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Abstract

Greybox fuzzing is used extensively in research and practice. There

are umpteen improvements proposed in the literature to improve

greybox fuzzing. However, to what extent do these improvements

a�ect the internal components (or internals) of a given fuzzer is

not yet understood as the improvements are mostly evaluated in

terms of code coverage and bug �nding capability. Such an evalu-

ation is insu�cient to understand the e�ect of improvements on

the internals of fuzzer. Some of the literature developed tools to

visualize the outcomes of the fuzzing to enhance the understanding.

However, they only focus on high-level information and no previ-

ous research on visualization has been dedicated to understanding

fuzzing internals.

To close this gap, we propose the �rst step towards the devel-

opment of a fuzzing-speci�c visualization framework: a taxonomy

of visualization analysis tasks that fuzzing experts desire to help

them understand the internals of fuzzing. Our approach involves

conducting semi-structured interviews with fuzzing experts and

using qualitative data analysis to systematically extract the task

taxonomy from the interview data. We also evaluate the support

of existing visualization tools for fuzzing through the lens of our

taxonomy. In our pilot study, we conducted interviews with six

fuzzing experts and extracted a preliminary taxonomy. We aim to

conduct another 20 interviews to gain more insights and make the

taxonomy more robust at Phase 2.

CCS Concepts

• Human-centered computing → User studies; Usability test-

ing; • Security and privacy→ Software security engineering.
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1 Introduction

Fuzzing or fuzz testing is a dynamic testing technique in which the

system under test (SUT) is iteratively executed with semi-randomly

created inputs with the aim to �nd interesting behaviors such as

security vulnerabilities. Greybox fuzzing (GF) is a technique that

uses feedback from the runtime environment such as code coverage,

to guide its iterative input generation and prioritization process

[12]. GF is extensively used in research and practice due to its high

performance in automated vulnerability discovery [4, 24]. There

are numerous publications in GF that propose improvements to

the internals of the fuzzer1 [2, 3, 20, 25, 42, 44, 47]. However, the

evaluation of such improvements is complex due to the inherent

randomness in fuzzing [31].

Currently, the most used evaluation criteria in the fuzzing com-

munity are runtime code coverage and bug �nding capability. A

recent study of 250 fuzzing publications from the top conferences

by Schloegel et al [34] reveals that: 77% of the papers evaluate the

improvements using some kind of code coverage and 71% evaluate

using bug �nding capability. Though it is tempting to infer that

a fuzzer that reaches more code or �nds more bugs is better than

others, it is hard to measure the e�ect of improvements made to the

fuzzer on its internals when evaluated using such holistic metrics.

To understand fuzzing in depth, some literature focused on vi-

sualizing the outcomes of the fuzzing campaigns [11, 16, 43, 48].

However, the existing visualizations for fuzzing only focus on high-

level information such as the covered code, the call graph and

interesting inputs generated over time. None of these visualizations

provide information about how the internals of fuzzing work.

To design and develop a suitable visualization framework, it is

important to understand the questions (or tasks) that the user2 asks

to derive insights by visually analyzing the data [7, 35]. These tasks

1In the context of this paper, fuzzer refers to a tool that performs greybox fuzzing.
2In the context of this paper, a user refers to a fuzzing expert.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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might be exploratory in nature and help in revealing new important

insights to the users.

To �ll the gap in this area, this study presents the taxonomy of

visualization analysis tasks to understand the internals of fuzzing.

The tasks are derived by conducting semi-structured interviews

with fuzzing experts and performing qualitative data analysis using

open coding protocol [27]. To extract reliable information from

interviews, we only recruited the participants having expertise in

GF and followed the coding protocol with two coders [39].

Advantages of such a taxonomy are three-fold: (1) it guides the

design and development of domain speci�c visualization frame-

work [28, 37]; (2) it helps in evaluating the usability of existing

visualization frameworks; (3) it suggests new criteria for fuzzing

evaluations as opposed to the holistic metrics [26]. While similar

taxonomies of visualization analysis tasks do exist in other domains

such as biological pathway data [30], graph visualizations [19], and

temporal network visualizations [1], we are the �rst to conduct

such a study in the area of fuzzing.

The main contributions of our work are as follows:

• Semi-structured interviews with fuzzing experts to gather

insights on understanding the internals of fuzzing.

• Qualitative data analysis protocol to analyze the interview

data.

• Taxonomy of visualization analysis tasks that fuzzing experts

ask about the internals of fuzzing.

• Evaluation of existing visualization tools in fuzzing using

our task taxonomy.

For the Phase 1 submission, we detail our approach and present

the results from our pilot study of six interviews. In total, we have

extracted 54 visualization analysis tasks across di�erent combina-

tions of fuzzing internals. Our study design and qualitative data

analysis protocol helps us gather more insights for Phase 2: speci�-

cally, we plan to increase the scope of the study and conduct more

interviews by approaching fuzzing experts in academia and indus-

try and work towards the contributions.

The rest of the paper is organized as follows: Section 2 provides

the necessary background information and motivates the study

using an example visualization analysis task. Section 3 details the

approach of the study and Section 4 discusses the results from

our pilot study. Section 5 details the plan for the actual study and

Section 6 discusses the threats to validity. Section 7 discusses the

related work and Section 8 concludes the paper.

2 Background & Motivation

2.1 Greybox Fuzzing Internals

A greybox fuzzer executes the SUT (target) using iteratively gen-

erated inputs to increase runtime coverage and/or �nd abnormal

behaviors. Figure 1 shows the common internal components (inter-

nals or internal stages) of the fuzzer. Instrumentation injects code

into the target to get runtime feedback. Initial seeds help in start-

ing the fuzzing campaign and they greatly in�uence the overall

performance [13, 22, 32]. The fuzzer uses the initial seeds and the

corresponding runtime information (e.g., branch coverage) in the

next stages. Search strategy aims at selecting a seed from the seed

queue that increases coverage based on some heuristics [17]. Intu-

itively search strategy decides the selection orders of the seeds in

Figure 1: Internal stages of greybox fuzzing.

the seed queue for further processing. Power schedule assigns energy

(number of mutations) to the selected seed using some heuristics

(e.g., coverage gain) [46].Mutations apply di�erent mutation strate-

gies to the selected seed (e.g., havoc or splice [10]) and generate

mutants until the assigned energy is exhausted. Execution runs the

instrumented target with the mutants and monitors the runtime

environment for interesting behaviors such as crashes, increased

coverage, etc., and decides if the corresponding seed or the mutant

should be added to the seed queue or not.

We categorized these internal stages based on di�erent claims

made in the literature and after carefully inspecting di�erent survey

publications in GF [9, 21, 24, 26, 31, 46].

2.2 Visualization Analysis

In the context of this paper, we de�ne a visualization analysis task

as:

A question that a fuzzing expert asks to understand the

internal stages of fuzzing using visualization analysis.

Consider an example visualization analysis task, how do the mu-

tation strategies perform between two fuzzers? The traditional way

of answering the task is to evaluate the fuzzers using the holistic

metrics (e.g., runtime code coverage or bug �nding capability). Such

an evaluation provides little to no information about the mutation

strategies. However, evaluation using visualization analysis can

provide some detailed insights into the task.

An example interactive visualization analysis work�ow for the

above task is shown in Figure 2. The work�ow is developed us-

ing a domain-agnostic visualization framework, vega-lite [33], for

demonstration purposes only. It shows the collected data from a

fuzzing campaign with two fuzzers, AFLFast [6] and AFLVanilla (a

variant of AFLFast after replacing AFLFast’s search strategy with

the one from AFL 1.94b [45]), for two mutation strategies (havoc

and splice), on the target, cxx�lt.3 The campaign is run for 24 hours

and is repeated �ve times. The horizontal grouped line graphs (Fig-

ure 2a and Figure 2b) show the branch coverage over time for �ve

fuzzing runs (trials), one line for each trial as shown in the legend to

3https://sourceware.org/binutils/docs/binutils/c_002b_002b�lt.html
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Figure 2: Example visualization work�ow to understand the mutation strategies in AFLFast and AFLVanilla.

the right of Figure 2b. A user can select one or more trials simulta-

neously by clicking at the corresponding legend items and visually

analyze the graphs (�rst and third trails are selected in Figure 2a

and Figure 2b). There is a steep increase in coverage between 2nd

and 6th hours according to the line graphs. The user can draw a

window from 2nd to 6th hour (shown in Figure 2a) to analyze the

underlying data. The user can also move the window on the x-axis

and the data in other graphs are automatically synchronized.

Figure 2c and Figure 2d shows the coverage gain of di�erent mu-

tants generated by the mutation strategies (havoc and splice) for the

selected window using box plots. When looking at just Figure 2c, it

is not clear which fuzzer has better havoc mutation strategy. How-

ever, if we look at the corresponding utilization ratio (ratio of the

number of mutations that found the latest new coverage to the total

number of mutations) in Figure 2e, the AFLFast’s havoc mutation

strategy shows favorable performance in both of the selected trails

(�rst and third trails are represented using two di�erent colors).

Figure 2d and Figure 2f show that AFLVanilla performs better in the

splice mutation strategy respectively. The user can then verify for

the similar pattern in other trails and time windows before arriving

at a conclusion.

There are multiple ways of designing a visualization work�ow

for a single analysis task and choosing the right work�ow is not the

focus of this paper. This paper focuses on extracting the desired list

of analysis tasks from the fuzzing experts. Having such a taxonomy

of visualization analysis tasks provides a strong background to

develop a fuzzing-speci�c visualization framework that can be

used to specify what to visualize (data requirements), and how to

visualize (visualization idioms [29], visualization work�ows, and

user interactions). The taxonomy also suggests new evaluation

criteria focusing on fuzzing internals (and their combinations) to

the fuzzing community.

3 Approach

Our approach involves in conducting semi-structured interviews

with fuzzing practitioners and experts and performing qualitative

data analysis to extract the necessary information and derive the

taxonomy of visualization analysis tasks to understand fuzzing

internals. The reproducibility of our approach lies in the design of

the interview and formally describing the information extracted

from the free-form interview text. The soundness of our approach

is proportional to the expertise of the study participants. Figure 3

shows the overview of the approach, and the following sub-sections

detail the steps.

Figure 3: Overview of the approach.

3.1 Semi-structured Interviews

The goal of the study is to extract the visualization analysis tasks

that the fuzzing practitioners are interested in and help to under-

stand the internals of fuzzing. We follow semi-structured interview

format in our study as they are �exible and provide a platform

for open-ended discussions [14]. They allow the interviewer for

follow-up questions to stimulate further discussions, receive sponta-

neous feedback, and gather deeper insights. This interview format
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requires using an initial question catalogue to steer the interview

and focus on the topic of interest [36] (our artifact [18] contains

the initial question catalogue used in the study). The interviews are

carried out in two phases, pilot phase and actual phase where the

main di�erence is in the participants.

3.1.1 Participants. To obtain meaningful insights, we restricted

the study to the participants who have expertise in GF. In the pilot

phase, we contacted seven fuzzing experts in our closed contacts

and six of them agreed to participate in the study (details of the pilot

study are described in Section 4). The participation was voluntary

and without any incentives.

In the actual phase, we plan to use this paper to reach out to

the wider audience in the fuzzing community and industry for

participation. We are aiming for about 20 interviews with fuzzing

experts with highest level of expertise to produce robust results

(the plan for the actual study is described in Section 5).

3.1.2 Design. The interview is divided into four parts: (1) introduc-

tion and background, (2) identifying internal stage compositions,

(3) identifying visualization analysis tasks, and (4) miscellaneous.

In the �rst part, the participant is asked to provide the demo-

graphical information on their expertise in GF. The moderator then

provides background information on the internal stages of fuzzing

(Section 2.1) and visualization analysis task with an example in-

teractive visualization work�ow (Section 2.2). The participant is

also asked to comment on the categorization of the internal stages.

In the second part, the participant is asked to identify the related

internal stages and provide a reason about why the internal stages

are related. In the third part, the participant is prompted to ask

questions that help in understanding each internal stage and their

relationships (identi�ed in the previous part) using visualization

analysis. The moderator also tries to ask follow-up questions and

clari�cations regarding the relationships to get deeper insights and

stimulate further discussions. The �nal part of the interview is used

to discuss additional ideas and clari�cations if any.

Two test runs were conducted with researchers to adapt the

interview design. The second and third parts are the most important

parts of the interview as they provide the necessary information

for qualitative data analysis and extracting the task taxonomy.

3.1.3 Data Collection. Each participant is contacted via an e-mail

by providing general information about the study and the consent

form. After agreeing to participate, the interviews are scheduled

virtually using Microsoft Teams4. The average duration of the in-

terview is 60 minutes, and the interviews are recorded (screen and

audio) for post-processing. We used ConceptBoard5 to keep the

interview sessions interactive and record the intermediate data.

3.1.4 Ethics. We ensured that the signed consent form is received

from the participants before proceeding with the interview. The

consent form provides information about the study, voluntary par-

ticipation, data collection and privacy. The study design is also

approved by the corresponding ombudsperson of the Ethics com-

mittee.

4https://www.microsoft.com/en-us/microsoft-teams/group-chat-software
5https://conceptboard.com/

3.2 Qualitative Data Analysis

We follow open coding protocol [27] to conduct qualitative data

analysis on the second and third parts of the anonymized interview

data. Open coding protocol requires agreeing up on the initial set of

codes before performing the data analysis. The coding protocol is

iterative; i.e., when new codes are identi�ed, all the interview data

should be re-analyzed to �t in the new set of codes. We separate

all the visualization analysis tasks mentioned by the participants

along with the corresponding explanations before performing the

data analysis.

Example visualization analysis task

I can think about a question between initial seeds and

execution. How does the energy vary from each initial

seed to their particular mutants?

3.2.1 Task specification. We will use the example visualization

analysis task from one of the interviews shown in the text box

above, to understand the coding process.

Initially two coders agreed to code the interview data using the

Categorization mentioned in Table 1: the example is coded as inter

stage task because it involves two internal stages, initial seeds and

execution.

After coding one interview transcript, the coders met to discuss

the disagreements. However, using just the categorization was

insu�cient for the coders to uniquely identify the coded data and it

also did not capture the necessary information from the interview

transcript (the second part in our example is completely ignored).

Hence, the initial code is extended by adding three more at-

tributes as shown in the Table 1: stage(s), related data, and type

of data analysis. Such an updated code, which we denominate as

task speci�cation, provides a formal de�nition of the visualization

analysis task, helps to uniquely identify the coded data, and facili-

tate disagreements. The task speci�cation is agreed by the whole

research team after discussing on the interview data. The third

column in Table 1 shows the task speci�cation for our example.

Table 1: Description of task speci�cation.

Code Description Example

Categorization intra stage task (only one internal stage is

involved),

inter stage task (multiple internal stages

are involved),

overall task (all internal stages are in-

volved),

non-visualization task (when the question

can be answered without visualization

analysis)

inter stage task

Stage(s) The involved stages in the task according

to the categorization in Figure 1.

initial seeds,

execution

Related data The data that needs to be collected from

the internal stages to inform on the task.

initial seeds and their

mutants,

energy assignments to

the seeds

Type of data

analysis

The operations that needed to be per-

formed on the related data for analysis.

variation of energy be-

tween initial seeds and

their mutants

16



Visualization Task Taxonomy to Understand the Fuzzing Internals (Registered Report) FUZZING ’24, September 16, 2024, Vienna, Austria

3.2.2 Coding protocol. The interview data is split evenly between

two researchers (coders). The �rst coder has been working in di�er-

ent projects involving GF and whitebox fuzzing [24] for three years

and participated in multiple user studies gaining knowledge in con-

ducting interviews. The second coder has participated in various

qualitative data analysis projects in the past two years enriching

the expertise in the �eld. Both the coders heavily work with the

well-known fuzzers, AFL [45], AFL++ [8], LibFuzzer 6. Considering

the combined expertise of the coders, we can argue that we are well

quali�ed to conduct the study described in this paper.

The coders analyzed and coded the data individually using the

task speci�cation discussed above. After the analysis the coders

discussed each other’s work to resolve the disagreements. A dis-

agreement is de�ned as the di�erence between the coded data in at

least one part of the task speci�cation.

This is an adaptation of the gold coding standard [39] where the

reliability coder veri�es the master coder’s work. In our case, each

coder acted as the reliability coder for other coder’s work. When

there are further disagreements, a third coder is also involved to

arrive at a consensus. The �nal list of task speci�cations are then

reviewed by the rest of the research team for approval. To measure

the reliability of the coding process, we report the percentage of

disagreements between the coders.

3.3 Task Taxonomy

Once we have the agreed list of task speci�cations, we can fur-

ther group them based on the duplicate and subset relationships

before extracting the taxonomy. We ignored all the agreed non-

visualization task speci�cations and only extracted the task taxon-

omy from the remaining speci�cations.

We formally de�ne a task speci�cation, T, as the tuple, T(C, S, D,

A), containing four elements: categorization (C), involved stages

(S), related data (D), and type of data analysis (A).

) = )
2 ñó � = �

2 ' ( = (
2 ' � = �

2 '� = �
2 (1)

) ¢ )
2 ñó � = �

2 ' ( ¢ (
2 ' � ¢ �

2 '� = �
2 (2)

Two tasks, denoted as T(C, S, D, A) and ) 2 (�2, (2, �2, �2) respec-

tively, are considered duplicates when each element in T is same

as the corresponding element in ) 2 (Equation 1). T is a subset of

) 2 when the elements S, D are subset of the corresponding ele-

ments ( 2, �2 and the elements C, A are same as the corresponding

elements �2, �2 (Equation 2).

4 Pilot Study

4.1 Participants

Six out of seven experts we invited agreed to participate in the

interviews. All the participants work as research associates with

up to three years of experience in fuzzing. We asked each partici-

pant to choose an expertise level among beginner, mediocre, and

expert in conceptual knowledge and practical knowledge in GF.

Participants with conceptual knowledge can provide insights from

6https://llvm.org/docs/LibFuzzer.html

the perspective of using fuzzers whereas participants with practi-

cal knowledge can provide insights from the software-developer

perspective. Table 2 shows the expertise pro�le of the participants.

Table 2: Expertise pro�le of the participants of the study.

Participant Conceptual knowledge Practical knowledge

P1 beginner beginner

P2 mediocre beginner

P3 mediocre mediocre

P4 mediocre mediocre

P5 mediocre mediocre

P6 mediocre beginner

In our pilot study, we only were able to interview participants

with up to mediocre level of expertise. The ideal participant should

have the highest level of conceptual expertise and practical exper-

tise. However, it is hard to �nd such ideal participants. In our actual

study (Section 5), we aim to interview participants from the fuzzing

community with the highest level of expertise either in conceptual

knowledge or practical knowledge to get more meaningful insights.

4.2 Greybox Fuzzing Internals

We asked each participant in the pilot semi-structured interview

to comment on the proposed internal stages of GF (Figure 1). We

grouped the responses into three categories: accepted (completely

agree with the categorization), partially accepted (agree with the

categorization while providing some suggestions), and rejected

(disagree with the categorization).

Among the six participants, two of them provided partial accep-

tance with suggestions and the rest accepted the proposed internal

stages. None of the participants rejected our categorization. Table 3

shows the suggestions from the two partially accepted participants.

Table 3: Participant suggestions on the internal stages of GF.

Participant Response Suggestion

P2 partially

accepted

Search strategy and Power schedule should be part of

Mutations.

P4 partially

accepted

A �ltering stage between Execution and Search strategy

decides if the seed should be added back to the queue

or not.

Discussion. P2’s suggestion was based on their experience with

the fuzzer, Jazzer7 (mentioned in the interview). Though the sug-

gestion is to merge the internal stages, we manually veri�ed the

implementation of Jazzer, and found that it internally uses Lib-

Fuzzer’s Entropic power schedule8 [5] and random search strategy9

by default. The suggestion from participant P4 is already included

in the Execution stage according to our categorization. Consider-

ing these reasons, we report that all the participants accept the

categorization.

7https://github.com/CodeIntelligenceTesting/jazzer
8https://github.com/llvm/llvm-project/commit/f3c2e0bcee64b0905addaefe9cd0c9ad4
d20ac6f
9https://github.com/llvm/llvm-project/blob/f68548135b8f9a02beac842646ab89bcaad
9d400/compiler-rt/lib/fuzzer/FuzzerLoop.cpp#L721
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4.3 Open Coding Protocol

We systematically followed the qualitative data analysis protocol to

extract task speci�cations from the anonymized interview data. In

the total of 110 tasks speci�cations, there were only 16 initial con-

�icts. All were resolved by discussion between the coders. Hence,

the percentage of initial disagreement was 14.5%.We then discarded

12 non-visualization task speci�cations and 6 task speci�cations

due to insu�cient information, and merged two task speci�cations

into one as they are derivatives. Finally, we are left with 91 task

speci�cations to extract the taxonomy.

4.4 Taxonomy

We followed the equations described in Section 3.3 to extract the

�nal taxonomy shown in Tables 4 and 5. After removing 37 dupli-

cates (Equation 1), we are left with 54 unique task speci�cations.

Due to the space constraints, we only show the involved stages

and the type of data analysis (analysis task) for each of the 54 task

speci�cations. The anonymized interview data and the complete

information on each task speci�cation can be found in our artifact

[18].

Table 4 shows the inter-stage tasks and Table 5 shows the intra-

stage, and overall tasks. The �rst column in the tables show the

involved GF internal stages (Figure 1) and the second column de-

scribes the analysis task. The duplicates identi�ed in the analysis

tasks (Equation 1) is shown using the icon, x ç , where ’x’ repre-

sents the number of duplicates. For example, we have identi�ed

�ve duplicates of Task 22 (see Table 4) and six duplicates of Task

46 (see Table 5). The icon ¢ T tells that the current analysis task

is a subset (Equation 2) to the analysis task ’T’. For example, Tasks

5 and 6 are subsets of Task 4 (see Table 4).

Though the above mentioned taxonomy is only from the pilot

study, it already provides a strong base for fuzzing visualizations

and suggests new criteria for fuzzing evaluations. To develop vi-

sualizations that focus on understanding fuzzing internals, the

framework should at least provide work�ows that cover the pro-

posed taxonomy. When developing the work�ows, one can identify

di�erent internal stage combinations to consider from our taxon-

omy: according to the Tasks 25 - 31 , a visualization work�ow for

power schedule should consider the relationships with mutations,

search strategy and execution internal stages; the internal stages,

instrumentation and initial seeds, may not interact with each other

but they interact with all the remaining four internal stages (ob-

served from the Tasks 1 - 20 ); the internal stage, mutations, only

interacts with execution (Tasks 32 - 39 ). The example visualization

work�ow discussed in Section 2.2 relates to the Task 34 and the

example visualization analysis task discussed in Section 3.2 relates

to the Task 14 . Our taxonomy also provides insights in prioritizing

the development of work�ows. For example, the most frequent

analysis task (in terms of duplicates) is to visualize the timeline

across di�erent internal stages (Tasks 11 , 46 , and 53 ). It accounts

for 24.3% (9) of the total duplicates (37).

To evaluate an improvement to one of the fuzzing internal stages,

the proposed taxonomy provides the combination of internal stages

that should also be considered in the evaluation. For example, the

evaluation of an improved power schedule should consider its re-

lationships with mutations, search strategy and execution internal

stages (according to the Tasks 25 - 31 ). Our taxonomy also hints

towards the data that can be observed to evaluate the internal

stages and its relationships (the related data corresponding to each

analysis task is provided in our artifact [18]).

5 Plan for the Actual Study

To complete the actual study in Phase 2 of the publication process,

we plan to expand the research in scope and depth, with the fol-

lowing four goals. First, we will conduct more interviews among

fuzzing experts. We aim to approach experts in the academia and

industry with the highest level of expertise to gather more mean-

ingful insights. For this reason, we plan to use workshop as one of

the platforms to reach out to the experts in the �eld of GF.

Second, we will extend the scope of the semi-structured inter-

view. The question catalogue used in the pilot study only focuses on

extracting the visualization analysis tasks that the experts ask about

the fuzzing internals. We plan to extend the catalogue and hence

the scope of the interview to gather insights on the experience

of using existing visualization tools for fuzzing. Such an extended

scope allows us to understand the problems faced by the users when

using the tools and contributes to the design and development of

the future tools.

Third, after extracting the taxonomy from the actual study, we

plan to evaluate the existing visualization tools for fuzzing and

discuss their support for the tasks in our taxonomy.

Finally, we plan to evaluate our approach by answering the

following research questions:

(1) RQ1. What are the di�erent visualization analysis tasks to

understand the internal stages of fuzzing?

(2) RQ2. To what extent do the state-of-the-art fuzzing visu-

alization tools support the extracted visualization analysis

tasks?

6 Threats to Validity

We have identi�ed several threats to validity. First, the internal

stages of GF do not consider the contributions of hybrid approaches

such as the combinations of GF with symbolic execution [38, 40,

41], static analysis [15, 23], etc. Our proposed internal stages can

be considered as the basic stages in most of the fuzzers and the

hybrid approaches add additional stages to it. We intentionally

scoped the research to internal stages in GF alone for two reasons:

visualizing the internal stages of a fuzzer itself is not researched

in the community and we hope to make the initial contribution in

this area; �nding experts working with hybrid approaches is rather

di�cult when compared to the experts working in GF. However,

we plan to consider such extensions to our work in the future.

Second, the interviews are intentionally semi-structured to facil-

itate open-ended discussions with the fuzzing experts and gather

meaningful insights. The taxonomy extracted from such a free-form

interview data is not exhaustive and �nal: it can be extended or re-

�ned by conducting more interviews and we are open for additional

contributions. To mitigate this threat, we scoped the interview dis-

cussions to focus on understanding fuzzing internals using our

question catalogue and aim to conduct up to 20 interviews to make

the taxonomy robust.
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Table 4: Taxonomy of inter-stage visualization analysis tasks from pilot study.

Legend, GF internal stages from Figure 1: I instrumentation, IS initial seeds, S search strategy, P power schedule, M mutations, E execution;

x represents task ID; x ç represents ’x’ duplicates of the analysis task; ¢ T represents the current analysis task is subset to the analysis task ’T’;

interesting behaviours refer to runtime information such as code coverage, crashes, resource consumption, execution speed.

Stage(s) Analysis task

I

M
E

1 coverage growth over time for each mutant

2 overlapping of code coverage of each mutant and instrumented code statements

S
3 overlapping of code coverage of selected seeds and failed instrumented code; selection frequency of the seeds

that execute the failed instrumented code

E

4 1 ç comparison of runtime metrics between instrumented and non-instrumented targets

5 ¢ 4 comparison of code coverage between instrumented and non-instrumented targets

6 ¢ 4 1 ç comparison of compilation and execution time between instrumented and uninstrumented target

7 percentage of instrumented code statements that are failed to execute at runtime; errors and location of the

runtime failed instrumented code

S 8 relationship (eg. correlation) between instrumented code blocks and selection orders

P 9 2 ç relationship between di�erent instrumentation types and energy assignments

IS

M

E

10 comparison of interesting behaviours between initial seeds and mutants; analyze the parts of initial seeds and

mutants that contributed to the interesting behaviours

11 mutation timeline, number of mutants from each initial seed; code coverage for each initial seed and mutant

S
12 2 ç percentage of runtime similarities; selection frequency of runtime similar seeds

13 ¢ 22 relationship between selection orders and interesting behaviours of di�erent initial seed sets

P M 14 ¢ 29 distribution of energy for each initial seed and its mutants

E

15 ¢ 12 comparison of code coverage between di�erent initial seed sets

16 ¢ 12, 15 comparison of code coverage between initial seed set with an empty seed

17 ¢ 10 2 ç impact of initial seeds on interesting behaviours

M 18 comparison between mutated parts of the initial seeds

S 19 ¢ 13 1 ç relationship (eg. correlation) between selection orders and initial seeds

P 20 percentage of assigned power used by initial seeds

S

E
21 relationship (eg. correlation) between selection orders and �ltered seeds

22 5 ç relationship (eg. correlation) between selection orders and interesting behaviours

M 23 2 ç relationship (eg. correlation) between selection orders and mutation strategies

P 24 3 ç distribution of energy for each selected seed; correlation between selection orders and energy assignments

P

M
E

25 percentage of assigned power used by each selected seed; percentage of mutants provided the coverage gain

S 26 relationship (eg. correlation) between energy assignments, selection orders and interesting behaviours

E
27 3 ç relationship (eg. correlation) between energy assignments and interesting behaviours

28 relationship (eg. correlation) between energy assignment and �ltered seeds

M

29 variation in the energy across di�erent mutants

30 1 ç distribution of energy for each mutant and each mutation strategy

31 relationship between frequency of mutant and the energy assignment to the mutant; relationship between

number of mutants and the energy assignment to the mutants

M E

32 2 ç comparison of interesting behaviours across di�erent mutation strategies

33 relationship (eg. correlation) between mutation strategies and �ltered seeds

34 1 ç relationship (eg. correlation) between mutation strategies and interesting behaviours

35 comparison of coverage growth rate across di�erent mutation strategies

36 comparison of runtime, number of mutants generated, time to generate mutants across di�erent mutation

strategies

37 ¢ 32 comparison of runtime and resource consumption across di�erent mutation strategies

38 relationship between mutation strategy changes and interesting behaviours

39 time to generate valid mutants; number of valid mutants (successful execution)
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Table 5: Taxonomy of intra-stage and overall visualization analysis tasks from pilot study.

Legend, GF internal stages from Figure 1: I instrumentation, IS initial seeds, S search strategy, P power schedule, M mutations, E execution, ALL all

internal stages; x represents task ID; x ç represents ’x’ duplicates of the analysis task; ¢ T represents the current analysis task is subset to the analysis task

’T’; interesting behaviours refer to runtime information such as code coverage, crashes, resource consumption, execution speed.

Stage Analysis task

I

40 percentage of instrumented code statements that are syntactically correct; the instrumented code which failed in

compilation

41 1 ç percentage of instrumented code per class/function

42 number of lines of code are added to the target

IS 43 1 ç percentage of structural similarities

S 44 ¢ 31 analyze selection order frequency between seeds

P 45 distribution of energy assignment per seed over time

M

46 6 ç mutation timeline of each mutant

47 compare the number of mutants generated under di�erent mutation strategy

48 record number of mutants generated overall

49 record what parts of the seed are mutated

E
50 number and duration of executions

51 executions that improve code coverage over time

ALL

52 2 ç impact of initial seeds on the other stages

53 3 ç timeline of the seeds with respect to all stages

54 record code coverage and bugs found over time

Third, the robustness of our taxonomy also depends on the num-

ber of participants and the expertise they have in GF. We were only

able to interview participants who have beginner and mediocre

expertise in the pilot study. To mitigate this threat, we hope to

interview more participants who have the highest level of expertise

in the actual study.

Fourth, the derived tasks are data driven, and subjective to the

coders. There is a possibility that di�erent coders might produce

di�erent tasks. To mitigate this threat and ensure reliability of our

results, we followed a systematic qualitative data analysis method-

ology (described in Section 3.2). In our pilot study, we only have 16

(14.5%) cases of disagreement which can be considered as a small

portion.

7 Related Work

To the best of our knowledge, we are the �rst to conduct such

an interview-based study with fuzzing experts to understand the

interested tasks.

7.1 Fuzzing Visualization Tools

There are a few visualization tools for fuzzing that focus on high-

level data but not on the internals of fuzzing. VisFuzz provides a user

interface to view the call graph and control-�ow graph reachability

in the browser and provides realtime intervention of the running

fuzzing process. It aids the user to understand the bottlenecks in the

source code, modify the fuzzing input and construct targeted seeds

or modify the test driver to bypass the bottlenecks [48]. A recently

published registered report, InFuzz [43], also provides HTML user

interface to guide the users in identifying bottlenecks and interven-

ing the fuzzing process to improve runtime code coverage. FMViz

provides visualizations to understand the mutation in AFL [45] by

exporting byte level changes to the input to an image [16]. Fuz-

zSplore also provides visualizations for the mutations along with

code coverage and interesting test cases generated over time [11].

None of the above discussed tools provide an infrastructure

to understand the internals of fuzzing. We plan to evaluate their

support to the tasks in our taxonomy as described in Section 5.

7.2 Visualization Task Taxonomy

Visualization analysis tasks play an important role in designing a

suitable domain speci�c visualization framework and evaluation

of the existing frameworks. However, there is no literature so far

that provides information on such tasks to understand fuzzing in-

ternals. Here we list the related work from other domains that have

similar goals of extracting taxonomy of visualization analysis tasks.

Lee et al. developed a taxonomy of tasks to improve the existing

graph visualization systems and to evaluate them [19]. The authors

reviewed user studies of graph visualization techniques and cate-

gorized the graph analysis tasks into four groups: topology-based

tasks, attribute-based tasks, browsing tasks, and overview tasks.

Ahn et al. provide task taxonomy for temporal network visualiza-

tion [1] to guide future visualization tools and encourage novel

research questions. The authors reviewed 53 existing visualization

systems to extract the taxonomy. The taxonomy is re�ned and

evaluated using interviews with 12 network analysis experts.

Murray et al. proposed task taxonomy for the analysis of bio-

logical pathway data [30] and is the closest to our methodology.

They conducted free-form interviews with seven domain experts

and grouped the taxonomy into three categories: attribute tasks,
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relationship tasks, and modi�cation tasks. The authors also exam-

ined the existing visualization techniques that support the tasks

and detail the gaps revealed by the task taxonomy.

8 Conclusions

In this paper, we stressed the importance of visualization analysis

tasks as a pre-requisite for the development of visualization frame-

work and the need of such tasks to understand the internals of

greybox fuzzing (GF). We have identi�ed that there is no system-

atic research conducted so far in this area and we hope to make

the �rst contribution. We presented our approach of conducting

semi-structured interviews with fuzzing experts and performing

qualitative data analysis to extract the visualization analysis tasks.

Our preliminary results from the pilot study summarizes the di�er-

ent types of these tasks.

We have also presented our plan for the actual study to conduct

more interviews and extend the scope and depth of the interview.

Through the actual study, we aim to make our results robust and

provide richer task taxonomy. We hope that our contributions

will shed light towards further research opportunities in fuzzing

visualizations and fuzzing evaluations.

In the future, we plan to use the task taxonomy as the base to

design and develop a fuzzing-speci�c visualization framework that

focuses on understanding fuzzing internals.

9 Revision Requirements

This camera-ready version of the paper does not incorporate the

following revision requirement due to the unavailability of time:

(1) Make sure to have a su�cient set of interviewed people

and expertise within your initial user study. We ask you to

interview 10 people, 5 of which are experts, to address this

concern.

We plan to address this requirement at TOSEM stage 1 submis-

sion.
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