shows the overview of the proposed framework. The framework

accepts a target and claims as input and generates different plots

that support visualization and comparison analysis of the internal

fuzzing data. The proposed approach has three main steps (contri-

butions), as follows:

1. Monitor and record internal fuzzing data. Improvements

to the overall performance of GF are generally made in one or

more internal stages mentioned in Figure 2 by improving how the

components handle the internal fuzzing data. For example, the

power schedule calculates the number of mutations assigned to

each selected seed [3]. Improvements in the power schedule often

aim at assigning a larger number of mutations (energy) to the seeds

that are more promising to generate new interesting behaviours.

We can access the internal fuzzing data by instrumenting the source

code of the fuzzer and take advantage of the fuzzer’s loggingmodule

to export the internal data into a log file. For example, to record

the power schedule, we can instrument the fuzzer’s source code

where the mutation takes place and insert code to log the number

of mutations. However, manually instrumenting each internal stage

in each fuzzer is a tedious process and does not scale well across

multiple fuzzers.

To record data from multiple internal stages, there is also a need

to define what data to be collected and tackle the scalability problem

across multiple fuzzers. Hence, we propose to implement APIs

that serve as an interface between the fuzzers and our evaluation

framework. Such an interface helps in automating the process of

internal data collection and scales across multiple fuzzers.

2. Visualizing the internals of fuzzing. Now that we have the

infrastructure to capture the internals of fuzzing, we can generate

different visualizations and perform many analytic tasks to under-

stand the relationships between different internal fuzzing stages

and also facilitate comparison between fuzzers.

Current visualization tools for fuzzing only capture high-level

information such as reachable code, call graph, interesting test cases

over time. VisFuzz provides a user interface to view the call graph

and control-flow graph reachability in the browser and provides

real-time intervention of the fuzzing process [48]. FMViz provides

visualization to understand the mutation in AFL by exporting byte

level changes to the input to an image [15]. FuzzSplore also provides

visualizations about the mutations along with code coverage and

interesting test cases generated over time [7]. However, none of the

frameworks perform any data analysis on internal fuzzing data and

facilitate comparison. To reduce randomness and obtain statistically

significant results [17], fuzzing experiments must also be repeated

multiple times. It is then tedious to generate plots for each run and

manually analyze the data for patterns and relationships.

Therefore, we propose to develop a visualization framework

that is specific to fuzzing. We plan to do this in three steps. First,

investigate on how to compare internal fuzzing metrics using visu-

alizations and how to scale the visualizations for multi-run fuzzing

data, using aggregations, clustering, etc. We will start investigat-

ing according to the frameworks for visual comparison detailed

by Gleicher et al in [9, 10]. These frameworks provide high-level
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Figure 4: Example visualizations of the internal mutation stages of AFLFast and AFLVanilla.
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Figure 5: Overview of the proposed framework for fuzzer

evaluation (the contributions of this work are enumerated).

design patterns for visual comparison. Second, develop a visual-

ization framework to support the dynamic construction of linked

and interactive visualizations of fuzzing metrics and mechanisms,

and facilitate visual comparison methods for internal fuzzing data.

We will follow the task-based approach by using the well-known

nested model for visualization design by Munzner [28] to develop

the visualization framework. As the first step, we will start by con-

ducting interviews with fuzzing experts to understand their needs

and extract a taxonomy of visualization analysis tasks that help

in understanding fuzzing internals. These tasks can then be used

to derive the necessary visualization idioms (scatterplots, grouped

line plots, time series, etc) and the interactions between different

idioms (brushing, zooming, etc). Third, develop a domain-specific

grammar-based visualization toolkit for fuzzing. The goal of the

toolkit is to enable fuzzing researchers and practitioners a means to

flexibly compose interactive visualizations that answer their ques-

tions. The toolkit will also support the tasks in the aforementioned

task taxonomy, and consider common visual comparison guidelines

[9, 10] in the design process. The efforts lie in the direction similar

to Gosling [24], a grammar-based toolkit for scalable and interactive

genomics data visualization. We are unaware of any visualization

framework that supports interactive visualization and analysis of

internal fuzzing data.

3. Evaluation specification. As a final step, we propose to

automate the evaluation process by developing an evaluation speci-

fication using a domain specific language (DSL). The DSL’s purpose

is three-fold: (1) it combines claims and evaluation metrics with

the internal stages of fuzzing and ensures that the claims are evalu-

ated directly, (2) it accommodates the visualization grammar using

which users can specify what and how to generate and compose

visualizations for different internal fuzzing metrics, and (3) it makes

evaluations more easily reproducible.

One can use the DSL to provide all the necessary options for

visualization analysis: the internal fuzzing data to capture, linked

graphs and their interactions (brushing, selection window, etc) to

generate. We aim to develop a flexible DSL to accomodate user-

defined evaluation metrics along with the existing ones in the
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literature and custom interactive visualiaztions which support user-

desired visualization analyses.

Research questions. We plan to evaluate our approach by an-

swering these research questions:

(1) What visualizations/analyses help in understanding fuzzing

better and how?

(2) What are the scalability challenges faced in comparing dif-

ferent fuzzing metrics?

(3) How usable is the visualization framework to understand

internals of fuzzing?

(4) How expressible is the evaluation specification?

Threats to Validity.We currently foresee the following threats:

the properties of the target influence the fuzzing performance [39].

Investigating deeper in this direction is out of scope for our re-

search idea. However, we keep this investigation as an optional

contribution.

Our proposed approach involves instrumenting the fuzzers to

gather internal data which influence the runtime performance. To

mitigate this, we plan to develop a configurable instrumentation

methodology that captures only necessary and sufficient data for

visualization analysis at intermittent intervals during the fuzzing

campaign.

4 Conclusion

Greybox fuzzing (GF), in general, aims at increasing runtime code

coverage and finding more bugs. There are many publications that

improve different stages of GF (discussed in Section 2.1). However,

detailed understanding and visualizing the internals of fuzzing still

remains an open challenge. From the perspective of understanding

fuzzing, we also identified the discrepancy between the claims

and the evaluation metrics in our preliminary study (as shown

in Figure 3). We then detailed our approach, research questions

and contributions that focus on visualizing and understanding the

internals of fuzzing. We believe that the contributions of this work

will help in understanding fuzzing better and support the evaluation

process in the fuzzing community.
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