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Abstract

We investigate the impact of ocean data assimilation using the Ensemble Adjustment
Kalman Filter (EAKF) from the Data Assimilation Research Testbed (DART) on the
oceanic and atmospheric states of the Red Sea. Our study extends the ocean data as-
similation experiment performed by Sanikommu et al. (2020) by utilizing the SKRIPS
model coupling the MITgem ocean model and the Weather Research and Forecasting (WRF)
atmosphere model. Using a 50-member ensemble, we assimilate satellite-derived sea sur-
face temperature and height and in-situ temperature and salinity profiles every three days
for one year, starting January 01 2011. Atmospheric data are not assimilated in the ex-
periments. To improve the ensemble realism, perturbations are added to the WRF model
using several physics options and the stochastic kinetic energy backscatter (SKEB) scheme.
Compared with the control experiments using uncoupled MITgcm with ECMWEF ensem-
ble forcing, the EAKF ensemble mean oceanic states from the coupled model are bet-

ter or insignificantly worse (root-mean-square errors are 30% to -2% smaller), especially
when the atmospheric model uncertainties are accounted for with stochastic perturba-
tions. We hypothesize that the ensemble spreads of the air-sea fluxes are better repre-
sented in the downscaled WRF ensembles when uncertainties are well accounted for, lead-
ing to improved representation of the ensemble oceanic states from the new experiments
with the coupled model. This indicates the ocean model assimilation will be improved
with coupled models and relaxes the need for operational centers to provide atmospheric
ensembles to drive ocean forecasts. Although the feedback from ocean to atmosphere is
included in this two-way regional coupled configuration, we find no significant effect of
ocean data assimilation on the ensemble mean latent heat flux and 10-m wind speed over
the Red Sea. This suggests that the improved skill using the coupled model is not from
the two-way coupling, but from downscaling the ensemble atmospheric forcings (one-way
coupled) to drive the ocean model.

Plain Language Summary

We investigate how combining ocean information accounting for weather processes
can help us better understand and predict the ocean—atmospheric state of the Red Sea.
We use a coupled ocean and atmosphere model to assimilate satellite and ship-based ocean
observations. We assess the performance of the assimilation system using fifty different
realizations of the atmospheric state and found that it improves the prediction of oceanic
state compared to using the ocean model alone for assimilation and prediction. This suc-
cess is because the combined ocean—atmosphere model provides a broader range of pos-
sible ocean conditions. We also look at how incorporating ocean observation informa-
tion may potentially impact weather forecasts in the coupled model.

1 Introduction

Numerical models have been used to analyze and predict ocean states for decades.
Realistically configured numerical models can simulate oceanic conditions that are gen-
erally consistent with observations, but there can be substantial differences when com-
paring with observations at specific times and locations (Edwards et al., 2015). Even with
a perfect model, the differences can result from uncertainties of initial conditions, per-
turbations, parameterizations, and forcings. Because of this, data assimilation (DA) is
used to constrain the model solutions using observational data, including observation un-
certainty and model representational error (Edwards et al., 2015).

The Ensemble Kalman Filter (hereafter EnKF) provides an efficient framework for
ocean data assimilation (Evensen, 1994). It has gained popularity because of its simple
conceptual formulation and relative ease of implementation, requiring no derivation of
tangent linear or adjoint models, with only forward model integration in time (Evensen,
2003). Furthermore, its computational requirements scale with ensemble size, and so can
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be affordable and comparable with other popular sophisticated assimilation methods (Evensen,

2003). EnKF based data assimilation systems have been developed for many applica-

tions. For example, Evensen and Van Leeuwen (1996) assimilated altimeter data in the
Agulhas region using a quasi-geostrophic model; Sakov et al. (2012) and Hoteit et al. (2013)
respectively produced realistic estimates of the ocean circulation in the North Atlantic

and the Gulf of Mexico; Sanikommu et al. (2020) investigated the impact of atmospheric

forcing and model physics perturbations using an Ensemble Adjustment Kalman Filter (EAKF).

In addition to ocean data assimilation, EnKF is used for operational atmospheric assim-
ilation at the Canadian Meteorological Centre (Houtekamer et al., 2005) among many
other applications (e.g., Lawson & Hansen, 2004; Leeuwenburgh et al., 2005; Bannister,
2017).

A major component of EnKF data assimilation systems is the background error
covariance estimated from the ensembles (Bannister, 2008a, 2008b; Song et al., 2010).
EnKF's can suffer from the collapse of the ensemble spread, which unrealistically reduces
the background error covariance in the data assimilation system (e.g., J. Anderson & An-
derson, 1999; Hoteit et al., 2002). This is often mitigated using covariance inflation tech-
niques to increase the ensemble spread to better describe the background covariance (J. An-
derson & Anderson, 1999; Hoteit et al., 2002; F. Zhang et al., 2004; Whitaker & Hamill,
2012; Luo & Hoteit, 2012). A more representative approach is to account directly for un-
certainties in the model, such as the forcing and boundary conditions. Diverse high-resolution
forcings that represent the uncertainty of the atmosphere are indeed desirable for ocean
ensemble data assimilation system. Many studies have demonstrated improved forecasts
and analyses when driving ensemble ocean data assimilation systems with perturbed at-
mospheric forcing (Liszeter et al., 2003; Evensen, 2004; Wan et al., 2008; Shu et al., 2011;
Sakov et al., 2012; Karspeck et al., 2013; Penny et al., 2015; Sanikommu et al., 2017, 2019).
Others investigated the perturbed model physics (Sandery et al., 2014; Brankart et al.,
2015; Lima et al., 2019), or combined the perturbations of atmospheric forcing and model
physics (Vandenbulcke & Barth, 2015; K. M. Kwon et al., 2016; Sanikommu et al., 2020).
A recent study by Sanikommu et al. (2020) performed a detailed analysis of the impacts
of model physics perturbations and atmospheric forcing on a high-resolution regional ocean
DA system. The DA experiments improved the forecasts of oceanic states by using mul-
tiple oceanic model physics and ensemble atmospheric forcing now available from oper-
ational weather systems.

Our study takes a step forward toward a fully coupled ocean—atmospheric data as-
similation system, with application to the Red Sea region. A regional assimilation sys-
tem is crucial for improving forecasts in the Red Sea due to its unique characteristics in
terms of both oceanic and atmospheric conditions (Hoteit et al., 2021). The region is prone
to dust and sandstorms, particularly during the transitional seasons of spring and au-
tumn, originating from nearby deserts like the Sahara. These storms significantly reduce
visibility and impact air quality (Prakash et al., 2014). The Red Sea also experiences fre-
quent temperature inversions, especially in winter, which affect temperature profiles, pol-
lutant dispersal, and vertical mixing of air masses. The region is influenced by two pri-
mary wind patterns: the Southwest Monsoon, bringing humid air and thunderstorms,
and the Northwest Monsoon, bringing drier air (Langodan et al., 2017). A sea breeze
often develops during the day, cooling coastal areas (Davis et al., 2019). The Red Sea
warm surface waters contribute to high levels of water vapor, impacting local weather
conditions and precipitation. The local atmospheric features vary significantly with sea-
sons, weather patterns, and local geography (Dasari et al., n.d.). The Red Sea holds eco-
nomic importance and plays a vital role in international trade. Further, the Red Sea cir-
culation plays a dominant role in modifying the salinity budgets of the western Indian
Ocean. Global reanalysis often fails to capture the Red Sea circulation features accurately
due to coarse resolutions and limited observations (Sanikommu et al., 2023a). Develop-

ing a high-resolution regional reanalysis using local observations and coupled ocean—atmospheric
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data assimilation system would greatly enhance the forecasts in the Red Sea, and this
is important for many applications in this unique region.

In this context, we implement a new ensemble DA system for the Red Sea using
the Scripps—-KAUST Regional Integrated Prediction System (SKRIPS, Sun et al., 2019,
2023) and the Data Assimilation Research Testbed (DART, J. Anderson et al., 2009).

This work is an extension of previous DA efforts for the Red Sea (Toye et al., 2017; Sanikommu
et al., 2020, 2023b), replacing the uncoupled ocean model with the SKRIPS coupled model (Sun

et al., 2019, 2023). Here we assimilate only oceanic observations using the DART-EAKF
system and investigate the estimated oceanic and atmospheric states of the Red Sea re-
gional coupled model, using different options to perturb the physics of the atmosphere
model. We evaluate the performance of the coupled model in forecasting the oceanic states,
the impact of atmospheric model physics options on the coupled model, and the feed-

back of the ocean data assimilation to the atmospheric model. Although we only assim-
ilate ocean observations in this work, the present study is a step toward developing a weakly
coupled DA system and operational analysis and forecasting system for the Red Sea. Be-
cause the random atmospheric states are generated by perturbing the model physics when
using a coupled model, there is less need to generate large ensembles of atmospheric forc-
ings (Sanikommu et al., 2023a), enhancing the robustness of the DA system.

The rest of the manuscript is organized as follows. We first introduce the ensem-
ble DA system and its implementation in Section 2. The results of the DA experiments
are presented and discussed in Section 3. The final section outlines the main findings and
concludes this work.

2 Implementations and Experimental Design
2.1 The Data Assimilation Framework

We use the SKRIPS model (Sun et al., 2019) for the coupled simulation: the oceanic
model component is the MIT general circulation model (MITgem, Marshall et al., 1997;
Campin et al., 2019) and the atmospheric model component is the Weather Research and
Forecasting (WRF) model (Skamarock et al., 2019). The Earth System Modeling Frame-
work (ESMF, Hill et al., 2004) and the National United Operational Prediction Capa-
bility (NUOPC) layer are used to handle the coupling between MITgcm and WRF. The
schematic diagram of the DART-SKRIPS framework and the domain used in the exper-
iment are shown in Fig. 1. The ocean data are assimilated using EAKF available from
the DART-MITgem package (Hoteit et al., 2013, 2015), aiming to evaluate their impact
on the ocean and atmosphere states in the coupled system. The ROCOTO workflow (Harrop
et al., 2017) is used for the management of the pre- and post-processing scripts in the
developed DART-SKRIPS framework.

The coupled model is also described in the diagram shown in Fig. 1. In the cou-
pling process, MITgcm sends sea surface temperature (SST) and ocean surface veloc-
ity to WRF; WRF sends air-sea flux and surface atmospheric fields to MITgem, includ-
ing (1) net surface longwave and shortwave radiative fluxes, (2) surface latent and sen-
sible heat fluxes, (3) 10-m wind speed, (4) precipitation, and (5) evaporation. The MIT-
gem model uses the surface atmospheric variables to prescribe surface forcing, includ-
ing (1) total net surface heat flux, (2) surface wind stress, and (3) freshwater flux. The
total net surface heat flux is computed by adding surface latent heat flux, sensible heat
flux, net shortwave radiation flux, and net longwave radiation flux. The surface latent
and sensible heat fluxes are computed using the COARE 3.0 bulk algorithm in WRF (Fairall
et al., 2003).
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Figure 1. The schematic description of the DART-SKRIPS data assimilation system.

Panel (a) indicates the DART-SKRIPS framework: the blue blocks denote the SKRIPS model,
DART, and ocean observations; the yellow block is the ESMF/NUOPC coupler; the white blocks
are the ocean and atmosphere components; the red blocks are the implemented MITgcm-ESMF
and WRF-ESMF interfaces. The arrows indicate the information exchange between DART and
SKRIPS. Panel (b) shows the workflow at three time steps: the thick solid line indicates the
evolution of the “truth”; the dashed line indicates the ensemble averaged forecast; the thin solid
lines indicate the evolution of the ensemble members; the red dots indicate the analysis; the
shaded areas indicate the error covariance; tx, tx+1, and tx42 indicate three steps when observa-
tional data are assimilated. Panel (c) shows the domain of the coupled model, with the black line

indicating the centerline of the Red Sea.

2.2 Experimental Design

To study the impact of ocean data assimilation on the oceanic and atmospheric states,
we perform a series of 50-member ensemble DA experiments using coupled and uncou-
pled models starting from January 01 2011, assimilating the observational data every 3
days. For the coupled model experiments, the ocean and atmosphere models are nested
in GLORYS and ERAJ5 reanalyses, respectively. For the uncoupled model experiments,
the ocean model is also nested in GLORYS, but driven by ECMWF derived atmospheric
forcing. Further details on the initial and boundary conditions will be discussed in the
latter sections. The same setup is used for the ocean model, but different options are used
for the atmosphere in the 50-member ensemble DA experiments:

1. OCN.daO uses only the ocean model forced by the ECMWEF ensemble mean.

2. OCN.daF uses only the ocean model forced by the 50-member ECMWF ensem-
bles.

3. CPL.daO uses the coupled model with no perturbations to the atmosphere.

. CPL.daS uses the coupled model with stochastic forcings in the atmospheric model.

5. CPL.daP uses the coupled model with perturbed physics options in the atmospheric
model (e.g., microphysics, convection, and planetary boundary layer).

6. CPL.daSP uses the coupled model with stochastic forcings and perturbed atmo-
sphere physics options.

W
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OCN.daO and OCN.daF follow the experiments using the ocean-only models in Sanikommu
et al. (2020), but without inflation to investigate the changes using the coupled model.
They also serve as benchmarks to evaluate the performance of the coupled experiments.

In the coupled DA experiment CPL.daO, although we did not perturb the atmospheric
model physics, the randomness of the atmospheric forcing is from the feedback of dif-

ferent ocean states. Different random seeds are used for the stochastic model in CPL.daS

and CPL.daSP from 1 to 50. The coupled DA experiments OCN.daS, OCN.daP, and OCN.daSP

are conducted to assess the effect of different strategies of the atmospheric forcings, and
thus we did not assimilate the atmospheric observational data in our experiments. Al-
though the ocean feedback is important in the coupled model, we did not perform DA
experiments driven by the atmospheric forcings from stand-alone WRF models because
it is out of the scope of our work.

2.3 The Forward Models

The initial conditions, boundary conditions, and forcings are outlined in Table 1.
The MITgcm initial conditions are obtained from a spin-up run as described in Sanikommu
et al. (2020), with randomly selecting 50 ocean states corresponding to £15 days from
the initial time. The boundary conditions for the ocean are updated by linearly inter-
polating between the daily data from Global Ocean Reanalysis and Simulation (GLORYS,
Jean-Michel et al., 2021). For the uncoupled experiments, the atmospheric forcings are
from the ECMWF atmospheric ensemble from The Observing System Research and Pre-
dictability Experiment Interactive Grand Global Ensemble project (TIGGE, Bougeault
et al., 2010), with full details available in Buizza (2014). We combined the fields of the
00 and 12 UTC TIGGE initial conditions and 06 and 18 UTC forecasts as 6-hourly forc-
ing for our ocean ensemble assimilation runs. For OCN.daO, we forced the model with
the ensemble mean of the atmospheric forcings; for OCN.daF, we forced the model with
the ECMWF 50-member ensembles. In the coupled experiments, ERA5 provides the ini-
tial and boundary conditions for the atmosphere model, with the atmospheric bound-
ary conditions updated by linearly interpolating between the 6-hourly fields. Spectral
nudging is not used in the DA experiments because (1) nudging may constrain the high
frequency internal variability of the atmosphere model and (2) the domain size is com-
parable with wavelengths typically used in the spectral nudging simulations (Liu et al.,
2012).

We choose the latitude-longitude (cylindrical equidistant) map projection to gen-
erate the grids for MITgcm and WREF. The domains for both models extend from 10°N
to 30°N and from 30°E to 50°E. In the ocean model, the horizontal grid has 500x500
(latxlong) cells and the spacing is about 4 km; in the atmospheric model, the horizon-
tal grid has 125x125 (lat xlong) cells and the spacing is about 16 km. There are 40 sigma
layers in the atmospheric model (top pressure is 50 hPa) and 50 z-layers in the ocean
model (dz = 4 m at the top). The time step of the oceanic model is 200 seconds; the
time step of the atmospheric model is 25 seconds; the coupling interval is 200 seconds.

2.4 Model Perturbations

For the oceanic simulations in all DA experiments, we use various physical param-
eterization schemes to account for the effects of unresolved scales of motion as proposed
by Sanikommu et al. (2020), summarized in Table 2. Three different categories of model
physics are selected: horizontal viscosity, vertical mixing, and horizontal diffusion. We
include three different horizontal viscosity schemes: the simple harmonic scheme, the sim-
ple biharmonic of Holland (1978), and the Smagorinsky/Leith scheme (Smagorinsky et
al., 1993; Griffies & Hallberg, 2000) with the coefficients suggested in the literature (Leith,
1996; Griffies & Hallberg, 2000). For vertical mixing, four different schemes are included:
the nonlocal K-Profile Parameterization (KPP) scheme (W. G. Large et al., 1994), the
PP81 scheme (Pacanowski & Philander, 1981), the MY82 scheme (Mellor & Yamada,
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1982), and the GGLI0 scheme (Gaspar et al., 1990). For the horizontal diffusion, we use
implicit diffusion, simple-explicit harmonic diffusion, and three different flavors of Gent-
McWilliams/Redi subgrid-scale eddy parameterization schemes (hereafter GMREDI, Gent
& Mewilliams, 1990; Gent et al., 1995; Redi, 1982): the GMREDI clipping scheme of Cox
(1987), the GMREDI-dm95 tapering scheme of Danabasoglu and McWilliams (1995),

and the GMREDI-1dd92 tapering scheme of W. Large et al. (1997). Table 2 lists the co-
efficients used in these schemes.

We also perturb the physics options in WRF' to parameterize microphysics, con-
vection, and planetary boundary layer (PBL), summarized in Table 3. For the micro-
physics we use the Morrison 2-moment scheme (Morrison et al., 2009), the Purdue-Lin
scheme (Chen & Sun, 2002), the Thompson scheme (Thompson et al., 2008), the WRF
single moment 6-class scheme (Hong & Lim, 2006), and the WRF double moment 6-class
scheme (Lim & Hong, 2010). For the cumulus convection, we use the Kain-Fritsch scheme (Kain,
2004), the Betts—Miller—Janjic scheme (Janji¢, 1994), the Grell-Freitas Ensemble scheme (Grell
& Freitas, 2014), the new Tiedtke scheme (C. Zhang & Wang, 2017), and the simplified
Arakawa—Schubert scheme (Y. C. Kwon & Hong, 2017). For the planetary boundary layer,
we use the Mellor—Yamada Nakanishi Niino scheme (MYNN, Nakanishi & Niino, 2004,
2009), the Yonsei University scheme (Hong et al., 2006), and the Mellor—Yamada—Janjic
scheme (Janji¢, 1994). The radiation and land surface schemes are not perturbed: the
Rapid Radiation Transfer Model for GCMs (RRTMG, Iacono et al., 2008) is used for long-
wave and shortwave radiation transfer through the atmosphere; the Noah land surface
model is used for the land surface processes (Tewari et al., 2004). The physics scheme
perturbation is based on the ensemble forecast system of the Center For Western Weather
and Water Extremes (CW3E, Oakley et al., 2023). For the experiments without perturb-
ing the atmospheric model (i.e., CPL.daO and CPL.daS), we use Morrison 2-moment
scheme, Kain—Fritsch scheme, and MYNN scheme for microphysics, convection, and PBL,
respectively.

In addition to perturbing the atmospheric model physics, we used the SKEB scheme (Shutts,
2005; Berner et al., 2009) to account for the unrepresented uncertainties in the model.
This scheme adds stochastic, small-amplitude perturbations to the horizontal wind and
potential temperature. The default amplitudes of the stochastic perturbations in WRF
were used in CPL.daS and CPL.daSP, which were able to provide more reliable ensem-
ble spreads (Berner et al., 2011, 2015).

2.5 Data Used in Assimilation and Validation

We assimilate data from level-4 SST blended daily product available on a 0.25° x
0.25° grid (Reynolds et al., 2007; Banzon et al., 2016), along-track satellite altimeter level-
3 sea level anomalies (SLAs; corrected for dynamic atmospheric loading, ocean tide, and
long wavelength errors) available from Copernicus Marine Environment Monitoring Ser-
vice (here after CMEMS-L3, Mertz et al., 2017), and quality controlled in situ glider tem-
perature and salinity profiles from EN4 data (Ingleby & Huddleston, 2007; Good et al.,
2013). The in situ temperature and salinity profiles are sparse, and there are only 244
temperature and 110 salinity profiles in the entire year 2011 from the glider in the Red
Sea. Errors associated with these observations are assumed uncorrelated, so the obser-
vational error covariance matrix is diagonal. The combined observation and represen-
tation error variance is determined based on previous DA experiments (Toye et al., 2017;
Sanikommu et al., 2020) and accounts for errors due to: measurement devices, omitted
processes, unresolved subgrid scale dynamics, and numerical errors in interpolation. Tem-
porally static, partially homogeneous, and depth independent observational error vari-
ance values of (0.5°C)?, (0.04 m)?, (0.5°C)?, and (0.3 psu)? are then used for satellite
SST, satellite along-track SLA, in situ temperature and salinity, respectively. A cutoff
radius of about 300 km was imposed to localize the impact the observations in the hor-
izontal directly (not in the vertical) as a way to mitigate spurious correlations.



Table 1. The computational domain, WRF physics schemes, initial condition, boundary condi-

tion, and forcing terms used in the present simulations.

OCN Experiments CPL Experiments

Model region 10°N to 30°N; 30°E to 50°E
500x500 for ocean

Grid size 5002500 125x125 for atmosphere
. . o o 0.04° x 0.04° for ocean
Grid spacing 0.047 > 0.04 0.16° x 0.16° for atmosphere
Microphysics scheme Various (see Table 3)
Convection scheme Various (see Table 3)
PBL scheme Not necessary Various (see Table 3)
Longwave radiation scheme RRTMG
Shortwave radiation scheme RRTMG
Land surface scheme Noah land surface model
Vertical levels 50 (ocean only) 40 (atmosphere)

50 (ocean)

ERAS5 (atmosphere)
GLORYS (ocean)

Initial and
boundary conditions

Atmospheric forcings From ECMWF
for oceanic model TIGGE product

GLORYS (ocean only)

From WRF

Table 2. MITgcm model physics parameterizations in the present study.

Horizontal Viscosity Vertical Mixing Horizontal Diffusion

Simple Harmonic (30 m?/s) K-Profile Parameterization Implicit Diffusion

Simple Biharmonic (107 m*/s) PP81 Explicit Diffusion (100 m?/s)

SMAGLEITH-Harmonic (30 m?/s), o 2

Smag Coeff 2.5, and Leith Coeff 1.85 Mys2 GMREDI-clipping (100 m*/s)
GGL90 GMREDI-dm95 (100 m?/s)

GMREDI-1dd92 (100 m?/s)

Table 3. WRF model physics parameterizations in the present study. The physics options
used in the experiments without perturbing the model physics (i.e., CPL.daO and CPL.daS) are
highlighted using bold red color.

Microphysics Convection Planetary Boundary Layer
Morrison 2-moment Kain—Fritsch Mellor—Yamada Nakanishi Niino
Purdue-Lin Betts—Miller-Janjic Yonsei University

Thompson Grell-Freitas Ensemble Mellor-Yamada—Janjic

WREF single moment 6-class  New Tiedtke
WRF double moment 6-class  Simplified Arakawa—Schubert




28 For validation, we evaluate the daily averaged ocean forecasts and analyses as re-

283 sulting from the DA experiments. We first use the assimilated data to examine the time
284 series of innovations and residuals. In addition to the assimilated data, independent ob-
285 servations are used. To analyze the subsurface features, we use 206 profiles of temper-

286 ature and salinity collected between September 15 to October 08 2011 by a joint Woods
287 Hole Oceanography Institute (WHOI) and King Abdullah University of Science and Tech-
288 nology (KAUST) cruise along the eastern part of the Red Sea, collected with a horizon-
289 tal spacing of 10 km (Zhai et al., 2015). We also use other satellite products to evalu-

200 ate the DA results. For SST we select the high-resolution daily averaged level 4 SST prod-
201 uct from the Operational Sea Surface Temperature and Sea Ice Analysis (OSTTA, Stark
202 et al., 2007; Donlon et al., 2012) because it is mapped differently with higher resolution.
203 For sea surface height (SSH) we use multimission altimeter merged satellite level 4 grid-
204 ded absolute dynamic topography (ADT) provided by CMEMS (hereafter CMEMS-1.4,

205 Mertz et al., 2017). Compared with the assimilated CMEMS-L3 data, the CMEMS-L4

296 data is gridded on a 0.25° grid and thus can be used to estimate the errors across the

207 entire Red Sea region. The SSH anomaly from the DA experiments is the instantaneous
208 SSH obtained in the simulations minus the time-averaged SSH from the 15-year MIT-

299 gem model in Sanikommu et al. (2020). The SSH anomalies in CMEMS-L3 and CMEMS-

300 L4 are the sea level height above the mean surface based on the long-term averaged ob-
301 servations between 1993 to 2012. Because of the lack of in situ observational data of the
302 atmosphere, we use ERAS to validate the latent heat fluxes and wind speed simulated
303 by the coupled experiments.

304 3 Results

305 The results obtained from the DA experiments are presented in this section. First,
306 we analyze the ensemble spread of the atmospheric forcings and sea surface temperature.
307 Then we examine the ocean states (e.g., SST, SSH, and vertical profiles) to assess the

308 impact of atmospheric forcings in the uncoupled and coupled systems using the valida-
300 tion data. In addition to the ocean states, the air—sea exchanges (e.g., latent heat flux)
310 and surface atmospheric states (e.g., wind speed) are also analyzed to illustrate the feed-
an back from the ocean to the atmosphere due to assimilation. Finally, we discuss the changes
312 in the ocean dynamics from assimilating the observation data.

313 3.1 Ensemble Spread Analysis

314 Similarly to the DA experiments in Sanikommu et al. (2020), we hypothesize that
315 the estimated ocean states are improved when uncertainties in various sources are well
316 accounted for. Incorporating uncertainties in the system improves ensemble spreads in
317 the ocean systematically. For instance, Figs. 2 and 3 display the temporal evolution of
318 atmospheric forcing root-mean-square (RMS) spread in the DA experiments, except for
319 OCN.daO which is forced by the ECMWEF ensemble mean. The spread in OCN.daF is
320 from the ECMWF ensemble atmospheric forcing; others are from the coupled model out-
21 puts. In comparison with OCN.daF, the spread in CPL.daO is smaller by about one or-
322 der of magnitude because the atmospheric models are not perturbed and the spread of

323 atmosphere is from the ocean perturbations. When the SKEB scheme is applied in CPL.daS
324 and CPL.daSP, the spread of the atmospheric forcing is larger than that in OCN.daF,

35 which in turn increases the SST spread, shown in Fig. 4. The impact of the atmospheric
326 forcings on the ocean states will be detailed in the latter sections.

327 3.2 Sea Surface Temperature

328 We analyze the SST obtained in our DA experiments to assess its sensitivity to the
329 atmospheric perturbations. The root-mean-square-errors (RMSEs) between the SST anal-
330 yses and observations in all DA experiments are shown in Fig. 5 and summarized in Ta-
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Figure 2. The spatial and temporal evolution of the RMS spread of net surface heat flux Qnet
along the center line of the Red Sea shown in Fig. 1(c). The Qnues is calculated by summing up
the latent heat flux, sensible heat flux, net surface shortwave fluxes, and net surface longwave
fluxes. Panel (a) shows the spread in the ocean-only experiment driven by ECMWF derived forc-
ing; Panel (b-e) show the spread in the coupled experiments with no perturbations, only SKEB,
only perturbed model physics, and SKEB + perturbed model physics, respectively.

ble 4. The best SST forecast and analysis are both from experiment CPL.daSP, when
the SKEB scheme is turned on and the WRF physics options are perturbed. The SST's
obtained in the coupled experiments (CPL.daS, CPL.daP, and CPL.daSP; except for the
benchmark case CPL.daQ) are better than that of the uncoupled experiment OCN.daF,
with improvements more than twice larger than standard error of the mean SST from
CPL.daSP (about 0.015°C, the standard deviation of SST divided by the square-root

of the number of ensemble members). Better improvements are obtained when using only

the stochastic forcings (CPL.daS) compared with only perturbing the WRF physics (CPL.daP),

but this difference is less significant (smaller than 0.015°C). Although the perturbations
in the atmospheric forcing are small in CPL.daO (shown in Figs. 2 and 3), the RMSE
errors of SST forecasts and analyses are improved compared to the benchmark exper-
iment OCN.daO by 0.156°C and 0.101°C, respectively. This indicates that small per-
turbations of the atmospheric forcing can improve SST in the DA experiments.

Figure 5 shows that the RMSEs of SST forecasts and analyses increase in summer
for the benchmark runs (i.e., OCN.daO and CPL.daO), but RMSEs get smaller when
using the coupled model (i.e., CPL.daS, CPLdaP, and CPL.daSP). In this season, the
SST has a larger spread in all the experiments, similar to the results shown in Sanikommu
et al. (2020), likely because the ocean is more sensitive to heat fluxes when the mixed
layer depth is shallower.

In addition to the assimilated data, we validated the SSTs using the OSTIA SST.
The RMSEs and correlations are shown in Fig. 6 and summarized in Table. 4. We present
the SST correlations to evaluate the forecast of the SST evolution during the year. It
can be seen that the SST obtained in CPL.daSP has larger correlations and smaller RM-
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Figure 3. The spatial and temporal evolution of the RMS spread of 10-m wind speed along
the center line of the Red Sea shown in Fig. 1(c). Panel (a) shows the spread from the ECMWF
derived forcing; Panel (b-e) show the spread in the coupled experiments with no perturbations,

only SKEB, only perturbed model physics, and SKEB + perturbed model physics, respectively.

SEs in the north Red Sea, center Red Sea, and Gulf of Aden regions. Compared with

the uncoupled experiment OCN.daF, the coupled experiment CPL.daSP has a smaller

RMSE by 0.035°C (6.5%, more than twice the standard error). On the other hand, the

SST analysis obtained in CPL.daSP has a slightly larger RMSE compared to that ob-

tained in CPL.daF, but the differences between OCN.daF, CPL.daS, CPL.daP, and CPL.daSP
are within 0.01°C (2%). In addition, the CPL.daSP also has the smallest distance be-

tween the forecasts and analyses RMSEs, indicating less “assimilation shock” and more
balanced ocean states in the DA experiment.

3.3 Sea Surface Height

The SSH fields as estimated in the DA experiments are presented in Fig. 7 and Ta-
ble 5. Similar to the SST results, the coupled DA experiments exhibit smaller RMSE
and larger spread. The SSH forecast errors in OCN.daF, CPL.daS, CPL.daP, and CPL.daSP
are not significantly different. Although CPL.daSP still has the smallest RMSEs, the dif-
ferences are within 1% and smaller than the standard errors (about 0.001 m). For the
SSH analyses, on the other hand, the CPL.daS and CPL.daSP are more significantly im-
proved (RMSEs are smaller by 10% compared with OCN.daF and CPL.daP) when SKEBS
are used, suggesting that including the stochastic forcing in model parameters is the key
for improvements. Note that the spread of surface wind forcing shown in Fig. 3 is greatly
increased when using the stochastic forcing.

The temporal evolution of the SSH is also examined by comparing with CMEMS-
L4 data, shown in Fig. 8. Here we only highlight the differences of the SSH analyses be-
cause the forecasts are close to each other. Figure. 8 shows that the CPL.daSP exper-
iment has larger correlations and smaller RMSEs in both the Red Sea and the Gulf of
Aden regions. Similar to the results shown in Fig. 7, when using the stochastic forcings
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Figure 4. The spatial and temporal evolution of the RMS spread of Sea Surface Temperature

along the center line of the Red Sea shown in Fig. 1(c). Panel (a) shows the spread in the ocean-

only experiment driven by ECMWF derived forcing; Panel (b-e) show the spread in the coupled

experiments with no perturbations, only SKEB, only perturbed model physics, and SKEB +
perturbed model physics, respectively.

Table 4. SST obtained in the DA experiments against the validation data. We highlighted the

best forecast/analysis using red, but the pink color is used when the differences between uncou-

pled and coupled experiments are insignificant (when the RMSE difference is smaller than 5% or

the standard error).

OCN.daO OCN.daF CPL.daO CPL.daS CPL.daP CPL.daSP
Against assimilated data
SST forecast RMSE 0.656 0.486 0.500 0.419 0.426 0.403
SST analysis RMSE 0.475 0.341 0.374 0.281 0.294 0.262
Against OSTIA SST
SST forecast RMSE 0.650 0.574 0.610 0.560 0.551 0.539
SST analysis RMSE 0.486 0.484 0.468 0.472 0.469
SST forecast correlation — 0.9580 0.9623 0.9573 0.9637 0.9628 0.9649
SST analysis correlation  0.9786 0.9773 0.9800 0.9788 0.9791
SST forecast spread 0.078 0.080 0.077 0.098 0.095 0.108
SST analysis spread 0.046 0.052 0.048 0.059 0.055 0.062

in WRF, CPL.daS and CPL.daSP outperform the uncoupled model OCN.daF (see Ta-

ble 5).
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Figure 5. Time history of SST RMSEs and spreads during the data assimilation experiment.
Panels (a) and (c) show the RMSEs of the forecasts and analyses against the assimilated data;
Panels (b) and (d) show the spread of SST in the forecasts and analyses. The yellow dots in Pan-
els (a) and (c¢) indicate the total uncertainty (square root of the sum of ensemble variance and
observational variance (0.5°C)?) of CPL.daSP.

3.4 Temperature and Salinity Profiles

The subsurface features of the ocean are validated against independent (i.e. not
assimilated) CTD observations of temperature and salinity from the WHOI/KAUST sum-
mer cruise in the Red Sea between September 15 and October 08 2011. The difference
between daily averaged forecasts and observations is shown in Figs. 9 and 10. More than
2 degree and 0.8 psu differences are found for temperature and salinity profiles in the

thermocline between 50-100 m. For the temperature profiles, the RMSE in CPL.daSP (0.361°C)

is smaller than OCN.daO (0.408°C) by about 10%, especially near the ocean surface, but
within 2% difference compared to OCN.daF, CPL.daO, and CPL.daS. For the salinity
profiles, the forecast RMSE of CPL.daSP (0.082 psu) is smaller than the benchmark ex-
periment OCN.daO by about 30%. It is noted that CPL.daP has the smallest RMSE

for temperature (0.344°C), but its salinity RMSE is significantly larger (0.122 psu) than
CPL.daSP. Compared with the ocean-only experiment OCN.daF, the RMSEs in CPL.daS
and CPL.daSP are not significantly different (within 1% or 2%). Although the coupled
experiment is no better than the best uncoupled experiment OCN.daF, the results in-
dicate the stochastic schemes in WRF are crucial for producing better forecasts of the
ocean profiles.
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Figure 6. SST RMSEs and correlations obtained in the DA experiments validated against
OSTIA. Panels (a) and (b) show the RMSE and correlation of the “forecast” SST. The contours
in column 1 indicate the comparison with OSTIA data; columns 2-5 are normalized by the refer-

ence OCN.daO in column 1 to highlight differences, showing the ratios in percentage.

Table 5. Summary of SSH against the validation data. We highlighted the best fore-
cast/analysis using red, but the pink color is used when the differences between coupled and
coupled experiments are insignificant (when the RMSE difference is smaller than 5% or the

standard error).

OCN.daO OCN.daF CPL.daO CPL.daS CPL.daP CPL.daSP

Against assimilated data

SSH forecast RMSE 0.0646 0.0626 0.0650 0.0624 0.0626

SSH analysis RMSE 0.0580 0.0495 0.0578 0.0446 0.0522 0.0433
Against CMEMS-L4 SSH

SSH forecast RMSE 0.0513 0.0486 0.0513 0.0483 0.0494

SSH analysis RMSE 0.0461 0.0390 0.0455 0.0356 0.0409 0.0350
SSH forecast correlation ~ 0.9121 0.9197 0.9109 0.9197 0.9168

SSH analysis correlation  0.9314 0.9493 0.0320 0.9578 0.9439 0.9590
SSH forecast spread 0.0034 0.0056 0.0036 0.0073 0.0048 0.0076
SSH analysis spread 0.0023 0.0038 0.0024 0.0046 0.0032 0.0047

3.5 Feedback to the Atmosphere

To assess the impact of ocean data assimilation on the surface of the atmosphere,
we compare the latent heat fluxes and 10-m wind speed obtained in the DA experiments.
This analysis informs feedback to the heat and momentum fluxes. We consider ERA5
as reference and present the RMSEs of latent heat fluxes and 10-m wind speed in Fig. 11.
Here we only compare the data on the centerline of the Red Sea to highlight ocean re-
gions. It can be seen that the RMSEs do not grow significantly with time, showing the
capability of the coupled system for the 1-year DA experiments. We hypothesize this is
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Figure 7. Evolution of the SSH RMSEs and spreads during the data assimilation experiment.
Panels (a-b) show the RMSEs of the forecasts and analyses against the assimilated data; Panels
(c-d) show the RMS spread of SSH in the forecasts and analyses. The yellow dots in Panels (a)
and (c) indicate the total uncertainty (square root of the sum of ensemble variance and observa-
tional variance (0.04 m)?) of CPL.daSP.

because the atmospheric states are constrained by the boundary conditions for this rel-
atively small domain. Compared with the RMSEs of latent heat flux and 10-m wind speed
in the benchmark case CPL.daO (62.9 W/m? and 1.52 m/s), the CPL.daSP (60.2 W/m?
and 1.47 m/s) has smaller errors by about 4%, but the RMSE differences are smaller than
the standard error (3.1 W/m? and 0.09 m/s), implying the improved ocean states may
not significantly impact the atmospheric states. Because of the small differences in the
surface atmosphere, this indicates that for the Red Sea region, the skill of the coupled
model is not from the two-way coupling, but from the atmospheric forcings in the down-
scaled WRF ensembles (one-way coupled) to drive the ocean model.

3.6 Vertical Current Velocity

Toye et al. (2017) argued that the dynamical balances (or assimilation shock) in
the oceanic model from the EAKF increments increase the spread of the Red Sea fore-
casts. The imbalances are also reported in other EAKF assimilation experiments (L. A. An-
derson et al., 2000; Hoteit et al., 2010; Park et al., 2018). Here, we investigate the dy-
namical balances in our experiments by comparing the standard deviation of |w| obtained
in the DA experiments with the “free” run without assimilating observation data in Fig. 12.
The results show that the spreads of |w| in all DA experiments are larger than the “free”
run for the Red Sea region, but the changes in |w| spread in CPL.daSP are close to the
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Figure 8. SSH RMSEs and correlations obtained in the DA experiments validated against
CMEMS-L4 data. Panels (a) and (b) show the RMSEs and correlations of the SSH analyses. The
contours in column 1 indicate the comparison with CMEMS-L.4 data; columns 2-5 are normalized

by the reference OCN.daO in column 1 to highlight differences, showing the ratios in percentage

ocean-only model experiment OCN.daF, indicating no significant dynamical imbalances
are introduced when using the coupled model.

4 Summary and Conclusions

This work implemented a data assimilation framework based on the regional cou-
pled model SKRIPS and DART. Using the EAKF in DART, we investigate the impact
of ocean data assimilation on the oceanic and atmospheric states of the Red Sea. The
coupled system assimilates satellite-based sea surface temperature and height and in situ
temperature and salinity glider profiles every 3 days for 1 year starting from January 01,
2011.

To assess the performance of the ensemble forecasts and examine the generated ocean
states, we ran a series of experiments using different perturbation schemes. The assim-
ilation results of the coupled experiments are compared with the uncoupled ones forced
by ECMWF-derived surface forcing, revealing that the coupled experiments give greater
spread in the ensembles of ocean states, with the spread continuing to increase when us-
ing the stochastic kinetic energy backscatter (SKEB) scheme. Compared with the as-
similated data, the coupled experiments result in a more skillful SST and SSH ensem-
ble mean forecast. The SST forecasts and SSH analyses in coupled models are also bet-
ter than uncoupled ones when compared with the independent observational data, but
the RMSEs of SST analyses and SSH forecasts are insignificantly different.

We further compared the DA experiment results with the independent cruise ob-
servation data of temperature and temperature profiles. The comparison shows large vari-
ations in the temperature profiles because of the challenge in modeling the thermocline
layer and the lack of in situ data. The RMSEs from the coupled DA experiments with
perturbations of the atmospheric model are comparable to the uncoupled model driven
by ECMWF-derived ensemble forcing, and both are better than the benchmark exper-
iments with small spreads in atmospheric forcings. To investigate the feedback from the
ocean, we validated the latent heat flux and 10 m winds in all coupled experiments us-
ing ERA5 data, but no significant difference is observed.
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Figure 9. The differences between the temperature at 0-300 m obtained in the DA experi-

ments compared to in situ observations (results minus observations).

This study demonstrates that our Red Sea DA system using two-way coupled model
with WRF performs better or equal to an uncoupled model driven by ECMWF-derived
ensemble surface forcing, showing a promising approach for forecasting the oceanic states
or producing ocean analysis data. The dynamical imbalances in the coupled model are
also not significantly different from the uncoupled model. The DA system implemented
here explores the utility of a coupled DA system and studies of the ocean—atmosphere
interactions using the analysis data.
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Figure 10. The differences between the salinity at 0-300 m obtained in the DA experiments in

comparison with in situ observations (results minus observations).
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