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Abstract

In this research we introduce the application of an optical fiber Fabry-Pérot interferometer in smart manufacturing. We used an optical
fiber Fabry-Pérot interferometer to measure the distance between a moving target and a fixed optical fiber. When the target moves,
the distance between the fiber and the target can be precisely determined. First, we monitored the distance between a fixed fiber and
the surface of a rotating tool. By measuring the distance, we reconstructed the three-dimensional (3D) profile of the tool. We also
introduce the method to calculate the runout and tool wear. To further improve the speed of this method, we developed machine
learning models to find out the distance from the spectrum of the interferometer since the spectrum analyzing method is relatively
slow. It was found that the Deep Neural Network model predicts the distance between the fiber and the target surface with a sufficient
precision (< 4 um) when measuring the straightness error of a computer numerical control (CNC) machine tool. The proposed
method provides possibilities for noncontact precise monitoring especially in a limited space.

Keywords Optical fiber sensor - Smart monitoring - Deep neural network - Convolutional neural network
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1 Introduction

Optical sensors such as optical interferometry have been
widely applied in different areas such as environment science
[1-3], biology [4-6], and engineering [7-9]. It has also been
used in smart manufacturing such as high precision measurement
and positioning [10,11]. Compared with traditional interferometers
based on space optics, optical fiber sensors provide a more
stable environment since the detection light is guided inside
the fiber. Therefore, they are less sensitive to environmental
disturbances such as scattering and absorption fluctuation in
the air. Moreover, optical fiber sensors are compact [12-14],
and therefore can be installed in limited spaces. In this paper,
we use an optical Fabry-Pérot interferometer (FPI) as a
displacement sensor to reconstruct the three-dimensional (3D)
profile of a machine tool and measure the straight error of a
computer numerical control (CNC) machine tool. An open
optical fiber FPI has a simple structure and a higher finesse
compared with other types of interferometers such as
Michelson interferometers and Mach-Zehnder interferometer
due to its resonance nature [14,15]. Therefore, it has a higher
signal-to-noise ratio which makes it possible to work in non-
ideal usually
monitor the distance based on the intensity change of a
Michelson interferometer, however this method needs high
precision calibration. In our previous research [16], we
introduced an open optical fiber FPI that gives the optical
distance between the fiber and the target directly from the
interference spectrum.

In this research, we will introduce the application of optical
fiber FPIs as distance sensors in smart manufacturing. First,
we will introduce the basic principle of FPI and the method to
reconstruct the 3D profile of a machine tool before and after
being used. The spectrum quality identification method and
the spectrum analyzing method will be introduced. Based on
the interference spectrum of the FPI, the distance between the
optical fiber and the surface of the target can be determined.
To reconstruct the 3D profile of the tool, we need to fix the
optical fiber while rotating the tool along its axis so that the
distance between the fiber and the surface of the tool can be

environments. Commercial interferometers

monitored. The distances between the fiber and points of the
surface of the tool allow us to measure the profile of the tool.
With the reconstructed profile, we can further calculate the
runout and the tool wear of the tool. To improve the analyzing
speed, different machine learning algorithms were trained to
find out the distance between the fiber and the target from the
interference spectrum. Then, the machine learning algorithm
was applied to analyze the spectra to measure the straightness
error of a CNC machine tool using the two-point method. The
measurement result of the proposed method will be evaluated
by a coordinate measurement machine (CMM).

2 Sensing Principle
2.1 Principle of Fabry-Pérot Interferometers

FPIs consist of two parallel reflection surfaces and the
space between them. In this experiment, we used a single
mode optical fiber (SMF) to form an open FPI to measure the
distance between the tip of the SMF and the surface of the
target. Fig. 1 (a) shows the basic working principle of the FPI
we used in this experiment. Incident light E;,. comes from the
light source and propagate along the core of the SMF. When
reaching the interface (Reflection Surface 1) between the Core
and the Medium between the SMF and Target, part of light
will be reflected by Reflection Surface 1 and the rest will
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Fig. 1 Working principle of an optical fiber FPI. (a) Structure of FPI
used in this experiment, (b) a typical spectrum of an FPI
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propagate through the surface. Then, the light will be reflected
by the surface of Target (Reflection Surface 2) and then
reflected by Surface 1 again. Therefore, the light will be reflected
between Reflection Surface 1 and 2 and resonance occurs. The
structure formed by the two reflection surfaces and the space
between them is called a Fabry-Pérot cavity (FP cavity).

Due to the boundary conditions of the FP cavity, light with
wavelengths that are supported by the cavity will interfere
constructively and therefore have higher powers. Light with
wavelengths that are not supported by the cavity will interfere
destructively and therefore has lower powers. The reflected light
E,r will propagate to the opposite direction along the core and will
be received by a spectrometer for further analysis. Fig. 1(b) shows
a typical experimental spectrum of an FPI, multiple maximums
and minimums can be seen on the spectrum. The maximums are
due to the constructive interference, whereas the minimums are
due to the destructive interference of the FP cavity.

The reflection spectrum is given in Ref. [16]:

Eref=|:r1+

where r; is the reflection coefficient of Reflection Surface i, #;
is the transmission coefficient of Reflection Surface i,
¢=2nin/A, is the phase change of the light when travel in
the cavity for a roundtrip, / is the geometric distance between
Reflection Surface 1 and Reflection Surface 2, » is the
refractive index of the medium at wavelength of 1,550 nm, and
Ay 1s the wavelength of light in vacuum, and j is the imaginary
unit. Therefore, the wavelength of the maximums can be
calculated as [16]:

ryfiexp(-2) } - 0

I=rrexp(29)

_2n
Ap= =5 m=123,., )

m

where m is the order number of the maximums. As we can see,
wavelength 4, is proportional to geometric distance between
the surfaces / and refractive index of the medium » for a given
order number m. Therefore, if the refractive index » is known,
the distance between the surfaces is available from the
wavelengths of the spectrum. To calculate order number m, we
need to measure the free spectrum range (FSR) Agsg, which is
defined as the wavelength difference between to adjacent
maximums and is available from the spectrum. The FSR can
also be calculated using [16]:

Apsg = % G)
Combine Egs. (2) and (3), we have:
L 4)
Apsr
Therefore, we have:

From Eq. (5), we can see the cavity length can be
determined by measuring the FSR between a maximum
wavelength 4,, when refractive index » is known.

2.2 Experiment Setups

2.2.1 Tool Profile 3D Reconstruction

Milling quality is largely influenced by the tool wear [17-19],
runout [20,21], and touch off error [22,23]. Therefore, tool
condition monitoring is crucial for the milling process to save
the tool’s life and improve the production efficiency. In this
section, we present an optic fiber sensor-based tool profile
measurement technique that can precisely reconstruct the 3D
profile of a milling tool. The position information, as well as
the runout error of the milling tool, can be computed according
to the reconstructed 3D profile. Based on this technique, a
micro milling tool was used to validate the performance of this
technique and its tool wear was evaluated.

Fig. 2(a) shows the setup for tool profile 3D reconstruction
The tool was held by the fixture with its axis pointing upward.
The fixture was fixed on a 6-axis hexapod with a positioning
accuracy of sub-micron level. The inset of Fig. 2(a) shows the
detail of the tool and packaged optical fiber. Fig. 2(b) shows
the structure of the packaged optical fiber. The bare fiber was
fed through the center of a stainless-steel ferrule and was fixed
at the end of the ferrule using epoxy. The stainless-steel ferrule
was fixed at the end of a stainless-steel tube using epoxy. The
packaged optical fiber was fixed on a fixture that will not
move with the tool. The axis of the fiber was perpendicular to
the axis of the tool. A gap was left between the end of the fiber
and the surface of the tool. Therefore, an FPI was formed by
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Fig. 2 Setup for tool profile reconstruction. (a) photo of experimental
setup, inset: Fabry-Pérot interferometer, (b) structure of the packaged
optical fiber
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the interface between the fiber and air and the surface of the
tool. During measurement, the tool was rotated and moved
upward after each rotation.

Fig. 3 shows the connection of the monitoring system. An
optical circulator is a 3-port device that when light incident
from port 1 will exit from port 2, and when incident from port
2 will exit from port 3. The incident light comes from the light
source and then enters port 1. Then the output light from port
2 will propagate to the FPI formed by the fiber and the tool.
The reflected light will propagate to the opposite direction
along the fiber and enters port 2. The output light from port 3
will then enter the spectrometer. The light source,
spectrometer, and hexapod were connected to the PC. The
coordinates and the timestamps of the tool, as well as the
corresponding spectra, were recorded by the PC. In this
experiment, we analyzed the spectra and reconstructed the
profile of the tool after the scan. The analyzing process can
also be done during the scan process to realize a real-time
profile reconstruction.

2.2.2 CNC Machine Straightness Error Monitoring

Straightness error is one of the innate geometrical errors
from the machine tool that can largely influence the
manufacturing precision [24-26]. However, straightness error
can change while the load of the machine tool changes, and
there is no portable online approach that can evaluate the
straightness error instantly. Therefore, in this section, we refer
to Ref. [25] and measure the straightness error of a milling
machine tool with Sequential Two Point (STP) method using
two optical fiber sensors. We have employed machine learning
algorithm to accelerate the spectrum analyzing algorithm in
order to realize an online straightness error measurement
technique.

Fig. 4 illustrates the setup utilized for online straightness
measurement. A commercially available CNC machine tool
was employed to measure the straightness error of its X-axis
guideway. Two optical fibers were installed on the machine
tool's base using glass ferrules. These glass ferrules, together
with the fibers, were affixed to the glass substrate using UV
curable epoxy. The optical fibers were oriented perpendicular
to the reference surface, facing in the positive direction of the
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Fig. 3 Connection of the monitoring system

Y-axis. A standard block has been mounted to the surface of
the X-axis guideway and measured by these optical fiber
sensors. While the standard block can move with the X-axis
slide, the optical fibers remain fixed to the machine tool,
enabling the measurement of the standard block’s profile.

The standard block employed in this study is a low-cost 1-
2-3 block, possessing a squareness of 0.003" per inch, a
flatness of 0.002", and a parallelism of 0.002". According to
Ref. [25], the polishing process has been carried out on an
inexpensive polishing machine, and the profile of this polished
surface has been measured by a precision Hexagon Coordinate
Measurement Machine (CMM), shown in Fig. 5. The
measured area is 1.4 x 75.0 mm large with the measurement
spacing distance of 0.2 mm. The surface slope has been
calculated based on this surface profile using the central
difference approach. Ignoring the outliers, it appears that the
surface slope along X axis is around -3 to 2 pum per mm,
whereas that for Z axis is less than 4 pum. This indicates that
when deviation of the optical fibers along Y axis (or Z axis)
is 1 mm, the measurement result from the optical fiber sensors
contains -3 to 2 um (or £4 um) error. Generally, the sum of the
positioning error and the straightness error from the machine
tool can be less than 100 um along all directions. The assembly of
the measurement setup has also been well adjusted to
minimize the assembly error from X and Z. Therefore, the
measurement error coming from the machine tool and the
assembly of the setup can only contribute to sub-micron scale
measurement error along Y axis, which guarantees an accurate
measuring result. Two optical fibers were connected to the
same interrogator using different channels to capture the wave
spectrum of the reflected light. The spectrometer has a
wavelength range between 1510 and 1590 nm. To have a
better performance, the distance between the tip of the optical
fiber and the polished surface of the standard block should be
maintained between 200 to 500 um. For this experiment, the
initial gap was set to approximately 300 um.

A PMAC motion controller (controller name, Delta Tau
Data Systems Inc.) was used to control the position of X-axis,
and it was connected to the same computer with the
interrogator to coordinate the measurement and the machine
tool’s movement. The optical fibers commence profiling the
standard block from its right edge to the left edge while the X-
axis slide moves in the positive direction from its relative zero

b) Straightness Error
X-axis slide I
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Sensor A p— Profile Error
YE Sensor B

>
> X Spacing
Distance (L)
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Fig. 4 Setup for online straightness error measurement. (a)
experiment setup, (b) measurement schematic diagram
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Fig. 5 Surface profile of the standard block. (a) surface profile, (b)
surface slope along X axis, (c) surface slope along Z axis

coordinate, shown in Fig. 4. After every 100 um jogging
distance, the X-axis pauses for 5 seconds to allow the optical
fiber sensors to obtain 10 measurement results at the same
measurement point. The final measurement data was determined
by selecting the value with the highest occurrence, effectively
eliminating the influence of noise and machine tool vibrations.
The analysis reveals that each measurement point has a
minimum occurrence of more than 5, which guarantees the
accuracy of the final measurement.

The overall measurement system is compactable and can be
installed easily to any machine tool. In order to realize an
online measurement system, deep learning has been employed
to accelerate the spectrum analyzing process to predict the gap
distance between the end of the optical fiber and the polished
surface of the standard block. Since a distance of 67 mm has
been measured and we conducted more than 10 measurements
on a single measurement point, there can be around 6700
spectra generated from one optical fiber sensor (around
13+400 spectra for two optical fiber sensors for straightness
error measurement). We conducted 14 straightness error
measurement experiments and randomly selected 9 of them as
the training dataset, 2 of them as the validation dataset, and 3
of them as the testing dataset (while the number of the spectra
is 122339, 27116, and 54326 for training, validation, and
testing dataset). The dataset input is a one-dimensional tensor
which has 16001 features that depicts the spectrum between
the power and the wavelength drawn directly from the
interrogator. The label of the dataset is a scalar that is the
distance—300

100 )
The dataset label can be treated uniformly distributed within
the measurement range, but all the input spectra are unique due
to the environment noise. The training codes have been written
in Python with Pytorch Geometric library and run on an
NVIDIA RTX 3090 GPU and an Intel i7-10700k CPU.
ADAM optimization algorithm has been employed to adjust

normalized measured distance (that equals to

Input(16001) —>

Conv1d(1, 16, 5) —> MaxPool1d(2, 2) —>
Conv1d(16, 32, 5) —> MaxPool1d(2, 2) —>
Conv1d(32, 64, 5) —> MaxPool1d(2, 2) —>
Conv1d(256, 256, 5) —> MaxPool1d(2, 2) —>
Dense(6912, 1024) —> Dense(6912, 1024) —>
Dense(128, 1) —= Output(1)

Conv1d: 1D convolutional layer; MaxPool1d(k, s): max polling layer;

Dense(f,,, f,.1): dense layer; f,,: number of the input features;
f.u: number of the output features; k: kernal size; s: stride.

Fig. 6 Neural network structure
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Fig. 7 Training/validating/testing loss

the hyperparameters in the model and the mean square loss has
been applied for calculating the gradient descent. The training
batch size is set to 512 to utilize the maximum GPU memory
and provide a precise training gradient while the learning rate
is 0.005. The neural network structure is shown in Fig. 6.

All the hyperparameters have been optimized using grid
search. The first several layers of the neural network gradually
deepen the channels of the input tensor and compress the
tensor size while the last several layers have been designed to
further extract important features from the input. 77 epochs
have been applied for the neural network training according to the
maximum validation accuracy. The final averaged prediction
error is 0.3103 pm, 0.4886 um, and 0.4782 pm for training,
validating, and testing. The training/validating/testing loss is
shown in Fig. 7.

3 Results and Discussion
3.1 Tool Profile 3D Reconstruction

Due to the resonance in the FPI formed by the SMF-air
interface and the air-tool interface, maximums and minimums
can be observed in the reflected spectrum. However, an ideal
FPI with two plane reflection surfaces requires a perfect
alignment of the surfaces. However, the tool has a curved
surface and therefore the two reflection surfaces cannot
maintain paralleled all the time. Due to the diverge of the
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Fig. 8 Different types of spectra, (a) poor, (b) better, (c) good

output light from the optical fiber, slight misalignment is still
acceptable with a cost of lower contrast of the interference
pattern. Fig. 8 shows different types of reflection spectra
collected during this experiment. First, we can see a common
trend of spectra shown as the translucent red curved arrow in
Fig. 8(a). This is due to the absorption of the tool material
which is determined by the molecular structure. Therefore, this
absorption spectrum cannot provide us the distance
information. Fig. 8(a) shows a poor spectrum due to a large
misalignment between the fiber surface and the tool surface.
This misalignment caused a low interference contrast that was
completely covered by the noise. Therefore, it is difficult to get
distance information from this spectrum. Fig. §(b) shows a
better spectrum compared with Fig. 8(a). As we can see, the
interference pattern can be seen from this spectrum and
therefore we can calculate the distance between the optical
fiber and the tool surface. Fig. 8(c) shows a good spectrum of
which the interference contrasts higher due to a small
misalignment between the two reflection surfaces. Therefore,
it is necessary to classify the quality of the reflection spectrum.

The character of a high-quality spectrum is the higher
contrast of the interference pattern. Although the interference
pattern is a chirped signal instead of a periodical function,
Fourier Transform is still a good tool to classify the spectrum
quality within a small range of wavelength (80 nm in this
experiment). Since the fast Fourier transform (FFT) gives the
spatial frequency of the spectrum, we can estimate the FSR by
taking the reciprocal of its spatial frequency.

Fig. 9 shows the result given by FFT of the poor, better, and
good spectra in Fig. 8. Before evaluating, we need to estimate
the range of the FSR of the experimental spectrum using Eq.
(4) since we know the range of the distance between the fiber
and the tool. A quick estimation method in this experiment is
take approximation of Eq. (5) as

7
= 2n sk ©

since Ay, >> Apsr. Let, 4,=1550nm, n=1, and '€ [0,3,5 mm.
Then we get Agz €[0,2,4] nm as shown in Fig. 9. For a poor
spectrum, no significant peak can be seen within this range.
And for better and good spectra, we can see significant peaks
between 1 and 2 nm which agrees with their corresponding
spectra in Fig. 8.
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Fig. 9 Approximated FSR calculation using FFT
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The method used in this experiment to quantitively evaluate
the peak is fitting the FFT curve between 0 nm and 5 nm
without the points between 0.2 nm 4 nm using a linear
function. Then, subtract the fitting curve from the FFT curve.
Fig. 10 shows the modified FFT of the three spectra. Then, we
can simply find the maximum amplitude to determine the
quality of the interference spectra. And we can use the
wavelength corresponding to the maximum amplitude as Ay,

To evaluate the resolution of the method based on Eq. (6),
we need to know the resolution of the FFT. Ref. [27] gives the
resolution of FFT in range [, ;] with sampling points N as:

1

S

(N

Since the FSR is approximated as the reciprocal of the
spatial frequency given by the FFT, the resolution depends on
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the spatial frequency (wavenumber) of the maximum
amplitude of the FFT result. For spatial frequency at point f;,
and f;,.1, the resolution of FSR is:

Rpsr zj}l‘*"'l"" = '5""""""1""'""""" ®)
m Jm+1 f (A —Ag) ],

Therefore, the resolution depends on the spatial frequency
with the maximum amplitude after FFT. Assume we have
fu=1/3nm™" for a spectrometer at rang 1510 to 1590 nm.
Then the resolution is Rpgz = 0.108 nm. Substitute to the Eq.
(6) and use A, =1550nm, n=1, and Apsg = 1/f;, =3 nm. We
have the resolution of distance between the fiber and the target
is R,a=13.914 um. To further improve the resolution, a
manual process is given in Ref. [16]. The manual method has
a theoretical resolution of 4.45 nm. To improve the efficiency
of the manual method, a machine learning algorithm will be
introduced in the following section. The measurement range of
the FPI is determined by the quality of the signal. Using a
spectrometer with a wavelength range from 1510 nm to
1590 nm, the distance between the fiber and the target between
100 pm and 4 mm can be monitored. In order to obtain a high-
quality spectrum, the distance between the fiber and the target
should be maintained between 200 and 500 pm.

Now, since we know all the necessary parameters in Eq. (5),
we can calculate the distance between the fiber and the tool.
However, to recover the tool profile, we need some extra
information about the tool. For a new tool, the outer diameter
of the tool is usually provided by the vendor. The outer
diameter can be used to calculate the distance between the
measured point and the axis of the tool by knowing the
distance between the measured point and the optical fiber. Fig.
11 shows the method to reconstruct the profile of the new and
used tools. For new tools, we need to find the minimum
distance between the optical fiber and the tool d,. With
knowing the radius of the new tool r,, we can calculate the
distance between the optical fiber and the axis of the tool as

L=r,+d, ©

Then, the distance between the measured points and the
axis of the tool can be calculated as

r=L-d (10)
where d is the distance between the optical fiber and the
measured point. It should be noted that since we are
monitoring the distance between the fiber and the tool, runout
can be seen in the reconstructed profile. However, the
existence can affect the accuracy of r, so it should be modified
to compensate the radial and axial runout. To find the
geometric center of the tool of each scan layer, we need the
coordinates of at least three tips of the tool to determine the
coordinates of the circle (x;, .,z ) for the i™ layer. With all
the center coordinates, both the radial and axial runout can be
calculated. Since we assumed r, was the distance between the

Optical Fiber

b)

Optical Fiber

Fig. 11 Profile reconstruction of new and used tools

tool axis and the tip, the calculate » was incorrect. Therefore,
it should be recalculated after the runout effect is compensated.
For tools with two tips, the process can be simplified since the
center of the circle is at the center of the connection of the two
tips.

For used tools, we assume that there is no wear on the
points that are closest to the axis of the tool. Since the profile
of the new tool has been constructed, we know the distance
between the tool axis and the point that is closest to the axis,
noted as 7. Finding the maximum distance between the fiber
and the tool d,,, then the distance between the optical fiber and
the tool axis is now:

L =r +d, (11)

Therefore, the profile of the used tool can be reconstructed
using the same method as Eq. (10).

Milling tool runout error largely influences the chip
thickness during the cutting which is one of the key factors
that affects the milling quality [22,23]. This runout error can
also be conducted by the 3D reconstruction of the milling tool.
Before reconstructing the 3D profile, we need to calculate the
runout of the tool first. As introduced before, we first assign a
value between the rotation center and the tip of the tool (here
we assign this value as 0.5 mm). With this value, we can
reconstruct a 3D profile with an error of the distance between
the monitored point and the axis of the tool. This error is
caused by a proportional scale of the distance between the
monitored point and the tool axis. Here we only need the
coordinates of the tool axis, which is not affected by this scale,
to calculate the runout. The distance between the monitored
point and the tool axis should be corrected after compensating
for both the radial and axial runout. Fig. 12 shows the shift of
the reconstructed profile due to the effect of runout. Fig. 12(a)
shows the coordinates of the tool center along the direction of
the fiber axis, and Fig. 12(b) shows the coordinates of the tool



132/ July 2023

International Journal of Precision Engineering and Manufacturing 1(2):125-136

center perpendicular to the fiber axis. The average coordinate
along the fiber direction is s;=15.4 pm, and the angle
between the tool axis and the vertical direction is o = 1.34°.
For those perpendicular to the fiber axis, the values are

s, =285.1 um and &, = 0.44°, respectively. Therefore, the radial

. 2.2 . .
runout is s = ,/s7+s;=286.5 um and the axial runout is a=

arctan ,/tan” o +tan’ o, =141°.

Fig. 13 shows the point cloud reconstruction of the tool
profile, the color is the distance of the point from the tool axis.
The scan step along tangential direction is 1°, and the scan step
along the axis direction is 0.1 mm. Fig. 13(a) and Fig. 13(c)
are the top and side of the reconstructed profile of a new tool,
respectively. As we can see, the helix structure of the tool is
reconstructed. The tips of the tool have a large distance from
the axis compared with other points. However, because we
throw away the low-quality spectra which are mostly the
sampling points that are close to the tool axis, we get relatively
less points close to the axis. Fig. 13(b) and Fig. 13(d) show the
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Fig. 12 Coordinates of the tool along the plane perpendicular to the
tool axis. (a) along axis of optical fiber, (b) perpendicular to axis of
optical fiber
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Fig. 13 Point cloud 3d reconstruction of tool profiles, (a) new tool
(top view), (b) used tool (top view), (c) new tool (side view), (d)
used tool (side view), color bar: distance from the tool axis

top view and the side view of a very worn tool. As we can see,
the size of the tool along the radial direction is much smaller
than that of the new tool. The blade was worn out therefore the
outline of the tool has a rounded look compared with the new
tool.

Fig. 14 shows the image of the used tool of top view and
side view. Fig. 14(a) shows the top view of the tool and the
matching with the point cloud. The points come from the first
layer of the scan which is close to the top of the tool. As we
can see, since the cutters were worn out, no sharp edges can
be seen. Most points are located on the periphery of the tool,
with a small number of points inside the periphery. There are
two reasons for this difference: 1) the scanned points are
located slightly lower than the top of the tool; 2) the points
inside the periphery are on the flute of the tool due to this
location difference. Fig. 14(b) shows the side view of the tool.
We can see scratches on the side which indicate serious tool
wear.

To quantitively evaluate the tool, we measured the distances
from the axis to the 4 tips of the tool for each scanned layer.
Fig. 15(a) shows the measurement of the measurements, the
box plot (1.5IQR) of each layer is the statistics of the distances
of the 4 tips. As we can see, for the new tool, the distances are
close to the tool radius provided by the vendor (0.5 mm). The
difference is because we calculate the radius based on the
minimum distance between the tool surface and the fiber.
According to the box plots, the measured value varies between
0.48 mm and 0.50 mm. One possible reason is that the
sampled points may not be the tip of the tool exactly.
Increasing the sampling number for each cycle can reduce this
difference. For the used tool, we can see a curved shape of the
profile. The distance between the measured point and the tool
axis (radius hereinafter) on the top of the tool is the smallest.
The radius increases towards the shank, which means less tool
wear along this direction. Also, the radius of the four tips on
the top of the tool shows a significant difference. This is
because the nonuniform wear of the four cutters because of
multiple reasons such as the runout of the tool. Towards the
shank, the radius increases which indicates less tool wear. The
tool wear can be calculated by taking the difference of radiuses
between the new and the used tool as shown in Fig. 15(b). The
tool wears are calculated based on both the mean and the
median since there are some differences between them due to
the outliers. As we can see, the tool wears calculated by mean

Fig. 14 Image of used tool and matching with the point cloud. (a) top
view, (b) side view
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and median have a similar tendency. At the top of the tool, a
maximum tool wear of about 140 pum can be observed.
Moving toward the shank, the tool wear reduces to about
68 um.

3.2 CNC Machine Straightness Error Monitoring

We have employed Sequential-Two-Point (STP) method to
separate the straightness error of the machine tool guideway
and the profile error of the standard block. We use two optical
fibers as displacement sensors, shown in Fig. 4(b), whose
spacing distance is L. The raw sensor outputs, P,(x) and Pp(x)
from the displacement sensor A and B respectively, can be
represented by:

n=0,1,2,3,..,N

{PA(xn) zﬂxn)+ey(xn) (12)

PB(xn) Zﬂxn+L)+ey(xn) |

where f{(x) is the profile error from the standard block, and
ey(x) is the straightness error of the X-axis guideway along Y-
axis direction. Here, x,=n-L, and n=0, 1,2, 3, ... N which
illustrates the measurement position. The output difference
between these two sensors can eliminate the straightness error
term and provides the increment of the profile error. Therefore,
the equation for the separated profile error f(x) and the
straightness error e(x) can be expressed by:

Straightness Error Profile Error
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Fig. 16 Separated profile error and straightness error
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Fig. 17 Separated profile error compared with CMM result
n
f(xn) = Z [PB(xn)_PA(xn)]
i=1 ,1=0,1,2,3,..., A (13)

ey(xn) = PA(xn)_f(xn)

Using Eq. (12), we have conducted error separation
technique on three experiments (that are also the selected
testing dataset). The separated straightness error and the
profile error using both the conventional spectrum analysis
method are shown in Fig. 16. The spectra from two optical
fiber sensors have been processed by both the conventional
method (“Conv.” in Fig. 16) and the deep learning method
(“DNN” in Fig. 16). The calculated profile error has been
compared with the measurement result (“Profiler” in Fig. 16)
from a CMM (Model name, Company name). It can be seen
that the calculated profile error is very close to the CMM
measurement result. The standard block has around 30 pm
profile error over 67 mm range, and the straightness error of
the machine tool guideway is around 40 pm. Though the deep
learning method contributes to a larger prediction error, the
overall accuracy can still be maintained. Further, the deep
learning approach is able to process more than 6700 spectra
from one optical fiber sensor in batch within 50.727 s, which
guarantees the online measurement capability.

Also, we calculated the difference between the separated
profile error and the measurement result from the CMM,
shown in Fig. 17. It can be seen that, with the conventional



134/ July 2023

International Journal of Precision Engineering and Manufacturing 1(2):125-136

method, the first two experiments have a measurement error of
around 2 pm, while the error from the third experiment is a bit
larger, which reaches around 3 um. The results based on the
deep learning method are larger since the average prediction
error of the deep learning method can be around 0.5 um. This
prediction error from each measurement point can accumulate
according to the summation process in Eq. (2). However, the
largest measurement error based on the deep learning method
is under 4 um, which is still acceptable considering the overall
30 um profile error. The deep learning method provides a
compromised prediction result with a much faster speed,
which broadens the application field of this portable straightness
error technique. The straightness error measurement can be both
cost efficient and time efficient.

4. Conclusion

In this research, we introduced a method to use optical fiber
Fabry-Pérot interferometer (FPI) as distance sensor and its
application in smart manufacturing. The measuring system
includes a broadband light source, a spectrometer, an optical
circulator, and the supporting spectrum analyzing algorithm.
The Fast Fourier Transform (FFT) method was used to
calculate the distance between the optical fiber and the surface
of the target. To improve the speed of the spectrum analyzing
process, neural network models were built to find out the
distance between the fiber and the target.

First, optical fiber FPI was used to measure the distance
between a fixed fiber and a rotating tool. With the rotation of
the tool along its axis, the distance between the fiber and the
surface of the tool was measured. With a selection of effective
reflection spectra, the 3D profile of the tool can be
reconstructed. By reconstructing the profile of a new tool, the
runout of the spindle was calculated by finding out the
deviation of the center of the reconstructed 3D profile from the
origin. The tool wear can also be found by comparing the
reconstructed profile of the new and the used tools. The
analyzing method was introduced, which is robust for even
noisy spectrum. However, the analyzing method is slow since
large amounts of calculations are needed. To improve the
analyzing speed, machine learning models were trained to find
out the distance between the fiber and the target surface. Both
CNN model and DNN model were developed and the
difference between these models were compared. It was found
that the DNN model has a faster speed compared with the
CNN model. We applied the machine learning algorithm to
measure the straightness error of a CNC machine. The result
shows that the machine learning algorithm has an error of
under 4 um compared with the measurement given by a
Hexagon Coordinate Measurement Machine. This difference
can come from both the measurement of the optical fiber
sensors and the Coordinate Measurement Machine. Moreover,
the difference of the measurement location on the standard block
can also introduce differences between the measurements.

Compared with mechanical methods, the proposed method
is a noncontact method that has a high measurement precision.
Compared with the commercially available interferometers,
the proposed method is based on the wavelength of the
interference spectrum instead of intensity. Therefore, the
proposed method is more robust to environmental fluctuations
which can cause a change of absorption in the air of the
detection light. Moreover, the sensitive element of the
proposed method is compact and therefore it is suitable for
monitoring in a limited space.
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