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Abstract—Datalog, a bottom-up declarative logic programming
language, has a wide variety of uses for deduction, modeling,
and data analysis, across application domains. Datalog can be
efficiently implemented using relational algebra primitives such
as join, projection and union. While there exist several multi-
threaded and multi-core implementations of Datalog, targeting
CPU-based systems, our work makes an inroad towards devel-
oping a Datalog implementation for GPUs. We demonstrate the
feasibility of a high-performance relational algebra backend for
a subset of Datalog applications that can effectively leverage the
parallelism of GPUs using cuDF. cuDF is a library from the
Rapids suite that uses the NVIDIA CUDA programming model
for GPU parallelism. It provides similar functionalities to Pandas,
a popular data analysis engine. In this paper, we analyze and
evaluate the performance of cuDF versus Pandas for two graph-
mining problems implemented in Datalog, (1) triangle counting
and (2) transitive-closure computation.

I. INTRODUCTION

Datalog [1]–[5] is a lightweight logic-programming lan-
guage for deductive-database systems where queries and
database updates are expressed as first-order Horn-clause rules.
Running a Datalog program reifies (explicitly deduces) the
intentional database (output), which extends data from the
extensional database (previously enumerated input data) with
all facts transitively derivable via the program’s rules. It is
a declarative programming language that allows application
logic to be specified in a high-level manner, suited for human
designers and maintainers, and has thus been applied to a
variety of applications, including in big-data analytics [6]–[8],
ML [9] and software analysis [10]–[12].

Datalog programs can be automatically compiled down
to low-level relational algebra (RA) primitives for imple-
mentation on modern computational systems. Standard RA
operations on relations such as selection, join, and union are
used in combination to implement efficient kernels that infer
new facts from available facts. High-performance operations of
RA has the potential to automatically extract data parallelism
from applications built on top of declarative languages such
as Datalog [1]–[5].

Souffle [13] provides the state of art implementation for
Datalog. It is based on OpenMP and extracts multi-threaded
parallelism from CPU-based multi-core systems. Similarly,
more recent work [14], [15], [16] aimed toward developing
an MPI-based multi-node parallel implementation for Datalog.
Both these work target CPU-based systems and do not cater
to GPUs. Modern systems (general-purpose and HPC, both)
are heading towards heterogeneous computing environments
where CPUs are coupled with GPUs. It is essential to develop
software systems that can take advantage of the significant

parallelism offered by GPUs [17]. This paper makes initial
inroads in developing GPU-based implementations for Data-
log. We demonstrate the feasibility of implementing Datalog
applications using Python’s Pandas Dataframe API and further
accelerate performance using GPU accelerated cuDF.

Pandas is one of the most popular Python-based data-
analysis packages that provide easy-to-use RA functionalities
for DataFrame, a two-dimensional labeled tabular data struc-
ture [18], [19]. Pandas have APIs for efficiently joining, ag-
gregating, renaming, deduplicating, and projecting DataFrame
rows using CPUs [20]. GPU programming has been acceler-
ating HPC research in recent years by leveraging the massive
SIMD parallelism of the GPU. cuDF is a Python package built
on Apache Arrow that uses the NVIDIA CUDA programming
model for GPU parallelism [21]–[23]. It provides similar func-
tionalities and code syntax to that of Pandas – thus, abstracting
developers from dealing with low-level CUDA programming,
which often has a steep learning curve. In this paper, we
developed Datalog implementations using both Pandas and
cuDF libraries, making the following contributions:

1) We demonstrate the feasibility of implementing Datalog
applications using the RA primitives of Pandas and cuDF.

2) We evaluate the efficacy of our implementation with two
application benchmarks: (a) triangle computation and (b)
transitive closure of real graphs. We observe a 147×
speedup for triangle computation and 71× speedup for
transitive closure computation using cuDF (over pandas).

3) We identify the shortcomings of Pandas and cuDF based
Datalog implementations.

II. DATALOG

In Datalog, rules can be provided to define relations (tables)
in terms of others.

B(x,y) :- G(x,y), G(y,x), x<y.

Consider the input relation G(x, y) of arity 2 (i.e., with 2
columns), that encodes a graph, where (x, y) corresponds to
edges between nodes x and y. The above rule infers a relation
B (the head clause), which gets a single tuple (x, y) for each
bi-directional edge in graph G. The body (everything after the
symbol “:-”) comprises of two subgoals G(x,y) and G(y,x),
separated by the symbol “,”, which means a logical AND,
translating to the join RA primitive. Therefore, in this case,
we must effectively join the table with itself; then, a final
constraint, x < y, filters this output so that edges are added
to B only once, in canonical order.
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Fig. 1. All iterations of the fixed point loop needed to compute the transitive closure of a chain graph.

In general, evaluation of Datalog rules can be implemented
using RA primitives, select, join and projection. A join is
performed between two or more subgoals in the body of a
rule. A projection is made over the variables in the head of
the rule. For recursive rules, fixed-point evaluation is used.
The basic idea is to iterate through the rules in order to derive
new facts and use these new facts to derive even more new
facts until no new facts are derived.

A. Triangle Counting

Triangle counting is one of the most popular graph-mining
applications that is used heavily in analyzing social networks.
While many tuned algorithms [24] exist to compute triangles,
they typically have a steep learning curve. Triangle counting,
however be easily encoded in Datalog as follows:

2cl(x,y) :- G(x,y), x<y.
2cl(x,y) :- G(y,x), x<y.
triangles(x,y,z) :- 2cl(x,y), 2cl(y,z),

2cl(x,z).

The first two rules infer a relation 2cl which prunes away all
reflexive vertices from the input graph G, and orders all edges.
These rules can be compiled down to a copy rule with a filter
operator, which translates to the insertion of every element in
G into 2cl, which meets the constraint x < y. Furthermore, the
third and final rule is compiled down to two join operations.
The first join between 2cl(x, y) and 2cl(y, z) corresponds to
joining the graph with itself (joining the graph on the second
column with itself on the first column), computing paths of
length two, resulting in an intermediate relation, that in turn
is joined with 2cl to compute all triangles.

B. Transitive Closure

The following recursive Datalog program computes the
transitive closure, T , of a graph G:

T(x,y) :- G(x,y).
T(x,z) :- T(x,y), G(y,z).

The first rule represents a base case that says every x-to-
y edge in G implies an immediate x-to-y path in T . The
second rule is recursive and must be iterated repeatedly until
stabilizing at a value for T that is consistent with all rules. The
first rule can be implemented by inserting every element of G
into T . The second rule can be implemented by iteration of
a kernel function, composed of several relational operations,
iterated to a least-fixed-point. One iteration of this function
would join T on its second column with G on its first column,
yielding all triples (x, y, z) where (x, y) can be drawn from T
and (y, z) can be drawn from G. Projection to the set of unique

(x, z) tuples, removing the middle column (as a graph, this is
removing the intermediate vertex in the discovered path), and
unioning this set of tuples with those in T completes one
iteration of the second rule.

An example of transitive closure can be seen in Figure 1.
The input Graph G is a chain graph with five vertices and four
edges. The first iteration computes paths of length 2 – (1, 3),
(2, 4) and (3, 5). These new paths are added (unioned) with
T , which stores the transitive closure. Due to the recursive
nature of the rules and following the semi-naive evaluation
method [25], [26] (i.e., incrementalized evaluation), these new
paths form the input for the next iteration, which in turn
generates paths of lengths 3, (1, 4) and (1, 5). These form
the input for the next iteration, and the process continues till
a fixed point is reached i.e., no new paths can be found.

III. DATALOG-LIKE IMPLEMENTATION WITH PYTHON

Our in-house compiler [14], [15] generates RA kernels in
C++ from Datalog. We have used the generated C++ code
as a baseline to develop RA kernel for two popular graph
mining applications: triangle counting and transitive closure
computation in Python using the Pandas and cuDF.

A. cuDF

Pandas is a popular data-analysis package that provides a
rich set of pre-built implementations of RA primitives such
as join, projection, and union. Pandas, however, is limited
in performance as it primarily allows single-threaded execu-
tion on the CPU. cuDF is a GPU-based data frame library
sharing similar function signatures and API. It is built on
the Apache Arrow that provides CPU-GPU interoperability
[21]. It allows loading of dataframes onto the GPU for faster
I/O, and provides GPU-powered RA functionalities that can be
directly applied to dataframes. It reduces the time for copying
data, CPU to GPU, and vice versa [22]. Graph analysis is
usually applied to large volumes of unstructured data. By
reducing the need for data interchange between CPU and GPU
devices, cuDF expedites graph mining by significant margins.
Alongside the GPU-accelerated I/O operations, cuDF utilizes
massive GPU parallelism in RA operations.

B. Triangle counting implementation using relational algebra

Our Datalog implementation of triangle counting needs two
copy and two join operations. The first step is to order edges
and remove reflexivity, and this is done in two sub-steps. First,
copy and filter operations are applied to reverse the columns
for rows where the x column is greater than the y column.
Then, drop duplicates on all rows is called for deduplication.
Now, we have a table containing the ordered edges of the
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Algorithm 1 Transitive closure computation algorithm
1: procedure TRANSITIVECLOSURE(Graph G)
2: result← G
3: R← Rename(G)
4: do
5: newTriplets← Join(R, G)
6: inferredPaths← Deduplication(Projection(newTriplets))
7: oldLength← Length(result)
8: result← Deduplication(Union(result, inferredPaths))
9: currentLength← Length(result)

10: R← Rename(inferredPaths)
11: while oldLength ̸= currentLength
12: return result
13: end procedure

graph, and encoded as xy. We then copy this table to two
others using the rename function to obtain xz and yz. From
there, merge is called between xy and yz to join on the
y column, creating a table xyz which contains entry rows
(x, y, z) where edges exist in our input graph between x and
y, and y and z. Lastly, we use merge between xyz and xz
to join on the x and z columns, giving us the output rows
(x, y, z) where edges also exist between x and z. Because we
have checked the connection between all three vertices x, y,
and z, we know the rows of this output are the triangles of
our input graph.

C. Transitive closure implementation using relational algebra
We implement an algorithm for computing transitive closure

using RA APIs provided by cuDF and Pandas. Our transitive
closure algorithm is shown in Algorithm 1. We read the dataset
using the read csv. We use the merge on the common column
for the join operation of two relations. For the projection
operation, we invoke drop chaining with drop duplicates.
Similarly, we use the concat to apply union operation.

As described in Section II.B, transitive closure computation
is recursive in nature, which translates to computing the RA
kernel in a fixed point loop. We can see that the fixed point
loop is represented in the form of the do while loop at line 4.
A drawback of using these pre-baked implementations is that
these RA operations, like join and projection in lines 5 and 6,
cannot be fused together. Ideally, they can be combined in one
GPU routine. However, the current APIs do not support that
operation. Another important aspect is that of deduplication,
as paths can be found in multiple ways and therefore, there
will be multiple copies of the same path. It is essential to
deduplicate within every iteration to ensure that we do not
perform unnecessary computation.

IV. EVALUATION

We perform three sets of experiments to evaluate the effi-
cacy of our cuDF implementation. First, we compare the stand-
alone execution time of RA operators such as rename, inner
join, and union and other non-RA operations like deduplication
and file I/O for cuDF and Pandas. Following this, we evaluate
the performance of our applications: triangle counting and
transitive closure on real datasets using Pandas and cuDF.

A. Experimental setup
1) System and configuration: We ran our experiments on

the ThetaGPU supercomputer of Argonne Leadership Com-
puting Facility [27]. ThetaGPU is comprised of 24 NVIDIA

TABLE I
DATASETS USED IN OUR EXPERIMENTS

Graph Type |V | |E|
p2p-Gnutella09 Directed 8,114 26,013
p2p-Gnutella04 Directed 10,876 39,994

Skitter Undirected 1,696,415 11,095,298
roadNet-CA Undirected 1,965,206 2,766,607
roadNet-TX Undirected 1,379,917 1,921,660
roadNet-PA Undirected 1,088,092 1,541,898

SF.cedge Undirected 1,74,955 2,23,001
cal.cedge Undirected 21,048 21,693
TG.cedge Undirected 18,263 23,874
OL.cedge Undirected 6,105 7,035

DGX A100 nodes. Each DGX A100 node comprises eight
NVIDIA A100 Tensor Core GPUs. 22 of the 24 nodes have
320 GB of GPU memory each and remaining two nodes
have 640 GB of GPU memory. Each node has dual AMD
EPYC 7742 processors running at 3.31GHz with 64 cores
per processor for a total of 128 cores. The experiments are
run using Ubuntu 20.04LTS operating system. We use cuDF
and Pandas Python packages inside conda environment with
CUDA as GPU programming model. cuDF runs on a single
GPU by default, and thus our experiments were restricted to
using a single GPU (out of the 8 present on every node).

2) Datasets: Our evaluation include real-world graph
datasets from the Stanford large network dataset collection and
road network real datasets collection [28], [29]. Our datasets
include both directed and undirected graphs. Table I shows the
properties of the datasets. |V | indicates number of nodes and
|E| indicates number of edges in the graph.

B. Standalone relational operations

We compare the execution time for key operations such
as file I/O, rename, inner join, deduplication, and union
operations for cuDF and Pandas. Figure 2 shows the time
comparisons for roadNet-CA dataset mentioned in Table I. We
see 8.9x speedup for file I/O, 34.1x speedup for join, 52.2x
speedup for rename, 52.4x speedup for deduplication, and 7.1x
speed up for union operation in cuDF over Pandas. This results
demonstrate the importance of cuDF, and assures speedups for
Datalog like applications built on top of these operators.

Fig. 2. Time comparison between cuDF and Pandas for relational operations

C. Triangle counting

Figure 3 shows the time comparisons for selected datasets
for triangle counting, while Table II shows the speedup and
output triangle counts. As can be seen, cuDF greatly outper-
forms Pandas for datasets with a large number of rows or
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TABLE II
SPEEDUP OF CUDF OVER PANDAS FOR TRIANGLE COUNTING

Dataset Triangles cuDF(s) Pandas(s) Speedup
Skitter 28,769,868 1.0340 152.7032 147.7x
roadNet-CA 120,676 0.1593 3.0106 18.9x
roadNet-TX 82,869 0.1180 1.9466 16.5x
roadNet-PA 67,150 0.1084 1.4777 13.6x
SF.edge 4,036 0.0877 0.1482 1.7x
p2p-Gnutella09 2,354 0.0486 0.0256 0.5x

Fig. 3. Time comparison between cuDF and Pandas for triangle counting

output triangles, with a maximum speedup of 147.7x for the
Skitter dataset containing 28,769,868 triangles. This is because
the triangle counting algorithm consists of deduplication, two
renames, and two join operations, all of which are shown in
Figure 2 to be much faster in cuDF than Pandas when the size
of the graph is as large as roadNet-CA. The trend of speedup in
Table II shows that the benefit of the GPU-utilizing backend of
cuDF offers a greater speedup over Pandas directly correlated
to the size of the input graphs for triangle counting.

D. Transitive closure comparison

Figure 4 shows the time comparisons for selected datasets
for transitive closure, while Table III shows the speedup and
output graph size. The TC size indicates the size of the
transitive closure operation for the graph. The number of
iterations to compute the TC is shown in the iterations column.
The speedup column presents the speedup of execution time
for cuDF over Pandas. Higher speedups of the first three
graphs (71x, 43x and 40x) can be attributed to their relatively
larger workload, as indicated by their final TC size (indicative
of workload). A large workload ensures proper saturation and
utilization of the GPU, translating to higher speedups.

E. Limitations

The APIs such as read, merge, drop, and concat in cuDF
and Pandas are predefined. These APIs require a specific set of
parameters and return results in a specific format. RA kernels
of Datalog would benefit from fusing of RA operations,
such as joins, projection and deduplication, however, cuDF
API does not allow such operations. These APIs must be
invoked sequentially while storing the intermediate result –
adding memory and computation overhead. For example, in
a hand tuned implementation, the two consecutive join in
triangle counting could potentially performed in one single
operation (nested loops) without having to explicitly materi-
alize the results of the first join operation. We also run into
memory overflow errors while performing transitive closure

TABLE III
SPEEDUP OF CUDF OVER PANDAS FOR TRANSITIVE CLOSURE

Dataset TC size Iterations cuDF(s) Pandas(s) Speedup
SF.cedge 80,498,014 287 64.235 4582.067 71.3x
p2p-Gnutella09 21,402,960 20 3.881 167.143 43.1x
p2p-Gnutella04 47,059,527 26 14.104 569.249 40.4x
cal.cedge 501,755 195 3.883 5.769 1.5x
TG.cedge 481,121 58 1.191 1.400 1.2x
OL.cedge 146,120 64 0.557 0.474 0.9x

Fig. 4. Time comparison between cuDF and Pandas for transitive closure

computation for graphs with several million edges in cuDF
implementation. These limitations suggests using a scalable
backend for Datalog applications that is optimized for a multi-
node, multi-GPU environment.

V. CONCLUSION AND FUTURE WORK

In this paper, we demonstrate the feasibility of implement-
ing Datalog applications using GPU-based cuDF relational
algebra primitives and show performance gain (up to 147× for
triangle computation and 71× for transitive closure computa-
tion). We test the performance gain using both directed and
undirected graphs. We identify several bottlenecks for these
implementations. Given the good performance improvement
we got with cuDF in a relative short amount of time we are
now eager investigating several other facets: 1) how good
does our Python implementation of DataLog applications
compare to native counterparts (comparing our Pandas solution
with NetworkX [30] and comparing our cuDF solution with
cuGraph [21] and Hornet [31] and 2) extend our solution to
using Dask/cuDF for multi-GPU applications to allow for im-
proved scaling. As part of our continued investigation, we will
attempt to identify missing algorithmic components in Pandas
and cuDF necessary for a broader set of applications. Our
code, data, and documentation is open-source and available at
https://github.com/harp-lab/GPUJoin.
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