2024 IEEE Latin-American Conference on Communications (LATINCOM) | 979-8-3315-2111-0/24/$31.00 ©2024 IEEE | DOI: 10.1109/LATINCOM62985.2024.10770647

Enhancing Routing in SD-EONs through

Reinforcement Learning:

Ryan McCannf

ryan_mccann @ student.uml.edu
tElectrical and Computer Engineering Department,

Abstract—This paper presents an optimization framework
for routing in software-defined elastic optical networks using
reinforcement learning algorithms. We specifically implement
and compare the epsilon-greedy bandit, upper confidence bound
(UCB) bandit, and Q-learning algorithms to traditional methods
such as K-Shortest Paths with First-Fit core and spectrum
assignment (KSP-FF) and Shortest Path with First-Fit (SPF-FF)
algorithms. Our results show that Q-learning significantly out-
performs traditional methods, achieving a reduction in blocking
probability (BP) of up to 58.8% over KSP-FF, and 81.9% over
SPF-FF under lower traffic volumes. For higher traffic volumes,
Q-learning maintains superior performance with BP reductions
of 41.9% over KSP-FF and 70.1% over SPF-FF. These findings
demonstrate the efficacy of reinforcement learning in enhancing
network performance and resource utilization in dynamic and
complex environments.

Index Terms—Software Defined Elastic Optical Networks (SD-
EONs), Reinforcement Learning, Artificial Intelligence (AI)

I. INTRODUCTION

The rapid advancement of technology and the exponential
growth in data-intensive applications necessitate an in-depth
understanding of the evolution and optimization of communi-
cation networks. The emergence of Elastic Optical Networks
(EONs) and Software Defined Networking (SDN) represents
a significant shift in this landscape, offering novel solutions
to address the increasing demands for network flexibility and
efficiency [1], [2].

Optical networks, particularly those based on Wavelength
Division Multiplexing (WDM), have traditionally played a
pivotal role in global communication. However, the fixed
channel spacings and limited adaptability of WDM systems
are increasingly insufficient to meet the dynamic requirements
of modern network traffic. In contrast, EONs, with their ability
to provide dynamic bandwidth allocation and more granular
channel spacings, offer a more efficient utilization of the
optical spectrum and enhanced network performance [3].

The integration of Software Defined Networking in EONs
(SD-EONs) has further advanced network management ca-
pabilities. SD-EONs’ separation of control and data planes
allows for a more flexible and efficient network configuration,
which is crucial for managing the dynamic characteristics of
EONSs. This integration has led to improved network agility
and an enhanced ability to respond to real-time changes in
network conditions [4].

Amidst these advancements, traditional routing and spec-
trum allocation methods in optical networks, such as the first-
fit and shortest-path algorithms, have shown limitations in

This paper was partially supported by NSF project award #2008530.

Arash Rezaee!
arash_rezaee @student.uml.edu

A Comparative Analysis

Vinod M. Vokkarane®

vinod_vokkarane @uml.edu
University of Massachusetts Lowell, United States

dealing with rapidly changing network scenarios due to their
static nature and lack of adaptability to real-time conditions
[5]; to address these challenges, this paper explores three rein-
forcement learning algorithms—epsilon-greedy bandit, Upper
Confidence Bound (UCB) bandit, and Q-learning—which span
a spectrum of complexity from the straightforward epsilon-
greedy bandit, balancing exploration and exploitation through
random decisions based on past experiences, to the UCB
bandit, using statistical confidence bounds to systematically
explore and exploit network configurations, and finally to Q-
learning, which incorporates considerations of future potential
rewards into its iterative learning process, optimizing routing
policies based on both immediate and long-term cumulative
rewards in dynamic and stochastic environments [6], [7].

The primary aim of this study is to evaluate whether
the increased complexity of the UCB bandit and Q-learning
algorithms translates into enhanced performance in optimizing
routing in SD-EONs compared to the epsilon-greedy ban-
dit and traditional methods. By assessing their efficiency,
adaptability, and scalability against each other and established
baselines, this research seeks to provide insights into the
trade-offs between algorithmic complexity and performance
in modern network traffic scenarios.

The paper is structured as follows: Section II reviews rele-
vant literature on reinforcement learning in optical networking,
Section III explains the background and functioning of the
epsilon-greedy bandit, UCB bandit, and Q-learning algorithms,
Section IV describes the proposed algorithms and their im-
plementation for routing optimization, Section V outlines the
system architecture and assumptions, and Section VI presents
the experimental results and comparative analysis. Finally,
Section VII concludes the paper.

II. LITERATURE REVIEW

EONSs, employing technologies like Orthogonal Frequency
Division Multiplexing (OFDM) for its spectral efficiency and
flexibility, and Flexgrid for future network architectures, dy-
namically allocate spectrum, advancing high-speed network
design beyond traditional static management. However, their
reliance on conventional network design principles, rather than
artificial intelligence, highlights a growing need for more adap-
tive, Al-driven approaches to meet the increasing complexity
and dynamic demands of modern EONs [8].

Recent advancements in EONs have explored the use of
Reinforcement Learning (RL), particularly Q-learning, for
network optimization, marking a shift towards Al-based so-

Authorized licensed use limited to: UNIV OF MASS-LOWELL. Downloaded on January 21,2025 at 17:10:18 UTC from IEEE Xplore. Restrictions apply.

lutions. Unlike traditional network management techniques
such as integer linear programming and heuristic approaches,
RL offers efficient real-time responses to changing network
conditions, paving the way for more adaptive and scalable
network management solutions. The exploration of these net-
works extends to experimental demonstrations and assessing
their practical viability, highlighting both achievements and
challenges in elastic optical networking [7].

Further advancements in SD-EONs have also explored the
integration of Q-learning and hybrid approaches to improve
Routing, Modulation, and Spectrum Assignment (RMSA).
Bryant et al. discuss the application of off-policy Q-learning to
enhance routing efficiency in optical networks, highlighting its
effectiveness with a large number of k-paths [9]. Rios-Villalba
et al. present a hybrid approach combining Q-learning with
k-shortest paths to address the RSA problem, demonstrating
improved resource utilization and reduced latency [10]. Other
studies explore deep reinforcement learning and multi-band
networks, which are beyond the scope of this research [11]-
[13].

Despite these advancements, several gaps remain. Bryant et
al.’s study did not explore multiple reward policies or compare
Q-learning with the traditional KSP algorithm. The compu-
tational feasibility of calculating numerous paths (/0-20) for
every request remains questionable, and agent convergence and
hyperparameter settings lack demonstration. Similarly, Rios-
Villalba et al. do not show conclusive results with a fully
deployed Q-learning model or specify the number of paths
considered.

No study has deployed a fully autonomous Q-learning
model significantly outperforming traditional baselines with a
moderate selection of paths, nor compared it to simpler bandit
algorithms to justify Q-learning’s complexity. Additionally,
the impact of hyperparameter tuning and reward function
shaping on reinforcement learning model performance remains
underexplored.

III. REINFORCEMENT LEARNING ALGORITHMS

A. Introduction to Reinforcement Learning

Reinforcement Learning (RL) is a type of machine learning
where an agent learns to make decisions by interacting with
an environment. The agent takes actions in the environment,
receives feedback in the form of rewards, and updates its
knowledge to improve future decision-making. The goal is
to learn a policy that maximizes the cumulative reward over
time. Key concepts in RL include the agent, which is the entity
making decisions, and the environment, the system with which
the agent interacts. The state (s) represents the current situation
of the environment, and the action (a) is a decision made
by the agent that affects the environment. The reward (r) is
the feedback from the environment, indicating the immediate
benefit of an action. The policy 7 (s, a) is a strategy used by
the agent to determine actions based on the current state. The
value function estimates the expected cumulative reward from
a given state-action pair (Action Value Function Q(s,a)).

B. Epsilon-Greedy Bandit

The epsilon-greedy bandit algorithm is a simple RL method
used in multi-armed bandit problems. It balances exploration
(trying new actions to discover their rewards) and exploitation
(choosing the best-known action to maximize reward). At each
step, with probability €, the agent selects a random action
(exploration). With probability 1 — e, it selects the action with
the highest estimated reward (exploitation). The value function
in this context is the estimated reward for each action, typically
maintained in a table Q(s,a). After taking action « in state s
and receiving reward r, the value estimate (s, a) is updated
incrementally as shown by:

Q(s,a) + Q(s,a) + (r—Q(s,a)) (D

1

N(s,a)

where N(s,a) is the number of times action a has been
taken in state s. This update rule ensures that each new reward
slightly adjusts the estimated value of the action, weighted by
the inverse of the number of times the action has been selected,
allowing the estimate to converge over time as more rewards
are observed.

C. Upper Confidence Bound (UCB) Bandit

The UCB bandit algorithm is designed to address the
exploration-exploitation trade-off by selecting actions based on
both their estimated reward and the uncertainty (or confidence)
in these estimates. At each step, the agent selects the action a
that maximizes the following:

Int

Q(s,a)+c¢ m

2

where (s, a) is the estimated value for action a, ¢ is the
total number of steps taken, s is the current state, N(s,a) is
the number of times action a has been taken in state s, and ¢
is a parameter controlling the degree of exploration. Similar to
the epsilon-greedy algorithm, (s, a) represents the estimated
reward for each action in the current state. The value estimates
are also updated by Equation (1) after action selection.

D. Q-Learning

Q-learning is a model-free RL algorithm that aims to learn
the optimal policy by iteratively improving the estimates of
the action-value function Q(s, a). At each step, the agent takes
action a in state s, observes the reward r and the next state
', and updates the action-value function Q(s,a) using the
following rule:

Qs,0) Q(s.a) +a (r+ymaxQ(s,a) — Qs.a)) 3

where « is the learning rate and <y is the discount factor,
representing the importance of max potential future rewards
Q(s',a’), where s’ is the next state and o’ is the optimal action
in s’. Q(s,a) represents the expected cumulative reward of
taking action a in state s and following the optimal policy
thereafter. The policy 7 (s, a) is derived from the action-value

Authorized licensed use limited to: UNIV OF MASS-LOWELL. Downloaded on January 21,2025 at 17:10:18 UTC from IEEE Xplore. Restrictions apply.

function. Typically, the agent selects the action with the highest
(@Q-value in each state. But, the Q-learning algorithm also
depends on ¢ in order to act with some degree of randomness.

IV. PROPOSED METHODOLOGY

This section outlines the methodology for optimizing SD-
EON routing using the described RL algorithms.

A. Epsilon-Greedy and UCB Bandit Algorithms

Both the epsilon-greedy and UCB bandit algorithms are
designed to optimize routing by selecting the best path from a
set of pre-computed paths for each source-destination pair in
the network topology. The pre-computed paths are generated
using the KSP algorithm, providing %k potential paths for each
source-destination pair. The Q-table is constructed statically
based on these pre-computed paths, but the paths are learned
and selected dynamically by the reinforcement learning agent.
After selecting a path, the agent sends it to the controller,
which then uses the first-fit algorithm for core and spectrum
assignment. If the request is blocked, a negative reward is
returned to the agent. If the request is routed, a positive or
non-negative reward is assigned.

Algorithm 1 outlines the pseudocode for the epsilon-greedy
and UCB bandit algorithms as implemented in this research.
The algorithm starts by initializing the Q-values for all state-
action pairs and initializing the count of actions N (s, a) for all
actions. The exploration rate € and the exploration parameter
c are then set, the latter being specific to the UCB bandit.

Each episode begins with iterating over each request within
the episode (Lines 1-2). For every request, a source-destination
pair is chosen randomly and uniformly (Line 3). An action a
is then chosen using the e-greedy policy: if a random number
is less than € (Line 4), a random path a is selected (Line 5);
otherwise, for the UCB algorithm, the path that maximizes
the sum of the Q-value and the confidence bound is selected
(Lines 7-8). If not using UCB, the path with the highest Q-
value is selected (Lines 9-10).

The selected path @ is then sent to the controller for
assignment (Line 13). If the request is blocked, a reward
R(s,a) = negative is received (Lines 14-15); otherwise, a
reward R(s,a) = non-negative is received (Lines 16-17). The
Q-value Q(s,a) is updated using the received reward (Line
19). Finally, the count N (s,a) for the action is incremented
(Line 20).

The time complexity for the overall process includes com-
ponents done once and those done for each request. Path
computation using the k-shortest path algorithm for each
source-destination pair, done once, is O(S-k-(E+V -logV)),
where S is the number of source-destination pairs, k is the
number of paths, V' is the number of vertices, and F is
the number of edges. Q-table initialization, also done once,
has a complexity of O(S - k). For every request, the process
includes looking up the paths for the source and destination
with a complexity of O(1) and evaluating and selecting a path
using the epsilon-greedy or UCB bandit algorithms with a
complexity of O(k). The UCB bandit algorithm is slightly

Algorithm 1 Epsilon-Greedy and UCB Bandit Algorithms

Require: Initialize Q(s,a) for all state-action pairs
Require: Initialize N(s,a) for all actions
Require: Set exploration rate e and exploration parameter c
1: for each episode do
2: for each request do
3: Choose a source-destination pair randomly and uni-
formly (state s)

4 if random number < e then

5: Select a random path a

6: else

7 if UCB then

8 Select a = arg max (Q(s, a)+c Nl(r;fa))
9: else

10: Select @ = arg max Q(s, a)

11: end if

12: end if

13: Send path a to controller for assignment

14: if request is blocked then

15: Receive reward R(s,a) = negative

16: else

17: Receive reward R(s,a) = non-negative

18: end if

19: Update Q(s,a) < Q(s,a) + m(r - Q(s,a))
20: Increment N (s,a)
21: end for
22: end for=0

more memory intensive due to the additional calculation of
the confidence bound.

B. Q-Learning Algorithm

The Q-learning algorithm is designed to optimize routing by
learning from the congestion levels in the network. For each
source and destination node pair in the network topology, there
are k pre-computed paths the agent may select from, a very
similar setup to the previously mentioned bandit algorithms.
Unlike the simpler bandit algorithms, Q-learning also takes
into account the congestion of a path before and after alloca-
tion, allowing the agent to understand and adapt to network
conditions over time.

The state s is defined based on the congestion level of the
network before the allocation of a new request. Congestion
is calculated as the average congestion along all the cores
and links of a path, defined as the number of spectral slots
occupied divided by the total number of free spectral slots.
The congestion state is categorized into two levels: Level 1
for congestion below 0.3 (30%) and Level 2 for congestion
above or equal to 0.3 (30%). Each congestion level accesses
the same set of k pre-computed paths, but the Q-values
associated with these paths differ for each congestion level.
This is because a path’s performance can vary depending on
the congestion level, making it better or worse at different
levels of congestion.

Authorized licensed use limited to: UNIV OF MASS-LOWELL. Downloaded on January 21,2025 at 17:10:18 UTC from IEEE Xplore. Restrictions apply.

The action a corresponds to selecting one of the k pre-
computed paths for a given source-destination pair. After
selecting a path and observing the result (routed or blocked),
the congestion level is re-measured. This post-allocation con-
gestion state is used to update the Q-value. Specifically, the
Q-value Q(s, a) is updated using the maximum future Q-value
from the new state s’, which reflects the congestion level after
allocation. The update rule for Q-learning is later used, which
is shown in Equation (3).

Algorithm 2 outlines the pseudocode for the Q-learning
process as implemented in this paper. Each episode begins
with iterating over each request within the episode (Lines 1-2).
For every request, the initial state s (pre-allocation congestion
level for the current source-destination pair) is observed (Line
3). The state includes the current source and destination pair
for the request, as well as the congestion levels for each of the
k pre-computed paths with respect to their current congestion.
An action a is chosen from these paths using the e-greedy
policy based on their Q-values in the current congestive state
(Lines 4-8). The chosen action a is executed by sending the
request to the controller (Line 9). If the request is routed,
a reward R(s,a) = non-negative is received (Lines 10-11);
otherwise, a reward R(s, a) = negative is received (Lines 12-
13). The new state s’ (post-allocation congestion level for the
selected path) is observed (Line 15). The Q-value Q(s,a)
is updated using Equation (3) (Lines 16-17). This process
continues for each request in the current episode until all
requests are processed.

Algorithm 2 Q-Learning Algorithm

Require: Initialize Q(s,a) to zero for all state-action pairs
Require: Set learn rate «, disc. factor «, and exploration e
1: for each episode do
2: for each request do
3: Observe initial state s (pre-allocation congestion level
for current source-destination pair)

4 if random number < € then
5: Choose action a randomly
6: else
7 Choose action a = arg max Q(s, a)
8 end if
9: Execute action a (send path to controller)
10: if request is routed then
11: Receive reward R(s,a) = non-negative
12: else
13: Receive reward R(s,a) = negative
14: end if
15: Observe new state s’ (post-allocation congestion level
for the selected path)
16: Update Q(s,a) using:
17: Q(s,a) <Q(s,a) + a(R(s,a) + ymax Q(s',a’)
a
- Q(Sv a))

18: end for
19: end for=0

Mod Format | Bit Rate (Gbps) | Slots | Distance (KM)
QPSK 25 1 22,160
50 2 11,080
100 4 5,540
16-QAM 25 1 9,500
50 1 4,750
100 2 2,375
64-QAM 25 1 3,664
50 1 1,832
100 2 916

TABLE I: Modulation Formats with Bit Rates and Slots

The complexity of the Q-learning algorithm involves first
considering the source-destination pair for the current request.
For each source-destination pair, the algorithm considers the
k pre-computed paths. The congestion state, which has two
possible levels, is computed based on the current congestion
along these paths. The action involves selecting one of these
paths based on their Q-values in the current state. Thus, the
overall time complexities are: path computation O(S - k- (E +
V -1og(V))) and Q-table initialization O(S - k- C') done once,
and source-destination lookup O(1) and path evaluation and
selection O(C x k) for Q-learning for each request, where C
is the number of congestion levels.

V. SYSTEM ARCHITECTURE AND ASSUMPTIONS

The foundation of this research is a dynamic simulation
model of a SD-EON, constructed in Python [14]. Based on
concepts from a doctoral dissertation [15], this model utilizes
the NSFNet topology with 14 nodes and 22 bi-directional
links, as depicted in Figure 1.

Fig. 1: NSFNet Topology.

Each link in the simulation comprises of four cores, with
128 spectral slots per core. Network conditions are simulated
using requests with bit rates of 25, 50, and 100 Gbps, dis-
tributed in a 3:5:2 ratio. While each lightpath requires a guard
band, these are not included in Table I, which details specific
bit rates, spectral slot requirements, and supported distances
for each modulation format. It should be noted that we adopt
bandwidth-tunable transceivers with a slot spectral width of
12.5 GHz.

Request arrival and holding times follow exponential
and Poisson random distributions, respectively, with source-
destination pairs determined uniformly. The arrival rate is nor-
malized by the number of cores per link, and each simulation

Authorized licensed use limited to: UNIV OF MASS-LOWELL. Downloaded on January 21,2025 at 17:10:18 UTC from IEEE Xplore. Restrictions apply.

episode is defined as 2,000 requests. A constant mean holding
time of 5 time units is used for each request generated.

VI. RESULTS AND DISCUSSION

This section presents the experimental results of the pro-
posed reinforcement learning algorithms—epsilon-greedy ban-
dit, UCB bandit, and Q-learning—compared to traditional K-
Shortest Paths with First-Fit (KSP-FF) k£ = 3, Shortest Path
with First-Fit (SPF-FF), and KSP-FF with k = in f (KSP-inf)
algorithms. The experiments were conducted using Erlang
values of 500, 750, and 1000 to evaluate the reduction in
blocking probability (BP) achieved by the proposed methods.

The KSP-FF and SPF-FF algorithms select paths based on
their link lengths, favoring shorter paths to minimize resource
utilization. Regarding time complexity, the KSP-FF algorithm
has a time complexity of O(k - (E + V - logV)), where E
is the number of edges and V is the number of vertices in
the network. The SPF-FF algorithm has a time complexity
of O(E 4+ V -logV), as it involves a single shortest path
computation.

A. Results

For Erlang 500, the RL algorithms exhibited improvements
in reducing BP over the baselines, shown in Fig. 2. The
epsilon-greedy bandit algorithm, configured with an epsilon of
1%, a positive reward of 1, and a negative reward of 100, led to
a reduction in BP of 98% over KSP-FF, 99% over SPF-FF, and
84.6% over KSP-in f. The UCB bandit algorithm, configured
with an epsilon of 20%, a confidence interval value of 2, a
positive reward of 1, and a negative reward of 10, resulted in
a reduction in BP of 30% over KSP-FF and 73% over SPF-
FF, but showed an increase in BP of 81% over KSP-in f. The
Q-learning algorithm, with an epsilon linearly decaying from
10% to 5%, a positive reward of 1, and a negative reward
of 100, showed a reduction in BP of 92% over KSP-FF, 97%
over SPF-FF, and 38.5% over KSP-in f. The learning rate was
set to 0.05, and the discount factor was 0.01.

The results for Erlang 750, as displayed in Fig. 3, demon-
strate improvements by the RL algorithms. The epsilon-greedy
bandit algorithm, with an epsilon of 6%, a positive reward of
10, and a negative reward of 100, led to a reduction in BP of
36.9% over KSP-FF, 72.3% over SPF-FF, and an increase of
28.2% over KSP-in f. The UCB bandit algorithm, configured
with an epsilon of 10%, a confidence interval value of 2, a
positive reward of 10, and a negative reward of 10, resulted in
a reduction in BP of 35.4% over KSP-FF, 71.6% over SPF-
FF, and an increase of 25.6% over KSP-inf. The Q-learning
algorithm, with an epsilon linearly decaying from 20% to 5%,
a positive reward of 10, and a negative reward of 100, showed
a reduction in BP of 58.8% over KSP-FF, 81.9% over SPF-FF,
and 15% over KSP-inf. The learning rate was 0.01, and the
discount factor was 0.95.

For Erlang 1000, the RL algorithms also outperformed the
traditional baselines, though the degree of improvement varied,
as shown in Fig. 4. The epsilon-greedy bandit algorithm,
configured with an epsilon of 1%, a non-negative reward of 0,

and a negative reward of 10, showed a reduction in BP of 27%
over KSP-FF, 62.4% over SPF-FF, and an increase of 19.7%
over KSP-in f. The UCB bandit algorithm, with an epsilon of
20%, a positive reward of 10, and a negative reward of 10, led
to a reduction in BP of 34% over KSP-FF, 66.1% over SPF-
FF, and an increase of 4.5% over KSP-inf. The Q-learning
algorithm, with a constant epsilon of 5%, a positive reward of
1, and a negative reward of 10, resulted in a reduction in BP
of 41.9% over KSP-FF, 70.1% over SPF-FF, and 5.3% over
KSP-inf. The learning rate was set to 0.05, and the discount
factor was 0.01.

B. Discussion

The results demonstrate that reinforcement learning algo-
rithms, particularly Q-learning at higher traffic volumes and
the Epsilon-greedy bandit at lower ones, significantly reduce
BP in SD-EONs compared to traditional methods. For Erlang
500, as shown in Fig. 2, Q-learning’s superior performance
is due to its ability to adapt to network conditions over
time, considering both immediate and future rewards, with a
decaying e strategy enhancing exploration. The epsilon-greedy
bandit algorithm showed the most significant BP reductions,
likely due to its simplicity being optimal at low traffic volumes,
though Q-learning came very close.

Typically, the bandit algorithms converge faster than Q-
learning, but over time, Q-learning usually converges to a
lower blocking probability. However, Q-learning does not
reach a lower blocking probability compared to the Epsilon-
greedy bandit at a lower traffic volume, signifying that as
the problem becomes simpler (with fewer requests), a less
complex bandit algorithm proves its importance.

At Erlang 750, Q-learning began to outperform every algo-
rithm, benefiting from its dynamic learning approach, reducing
BP by 15% over KSP-inf. For Erlang 1000, Q-learning
remained robust, maintaining significant BP reductions, out-
performing KSP-inf by 5.3%. The UCB bandit algorithm,
while less effective than Q-learning, showed consistent im-
provements due to systematic exploration, and the epsilon-
greedy algorithm also achieved considerable BP reductions.

Hyperparameters were tuned with 150-200 configurations
for each algorithm at each traffic volume, ensuring optimal
performance across a total of 450-600 configurations. Reward
shaping was also crucial for effective learning. Despite the in-
creased complexity of Q-learning, its significant BP reduction
justifies its use in dynamic and complex network environments
with higher traffic.

VII. CONCLUSION

In this study, we explored the optimization of routing in
SD-EONs using reinforcement learning algorithms. Among
the methods investigated, Q-learning emerged as the best-
performing algorithm as Erlang values increased, significantly
outperforming simpler bandit algorithms such as epsilon-
greedy and UCB bandits. Q-learning’s ability to consider both
immediate and future rewards enabled it to adapt more ef-
fectively to dynamic network conditions, resulting in superior

Authorized licensed use limited to: UNIV OF MASS-LOWELL. Downloaded on January 21,2025 at 17:10:18 UTC from IEEE Xplore. Restrictions apply.

Average Blocking Probability vs. Episodes

| Ip—— J—— (P—— | B —
—— Q-Learning
——— Epsilon-Greedy Bandit
>
= 0.100 11 — UCB Bandit I
< - - - SPF-FF
2 KSP-FF k = 3
A - - - KSPFF k = inf
en
g 0.050
2
Q
S
m
0.000
| | | | |
0 20 40 60 80 100
Episodes

Fig. 2: BP vs. Episodes Erlang = 500

Average Blocking Probability vs. Episodes

0.200 [F T T T T -
> —— Q-Learning
% 0.150 H ——— Epsilon-Greedy Bandit ||
< —— UCB Bandit
< - - - SPE-FF
& KSP-FF k = 3
=) 0.100 H - - - KSP-FF k = inf
i
Q
=
M
0.050
| | | | |
0 20 40 60 80 100
Episodes

Fig. 3: BP vs. Episodes Erlang = 750

performance in reducing blocking probability. Notably, Q-
learning performed better than KSP-inf, despite KSP-in f
potentially considering every possible path. Future work will
extend this research to include core and spectrum assignment,
further enhancing network optimization. Additionally, we plan
to implement deep learning techniques to potentially improve
the efficiency and scalability of RL approaches in SD-EONs.

[1]

[2]

REFERENCES

R. Gu, Z. Yang, and Y. Ji, “Machine learning for intelligent
optical networks: A comprehensive survey,” Journal of Network and
Computer Applications, vol. 157, p. 102576, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S 1084804520300503
Cisco, “Cisco annual internet report (2018-2023) white paper,” https:
/Iwww.cisco.com/c/en/us/solutions/collateral/executive-perspectives/
annual-internet-report/white-paper-c11-741490.html, 2020, [Accessed:
insert-access-date-here].

O. Gerstel, M. Jinno, A. Lord, and S. B. Yoo, “Elastic optical net-
working: a new dawn for the optical layer?” IEEE Communications
Magazine, vol. 50, no. 2, pp. s12-s20, 2012.

[4]

[5]

[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Average Blocking Probability vs. Episodes

T T T T T

2 0.200 —— Q-Learning
E ——— Epsilon-Greedy Bandit
E ——— UCB Bandit
S 0.150 | - - - SPFFF
A~ KSP-FF k = 3
2 - - - KSP-FF k = inf
35
S 0.100
[an)]

0.050

Episodes

Fig. 4: BP vs. Episodes Erlang = 1000

K. Nisar, E. R. Jimson, M. H. A. Hijazi, I. Welch, R. Hassan,
A. H. M. Aman, A. H. Sodhro, S. Pirbhulal, and S. Khan, “A
survey on the architecture, application, and security of software
defined networking: Challenges and open issues,” Internet of
Things, vol. 12, p. 100289, 2020. [Online]. Available: https:
/Iwww.sciencedirect.com/science/article/pii/S2542660520301219

B. C. Chatterjee, S. Ba, and E. Oki, “Fragmentation problems and
management approaches in elastic optical networks: A survey,” IEEE
Communications Surveys Tutorials, vol. 20, pp. 183-210, 2018.

C. Watkins, “Learning from delayed rewards: A foundation of reinforce-
ment learning,” 01 1989.

N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C.
Liang, and D. I. Kim, “Applications of deep reinforcement learning
in communications and networking: A survey,” I[EEE Communications
Surveys Tutorials, vol. 21, pp. 3133-3174, 2019.

B. C. Chatterjee, N. Sarma, and E. Oki, “Routing and spectrum
allocation in elastic optical networks: A tutorial,” IEEE Communications
Surveys Tutorials, vol. 17, no. 3, pp. 1776-1800, 2015.

N. B. Bryant, K. K. Chung, J. Feng, S. Harris, K. N. Umeh, and
M. Aibin, “Q-learning based routing in optical networks,” in 2022
IEEE Canadian Conference on Electrical and Computer Engineering
(CCECE), 2022, pp. 419-423.

I. I. Rios-Villalba, S. Arce, L. A. Albertini, and D. P. Pinto-Roa,
“Routing and spectrum assignment in elastic optical networks through
a hybrid approach based on k-shortest paths and g-learning,” in 2023
IEEE Latin American Conference on Computational Intelligence (LA-
CCl), 2023, pp. 1-6.

X. Chen, B. Li, R. Proietti, H. Lu, Z. Zhu, and S. J. B. Yoo, “Deeprmsa:
A deep reinforcement learning framework for routing, modulation and
spectrum assignment in elastic optical networks,” Journal of Lightwave
Technology, vol. 37, no. 16, pp. 41554163, 2019.

N. E. D. E. Sheikh, E. Paz, J. Pinto, and A. Beghelli, “Multi-band
provisioning in dynamic elastic optical networks: a comparative study
of a heuristic and a deep reinforcement learning approach,” in 2021
International Conference on Optical Network Design and Modeling
(ONDM), 2021, pp. 1-3.

J. Errea, D. Djon, H. Q. Tran, D. Verchere, and A. Ksentini, “Deep re-
inforcement learning-aided fragmentation-aware rmsa path computation
engine for open disaggregated transport networks,” in 2023 International
Conference on Optical Network Design and Modeling (ONDM), 2023,
pp. 1-3.

A. Rezaee, R. McCann, K. Bempah, K. Tice, and V. Vokkarane,
“SDON_simulator,” https://github.com/SDNNetSim/SDON_simulator,
2022.

Y. Wang, “Dynamic traffic scheduling frameworks with spectral and
spatial flexibility in sdm-eons,” Ph.D. dissertation, University of Mas-
sachusetts Lowell, 2022.

Authorized licensed use limited to: UNIV OF MASS-LOWELL. Downloaded on January 21,2025 at 17:10:18 UTC from IEEE Xplore. Restrictions apply.

