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ABSTRACT

Gradient-based bilevel optimization methods have been applied to a
wide range of applications including hyper-parameter optimization,
meta-learning, and model pruning. However, it is known that the
bilevel optimization problem is difficult to solve, and the finite-time
guarantee has only been established for simpler bilevel problems with
a strongly-convex lower-level problem. In this work, we propose an
iterative bilevel optimization method that sequentially solves simple
approximate problems of the original problem. Despite the lack of
strong convexity in the lower level, we show that the proposed method
converges to an e-stationary-point with an iteration complexity of
O(e™ ). Experiments have verified the effectiveness of the method.

Index Terms— Bilevel optimization, difference-of-convex,
convex-concave procedure, hyperparameter tunning

1. INTRODUCTION
We consider the following bilevel optimization problem

min  f(x,y) sit. u(z,y) <0

zeC,ycR%

€ arg min z,y 1
y gy,eU(w)( y) M

where C'is a closed convex subset of Ré=: f is a differentiable
real function on R% x R%; g and u are convex functions on
R x R¥v; U(x)is U(z) == {y € R% : u(z,y) < 0} and is
assumed to be nonempty for any x € C.

Bilevel optimization plays an increasingly important role
in the machine learning area. Bilevel optimization method
has been applied to hyper-parameter optimization [1, 2], ac-
tive learning [3], federated learning [4], meta learning [5],
reinforcement learning [6] and adversarial learning [7].

In the simpler case of (1) where there is no functional con-
straint u(z,y) < 0 and the lower-level function g is strongly-
convex in y, the lower-level solution is unique and differen-
tiable in « [8]. Later it has been shown that this class of bilevel
optimization problems can be solved with gradient descent by
differentiating through the lower-level minima, implying that
this class of bilevel problems are no harder than single-level op-
timization problems; see e.g., [9, 10, 11, 12]. However, when
g is not strongly-convex and there are lower-level constraints,
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there can be multiple lower-level minima and the minima is
no longer differentiable. In general, the bilevel optimization
problem in the form of (1) can be extremely challenging to
solve. This paper focuses on the bilevel problem (1) where the
lower-level function g and constraint function u are convex
(but not strongly convex). To put this work in context, we
provide a brief review of the related works in the next section.

1.1. Related works

The bilevel problem can be dated back to [13]. Recently, the
gradient-based bilevel optimization methods have gained grow-
ing popularity in the machine learning area [14, 2, 15, 16, 4,
17, 11, 12]. Implicit differentiation. A branch of gradient-
based method relies on the implicit gradient method [8], of
which the finite-time rate was established in [9, 18] under
strongly-convex lower-level problem. Later, the convergence
rate was improved in [10, 11] and an extension to the con-
strained strongly-convex lower-level was studied in [19]. De-
spite the strong finite-time convergence guarantee, the implicit
gradient-based methods only apply to the bilevel problems
with a strongly convex lower level. Unroll differentiation.
Another branch of methods rely on unrolling the lower-level
solution to multiple gradient steps, which then allows explicit
differentiation [20, 21, 22]. The unroll differentiation methods
and the implicit differentiation methods oftentimes require
higher-order derivatives which could be resource-hungry. DC
bilevel method. Recently, a method based on the DC bilevel
method in [23] has been proposed in [24]. However, the meth-
ods in [23, 24] only apply to fully convex bilevel problems
with convex upper and lower level objectives. In a recent work
[25], a conditional gradient approach has been developed for a
special class of bilevel problem called the simple bilevel opti-
mization problem. In this context, our method extends [24, 25]
to general bilevel optimization with a non-convex upper level
and provides the first convergence rate.

1.2. Our contribution

Compared to previous works, our contribution is two-folds.

C1) A method for non-convex bilevel problems with a
convex lower-level problem. We propose an convex-
concave procedure for non-convex bilevel optimization
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problems with convex lower-level defined in (1). As
will be introduced later in detail, we first reformulate (1)
via a value function-based formulation and then at each
iteration, we solve a locally-approximated problem of
the reformulated problem. As the subproblem is convex,
we call for efficient off-the-shelve solvers.

C2) Finite-time convergence matching projected gradient
descent for nonconvex single-level problems. Further,
we establish the connection between the proposed algo-
rithm and the projected gradient method. Despite the
lack of strong convexity in the lower-level, we show the
finite-time convergence of the proposed method to the
first-order stationary point with an iteration complex-
ity of O(e~1). This matches the rate of the projected
gradient method for non-convex problem [26].

2. PRELIMINARY

In this section, we define the notations and preliminary results
that will be used later.

A differentiable convex function F' defined on a convex
set C' C RY satisfies the following inequality

F(2') > F(x) + (VF(z), 2’ — z), Vo, 2’ € C

which implies that the function value of a convex function

always upper bounds its local linearization at any x € C.
Given z € C, we generalize the concept of derivative to

the so called sub-derivative £ € R4 at z, which satisfies that

F(z') > F(x) + (¢, o' — ), Va2’ € C. )

We call the set of all sub-derivatives of F' at x as the sub-
differential of F' at x, denoted as OF (x). Formally, we define

OF(z):={¢ e R: F(z') > F(x) + (£, 2’ — x), Va' € C}.
Define v(x) = minycy(4) 9(2,y). The following propo-
sition summarizes the known properties of v(z).

Proposition 2.1 ([23, Theorem 3]). Suppose g and u are
convex functions, then v(x) is a convex function and

du(z) 2 {€ € R™ : (£,0) € g(x, ) + YuOulw, ya)}

where y,, and vy, are respectively any optimal solution and its
KKT multiplier for the following convex optimization problem

min g(z,y) s.t. u(z,y) <O0. 3)
y
This proposition suggests that we can obtain £ € Jv(zx) by
finding any solution of the convex optimization problem (3).

3. CONVEX-CONCAVE PROCEDURE FOR
BILEVEL OPTIMIZATION

In this section, we first give a value-function reformulation of
(1), and then develop a convex-concave procedure for bilevel
optimization method (CCCP-BO) to solve the problem.

3.1. Value function reformulation

Since g, u are convex, the value function v(z) is convex by
Proposition 2.1. To exploit the convexity of g and v, we

consider the following reformulation of (1), given by
min 9(z,y) —v(z) <0. 4

7 t.
wEC,yEU($)f(x y) >

The above problem is equivalent to (1) since given any = € C,
it holds that

{yeU(z):g(z,y) —v(z) <0} (5a)
={yeU(z): g(x,y) —v(z) = 0} (5b)
={yeU(z):ye argygl[]i&)g(x, y)}- (5¢)

Since g and v are convex, the functional constraint in (4) has
a difference-of-convex (DC) structure [27]. This enables the
usage of DC techniques that will be introduced later. However,
it is known that (4) violates the constraint qualifications such
as the Mangasarian Fromovitz constraint qualification (MFCQ)
[28]. To overcome this issue, with constant ¢ > 0, we consider
the following approximate value function reformulation [23]

BP: min f(z,y) st. g(z,y) —v(z)<e (6)

zeCyeU(z)
The above relaxation accounts for the situation that in practice,
the lower level problem usually cannot be exactly solved.

3.2. Algorithm development

Since v(x) is a convex function, the lower-level problem in
BP has a difference-of-convex structure. In order to deal
with the concave part —v(x), the constrained convex-concave
procedure [27], which is a celebrated DC method, suggests
‘convexifying’ the DC structure by linearizing the concave
—uv(x). By slight abuse of notations z := (x,y) and f(z) =
f(z,y), this gives rise to the following approximation of BP

min f(z) st g(z) —v(@)—(Ex—2)<e ()

zEZ
where Z == {(z,y) : z € C, y € U(z)} and 2’ is a point
different from = and £ € dv(z’).
Compared to BP, the formulation in (7) replaces —v(x)
with its local linearization at ' which is the upper bound of
—v(z) by convexity of v(x) (2):

g(m,y) - 1}(33) < g(amy) - ’U(CL‘/) - <£’ T — lj)'

It is then clear that if the constraint in (7) is satisfied, the
original constraint in BP is satisfied. Moreover, the constraint
in (7) is now convex thanks to the linearization of —v(z). Thus
we can view (7) as a simplification of BP.

Next we linearize the upper level at some point z/ =
(', ") and obtain

min (Vf(2'), z — 2')

sez st.9(2) —v(@’) = (6w —af) <e.
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Algorithm 1 CCCP-BO for bilevel optimization

1: Initialization: Initialize z; € C and solve for y; € U(x1)
such that g(x1,y1) —v(z1) < e Pickp > 0Oand K € Z,.

2: for k =1to K do

3:  Compute & € dv(xy) following Proposition 2.1.

4 Get zgy1 := (Tk41, Yk+1) by solving (9).

5: end for

To ensure z staying close to z’ so that the linearization is
accurate, we add a proximal term and obtain

min (V/(2), 2 =) + S|z = /|
st g(z) —v(@) —({ v —2) <e (8)

where p > 0 is the proximal constant. Given 2/, (8) is a
strongly-convex problem with a convex constraint. We con-
sider solving (8) iteratively, resulting in the following iteration.

2kl :argrzléig (Vf(zk), z—2zi) + g”z — 2112
s.t.g(2) —v(zg) — (€, . —xp) <€ )

where &, € Ov(xy). Here zy, is a natural choice of the prox-
imal point z’. As will be shown later in Lemma 4.1, the
constraint set in (9) is nonempty, closed and convex, thus the
solution 21 always exists. The sub-problems (9) and (3) can
be solved by, e.g., the interior point methods or the primal-dual
methods. In the case where g, u are lipschitz-continuous, the
sub-problems can be efficiently solved by [29] with a conver-
gence rate of O(1/t) where ¢ is the iteration number.

4. CONVERGENCE ANALYSIS THROUGH THE
LENS OF PROXIMAL GRADIENT DESCENT

In this section, we will study the convergence of CCCP-BO.
We first state the assumptions needed for the analysis.

Assumption 1. Assume C'is a closed convex subset of R=,
f is a differentiable real function on R% x R%, and g,u are
continuous convex functions on R% x R%. Assume U(x) =
{y € R% : u(z,y) < 0} is nonempty for any x € C.
Define the time-variant constraint set in (9) as
Dy ={z€ Z:g9(z) —v(xg) — (&, * — x) < €}. (10)

Note z is part of z in the above definition. Before we study
the convergence of zj, we first show some useful properties of
Dy, in the following lemma.

Lemma 4.1. Consider Algorithm 1. Suppose Assumption 1
holds. Then given any k, z, € Dy, and Dy, is closed convex.

Proof. We prove the result by induction. Assume there exists
k € {1,..., K} such that z;, € Dy. Since g is continuous and

convex, the inverse-image S, = {2z € R% x R% : g(z) —
v(xg) — (€, * — x) < €} is closed and convex. Since Z is
closed convex, D), = Z NS, is closed and convex.
Furthermore, since Dy is nonempty, closed and convex,
the sub-problem (9) admits solutions and zj exists. Since
zk+1 € Dy, and v(zy,) is convex (2), it follows that
9(z141) =0 (@k11) < g(2h+1)— (V(T8)+(Eks Tht1 — T)) S €

which along with 2z, € Z indicates z;1 € Dy ;. Finally,
since z; € D1, this lemma holds from induction. ]

To gain further insight into the behavior of the algorithm,
we then introduce the following lemma.

Lemma 4.2. Under Assumption 1, the update (9) is equivalent
to the following projected gradient update

1
2k41 = Projp, (zk — ;Vf(zk)) (11)

where Projp, denotes the projection operator to Dy, in (10).

Proof. Define z* = argmin, F'(z) where

F(2) = (Vf(z), 2 — ) + gHz a2 a2

By the optimality condition, it follows z* = 2z, — %V fzr).
For any z, it follows from the definition of F' that

F(z) = F(z7)

= (Vf(z), 2= a1+ Ellz =zl

~ (Vf), = V) = o VI
= Blle = =1l + (V4. 2= 20+ 5 Vo)

1
= g||z—zk+;w(zk)||2 = L1z — |1 (13)

Then by (9), we have
2k+1 = arg Min F(z) = arg min F(2) — F(2")
= in ||z — 2*|| By (13
argznelgillz 2" By (13)

) 1
= Projp, (2 - ;Vf(zk.)). (14)
This proves the result. O

Lemma 4.2 indicates the dynamic of Algorithm 1 is equiva-
lent to that of the projected gradient descent on a set Dy, given
by a simplification of the lower level problem.

A common convergence metric adopted in the analysis of
non-convex projected gradient method is the so-called pro-
Jected gradient [26]. Formally, it is defined as

gk = p(zk — 2k+1)- (15)

To establish the convergence of g, we need the following
regularity assumption on f.
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lgr||? versus k under p . Iteration complexity versus p
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Fig. 1. Decay of ||g.||? under different p (left); iterations for
Algorithm 1 to achieve ||gx|| < 1073 versus p (right).

Assumption 2. Assume f(x,y) is L-lipschitz smooth w.r.t.
(x,y) and is bounded from below by constant Cy.

This assumption is standard in the analysis of gradient-
descent type methods for non-convex objectives [26]. With
the assumption, we characterize the convergence of Algorithm
1 in the following theorem.

Theorem 4.3. Consider running Algorithm 1 for K steps.
Under Assumption 1 and 2, if we choose p > L, it holds that

2p(f(z1,y1) — Cy)
2
< .

(16)

min
ke{l,...,.K

Proof. By the Lipschitz smoothness of f, it holds that

Faas) = Fok) < (VS (1), 2 — ) + G lonss —

1 L
:*;<Vf(zk)7 gk>+§‘|zk+1*2k“2 17)

where the equality follows from the definition of g in (15).
By the first-order optimality condition of zj; for the sub-
problem (9), we have

(Vf(zk) + p(zhg1 — 21)s 2141 — 2) <0, Vz € Dy.
By Lemma 4.1, z;, € Dy,. Choosing z = z;, above yields

1
_;<Vf(zk)7 gr) < —pllzrsr — 2. (18)
Substituting the above inequality into (17) gives
L 2
Fw) = F@) < (= o+ 5 )z — 2

(15) 1 L ) 9
= -—-+— . 19
(=5 +g2)locl” 09

Choosing p > L, then —% + # < —ﬁ. This along with the
above inequality implies

Lower-level acc versus ¢ f(@k, y) versus k under e
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Fig. 2. Lower-level accuracy at last-iterate versus choice of e
in (6) (left); decay of f(xk, yx) under different e (right).

5. PRELIMINARY SIMULATIONS

In this section, we test Algorithm 1 on a synthetic problem to
verify the theoretical results. Consider the following problem

min

i sin(eTa+dTy) £ In (o +ylP+ )

s.t. y € argmin 1(y +2) T Ay + ).
yERLO 2
where d,c € R', and A € R!° x R0 is a randomly-
generated non-zero matrix which is positive semi-definite but
not positive-definite. It can be shown that Assumption 1 and 2
are satisfied in this problem. In all the tests, the sub-problem
(9) in Algorithm 1 is solved by the primal-dual method, and
(3) is solved by gradient descent.

We first test our algorithm with different p and report the
results in Figure 1. It can be observed from Figure 1 (left) that
given p, the decay rate of ||gx || is O(1/k). While it can be
observed from Figure 1 (right) that convergence rate is O(p).
The dependence on k, p is consistent with Theorem 4.3. We
then test the impact of € in the value-function reformulation
(6). Figure 2 (left) indicates with a smaller ¢, the lower-level
will be more accurate since g(zk,yx) — v(x k) is smaller.
In the meantime, the lower-level constraint set in (6) will be
smaller so that the optimal value of f will be larger, which can
be observed from Figure 2 (right).

6. CONCLUSIONS

In this paper, we introduce an algorithm to solve the bilevel
optimization problem with convex lower-level problem. We
exploit the convexity of the lower-level by reformulating it
with the value function and then utilizing the DC techniques.
We then prove the resulting algorithm converges at a rate of

lgell? < 20(f(2x) — f(zr41))- (20)  O(1/k) through the lens of projected gradient method. Pre-
. . . liminary experiments are provided to verify our results. Future
Telescoping (20) on k' = 1,2, ..., K yields research that will be pursued include the following two dimen-
K ) sions: i) extending the proposed CCCP-BO algorithm to the
Z lgrll” < 2p(f(21) — Cf) (21)  stochastic and variance reduced variants; and ii) quantifying
k=1 the overall iteration and sample complexity by considering the

where we have used f(zx41,yx+1) > Cy. O  complexity of solving the subproblem (9).
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