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Abstract

Greybox fuzzing is one of the fuzzing techniques that has been
extensively researched and used in practice. Plenty of publications
propose improvements to greybox fuzzing. However, the extent to
which these improvements really work and generalize is not yet
understood: our preliminary study of the recent literature in grey-
box fuzzing shows that most papers evaluate their fuzzers in terms
of runtime code coverage or bug-finding capability, although the
improvements made are to the internal components (or internals)
of the fuzzer. Results drawn from such experiments are insufficient
to judge the impact the changes in the fuzzer’s internals have on
its performance.

To understand fuzzing better, we thus propose to evaluate fuzzers
more in depth. To this extent, we suggest to develop (1) a fuzzing-
specific visualization framework to support different analytic tasks
that is scalable across multiple fuzzers and facilitates effective com-
parison of fuzzing internals, and (2) an evaluation specification to
automate the evaluation process using visualization analysis.

Realizing this vision will allow us to finally answer the following
questions: How can one effectively visualize and compare fuzzing
internals? And what internal changes between the fuzzers are re-
sponsible for their performance deviations?
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Figure 1: General process of greybox fuzzing.
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1 Introduction

Fuzzing is a frequently used security-testing technique [2, 11, 51].
A fuzzer repeatedly generates inputs and executes the target ap-
plication using these inputs, with the aim to find abnormal behav-
iors such as crashes or vulnerabilities. Greybox fuzzing (GF) uses
runtime information, such as code coverage, to improve its input
generation to increase runtime code coverage and find crashes or
vulnerabilities. Figure 1 shows the general GF process.

A fuzzer! starts by executing the target application with the
provided set of initial seeds.? During the execution, the target is
monitored for interesting behaviour such as crashes or new run-
time code coverage (Execution/Monitoring). After each execution,
interesting seeds are stored in the seed queue. The search strategy
algorithm selects a seed from the queue (Seed queue) and mutates
it further with the hope that the mutants will trigger interesting
behaviours (Mutation). This process continues until a stopping
criterion such as a timeout is reached.

Numerous publications focus on improving GF in different areas
(1,4, 38,12, 14, 16, 19, 22, 23, 25, 31, 32, 35, 37, 38, 40-45, 49, 50, 52];
however, none focus on explaining why or how the improvements
work. Our preliminary study of 20 publications in GF shows that
most claimed improvements are evaluated in terms of code coverage
or bug-finding capability. Although it is tempting to infer that a
fuzzer is efficient if it finds more bugs or executes more code, it
is rather hard to understand how much any such results, when

!In the context of this paper, fuzzer refers to a tool that performs greybox fuzzing.
2A seed is an input that a fuzzer uses to execute the target application.
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measured in terms of code coverage and bug detection, can be
attributed to the investigated changes. A deeper understanding
of the internal components (or internals) of fuzzing enables the
development of better fuzzers and better evaluations.

To study the process in depth, some of the literature also focuses
on visualizing different outcomes of a fuzzing campaign [7, 15, 48].
However, these visualizations only capture the high-level informa-
tion such as covered code, the call graph, and interesting inputs
generated over time. While this helps in visualizing the effects of
fuzzing as a whole, it does not foster the understanding of the effects
on the internals where improvements are made. Hence, “how does
fuzzing work?" or specifically, “what effects do alleged improvements
to a fuzzer’s internals have?" still remain open questions.

We build up on this observation and formulate the main goals for
our work as follows: (1) How can we effectively visualize and com-
pare the internals of fuzzing? (2) What internal changes between
the fuzzers are responsible for their performance deviations?

2 Motivation

2.1 Insufficient Evaluations

We conducted a preliminary study to capture the necessary informa-
tion to (1) categorize greybox fuzzing into different (internal) stages
with respect to the claims/improvements made in the publications
and (2) map the claims/improvements and evaluation metrics to
these extracted stages.

GF Internal Stage Categorization. We have carefully read different
claims made in the literature and survey publications ([20, 26, 27,
30, 47]) in the area of greybox fuzzing to divide the fuzzing process
into the internal stages as shown in the Figure 2: instrumentation
modifies the target in order to get feedback from runtime [5, 21];
initial seeds are necessary to kick-start the fuzzing campaign and
they influence the overall campaign [13, 21, 33]; search strategy
decides which seed to select next from the seed queue using some
heuristics [17]; power schedule assigns energy (number of muta-
tions) to the selected seed using some heuristics (e.g., increased
coverage) [47]; mutations apply different set of mutation strategies
such as havoc, splice, etc., to the selected seed and produces a set
of mutants until the assigned energy is exhausted [6, 26]; execution
executes these mutants on the instrumented target, monitors for
desired performance [30] and adds the interesting mutants (e.g.,
that provide increased coverage) to the seed queue.

Mapping information. Our preliminary study® consists of litera-
ture in the area of greybox fuzzing that provide improvements to
at least one of the internal stages (Figure 2). We looked into each
publication, especially, the introduction section where, the authors
list their claims (contributions) and the evaluation section where the
authors mention the metrics using which the claims are evaluated.
For example, based on the following text in the introduction sec-
tion of [31], "We define innovative mutation operators that work on
the...." and "We introduce a novel validity-based power schedule that
enables...", we categorize the claims to mutations and power schedule
internal stages; based on the following text in the evaluation sec-
tion of the same publication ([31]), "we investigate whether... exposes

30ur artifact [18] contains the list of 20 reviewed papers and the information on how
the claims and the metrics are categorized and mapped to the internal stages.
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Figure 3: Relationship between the number of claims (C) and
the frequency with which a given evaluation metric (M) was
used with respect to internal fuzzing stages.

more unique crashes than..." or "whether ... explores more paths than
... in the given time budget." or "we investigate the number of bugs
found by each technique...", we categorize the evaluation metrics to
the execution internal stage. We followed the same approach for
all the publications in our preliminary study to extract a map of
claims and evaluation metrics to the internal stages.

Using this mapping, we can discover the discrepancies between
them. For example, one can easily find out if the claim and its corre-
sponding evaluation metric(s) fall in the same internal stage or not.
Figure 3 shows this information as the relationship between the
number of claims (C) and evaluation metrics (M) with respect to
the internal stages. This figure shows that most claims on improve-
ments to fuzzing internal stages are evaluated with metrics that fall
into the execution stage, such as code coverage, path coverage, time
to exposure of a crash, etc., which do not correspond to the internal
fuzzing data. A recent study of 250 fuzzing publications from the
top conferenes also revealed that 77% of the approaches are eval-
uated using code coverage metrics and 71% evaluated using bug
finding capability [34]. While we are not claiming that the current
evaluations are incorrect, they are insufficient to fully understand
the effect that the evaluated change to the fuzzer has within that
fuzzer.
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2.2 Visualizing fuzzing internals

Visualization helps in enhancing the human understanding of a
phenomenon [29]. Consider an example of the visualization analy-
sis workflow, shown in Figure 4, to visualize and compare different
mutation phases in fuzzers. Figure 4a shows the runtime code cov-
erage over time for two fuzzers, AFLFast [3] and AFLVanilla (a
variant of AFLFast after replacing AFLFast’s search strategy with
the one from AFL 1.94b [46]), on the target program cxxfilt.* The
fuzzing campaign is run for 24 hours and is repeated five times (one
line for each run is shown for both fuzzers).

One can then visualize and compare only one run of the fuzzer
(first run is highlighted with black solid line in the graph). We can
see that AFLFast has slightly better coverage than AFLVanilla. The
coverage growth is also steadily increasing between the 2nd hour
and 7th hour (marked with an ellipse in the graph), which can be
selected by the user to look into the underlying data.

Different mutants generated in the mutation phases are respon-
sible for the coverage growth over time. Figure 4b captures exactly
this information for the selected area in Figure 4a. It shows the
distribution of coverage gain from different mutants generated in
the two mutation phases, havoc and splice [6], for the two fuzzers.
From the left half of the Figure 4b, it is not very evident which
fuzzer has better coverage gain in the havoc mutation phase, when
we consider the median values (marked with blue circle). However,
when we look at the corresponding utilization ratio (ratio of the
number of mutations that found the latest new coverage to the total
number of mutations) shown in Figure 4c, it is clear that in the
havoc mutation phase AFLFast shows a favourable performance.
For the splice mutation phase, both Figures 4b (right half) and 4c
show that AFLVanilla performs better. In Figure 4b we can also see
that only few mutants have non-zero coverage gain, especially in
the havoc mutation phase. To analyze deeper, one can visualize
these mutants and their lineages.

But such a deeper analysis of fuzzing internals is impossible
without proper visualizations. Furthermore, it is tedious and rela-
tively hard to analyze the plots for each run and identify patterns
across multiple runs. This is why we need a framework that can
effectively visualize and summarize the information from multiple
fuzzing runs and facilitate different analytic tasks. The visualiza-
tions should also be linked together and should coordinate with
each other based on the user interactions. For example, the user
should be able to select different areas in the plots to enable dy-
namic visualization and analysis. We believe such a framework can
support both fuzzer users and developers: it helps fuzzer users not
only to select a better fuzzer for their use case but also provides
detailed insights on its internal workings; fuzzer developers can
use such analyses for introspection and evaluation purposes.

No current visualization framework provides an infrastructure
to visualize the internals of fuzzing and facilitate comparison be-
tween different fuzzers. The plots mentioned above are drawn using
ggplot2 [36], which provides an infrastructure to create static visu-
alizations and is domain-agnostic. The visualizations in Figure 4
are only for demonstration purposes and should not be treated as
the final design. We plan to develop a visualization framework for
fuzzing by following the methodology detailed in Section 3.

4https://sourceware.org/binutils/docs/binutils/c_002b_002bfilt.html
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3 Proposed Methodology and Evaluation

To systematically (re-)evaluate and understand fuzzing better, we
propose to develop an evaluation framework for fuzzing. Figure 5
shows the overview of the proposed framework. The framework
accepts a target and claims as input and generates different plots
that support visualization and comparison analysis of the internal
fuzzing data. The proposed approach has three main steps (contri-
butions), as follows:

1. Monitor and record internal fuzzing data. Improvements
to the overall performance of GF are generally made in one or
more internal stages mentioned in Figure 2 by improving how the
components handle the internal fuzzing data. For example, the
power schedule calculates the number of mutations assigned to
each selected seed [3]. Improvements in the power schedule often
aim at assigning a larger number of mutations (energy) to the seeds
that are more promising to generate new interesting behaviours.
We can access the internal fuzzing data by instrumenting the source
code of the fuzzer and take advantage of the fuzzer’s logging module
to export the internal data into a log file. For example, to record
the power schedule, we can instrument the fuzzer’s source code
where the mutation takes place and insert code to log the number
of mutations. However, manually instrumenting each internal stage
in each fuzzer is a tedious process and does not scale well across
multiple fuzzers.

To record data from multiple internal stages, there is also a need
to define what data to be collected and tackle the scalability problem
across multiple fuzzers. Hence, we propose to implement APIs
that serve as an interface between the fuzzers and our evaluation
framework. Such an interface helps in automating the process of
internal data collection and scales across multiple fuzzers.

2. Visualizing the internals of fuzzing. Now that we have the
infrastructure to capture the internals of fuzzing, we can generate
different visualizations and perform many analytic tasks to under-
stand the relationships between different internal fuzzing stages
and also facilitate comparison between fuzzers.

Current visualization tools for fuzzing only capture high-level
information such as reachable code, call graph, interesting test cases
over time. VisFuzz provides a user interface to view the call graph
and control-flow graph reachability in the browser and provides
real-time intervention of the fuzzing process [48]. FMViz provides
visualization to understand the mutation in AFL by exporting byte
level changes to the input to an image [15]. FuzzSplore also provides
visualizations about the mutations along with code coverage and
interesting test cases generated over time [7]. However, none of the
frameworks perform any data analysis on internal fuzzing data and
facilitate comparison. To reduce randomness and obtain statistically
significant results [17], fuzzing experiments must also be repeated
multiple times. It is then tedious to generate plots for each run and
manually analyze the data for patterns and relationships.

Therefore, we propose to develop a visualization framework
that is specific to fuzzing. We plan to do this in three steps. First,
investigate on how to compare internal fuzzing metrics using visu-
alizations and how to scale the visualizations for multi-run fuzzing
data, using aggregations, clustering, etc. We will start investigat-
ing according to the frameworks for visual comparison detailed
by Gleicher et al in [9, 10]. These frameworks provide high-level
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Figure 4: Example visualizations of the internal mutation stages of AFLFast and AFLVanilla.
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Figure 5: Overview of the proposed framework for fuzzer
evaluation (the contributions of this work are enumerated).

design patterns for visual comparison. Second, develop a visual-
ization framework to support the dynamic construction of linked
and interactive visualizations of fuzzing metrics and mechanisms,
and facilitate visual comparison methods for internal fuzzing data.
We will follow the task-based approach by using the well-known
nested model for visualization design by Munzner [28] to develop
the visualization framework. As the first step, we will start by con-
ducting interviews with fuzzing experts to understand their needs
and extract a taxonomy of visualization analysis tasks that help
in understanding fuzzing internals. These tasks can then be used
to derive the necessary visualization idioms (scatterplots, grouped
line plots, time series, etc) and the interactions between different
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idioms (brushing, zooming, etc). Third, develop a domain-specific
grammar-based visualization toolkit for fuzzing. The goal of the
toolkit is to enable fuzzing researchers and practitioners a means to
flexibly compose interactive visualizations that answer their ques-
tions. The toolkit will also support the tasks in the aforementioned
task taxonomy, and consider common visual comparison guidelines
[9, 10] in the design process. The efforts lie in the direction similar
to Gosling [24], a grammar-based toolkit for scalable and interactive
genomics data visualization. We are unaware of any visualization
framework that supports interactive visualization and analysis of
internal fuzzing data.

3. Evaluation specification. As a final step, we propose to
automate the evaluation process by developing an evaluation speci-
fication using a domain specific language (DSL). The DSL’s purpose
is three-fold: (1) it combines claims and evaluation metrics with
the internal stages of fuzzing and ensures that the claims are evalu-
ated directly, (2) it accommodates the visualization grammar using
which users can specify what and how to generate and compose
visualizations for different internal fuzzing metrics, and (3) it makes
evaluations more easily reproducible.

One can use the DSL to provide all the necessary options for
visualization analysis: the internal fuzzing data to capture, linked
graphs and their interactions (brushing, selection window, etc) to
generate. We aim to develop a flexible DSL to accomodate user-
defined evaluation metrics along with the existing ones in the
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literature and custom interactive visualiaztions which support user-
desired visualization analyses.

Research questions. We plan to evaluate our approach by an-
swering these research questions:

(1) What visualizations/analyses help in understanding fuzzing
better and how?

(2) What are the scalability challenges faced in comparing dif-
ferent fuzzing metrics?

(3) How usable is the visualization framework to understand
internals of fuzzing?

(4) How expressible is the evaluation specification?

Threats to Validity. We currently foresee the following threats:
the properties of the target influence the fuzzing performance [39].
Investigating deeper in this direction is out of scope for our re-
search idea. However, we keep this investigation as an optional
contribution.

Our proposed approach involves instrumenting the fuzzers to
gather internal data which influence the runtime performance. To
mitigate this, we plan to develop a configurable instrumentation
methodology that captures only necessary and sufficient data for
visualization analysis at intermittent intervals during the fuzzing
campaign.

4 Conclusion

Greybox fuzzing (GF), in general, aims at increasing runtime code
coverage and finding more bugs. There are many publications that
improve different stages of GF (discussed in Section 2.1). However,
detailed understanding and visualizing the internals of fuzzing still
remains an open challenge. From the perspective of understanding
fuzzing, we also identified the discrepancy between the claims
and the evaluation metrics in our preliminary study (as shown
in Figure 3). We then detailed our approach, research questions
and contributions that focus on visualizing and understanding the
internals of fuzzing. We believe that the contributions of this work
will help in understanding fuzzing better and support the evaluation
process in the fuzzing community.
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