

1 **Policy brief**

2 **Stormwater management**

3 **Urban flooding is intensified by outdated design guidelines and lack of a**
4 **systems approach**

5 Valeriy Y. Ivanov^{1*}, Vinh Ngoc Tran¹, Weichen Huang¹, Kevin Murphy¹, Fariborz Daneshvar¹,
6 Jeff H. Bednar², G. Aaron Alexander³, Jongho Kim⁴, Daniel B. Wright³

7 ¹Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109, USA

8 ²Macomb County Public Works Commissioner Candice S. Miller, Clinton Township, MI 48036, USA

9 ³Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI 53706,
10 USA

11 ⁴School of Civil and Environmental Engineering, University of Ulsan, Ulsan 44600, South Korea

12 Email: ivanov@umich.edu

13 **Intro**

14 Despite substantial investments in urban stormwater management systems around the world,
15 cities are experiencing soaring impacts that are inconsistent with assumed levels of flood
16 protection. This suggests flaws in existing stormwater design methods and guidelines that
17 currently do not properly account for the complexity of flood flows in urban landscapes and their
18 interactions with infrastructure and with natural and artificial water bodies.

19 **Messages for policy**

20

- 21 • Holistic, system-wide approaches to flood mitigation should be promoted, in contrast to
22 the current practice of localized solutions.
- 23 • Stormwater design guidelines require revisions that account for the connectivity among
24 all system elements, including subsurface infrastructure, open channels, and natural and
25 built surfaces.
- 26 • Advanced hydrologic and hydrodynamic models that can represent the full spectrum of
27 urban stormwater system elements should be mandated for more accurate flood risk
28 assessment.
- 29 • Design scenarios should be diversified to account for complex rainfall patterns and other
30 factors controlling flood flows in urbanscapes, enabling more comprehensive evaluation
31 of flooding variability.
- 32 • Flood hazard mapping systems, such as FEMA's FIRM floodplain maps in the U.S.,
33 require updates to accurately represent the extent and severity of potential flooding.

38 **The policy problem**

39 Design guidelines and best practices for urban stormwater drainage infrastructure aim to ensure a
40 certain level of protection against floods. In practice, however, these systems do not always meet
41 their assumed performance expectations, and policymakers face uncertainty about causes. This
42 also raises doubts about the efficacy of future investments aiming to enhance cities' flood
43 resilience. Current guidelines focus on understanding the performance of specific infrastructure
44 elements – such as storm drains, culverts, and pipelines – in isolation, rather than as part of a
45 broader urban landscape. Specifically, current guidelines fail to account for the complexity of
46 flood 'connectivity' in urban areas – how flood flows can interact in subterranean pipelines, open
47 channels, and over natural and human-made surfaces. Despite substantial progress, models used
48 for stormwater design remain too simplistic and are unable to fully incorporate such interactions.
49 Thus, design scenarios overlook connected system elements and neglect the potential for
50 flooding from sources outside of a localized area.

51 **The findings**

52 We find that human-engineered infrastructure can introduce additional stormwater flow
53 connectivity in urban environments that may be crucial for flood risk (Fig. 1). Specifically,
54 inundation can be exacerbated in areas where river channels are connected to subterranean
55 infrastructure. We find this has immediate implications for stormwater design, as differing
56 assumptions about flood connectivity between river flooding and infrastructure can yield
57 drastically different estimates of potential inundation. The ubiquitous practice of ignoring this
58 connectivity—assessing the performance of infrastructure elements in isolation and with overly
59 simplistic rainfall scenarios – can lead to substantial errors, resulting in reduced infrastructure
60 effectiveness. Paradoxically, design errors can reverse stormwater network functionality in the
61 real world, leading to flooding even in the absence of local rainfall. While this study illuminates
62 broader challenges in stormwater network design and flood risk management, solutions will need
63 to be tailored to the needs and unique characteristics of individual communities.

64 **The study**

65 The historic 2014 storm resulted in severe flooding in Southeast Michigan, USA. The study
66 focuses on an 8.8 km² area in Warren city, which features a complex network of diverse drainage
67 elements including culverts, underground stormwater drains, and outfalls; the latter provide
68 hydraulic connection to open river channels. To accurately model flood events, the researchers
69 gathered high-resolution data and conducted field surveys to validate these data. The study used
70 an advanced, high-fidelity hydrodynamic model to simulate flooding scenarios, comparing
71 different configurations of stormwater infrastructure. Key experiments included simulations with
72 and without local rainfall, as well as comparisons between "Integrated" outfalls (allowing flow
73 reversals) and "Controlled" outfalls (assuming unrestricted discharge of stormwater into river
74 channels). These simulations explore how flood connectivity is augmented by human-engineered
75 infrastructure to influence flood severity in urban environments, and its implications for current
76 and future stormwater design practices.

77 **Further Reading**

78 Rentschler, J. *et al.* Global evidence of rapid urban growth in flood zones since 1985. *Nature*
79 **622**, 87-92, doi:10.1038/s41586-023-06468-9 (2023). This study demonstrates that
80 numerous major cities worldwide have experienced an increase in both the frequency and
81 severity of flood events.

82 Qiao, X.-J., Kristoffersson, A. & Randrup, T. B. Challenges to implementing urban sustainable
83 stormwater management from a governance perspective: A literature review. *Journal of*
84 *Cleaner Production* **196**, 943-952, This study highlights the various difficulties
85 encountered in establishing efficient stormwater systems.

86 Rosenzweig, B. R. *et al.* The Value of Urban Flood Modeling. *Earth's Future* **9**,
87 doi:10.1029/2020ef001739 (2021). Their study presents mathematical urban flood
88 models as critical tools for flood risk assessment, emergency operations, and resilience
89 planning in cities.

90 Thorndahl, S., et al., Weather radar rainfall data in urban hydrology, *Hydrol. Earth Syst. Sci.*, **21**,
91 1359–1380, <https://doi.org/10.5194/hess-21-1359-2017> (2017). This study reviews
92 progress in rainfall estimation using radar for urban hydrology and flooding.

93 **Acknowledgements**

94 V. N. Tran and V. Y. Ivanov acknowledge the support of the U.S. National Science Foundation
95 CMMI program award # 2053429 and the Department of Defense, Department of the Navy, the
96 Office of Naval Research award # N00014-23-1-2735, Environmental Protection Agency grant
97 #2020-2509. J. Kim was supported by the National Research Foundation of Korea (NRF) grant
98 funded by the Korea government (MSIT)(NRF-2022R1A2C2008584. D.B. Wright and G.A.
99 Alexander acknowledge the support of the U.S. National Science Foundation CMMI program
100 award #2053358.

101 **Authors and Affiliations**

102 Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI
103 48109, USA

104 Valeriy Y. Ivanov, Vinh Ngoc Tran, Weichen Huang, Kevin Murphy, and Fariborz Daneshvar
105 Macomb County Public Works Commissioner Candice S. Miller, Clinton Township, MI 48036,
106 USA

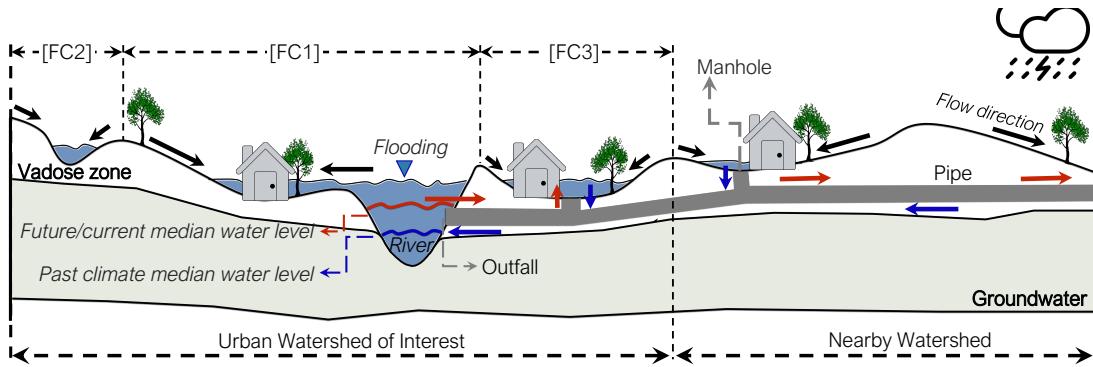
107 Jeff H. Bednar

108 Department of Civil and Environmental Engineering, University of Wisconsin-Madison,
109 Madison, WI 53706, USA

110 G. Aaron Alexander and Daniel B. Wright

111 School of Civil and Environmental Engineering, University of Ulsan, Ulsan 44600, South Korea
112 Jongho Kim

114 Corresponding author


115 Correspondence to Valeriy Y. Ivanov.

116

117 **Ethics declarations**

118 Competing interests

119 The authors declare no competing interests.

120

121 **Figure 1. Schematic of key urban flood concepts (FCs).** FC1 (river-induced flooding), FC2
122 (rainfall-induced flooding), and FC3 (infrastructure-induced flooding). The diagram shows
123 residential and non-residential areas, underground stormwater infrastructure, and river channels.
124 Arrows indicate various flow directions, including potential flow reversals. Blue and red curved
125 lines represent non-flooding and flooding river levels, respectively. Figure adapted under a
126 Creative Commons license CC BY 4.0.

127