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Abstract

Discrete dynamical systems are commonly used to model
the spread of contagions on real-world networks. Under the
PAC framework, existing research has studied the problem of
learning the behavior of a system, assuming that the under-
lying network is known. In this work, we focus on a more
challenging setting: to learn both the behavior and the under-
lying topology of a black-box system. We show that, in gen-
eral, this learning problem is computationally intractable. On
the positive side, we present efficient learning methods under
the PAC model when the underlying graph of the dynami-
cal system belongs to certain classes. Further, we examine
a relaxed setting where the topology of an unknown system
is partially observed. For this case, we develop an efficient
PAC learner to infer the system and establish the sample com-
plexity. Lastly, we present a formal analysis of the expressive
power of the hypothesis class of dynamical systems where
both the topology and behavior are unknown, using the well-
known Natarajan dimension formalism. Our results provide
a theoretical foundation for learning both the topology and
behavior of discrete dynamical systems.

1 Introduction
Discrete dynamical systems have been used as a formal
models for numerous cascade processes, such as the spread
of social behaviors, information, diseases, and biological
phenomena (Battiston et al. 2020; Ji et al. 2017; Cohen et al.
2010; González-Bailón et al. 2011; Romero, Meeder, and
Kleinberg 2011; Sabhapandit, Dhar, and Shukla 2002). A
discrete dynamical system consists of an underlying graph
with vertices representing entities (e.g., individuals, genes),
and edges representing connections between the entities.
Each vertex has a state and an interaction function (i.e.,
behavior), which specify how the state changes over time.
Overall, vertices update their states using interaction func-
tions as the system dynamics proceeds in discrete time.

Due to the large size of real-world systems, a complete
specification of the underlying dynamical system is often not
available. To this end, learning the unknown components of
a system is an active area of research (Adiga et al. 2019;
Chen and Poor 2022; Conitzer, Panigrahi, and Zhang 2020;
Dawkins, Li, and Xu 2021). One ongoing line of work is
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to infer the unknown interaction functions or the topology
of a system. Network topology and interaction functions
play critical roles in the system dynamics. The topology
encodes the underlying relationships between the entities,
while the interaction functions provide the decision rules
that entities employ to update their contagion states. The
class of threshold interaction functions (Granovetter 1978),
which are widely used to model the spread of social conta-
gions (Watts 2002), is one such example. Specifically, each
entity in the network has a decision threshold that represents
the tipping point for a behavioral (i.e., state) change. In the
case of a rumor, a person’s belief shifts when the number of
neighbors believing in the rumor reaches a certain threshold.

Previous research (Adiga et al. 2017) has presented effi-
cient algorithms for inferring classes of interactions func-
tions (e.g., threshold functions) based on the observed dy-
namics, assuming that the underlying network is known. To
our knowledge, the more challenging problem of learning a
system from observed dynamics, where both the interaction
function and the topology are unknown, has not been exam-
ined. In this work, we fill this gap with a theoretical study of
the problem of learning both the topology and the inter-
action functions of an unknown dynamical system.
Problem description. Consider a black-box networked sys-
tem where both the interaction functions and the network
topology are unknown. Our objective is to recover a system
that captures the behavior of the true but unknown system
while providing performance guarantees under the Probably
Approximately Correct (PAC) model (Valiant 1984). We
learn from snapshots of the true system’s dynamics, a
common scheme considered in related papers (e.g., (Chen
et al. 2021; Conitzer, Panigrahi, and Zhang 2020; Wilin-
ski and Lokhov 2021)). Since our problem setting also in-
volves multiclass learning, we examine the Natarajan di-
mension (Natarajan 1989), a well-known generalization of
the VC dimension (Vapnik and Chervonenkis 2015). In par-
ticular, the Natarajan dimension quantifies the expressive
power of the hypothesis class and characterizes the sample
complexity of learning. Overall, we aim to answer the fol-
lowing two questions: (i) Can one efficiently learn the black-
box system, and if so, how many training examples are suf-
ficient? (ii) What is the expressive power of the hypothesis
class of networked systems?

The key challenges of our learning problem arise from
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the incomplete knowledge of the network topology and the
interaction functions of the nodes in the system. For exam-
ple, when we consider systems whose underlying graphs are
undirected and interaction functions are Boolean threshold
functions, the number of potential systems is Θ(2(

n
2) · nn),

where n is the number of nodes in the underlying graph.
Therefore, a learner needs to find an appropriate hypothe-
sis from a very large space. Further, in general, the training
set (which consists of snapshots of the system dynamics)
may not contain sufficient information to recover the under-
lying network structure efficiently. (Indeed, we show that the
problem is computationally intractable.) Our main contri-
butions are summarized below.
1. Hardness of PAC learning: We show that in general, hy-
pothesis classes corresponding to dynamical system where
both the network topology and the interaction functions are
unknown are not efficiently PAC learnable unless NP = RP.
We prove this result by first formulating a suitable decision
problem and showing that the problem is NP-complete. We
use the hardness result for the decision problem to estab-
lish the hardness of PAC learning. Our results show that the
learning problem remains hard for several classes of dynam-
ical systems (e.g., systems on undirected graphs with thresh-
old interaction functions).
2. Efficient PAC learning algorithms for special classes: In
contrast with the general hardness result above, we iden-
tify some special classes of systems that are efficiently PAC
learnable. The two classes that we identify correspond to
systems on directed graphs with bounded indegree and those
where the underlying graph is a perfect matching. In both
cases, the interaction functions are from the class of thresh-
old functions. These results are obtained by showing that
these systems have efficient consistent learners and then ap-
pealing to the known result (Shalev-Shwartz and Ben-David
2014) that hypothesis classes for which there are efficient
consistent learners are also efficiently PAC learnable.
3. Learning under a relaxed setting: We consider a relaxed
setting where the underlying network is partially observed
and present an efficient PAC learner for the setting. We also
establish the sample complexity.
4. Expressive power: We present an analysis of the Natara-
jan dimension (Ndim), which measures the expressive
power of the hypothesis class of networked systems. In par-
ticular, we give a construction of a shatterable set and prove
that the Ndim of the hypothesis class is at least ⌊n2/4⌋,
where n is the number of vertices. Further, we show that
the upper bound on Ndim for this class is O(n2). Thus, our
lower bound is tight to within a constant factor. Our result
also provides a lower bound on the sample complexity.
Related work. Learning unknown components of net-
worked systems is an active area of research. Many re-
searchers have studied the problem of identifying missing
components (e.g., learning the diffusion functions at ver-
tices, edge parameters, source vertices, and contagion states
of vertices) in contagion models by observing the prop-
agation dynamics. For instance, Chen et al. (Chen et al.
2021) infer the edge probability and source vertices under
the independent cascade model. Conitzer et al. (Conitzer,

Panigrahi, and Zhang 2020) investigate the problem of in-
ferring opinions (states) of vertices in stochastic cascades
under the PAC scheme. Lokhov (Lokhov 2016) studies
the problem of reconstructing the parameters of a diffu-
sion model given infection cascades. Inferring threshold
functions of vertices from social media data is consid-
ered in (González-Bailón et al. 2011; Romero, Meeder, and
Kleinberg 2011). Identifying the source vertices of infec-
tions due to a contagion is addressed in (Zhu, Chen, and
Ying 2017; Shah and Zaman 2011). The problem of infer-
ring the network structure has also been studied; see, e.g.,
(Huang et al. 2019; Pouget-Abadie and Horel 2015; Abra-
hao et al. 2013; Gomez Rodriguez, Leskovec, and Krause
2010; Soundarajan and Hopcroft 2010). The problem of in-
ferring the network structure and the interaction functions
of dynamical systems has been studied under a different
model in (Rosenkrantz et al. 2022), where a user can con-
struct queries to the system and obtain responses. This is
fundamentally different from our model where a learning al-
gorithm must rely on a given set of observations and cannot
interact with the unknown system.

The work that is closest to ours is (Adiga et al. 2017),
where the problem of inferring the interaction functions in a
system from observations is considered, under the assump-
tion that the network is known. It is shown in (Adiga et al.
2017) that the interaction function inference problem can be
solved efficiently. However, the techniques used in (Adiga
et al. 2017) are not applicable to our context, since the net-
work is unknown.

For space reasons, many proofs have been omitted. De-
tailed proofs can be found in (Qiu et al. 2023).

2 Preliminaries
2.1 Discrete Dynamical Systems
A Synchronous Dynamical System (SyDS) S over the
Boolean domain B = {0, 1} is a pair S = (G,F), where
• G = (V, E) is the underlying undirected graph. We let
n = |V|. Each vertex in V has a state from B, representing
its contagion state (e.g., inactive or active).

• F = (f1, f2, . . . , fn) is a collection of functions, where
fi is the interaction function of vertex vi ∈ V , 1 ≤ i ≤ n.

Interaction functions. The system evolves in discrete time
steps, with vertices updating their states synchronously us-
ing the interaction functions. For a graph G and a vertex v,
we let N(G, v) and N+(G, v) denote the open and closed
neighborhoods of v, respectively. At each time step, the in-
puts to the interaction function fi ∈ F are the states of the
vertices in N+(G, vi); fi computes the next state of vi.

Our work focuses on the class of threshold interaction
functions, which is a classic framework for modeling social
contagions (Watts and Strogatz 1998; Granovetter 1978).
Specifically, each vertex vi ∈ V has an integer threshold
τvi ≥ 0, and fi outputs 1 if the number of 1’s in the input
to fi (i.e., the number of state-1 vertices in N+(G, vi)) is
at least τvi

; fi outputs 0 otherwise. An example of such a
SyDS is shown in Figure 1.

A configuration C of a SyDS S at a given time step is a
binary vector of length n that specifies the states of all the
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vertices at that time step. Let X = {0, 1}n be the set of all
configurations. For a given vertex v, let C(v) denote the state
of v in C, and for a given vertex set Y ⊆ V , let C[Y] denote
the projection of C onto Y . If the system S evolves from C to
a configuration C′ in one step, denoted by S(C) = C′, then C′

is called the successor of C. Since the interaction functions
considered in our work are deterministic, each configuration
has a unique successor. For a given configuration C and ver-
tex set Y , we let score(C,Y) denote the number of vertices
v ∈ Y such that C(v) = 1.

Figure 1: An example of a single transition of a SyDS with
threshold interaction functions. The threshold values of ver-
tices are shown in red. State-1 vertices are colored blue.

SyDSs over directed graphs. SyDSs can also be defined
over directed graphs. The inputs to the local function at a
vertex vi are the state of vi and those of the in-neighbors of
vi (i.e., vertices from which vi has incoming edges). All the
other definitions for SyDSs on directed graphs are the same
as those for SyDSs on undirected graphs.

2.2 The Learning Problem
Hypotheses. Let S∗ = (G,F) be a ground truth SyDS. The
learner does not know either the graph G or the set of func-
tions F . Other than the training set, the only information
provided to the learner consists of the number n of vertices,
the class of interaction functions, and the class of the un-
derlying graph. The learner must find a hypothesis consist-
ing of an underlying graph (from the given graph class) and
an interaction function (from the given class of interaction
functions) for each node of the graph from the set of all
such hypotheses. As an illustration, let HUNDIR,THRE denote
the hypothesis class where the underlying graph of S∗ is
undirected, and the interaction functions are threshold func-
tions. Since there are 2(

n
2) undirected graphs with n nodes

and each node may have Θ(n) choices for threshold val-
ues, the hypothesis class HUNDIR,THRE has Θ(2(

n
2)nn) sys-

tems (i.e., hypotheses). The learner aims to infer a system
S ∈ HUNDIR,THRE that is close to the true system S∗ by con-
structing the graph and the interaction functions of S .
Learning setting. Our algorithms learn the ground truth sys-
tem S∗ from its observed dynamics. Let O = {(Ci, C′

i)}
q
i=1

be a training set of q examples, each consisting of a snap-
shot of the dynamics of S∗ in the form of a configuration-
successor pair. Specifically, Ci is a drawn i.i.d. from a distri-
bution (unknown to the learner) D over X , and C′

i = S∗(Ci)
is the successor of Ci under S∗. Let O ∼ Dq denote such a
training set. We say that a hypothesis S is consistent with O

if ∀(Ci, C′
i) ∈ O, S(Ci) = C′

i. For each vertex v ∈ V , we
define a partition of O into two subsets {O0,v,O1,v}, such
that C′(v) = i, for all (C, C′) ∈ Oi,v , i = 0, 1. Note that the
hypothesis being learned represents a successor function.

For simplicity, we present the necessary definitions for
the PAC model (see e.g., (Shalev-Shwartz and Ben-David
2014)) using HUNDIR,THRE. These definitions also apply to
other hypothesis classes considered in this paper. The true
error of a hypothesis S ∈ HUNDIR,THRE is defined as
L(D,S∗)(S) := Pr C∼D[S(C) ̸= S∗(C)]. In the PAC model,
the goal is to infer a hypothesis S ∈ HUNDIR,THRE s.t. with
probability at least 1 − δ over O ∼ Dq , the true error
L(D,S∗)(S) ≤ ϵ, for any given ϵ, δ ∈ (0, 1). The class
HUNDIR,THRE is efficiently PAC learnable if such an S ∈
HUNDIR,THRE can be inferred in polynomial time (w.r.t. n,
1/δ and 1/ϵ). The minimum number of training examples
needed to achieve the above guarantee is called the sample
complexity of learning HUNDIR,THRE.
Natarajan dimension. A hypothesis S can be viewed as a
function X → X , where each of the 2n possible target con-
figurations is considered a class. Thus, our learning prob-
lem involves multiclass classification. The Natarajan dimen-
sion (Natarajan 1989) is a generalization of the concept of
VC dimension to a multiclass setting, and measures the ex-
pressive power of a given hypothesis class HUNDIR,THRE. For-
mally, a set R of configurations is shattered by HUNDIR,THRE

if there exists two functions g1, g2 : X → X , such that:
(i) for every C ∈ R, g1(C) ̸= g2(C), and (ii) for every
subset R′ ⊆ R, there exists S ∈ HUNDIR,THRE such that
∀C ∈ R′, S(C) = g1(C) and ∀C ∈ R \ R′, S(C) =
g2(C). The Natarajan dimension of HUNDIR,THRE, denoted
by Ndim(HUNDIR,THRE), is the maximum size of a shatterable
set. In general, the larger the Natarajan dimension of a hy-
pothesis class, the higher is its expressive power.

3 PAC Learnability and Sample Complexity
We first establish the intractability of efficiently PAC learn-
ing threshold dynamical systems over general graphs. We
then present efficient algorithms for learning systems over
several graph classes. We also analyze the sample complex-
ity of learning the corresponding hypothesis classes.

3.1 Intractability of PAC Learning
To establish the hardness of learning, we first formulate a
decision problem for SyDSs and show that the problem is
NP-hard. We use this to establish a general hardness result
under the PAC model.

We define restricted classes of SyDSs by specifying con-
straints on the underlying graph and the interaction func-
tions. For example, we use the notation (UNDIR, THRESH)-
SyDSs to denote the restricted class of SyDSs whose (i) un-
derlying graphs are undirected and (ii) interaction functions
are threshold functions. Several other restricted classes of
SyDSs will be considered in this section.

Given a set O of observations, with each observation be-
ing a pair of the form (C, C′) where C′ is the successor of
C, we say that a SyDS S is consistent with O if for each
observation (C, C′) ∈ O, the successor of C produced by S
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is C′. A basic decision problem in this context is the follow-
ing: given a set O of observations, determine whether there
is a SyDS that is consistent with O. One may also want the
consistent SyDS to be in a restricted class Γ. We refer to this
problem as the Γ-Consistency problem:

Definition 3.1 (Γ-Consistency) Instance: A vertex set V
and a set of observations O over V . Question: Is there a
SyDS in the class Γ that is consistent with O?

Hardness. The following lemma shows the hardness
of Γ-consistency for two restricted classes of SyDSs:
(i)(UNDIR, THRESH)-SyDSs, where the graph is undirected
and each interaction function is a threshold function, and (ii)
(TREE, THRESH = 2)-SyDSs, where the graph is a tree and
each interaction function is a 2-threshold function. For space
reasons, we only provide a proof sketch for (i) here. A full
proof of the lemma appears in (Qiu et al. 2023).

Lemma 3.1 The Γ-Consistency problem is NP-complete for
the following classes of SyDSs: (i) (UNDIR, THRESH)-
SyDSs and (ii) (TREE, THRESH = 2)-SyDSs.

Proof sketch for (i): It can be seen that the problem is
in NP. The proof of NP-hardness is via a reduction from
3SAT. Let the given 3SAT formula be f , with variables
X = {x1. . . . , xn} and clauses C = {c1. . . . , cm}. For the
reduction, we construct a node set V and transition set O.

The constructed node set V contains 2n + 2 nodes. For
each variable xi ∈ X , V contains the two nodes yi and yi.
Intuitively, node yi corresponds to the literal xi, and node yi
corresponds to the literal xi. We refer to these 2n nodes as
literal nodes. There are also two additional nodes: z and z′.
Transition set O contains n+m+ 2 transitions, as follows:
O = O1 ∪O2 ∪O3.
O1 contains two transitions. In the first of these transi-

tions, the predecessor has only node z equal to 1, and the
successor has all nodes equal to 0. In the second transition,
the predecessor has only the two nodes z and z′ equal to 1,
and the successor has only node z equal to 1. O2 contains
n transitions, one for each variable in X . For each variable
xi ∈ X , O2 contains a transition where in the predecessor
only nodes yi and yi are equal to 1, and the successor has
all nodes equal to 0. O3 contains m transitions, one for each
clause of f . For each clause cj of f , O3 contains a transition
where in the predecessor only node z and the nodes corre-
sponding to the literals that occur in cj are equal to 1, and
the successor has only node z equal to 1. It can be shown
that f is satisfiable iff there exists a threshold-SyDS that is
consistent with O.

The usefulness of establishing NP-hardness results for
the Γ-Consistency problem is pointed out by our next re-
sult (Lemma 3.2), which states that if Γ-Consistency is NP-
hard, then the hypothesis class for Γ SyDSs is not efficiently
PAC learnable, unless the complexity classes NP and RP
coincide. Here, RP denotes the class of problems that can
be solved in randomized polynomial time. It is widely be-
lieved that the complexity classes NP and RP are different;
see (Arora and Barak 2009) for additional details regarding
these complexity classes.

Lemma 3.2 Let Γ be any class of SyDS for which Γ-
Consistency is NP-hard. The hypothesis class for Γ SyDSs
is not efficiently PAC learnable, unless NP = RP.

Proof sketch. If the hypothesis class for Γ-SyDS admits an
efficient PAC learner APAC, then one can construct an RP al-
gorithm AERM (based on APAC) for the Γ-Consistency prob-
lem, thereby implying NP = RP. See (Qiu et al. 2023) for a
detailed proof.

The following theorem on the hardness of learning is a
direct consequence of Lemmas 3.1 and 3.2.

Theorem 3.1 Unless NP = RP, the hypothesis classes
for the following classes of SyDSs are not efficiently
PAC learnable: (i) (UNDIR, THRESH)-SyDSs and (ii)
(TREE, THRESH = 2)-SyDSs.

Sample complexity. For any finite hypothesis class H ,
given the PAC parameters ϵ, δ > 0, the following is a well
known (Haussler 1988) upper bound on the sample com-
plexity mH(δ, ϵ) for learning H: mH(δ, ϵ) ≤ 1

ϵ

(
log(|H| +

log(1/δ)
)
. As mentioned earlier, the size of the hypothesis

class HUNDIR,THRE is O(2(
n
2)·nn). Thus, one can obtain an up-

per bound on the sample complexity of learning HUNDIR,THRE:

mHUNDIR,THRE
(δ, ϵ) ≤ 1

ϵ
·
(
n2 + n log (n) + log (

1

δ
)

)
(1)

From the above inequality, it follows that mHUNDIR,THRE
(δ, ϵ) =

O
(
(1/ϵ) · (n2 + log (1/δ))

)
. In a later section, we will

prove a lower bound on the sample complexity which
is tight to within a constant factor of the upper
bound (1), thereby showing that mHUNDIR,THRE

(δ, ϵ) =

Θ
(
(1/ϵ) · (n2 + log (1/δ))

)
.

Preview for the results in Sections 3.2 and 3.3: In the
next subsections, we present classes of SyDSs which are
efficiently PAC learnable. In both cases, we obtain the re-
sult by showing that for the corresponding class of SyDSs,
the Γ-Consistency problem is efficiently solvable. In other
words, given a training set O, these algorithms represent ef-
ficient consistent learners for the corresponding classes of
SyDSs. As is well known, an efficient consistent learner for
a hypothesis class is also an efficient PAC learner (Shalev-
Shwartz and Ben-David 2014).

3.2 PAC Learnability for Matchings
Let (MATCH,THRESH)-SyDSs denote the set of SyDSs
where the underlying graph is a perfect matching, and the
interaction functions are threshold functions. In this sec-
tion, we present an efficient PAC learner for the hypothe-
sis class HMATCH, consisting of (MATCH,THRESH)-SyDSs.
As mentioned earlier, we obtain an efficient PAC learner
for this class by presenting an efficient algorithm for the Γ-
Consistency problem. We begin with a few definitions.
Threshold-Compatibility. For a pair of distinct vertices u
and v, we say that u and v are threshold-compatible if for
all (Ci, C

′
i) and (Cj , C

′
j) ∈ O, if score(Ci, {u, v}) ≤

score(Cj , {u, v}), then C ′
i(u) ≤ C ′

j(u) and C ′
i(v) ≤

C ′
j(v). Informally, u and v are threshold-compatible iff there
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exist threshold functions fu for u and fv for v, such that fu
and fv are each consistent with O.
Compatibility Graph. The threshold-compatibility graph
G′ = (V, E ′) of O is an undirected graph with vertex set
V , and an edge }u, v} ∈ E ′ for each pair of threshold-
compatible vertices u and v.

Algorithm 1: Full-Infer-Matching (V)
Input : The vertex set V; A training set O
Output: A (MATCH,THRESH)-SyDS S = (G,F)
Construct the threshold-compatibility graph G′ = (V, E ′) of O.
If G does not have a perfect matching, answer “No” and stop.
Let E ′′ be the edge set of a perfect matching in G′.
G← (V, E ′′); F = ∅.
for each v ∈ V do

if |O1,v| = 0 then
fv ← the threshold function where τv = 3.

else
let u be the neighbor of v in G.
z ← the minimum value of score(C, {u, v}) over all
(C,C ′) ∈ O1,v .

fv ← the threshold function where τv = z.
end
F ← F ∪ {fv}.

end
return S = (G,F)

An efficient learner. Our efficient algorithm for the Γ-
Consistency problem for the class of (MATCH,THRESH)-
SyDSs appears as Algorithm 1. The algorithm first con-
structs the threshold-compatibility graph G′ = (V, E ′) of
O. The reason for this computation is given in the following
lemma. A proof of the lemma appears in (Qiu et al. 2023).
Lemma 3.3 The answer to the Γ-Consistency problem
for (MATCH,THRESH)-SyDSs is “Yes” if and only if the
threshold-compatibility graph G′ = (V, E ′) of O contains
a perfect matching.

Next, the algorithm finds a maximum matching in G′. Let
E ′′ be the edge set of this maximum matching. Note that,
from Lemma 3.3, G′ contains a perfect matching, so E ′′

is a perfect matching of G. The learned hypothesis S is a
(MATCH,THRESH)-SyDSs on V whose graph has edge set
E ′′, and interaction function fv for each vertex v, with inci-
dent edge (v, u) in E ′′, is any threshold function of variables
v and u that is consistent with O[{v, w}].
Remark. To estimate the running time of Algorithm 1, note
that for any pair of nodes, determining compatibility can be
done in O(nq) time, where n is the number of nodes and q
is the number of given observations. Thus, the time to con-
struct the compatibility graph is O(n3q). All the other steps
(including the computation of perfect matching which can
be done in O(n3) time (Cormen et al. 2009)) are dominated
by the time to construct the compatibility graph. Thus, the
overall running time is O(n3q), which is polynomial in the
input size. Hence, we have an efficient consistent learner for
the class of (MATCH,THRESH)-SyDSs and so:
Theorem 3.2 The hypothesis class associated with
(MATCH,THRESH)-SyDSs is efficiently PAC learnable.

3.3 PAC Learnability for Directed Graphs
In this section, we present an efficient PAC learner for the
hypothesis class HDIR,∆−BOUNDED consisting of SyDSs where
the underlying graph of the target system is directed, with
in-degree bounded by some fixed ∆, and the interaction
functions are threshold functions. As before, we establish
this result by presenting an efficient algorithm for the Γ-
Consistency problem, where Γ is the class of SyDSs on di-
rected graphs where the maximum indegree is bounded by a
constant ∆ and the interaction functions are threshold func-
tions. We refer to these as (DIR, ∆, THRESH)-SyDSs.
We say that a given vertex v is threshold-consistent with a
given training set O via a given vertex set Y ⊆ V \ {v} if
for all (Ci, C

′
i) and (Cj , C

′
j) ∈ O, it holds that if C ′

i(v) <
C ′

j(v), then score(Ci, {v} ∪ Y) < score(Cj , {v} ∪ Y). A
key lemma that leads to our algorithm is the following.
Lemma 3.4 There exists a system S ∈ HDIR,∆−BOUNDED that
is consistent with a given training set O if and only if every
vertex v is threshold-consistent with O via a vertex set Nv of
cardinality at most ∆.

As shown below, the above lemma provides a straightfor-
ward algorithm for the Γ-Consistency problem for the class
of (DIR, ∆, THRESH)-SyDSs.
Lemma 3.5 For any fixed value ∆, the Γ-Consistency prob-
lem for the class of (DIR, ∆, THRESH)-SyDSs can be solved
efficiently.
Proof. Since the graph is directed, each vertex can be treated
independently. For each vertex v, an algorithm can enumer-
ate all possible vertex sets Y ⊆ V \ {v} of cardinality
at most ∆ and find the corresponding Nv . The number of
such vertex sets is O(n∆). Further, for each such a set, we
check if v is threshold-consistent under this set, which takes
O(∆q) time. Thus, for each vertex, the time to find an Nv is
O(n∆ · δq), and the overall running time is O(n∆+1 · δq).

Since we have an efficient consistent learner for the hy-
pothesis class HDIR,∆−BOUNDED for any constant ∆, we have:
Theorem 3.3 For any fixed value ∆, the hypothesis class
HDIR,∆−BOUNDED is efficiently PAC learnable.

4 Partially Observed Networks
In this section, we consider the learning problem for
(UNDIR, THRESH)-SyDSs when the network is partially
observed, with at most k missing edges from the true net-
work G. Let Gobs denote the observed network of the system,
and let HOBS denote the corresponding hypothesis class. The
goal is to learn a system in HOBS with underlying graph G′

being a supergraph of Gobs, with at most k additional edges.
We first provide an upper bound on the sample complexity

of learning HOBS based on a detailed analysis of hypothesis
class size. Then, for the scenario where at most one edge is
missing for each vertex, we present an efficient PAC learner.
Theorem 4.1 Given a partially observed network Gobs, for
any ϵ, δ > 0, the sample complexity of learning the hypoth-
esis class HOBS satisfies M(ϵ, δ) ≤ 1

ϵ

(
n log(davg(Gobs) +

3) + ck log(n2/k) + log(1/δ)
)

for some constant c > 0,
where davg(Gobs) is the average degree of Gobs.
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Proof. We first bound the size of the hypothesis class H of
all possible SyDSs in the class (UNDIR, THRESH)-SyDSs,
given Gobs as the partially observed network. This includes
all such SyDSs with the underlying graph being Gobs and
up to k more edges. Our sample complexity bound is then
based on the following result by (Haussler 1988): M(ϵ, δ) ≤
1
ϵ

(
log(|H|+ log(1/δ)

)
.

Given a graph G, let HG denote the set of threshold SyDSs
with G as the underlying graph. From (Adiga et al. 2018),
the size of HG can be bounded by accounting for the num-
ber of threshold assignments possible for each vertex and is
given by |HG| = Πv∈V

(
d(v) + 3

)
≤

(
davg(G) + 3

)n
(See

Theorem 1, (Adiga et al. 2018)).
Let G(d) be the set of graphs which have the same edge set

as Gobs plus exactly d more edges, with d ≤ k; i.e., G ∈ G(d)
iff E(G) ⊇ E(Gobs) and |E(G) \ E(Gobs)| = d. Let m be
the number of edges in Gobs. For G ∈ G(d), note that

davg(G) = davg(Gobs) + d/2n = d∗avg + d/2n

where d∗avg = davg(Gobs) for convenience. It follows that the
number of such graphs is

|G(d)| =
((n

2

)
−m

d

)
≤ (en2/d)d

using the fact that
(
a
b

)
≤

(
ea
b

)b
(Graham, Knuth, and Patash-

nik 1994). Now, the size of the hypothesis class correspond-
ing to threshold SyDS with a partially observed underlying
graph Gobs with at most k edges missing can be bounded:

k∑
d=0

∑
G∈G(d)

|HG| ≤
k∑

d=0

∑
G∈G(d)

(
d∗avg + d/2n+ 3

)n
=

k∑
d=0

|G(d)|
(
d∗avg + d/2n+ 3

)n
≤ (d∗avg + 3)n

k∑
d=0

(
en2

d

)d

e
1+ d

2(d∗avg+3)

≤ 2
(
d∗avg + 3

)n k∑
d=0

(
e2n2

d

)d

≤ c′
(
d∗avg + 3

)n(e2n2

k

)k

,

for some constant c′ > 0. In particular, the last inequality
can be obtained as follows:

k∑
d=0

(e2n2

d

)d ≤ 1 +

∫
k

1

(e2n2

x

)x
dx

Lastly, setting y = 2x log(en)− x log x, we have∫
k

1

(e2n2

x

)x
dx =

∫
k

x=1

ey

2 log(en)− 1− log x
dy

<

∫
k

x=1

eydy ≤ c′′ek log(e2n2/k)

for another constant c′′ > 0. It follows that

M(ϵ, δ) ≤ 1

ϵ

(
log(|H|+ log(1/δ)

)
≤ 1

ϵ

(
n log(davg(Gobs) + 3)

+ ck log(n2/k) + log(1/δ)
)

for a suitable constant c′′ > 0.

Remark. For the case where the network is fully known,
the work by (Adiga et al. 2018) provides a polynomial-time
algorithm that outputs a consistent learner in time O(qn)
where q is the size of O. In our case, where at most k edges
are missing, we note that the method of considering all pos-
sible supergraphs of Gobs with at most k extra edges and
checking the consistency takes O

(
n2kpn

)
time since there

are at most n2k such graphs.
By simply setting Gobs to be a graph with no edges, The-

orem 4.1 implies the following corollary when the only in-
formation known about the network topology is that it has at
most m edges.

Corollary 4.1 The sample complexity of learning the hy-
pothesis class HUNDIR,THRE given that the underlying network
has at most m edges is ≤ 1

ϵ

(
cm log(n2/m)+log(1/δ)

)
for

a suitable constant c > 0.

4.1 Missing At Most One Edge Per Vertex
We now examine the case when the hypothesis class HOBS

misses at most k edges, of which at most one missing edge is
incident on each vertex. We propose an efficient PAC learner
for this case.

We begin with some definitions. Consider a given training
set O and set of vertices Y ⊆ V . If |O0,v| = 0, let ℓ(v,Y) =
−1; otherwise, let ℓ(v,Y) = max(C,C′)∈O0,v

score(C,Y).
If |O1,v| = 0, let h(v,Y) = n+ 1; otherwise, let h(v,Y) =
min(C,C′)∈O1,v

score(C,Y). Note that the threshold value of
v must exceed ℓ(v,N+(Gobs, v)).
Step one. To infer a SyDS consistent with the ob-
servations O, we first compute ℓ(v,N+(Gobs, v))
and h(v,N+(Gobs, v)) for each vertex v. In this
process, we also identify all vertices v for which
ℓ(v,N+(Gobs, v)) ≥ h(v,N+(Gobs, v)); Gobs violates
the threshold consistency condition for each such v. Let V ′

denote the set of vertices such that ℓ(v,N+(Gobs, v)) =
h(v,N+(Gobs, v)), and V ′′ denote the set of vertices such
that ℓ(v,N+(Gobs, v)) > h(v,N+(Gobs, v)).

Observation 4.1 Each vertex in V ′′ requires at least two ad-
ditional incident edges, so if V ′′ ̸= ∅, there is no system in
HOBS that is consistent with O.

So, henceforth we assume that V ′′ = ∅.
Step two. Next, we construct a maximum-weighted match-
ing problem instance with vertex set V , where the edge
weights are all positive integers. In particular, we say that
a vertex pair (u, v) is viable if (i) u ̸= v, (ii) u ∈ V ′ or
v ∈ V ′, and (iii) adding the edge (u, v) to Gobs would result
in u and v both satisfying the consistency condition, i.e.,
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ℓ
(
u,N+(Gobs, u) ∪ {v}

)
< h

(
u,N+(Gobs, u) ∪ {v}

)
and

ℓ
(
v,N+(Gobs, v) ∪ {u}

)
< h

(
v,N+(Gobs, v) ∪ {u}

)
.

Let t = |V ′|. The constructed graph Gm has an edge for
each viable vertex pair. Let E1 denote the edges in Gm with
exactly one endpoint in V ′, and E2 the edges in Gm with both
endpoints in V ′. The edges in E1 are given weight t, and the
edges in E2 are given weight 2t+ 1.
Step three. Lastly, the constructed matching problem is
solved, producing a maximum weight matching, M. If M
matches all the vertices in V ′ and consists of at most k edges,
then we construct the new graph G′ by adding the edges in
M to Gobs. Since all added edges are viable, and each vertex
is the endpoint of at most one added edge, we have that for
all v ∈ V , ℓ

(
v,N+(G′, v)

)
< h

(
v,N+(G′, v)

)
. For each

vertex v, we set the threshold τ ′v to be an integer such that
ℓ
(
v,N+(G′, v)

)
< τ ′v ≤ h

(
v,N+(G′, v)

)
. If the maximum

weight matching does not match all vertices in V ′ or con-
tains more than k edges, then there is no SyDS in HOBS that
is consistent with the training set O.
Correctness. Consider a matching M′ within Gm. Let
µ(M′) denote the number of vertices in V ′ that are covered
by M′, and W (M′) denote the weight of M′. Suppose that
µ(M′) contains e1 edges from E1 and e2 edges from E2.
Then µ(M′) = e1 + 2e2 and W (M′) = qe1 + 2qe2 + e2.
Since e2 ≤ q/2 < q, µ(M′) = ⌊W (M′)/q⌋. Thus, no
other matching matches more vertices in V ′ than M. More-
over, of those matchings that match the same number of V ′

vertices as M, none has more edges from E2, so none con-
sists of fewer edges than M. Thus, M matches as many
vertices from V ′ as possible, and does so with the minimum
number of edges possible.

We note that both (i) construction of the matching graph
Gm and (ii) finding a maximum matching in Gm can be done
in polynomial time. It follows that the learning problem con-
sidered is efficiently PAC learnable.
Theorem 4.2 Suppose Gobs(V,E) is missing at most k
edges, with at most one is incident on each vertex. The cor-
responding hypothesis class is efficiently PAC learnable.

5 Tight Bounds on Natarajan Dimension
In this section, we study the expressiveness of the
hypothesis class HUNDIR,THRE for (UNDIR, THRESH)-
SyDSs, measured by the Natarajan dimension (Natarajan
1989) Ndim(HUNDIR,THRE). Specifically, a higher value of
Ndim(HUNDIR,THRE) implies a greater expressive power of the
class HUNDIR,THRE. Further, Ndim(HUNDIR,THRE) characterizes
the sample complexity of learning HUNDIR,THRE.
Theorem 5.1 The Natarajan dimension of the hypothesis
class HUNDIR,THRE is ≥ ⌊n2/4⌋, irrespective of the graph
structure.
Proof. We establish the result by specifying a shattered set
R ⊂ X of size ⌊n2/4⌋. Let the set V of n vertices be parti-
tioned into two subsets: Y consisting of ⌊n/2⌋ vertices, and
Z consisting of the other ⌈n/2⌉ vertices. Set R consists of
|Y||Z| = ⌊n2/4⌋ configurations, as follows. Each configu-
ration in R has exactly two vertices in state 1, one of which
is in Y , and the other in Z .

Let g1 be the function that maps each configuration C into
the configuration where each vertex in Y has the same state
as in C, and each vertex in Z has state 0. Let g2 be the
function that maps each configuration into the configuration
where every vertex has state 0.

We now show that the two requirements for shattering are
satisfied. For requirement (i), for each C ∈ R, the state-
1 vertex in Y under C is in state 1 in g1(C) and in state 0
in g2(C), so g1(C) ̸= g2(C). For requirement (ii), consider
each subset R′ ⊆ R. Let SR′ = (GR′ ,FR′) ∈ H be the
following SyDS. Graph GR′ is bipartite with vertex sets Y
and Z; it contains an edge {y, z} iff there is configuration
in R′ in which y and z are both in state 1. Each interaction
function is a threshold function, where the threshold of every
vertex in Y is 2, and the threshold of every vertex in Z is 3.
We now claim that ∀C ∈ R′, S(C) = g1(C) and ∀C ∈
R \ R′, S(C) = g2(C). Consider any C ∈ R. Let y ∈ Y
and z ∈ Z be the two vertices that are in state 1 in C. If
C ∈ R′, then GR′ contains the edge (y, z), so S(C) = g1(C).
If C ∈ R \ R′, then y and z are not neighbors in GR′ , so
S(C) = g2(C). This completes our proof of the claim and
also that of Theorem 5.1.

From (Shalev-Shwartz and Ben-David 2014), the sample
complexity of learning HUNDIR,THRE is at most:

c1 · (1/ϵ) · (Ndim(HUNDIR,THRE) + log (1/δ)) . (2)

Thus, we have the following corollary:

Corollary 5.1 The sample complexity of learning H satis-
fies: mHUNDIR,THRE

(δ, ϵ) ≥ c1 · (1/ϵ) ·
(
n2/4 + log (1/δ)

)
.

Remark. For fixed ϵ, δ, Equation (2) shows that the sample
complexity is Ω(Ndim(HUNDIR,THRE)). Further, Equation (1)
shows that the sample complexity of learning HUNDIR,THRE is
O(n2). It follows that Ndim(HUNDIR,THRE) = O(n2), and our
lower bound of ⌊n2/4⌋ is only a constant factor away from
the upper bound on Ndim(HUNDIR,THRE).

Corollary 5.2 The Natarajan dimension of the hypothesis
class HUNDIR,THRE is ≤ c · n2 for some constant c.

6 Conclusions and Future Work
We examined the problem of learning both the topology and
the interaction functions of an unknown networked dynami-
cal system under the PAC model. We showed that the prob-
lem is, in general, computationally intractable. We also iden-
tified efficiently solvable special cases. Further, we studied a
setting where the underlying network is partially observed,
and proposed an efficient PAC learner. It would be inter-
esting to extend our efficient algorithms to the case where
the observation set includes other forms of a system’s dy-
namics instead of single transitions (e.g., positive and neg-
ative examples of single transitions, trajectories with two or
more transitions). It would also be of interest to consider
the problem where additional information about the graph
(e.g., maximum node degree, the size of a maximum clique)
and/or the interaction functions (e.g., upper bounds on the
threshold values) is also available.
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