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Abstract

Greybox fuzzing is used extensively in research and practice. There
are umpteen improvements proposed in the literature to improve
greybox fuzzing. However, to what extent do these improvements
affect the internal components (or internals) of a given fuzzer is
not yet understood as the improvements are mostly evaluated in
terms of code coverage and bug finding capability. Such an evalu-
ation is insufficient to understand the effect of improvements on
the internals of fuzzer. Some of the literature developed tools to
visualize the outcomes of the fuzzing to enhance the understanding.
However, they only focus on high-level information and no previ-
ous research on visualization has been dedicated to understanding
fuzzing internals.

To close this gap, we propose the first step towards the devel-
opment of a fuzzing-specific visualization framework: a taxonomy
of visualization analysis tasks that fuzzing experts desire to help
them understand the internals of fuzzing. Our approach involves
conducting semi-structured interviews with fuzzing experts and
using qualitative data analysis to systematically extract the task
taxonomy from the interview data. We also evaluate the support
of existing visualization tools for fuzzing through the lens of our
taxonomy. In our pilot study, we conducted interviews with six
fuzzing experts and extracted a preliminary taxonomy. We aim to
conduct another 20 interviews to gain more insights and make the
taxonomy more robust at Phase 2.
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1 Introduction

Fuzzing or fuzz testing is a dynamic testing technique in which the
system under test (SUT) is iteratively executed with semi-randomly
created inputs with the aim to find interesting behaviors such as
security vulnerabilities. Greybox fuzzing (GF) is a technique that
uses feedback from the runtime environment such as code coverage,
to guide its iterative input generation and prioritization process
[12]. GF is extensively used in research and practice due to its high
performance in automated vulnerability discovery [4, 24]. There
are numerous publications in GF that propose improvements to
the internals of the fuzzer! [2, 3, 20, 25, 42, 44, 47]. However, the
evaluation of such improvements is complex due to the inherent
randomness in fuzzing [31].

Currently, the most used evaluation criteria in the fuzzing com-
munity are runtime code coverage and bug finding capability. A
recent study of 250 fuzzing publications from the top conferences
by Schloegel et al [34] reveals that: 77% of the papers evaluate the
improvements using some kind of code coverage and 71% evaluate
using bug finding capability. Though it is tempting to infer that
a fuzzer that reaches more code or finds more bugs is better than
others, it is hard to measure the effect of improvements made to the
fuzzer on its internals when evaluated using such holistic metrics.

To understand fuzzing in depth, some literature focused on vi-
sualizing the outcomes of the fuzzing campaigns [11, 16, 43, 48].
However, the existing visualizations for fuzzing only focus on high-
level information such as the covered code, the call graph and
interesting inputs generated over time. None of these visualizations
provide information about how the internals of fuzzing work.

To design and develop a suitable visualization framework, it is
important to understand the questions (or tasks) that the user? asks
to derive insights by visually analyzing the data [7, 35]. These tasks

!n the context of this paper, fuzzer refers to a tool that performs greybox fuzzing.
%In the context of this paper, a user refers to a fuzzing expert.
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might be exploratory in nature and help in revealing new important
insights to the users.

To fill the gap in this area, this study presents the taxonomy of
visualization analysis tasks to understand the internals of fuzzing.
The tasks are derived by conducting semi-structured interviews
with fuzzing experts and performing qualitative data analysis using
open coding protocol [27]. To extract reliable information from
interviews, we only recruited the participants having expertise in
GF and followed the coding protocol with two coders [39].

Advantages of such a taxonomy are three-fold: (1) it guides the
design and development of domain specific visualization frame-
work [28, 37]; (2) it helps in evaluating the usability of existing
visualization frameworks; (3) it suggests new criteria for fuzzing
evaluations as opposed to the holistic metrics [26]. While similar
taxonomies of visualization analysis tasks do exist in other domains
such as biological pathway data [30], graph visualizations [19], and
temporal network visualizations [1], we are the first to conduct
such a study in the area of fuzzing.

The main contributions of our work are as follows:

e Semi-structured interviews with fuzzing experts to gather
insights on understanding the internals of fuzzing.

e Qualitative data analysis protocol to analyze the interview
data.

o Taxonomy of visualization analysis tasks that fuzzing experts
ask about the internals of fuzzing.

e Evaluation of existing visualization tools in fuzzing using
our task taxonomy.

For the Phase 1 submission, we detail our approach and present
the results from our pilot study of six interviews. In total, we have
extracted 54 visualization analysis tasks across different combina-
tions of fuzzing internals. Our study design and qualitative data
analysis protocol helps us gather more insights for Phase 2: specifi-
cally, we plan to increase the scope of the study and conduct more
interviews by approaching fuzzing experts in academia and indus-
try and work towards the contributions.

The rest of the paper is organized as follows: Section 2 provides
the necessary background information and motivates the study
using an example visualization analysis task. Section 3 details the
approach of the study and Section 4 discusses the results from
our pilot study. Section 5 details the plan for the actual study and
Section 6 discusses the threats to validity. Section 7 discusses the
related work and Section 8 concludes the paper.

2 Background & Motivation

2.1 Greybox Fuzzing Internals

A greybox fuzzer executes the SUT (target) using iteratively gen-
erated inputs to increase runtime coverage and/or find abnormal
behaviors. Figure 1 shows the common internal components (inter-
nals or internal stages) of the fuzzer. Instrumentation injects code
into the target to get runtime feedback. Initial seeds help in start-
ing the fuzzing campaign and they greatly influence the overall
performance [13, 22, 32]. The fuzzer uses the initial seeds and the
corresponding runtime information (e.g., branch coverage) in the
next stages. Search strategy aims at selecting a seed from the seed
queue that increases coverage based on some heuristics [17]. Intu-
itively search strategy decides the selection orders of the seeds in
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Figure 1: Internal stages of greybox fuzzing.
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the seed queue for further processing. Power schedule assigns energy
(number of mutations) to the selected seed using some heuristics
(e.g., coverage gain) [46]. Mutations apply different mutation strate-
gies to the selected seed (e.g., havoc or splice [10]) and generate
mutants until the assigned energy is exhausted. Execution runs the
instrumented target with the mutants and monitors the runtime
environment for interesting behaviors such as crashes, increased
coverage, etc., and decides if the corresponding seed or the mutant
should be added to the seed queue or not.

We categorized these internal stages based on different claims
made in the literature and after carefully inspecting different survey
publications in GF [9, 21, 24, 26, 31, 46].

2.2 Visualization Analysis

In the context of this paper, we define a visualization analysis task
as:

A question that a fuzzing expert asks to understand the
internal stages of fuzzing using visualization analysis.

Consider an example visualization analysis task, how do the mu-
tation strategies perform between two fuzzers? The traditional way
of answering the task is to evaluate the fuzzers using the holistic
metrics (e.g., runtime code coverage or bug finding capability). Such
an evaluation provides little to no information about the mutation
strategies. However, evaluation using visualization analysis can
provide some detailed insights into the task.

An example interactive visualization analysis workflow for the
above task is shown in Figure 2. The workflow is developed us-
ing a domain-agnostic visualization framework, vega-lite [33], for
demonstration purposes only. It shows the collected data from a
fuzzing campaign with two fuzzers, AFLFast [6] and AFLVanilla (a
variant of AFLFast after replacing AFLFast’s search strategy with
the one from AFL 1.94b [45]), for two mutation strategies (havoc
and splice), on the target, cxxfilt.> The campaign is run for 24 hours
and is repeated five times. The horizontal grouped line graphs (Fig-
ure 2a and Figure 2b) show the branch coverage over time for five
fuzzing runs (trials), one line for each trial as shown in the legend to

Shttps://sourceware.org/binutils/docs/binutils/c_002b_002bfilt.html
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Figure 2: Example visualization workflow to understand the mutation strategies in AFLFast and AFLVanilla.

the right of Figure 2b. A user can select one or more trials simulta-
neously by clicking at the corresponding legend items and visually
analyze the graphs (first and third trails are selected in Figure 2a
and Figure 2b). There is a steep increase in coverage between 2nd
and 6th hours according to the line graphs. The user can draw a
window from 2nd to 6th hour (shown in Figure 2a) to analyze the
underlying data. The user can also move the window on the x-axis
and the data in other graphs are automatically synchronized.

Figure 2c and Figure 2d shows the coverage gain of different mu-
tants generated by the mutation strategies (havoc and splice) for the
selected window using box plots. When looking at just Figure 2c, it
is not clear which fuzzer has better havoc mutation strategy. How-
ever, if we look at the corresponding utilization ratio (ratio of the
number of mutations that found the latest new coverage to the total
number of mutations) in Figure 2e, the AFLFast’s havoc mutation
strategy shows favorable performance in both of the selected trails
(first and third trails are represented using two different colors).
Figure 2d and Figure 2f show that AFLVanilla performs better in the
splice mutation strategy respectively. The user can then verify for
the similar pattern in other trails and time windows before arriving
at a conclusion.

There are multiple ways of designing a visualization workflow
for a single analysis task and choosing the right workflow is not the
focus of this paper. This paper focuses on extracting the desired list
of analysis tasks from the fuzzing experts. Having such a taxonomy
of visualization analysis tasks provides a strong background to
develop a fuzzing-specific visualization framework that can be
used to specify what to visualize (data requirements), and how to
visualize (visualization idioms [29], visualization workflows, and
user interactions). The taxonomy also suggests new evaluation
criteria focusing on fuzzing internals (and their combinations) to
the fuzzing community.
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3 Approach

Our approach involves in conducting semi-structured interviews
with fuzzing practitioners and experts and performing qualitative
data analysis to extract the necessary information and derive the
taxonomy of visualization analysis tasks to understand fuzzing
internals. The reproducibility of our approach lies in the design of
the interview and formally describing the information extracted
from the free-form interview text. The soundness of our approach
is proportional to the expertise of the study participants. Figure 3
shows the overview of the approach, and the following sub-sections
detail the steps.

[l oN b

Pilot ctua
prase | phase
Semi-structured

interviews

Task
taxonomy

Qualitative
data analysis

Figure 3: Overview of the approach.

3.1 Semi-structured Interviews

The goal of the study is to extract the visualization analysis tasks
that the fuzzing practitioners are interested in and help to under-
stand the internals of fuzzing. We follow semi-structured interview
format in our study as they are flexible and provide a platform
for open-ended discussions [14]. They allow the interviewer for
follow-up questions to stimulate further discussions, receive sponta-
neous feedback, and gather deeper insights. This interview format
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requires using an initial question catalogue to steer the interview
and focus on the topic of interest [36] (our artifact [18] contains
the initial question catalogue used in the study). The interviews are
carried out in two phases, pilot phase and actual phase where the
main difference is in the participants.

3.1.1 Participants. To obtain meaningful insights, we restricted
the study to the participants who have expertise in GF. In the pilot
phase, we contacted seven fuzzing experts in our closed contacts
and six of them agreed to participate in the study (details of the pilot
study are described in Section 4). The participation was voluntary
and without any incentives.

In the actual phase, we plan to use this paper to reach out to
the wider audience in the fuzzing community and industry for
participation. We are aiming for about 20 interviews with fuzzing
experts with highest level of expertise to produce robust results
(the plan for the actual study is described in Section 5).

3.1.2  Design. The interview is divided into four parts: (1) introduc-
tion and background, (2) identifying internal stage compositions,
(3) identifying visualization analysis tasks, and (4) miscellaneous.

In the first part, the participant is asked to provide the demo-
graphical information on their expertise in GF. The moderator then
provides background information on the internal stages of fuzzing
(Section 2.1) and visualization analysis task with an example in-
teractive visualization workflow (Section 2.2). The participant is
also asked to comment on the categorization of the internal stages.
In the second part, the participant is asked to identify the related
internal stages and provide a reason about why the internal stages
are related. In the third part, the participant is prompted to ask
questions that help in understanding each internal stage and their
relationships (identified in the previous part) using visualization
analysis. The moderator also tries to ask follow-up questions and
clarifications regarding the relationships to get deeper insights and
stimulate further discussions. The final part of the interview is used
to discuss additional ideas and clarifications if any.

Two test runs were conducted with researchers to adapt the
interview design. The second and third parts are the most important
parts of the interview as they provide the necessary information
for qualitative data analysis and extracting the task taxonomy.

3.1.3  Data Collection. Each participant is contacted via an e-mail
by providing general information about the study and the consent
form. After agreeing to participate, the interviews are scheduled
virtually using Microsoft Teams®*. The average duration of the in-
terview is 60 minutes, and the interviews are recorded (screen and
audio) for post-processing. We used ConceptBoard® to keep the
interview sessions interactive and record the intermediate data.

3.1.4 Ethics. We ensured that the signed consent form is received
from the participants before proceeding with the interview. The
consent form provides information about the study, voluntary par-
ticipation, data collection and privacy. The study design is also
approved by the corresponding ombudsperson of the Ethics com-
mittee.

“https://www.microsoft.com/en-us/microsoft-teams/group-chat-software
Shttps://conceptboard.com/
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3.2 Qualitative Data Analysis

We follow open coding protocol [27] to conduct qualitative data
analysis on the second and third parts of the anonymized interview
data. Open coding protocol requires agreeing up on the initial set of
codes before performing the data analysis. The coding protocol is
iterative; i.e., when new codes are identified, all the interview data
should be re-analyzed to fit in the new set of codes. We separate
all the visualization analysis tasks mentioned by the participants
along with the corresponding explanations before performing the
data analysis.

Example visualization analysis task

I can think about a question between initial seeds and
execution. How does the energy vary from each initial
seed to their particular mutants?

3.2.1 Task specification. We will use the example visualization
analysis task from one of the interviews shown in the text box
above, to understand the coding process.

Initially two coders agreed to code the interview data using the
Categorization mentioned in Table 1: the example is coded as inter
stage task because it involves two internal stages, initial seeds and
execution.

After coding one interview transcript, the coders met to discuss
the disagreements. However, using just the categorization was
insufficient for the coders to uniquely identify the coded data and it
also did not capture the necessary information from the interview
transcript (the second part in our example is completely ignored).

Hence, the initial code is extended by adding three more at-
tributes as shown in the Table 1: stage(s), related data, and type
of data analysis. Such an updated code, which we denominate as
task specification, provides a formal definition of the visualization
analysis task, helps to uniquely identify the coded data, and facili-
tate disagreements. The task specification is agreed by the whole
research team after discussing on the interview data. The third
column in Table 1 shows the task specification for our example.

Table 1: Description of task specification.

Code Description Example
Categorization intra stage task (only one internal stage is  inter stage task
involved),
inter stage task (multiple internal stages
are involved),
overall task (all internal stages are in-
volved),
non-visualization task (when the question
can be answered without visualization
analysis)
Stage(s) The involved stages in the task according initial seeds,
to the categorization in Figure 1. execution
Related data ~ The data that needs to be collected from initial seeds and their
the internal stages to inform on the task. mutants,
energy assignments to
the seeds

variation of energy be-
tween initial seeds and
their mutants

Type of data
analysis

The operations that needed to be per-
formed on the related data for analysis.
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3.2.2 Coding protocol. The interview data is split evenly between
two researchers (coders). The first coder has been working in differ-
ent projects involving GF and whitebox fuzzing [24] for three years
and participated in multiple user studies gaining knowledge in con-
ducting interviews. The second coder has participated in various
qualitative data analysis projects in the past two years enriching
the expertise in the field. Both the coders heavily work with the
well-known fuzzers, AFL [45], AFL++ [8], LibFuzzer °. Considering
the combined expertise of the coders, we can argue that we are well
qualified to conduct the study described in this paper.

The coders analyzed and coded the data individually using the
task specification discussed above. After the analysis the coders
discussed each other’s work to resolve the disagreements. A dis-
agreement is defined as the difference between the coded data in at
least one part of the task specification.

This is an adaptation of the gold coding standard [39] where the
reliability coder verifies the master coder’s work. In our case, each
coder acted as the reliability coder for other coder’s work. When
there are further disagreements, a third coder is also involved to
arrive at a consensus. The final list of task specifications are then
reviewed by the rest of the research team for approval. To measure
the reliability of the coding process, we report the percentage of
disagreements between the coders.

3.3 Task Taxonomy

Once we have the agreed list of task specifications, we can fur-
ther group them based on the duplicate and subset relationships
before extracting the taxonomy. We ignored all the agreed non-
visualization task specifications and only extracted the task taxon-
omy from the remaining specifications.

We formally define a task specification, T, as the tuple, T(C, S, D,
A), containing four elements: categorization (C), involved stages
(S), related data (D), and type of data analysis (A).

T=T & C=C AS=S AD=D'AA=A (1)

TcT & C=C'AScSADcD ANA=A (2)

Two tasks, denoted as T(C, S, D, A) and T’ (C’, S, D’, A”) respec-
tively, are considered duplicates when each element in T is same
as the corresponding element in T’ (Equation 1). T is a subset of
T’ when the elements S, D are subset of the corresponding ele-
ments S’, D’ and the elements C, A are same as the corresponding
elements C’, A’ (Equation 2).

4 Pilot Study
4.1 Participants

Six out of seven experts we invited agreed to participate in the
interviews. All the participants work as research associates with
up to three years of experience in fuzzing. We asked each partici-
pant to choose an expertise level among beginner, mediocre, and
expert in conceptual knowledge and practical knowledge in GF.
Participants with conceptual knowledge can provide insights from

Shttps://llvm.org/docs/LibFuzzer.html
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the perspective of using fuzzers whereas participants with practi-
cal knowledge can provide insights from the software-developer
perspective. Table 2 shows the expertise profile of the participants.

Table 2: Expertise profile of the participants of the study.

Participant Conceptual knowledge Practical knowledge
P1 beginner beginner
P2 mediocre beginner
P3 mediocre mediocre
P4 mediocre mediocre
P5 mediocre mediocre
P6 mediocre beginner

In our pilot study, we only were able to interview participants
with up to mediocre level of expertise. The ideal participant should
have the highest level of conceptual expertise and practical exper-
tise. However, it is hard to find such ideal participants. In our actual
study (Section 5), we aim to interview participants from the fuzzing
community with the highest level of expertise either in conceptual
knowledge or practical knowledge to get more meaningful insights.

4.2 Greybox Fuzzing Internals

We asked each participant in the pilot semi-structured interview
to comment on the proposed internal stages of GF (Figure 1). We
grouped the responses into three categories: accepted (completely
agree with the categorization), partially accepted (agree with the
categorization while providing some suggestions), and rejected
(disagree with the categorization).

Among the six participants, two of them provided partial accep-
tance with suggestions and the rest accepted the proposed internal
stages. None of the participants rejected our categorization. Table 3
shows the suggestions from the two partially accepted participants.

Table 3: Participant suggestions on the internal stages of GF.

Participant Response Suggestion

P2 partially  Search strategy and Power schedule should be part of
accepted  Mutations.

P4 partially A filtering stage between Execution and Search strategy
accepted  decides if the seed should be added back to the queue

or not.

Discussion. P2’s suggestion was based on their experience with
the fuzzer, Jazzer’ (mentioned in the interview). Though the sug-
gestion is to merge the internal stages, we manually verified the
implementation of Jazzer, and found that it internally uses Lib-
Fuzzer’s Entropic power schedule® [5] and random search strategy’
by default. The suggestion from participant P4 is already included
in the Execution stage according to our categorization. Consider-
ing these reasons, we report that all the participants accept the
categorization.

"https://github.com/CodelIntelligenceTesting/jazzer
8https://github.com/llvm/llvm-project/commit/f3c2e0bcee64b0905addaefedcdoc9ads
d20acef
“https://github.com/llvm/llvm-project/blob/f68548135b8f9a02beac842646abg9bcaad
9d400/compiler-rt/lib/fuzzer/FuzzerLoop.cpp#L721
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4.3 Open Coding Protocol

We systematically followed the qualitative data analysis protocol to
extract task specifications from the anonymized interview data. In
the total of 110 tasks specifications, there were only 16 initial con-
flicts. All were resolved by discussion between the coders. Hence,
the percentage of initial disagreement was 14.5%. We then discarded
12 non-visualization task specifications and 6 task specifications
due to insufficient information, and merged two task specifications
into one as they are derivatives. Finally, we are left with 91 task
specifications to extract the taxonomy.

4.4 Taxonomy

We followed the equations described in Section 3.3 to extract the
final taxonomy shown in Tables 4 and 5. After removing 37 dupli-
cates (Equation 1), we are left with 54 unique task specifications.
Due to the space constraints, we only show the involved stages
and the type of data analysis (analysis task) for each of the 54 task
specifications. The anonymized interview data and the complete
information on each task specification can be found in our artifact
[18].

Table 4 shows the inter-stage tasks and Table 5 shows the intra-
stage, and overall tasks. The first column in the tables show the
involved GF internal stages (Figure 1) and the second column de-
scribes the analysis task. The duplicates identified in the analysis
tasks (Equation 1) is shown using the icon, , where X’ repre-
sents the number of duplicates. For example, we have identified
five duplicates of Task @ (see Table 4) and six duplicates of Task
@ (see Table 5). The icon tells that the current analysis task
is a subset (Equation 2) to the analysis task *T’. For example, Tasks
© and @ are subsets of Task @ (see Table 4).

Though the above mentioned taxonomy is only from the pilot
study, it already provides a strong base for fuzzing visualizations
and suggests new criteria for fuzzing evaluations. To develop vi-
sualizations that focus on understanding fuzzing internals, the
framework should at least provide workflows that cover the pro-
posed taxonomy. When developing the workflows, one can identify
different internal stage combinations to consider from our taxon-
omy: according to the Tasks € - @, a visualization workflow for
power schedule should consider the relationships with mutations,
search strategy and execution internal stages; the internal stages,
instrumentation and initial seeds, may not interact with each other
but they interact with all the remaining four internal stages (ob-
served from the Tasks o - @); the internal stage, mutations, only
interacts with execution (Tasks @ - @) The example visualization
workflow discussed in Section 2.2 relates to the Task @ and the
example visualization analysis task discussed in Section 3.2 relates
to the Task @. Our taxonomy also provides insights in prioritizing
the development of workflows. For example, the most frequent
analysis task (in terms of duplicates) is to visualize the timeline
across different internal stages (Tasks @), @, and @)). It accounts
for 24.3% (9) of the total duplicates (37).

To evaluate an improvement to one of the fuzzing internal stages,
the proposed taxonomy provides the combination of internal stages
that should also be considered in the evaluation. For example, the
evaluation of an improved power schedule should consider its re-
lationships with mutations, search strategy and execution internal
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stages (according to the Tasks @ - @) Our taxonomy also hints
towards the data that can be observed to evaluate the internal
stages and its relationships (the related data corresponding to each
analysis task is provided in our artifact [18]).

5 Plan for the Actual Study

To complete the actual study in Phase 2 of the publication process,
we plan to expand the research in scope and depth, with the fol-
lowing four goals. First, we will conduct more interviews among
fuzzing experts. We aim to approach experts in the academia and
industry with the highest level of expertise to gather more mean-
ingful insights. For this reason, we plan to use workshop as one of
the platforms to reach out to the experts in the field of GF.

Second, we will extend the scope of the semi-structured inter-
view. The question catalogue used in the pilot study only focuses on
extracting the visualization analysis tasks that the experts ask about
the fuzzing internals. We plan to extend the catalogue and hence
the scope of the interview to gather insights on the experience
of using existing visualization tools for fuzzing. Such an extended
scope allows us to understand the problems faced by the users when
using the tools and contributes to the design and development of
the future tools.

Third, after extracting the taxonomy from the actual study, we
plan to evaluate the existing visualization tools for fuzzing and
discuss their support for the tasks in our taxonomy.

Finally, we plan to evaluate our approach by answering the
following research questions:

(1) RQ1. What are the different visualization analysis tasks to
understand the internal stages of fuzzing?

(2) RQ2. To what extent do the state-of-the-art fuzzing visu-
alization tools support the extracted visualization analysis
tasks?

6 Threats to Validity

We have identified several threats to validity. First, the internal
stages of GF do not consider the contributions of hybrid approaches
such as the combinations of GF with symbolic execution [38, 40,
41], static analysis [15, 23], etc. Our proposed internal stages can
be considered as the basic stages in most of the fuzzers and the
hybrid approaches add additional stages to it. We intentionally
scoped the research to internal stages in GF alone for two reasons:
visualizing the internal stages of a fuzzer itself is not researched
in the community and we hope to make the initial contribution in
this area; finding experts working with hybrid approaches is rather
difficult when compared to the experts working in GF. However,
we plan to consider such extensions to our work in the future.

Second, the interviews are intentionally semi-structured to facil-
itate open-ended discussions with the fuzzing experts and gather
meaningful insights. The taxonomy extracted from such a free-form
interview data is not exhaustive and final: it can be extended or re-
fined by conducting more interviews and we are open for additional
contributions. To mitigate this threat, we scoped the interview dis-
cussions to focus on understanding fuzzing internals using our
question catalogue and aim to conduct up to 20 interviews to make
the taxonomy robust.
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Table 4: Taxonomy of inter-stage visualization analysis tasks from pilot study.

Legend, GF internal stages from Figure 1: ‘1 instrumentation, [18] initial seeds, 's search strategy, 'P power schedule, M mutations, [E| execution;
@ represents task ID; represents 'x’ duplicates of the analysis task; represents the current analysis task is subset to the analysis task "T’;
interesting behaviours refer to runtime information such as code coverage, crashes, resource consumption, execution speed.

Stage(s) Analysis task

N @ coverage growth over time for each mutant

E © overlapping of code coverage of each mutant and instrumented code statements

© overlapping of code coverage of selected seeds and failed instrumented code; selection frequency of the seeds
that execute the failed instrumented code

I (4] comparison of runtime metrics between instrumented and non-instrumented targets

(5 ] comparison of code coverage between instrumented and non-instrumented targets
(6] comparison of compilation and execution time between instrumented and uninstrumented target

@ percentage of instrumented code statements that are failed to execute at runtime; errors and location of the
runtime failed instrumented code

S © relationship (eg. correlation) between instrumented code blocks and selection orders

P (1] relationship between different instrumentation types and energy assignments

@ comparison of interesting behaviours between initial seeds and mutants; analyze the parts of initial seeds and
M mutants that contributed to the interesting behaviours

E @ mutation timeline, number of mutants from each initial seed; code coverage for each initial seed and mutant

percentage of runtime similarities; selection frequency of runtime similar seeds

@ relationship between selection orders and interesting behaviours of different initial seed sets
P M @ distribution of energy for each initial seed and its mutants

E comparison of code coverage between different initial seed sets

E | @ (< 12.15) comparison of code coverage between initial seed set with an empty seed

(17) impact of initial seeds on interesting behaviours

@ comparison between mutated parts of the initial seeds
Q relationship (eg. correlation) between selection orders and initial seeds
P @ percentage of assigned power used by initial seeds

IS

7]

Q relationship (eg. correlation) between selection orders and filtered seeds

(22) relationship (eg. correlation) between selection orders and interesting behaviours

relationship (eg. correlation) between selection orders and mutation strategies

=

@ (; ®) distribution of energy for each selected seed; correlation between selection orders and energy assignments

@ percentage of assigned power used by each selected seed; percentage of mutants provided the coverage gain

S relationship (eg. correlation) between energy assignments, selection orders and interesting behaviours
p (eg gy g g

@ relationship (eg. correlation) between energy assignments and interesting behaviours

P @ relationship (eg. correlation) between energy assignment and filtered seeds

variation in the energy across different mutants

M Q distribution of energy for each mutant and each mutation strategy

@ relationship between frequency of mutant and the energy assignment to the mutant; relationship between
number of mutants and the energy assignment to the mutants

comparison of interesting behaviours across different mutation strategies

@ relationship (eg. correlation) between mutation strategies and filtered seeds
@ relationship (eg. correlation) between mutation strategies and interesting behaviours
@ comparison of coverage growth rate across different mutation strategies

@ comparison of runtime, number of mutants generated, time to generate mutants across different mutation
strategies

@ comparison of runtime and resource consumption across different mutation strategies

Q relationship between mutation strategy changes and interesting behaviours

@ time to generate valid mutants; number of valid mutants (successful execution)

19



FUZZING ’24, September 16, 2024, Vienna, Austria

Sriteja Kummita, Miao Miao, Eric Bodden, and Shiyi Wei

Table 5: Taxonomy of intra-stage and overall visualization analysis tasks from pilot study.

Legend, GF internal stages from Figure 1: ‘1 instrumentation, [18| initial seeds, 's search strategy, ‘P power schedule, M mutations, [E execution, ALL all

internal stages; @) represents task ID; represents 'x’ duplicates of the analysis task; represents the current analysis task is subset to the analysis task
"T’; interesting behaviours refer to runtime information such as code coverage, crashes, resource consumption, execution speed.

Stage | Analysis task
@ percentage of instrumented code statements that are syntactically correct; the instrumented code which failed in
5 compilation

@ percentage of instrumented code per class/function

@ number of lines of code are added to the target

IS 0 percentage of structural similarities

S (44 analyze selection order frequency between seeds

@ distribution of energy assignment per seed over time

g mutation timeline of each mutant

@ compare the number of mutants generated under different mutation strategy

@ record number of mutants generated overall

@ record what parts of the seed are mutated

Q number and duration of executions

@ executions that improve code coverage over time

Q impact of initial seeds on the other stages

ALL

(53] timeline of the seeds with respect to all stages

@ record code coverage and bugs found over time

Third, the robustness of our taxonomy also depends on the num-
ber of participants and the expertise they have in GF. We were only
able to interview participants who have beginner and mediocre
expertise in the pilot study. To mitigate this threat, we hope to
interview more participants who have the highest level of expertise
in the actual study.

Fourth, the derived tasks are data driven, and subjective to the
coders. There is a possibility that different coders might produce
different tasks. To mitigate this threat and ensure reliability of our
results, we followed a systematic qualitative data analysis method-
ology (described in Section 3.2). In our pilot study, we only have 16
(14.5%) cases of disagreement which can be considered as a small
portion.

7 Related Work

To the best of our knowledge, we are the first to conduct such
an interview-based study with fuzzing experts to understand the
interested tasks.

7.1 Fuzzing Visualization Tools

There are a few visualization tools for fuzzing that focus on high-
level data but not on the internals of fuzzing. VisFuzz provides a user
interface to view the call graph and control-flow graph reachability
in the browser and provides realtime intervention of the running
fuzzing process. It aids the user to understand the bottlenecks in the
source code, modify the fuzzing input and construct targeted seeds
or modify the test driver to bypass the bottlenecks [48]. A recently
published registered report, InFuzz [43], also provides HTML user
interface to guide the users in identifying bottlenecks and interven-
ing the fuzzing process to improve runtime code coverage. FMViz
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provides visualizations to understand the mutation in AFL [45] by
exporting byte level changes to the input to an image [16]. Fuz-
zSplore also provides visualizations for the mutations along with
code coverage and interesting test cases generated over time [11].
None of the above discussed tools provide an infrastructure
to understand the internals of fuzzing. We plan to evaluate their
support to the tasks in our taxonomy as described in Section 5.

7.2 Visualization Task Taxonomy

Visualization analysis tasks play an important role in designing a
suitable domain specific visualization framework and evaluation
of the existing frameworks. However, there is no literature so far
that provides information on such tasks to understand fuzzing in-
ternals. Here we list the related work from other domains that have
similar goals of extracting taxonomy of visualization analysis tasks.
Lee et al. developed a taxonomy of tasks to improve the existing
graph visualization systems and to evaluate them [19]. The authors
reviewed user studies of graph visualization techniques and cate-
gorized the graph analysis tasks into four groups: topology-based
tasks, attribute-based tasks, browsing tasks, and overview tasks.
Ahn et al. provide task taxonomy for temporal network visualiza-
tion [1] to guide future visualization tools and encourage novel
research questions. The authors reviewed 53 existing visualization
systems to extract the taxonomy. The taxonomy is refined and
evaluated using interviews with 12 network analysis experts.
Murray et al. proposed task taxonomy for the analysis of bio-
logical pathway data [30] and is the closest to our methodology.
They conducted free-form interviews with seven domain experts
and grouped the taxonomy into three categories: attribute tasks,
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relationship tasks, and modification tasks. The authors also exam-
ined the existing visualization techniques that support the tasks
and detail the gaps revealed by the task taxonomy.

8 Conclusions

In this paper, we stressed the importance of visualization analysis
tasks as a pre-requisite for the development of visualization frame-
work and the need of such tasks to understand the internals of
greybox fuzzing (GF). We have identified that there is no system-
atic research conducted so far in this area and we hope to make
the first contribution. We presented our approach of conducting
semi-structured interviews with fuzzing experts and performing
qualitative data analysis to extract the visualization analysis tasks.
Our preliminary results from the pilot study summarizes the differ-
ent types of these tasks.

We have also presented our plan for the actual study to conduct
more interviews and extend the scope and depth of the interview.
Through the actual study, we aim to make our results robust and
provide richer task taxonomy. We hope that our contributions
will shed light towards further research opportunities in fuzzing
visualizations and fuzzing evaluations.

In the future, we plan to use the task taxonomy as the base to
design and develop a fuzzing-specific visualization framework that
focuses on understanding fuzzing internals.

9 Revision Requirements

This camera-ready version of the paper does not incorporate the
following revision requirement due to the unavailability of time:

(1) Make sure to have a sufficient set of interviewed people
and expertise within your initial user study. We ask you to
interview 10 people, 5 of which are experts, to address this
concern.

We plan to address this requirement at TOSEM stage 1 submis-
sion.
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