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Abstract

In this research we introduce the application of an optical fiber Fabry-Pérot interferometer in smart manufacturing. We used an optical

fiber Fabry-Pérot interferometer to measure the distance between a moving target and a fixed optical fiber. When the target moves,

the distance between the fiber and the target can be precisely determined. First, we monitored the distance between a fixed fiber and

the surface of a rotating tool. By measuring the distance, we reconstructed the three-dimensional (3D) profile of the tool. We also

introduce the method to calculate the runout and tool wear. To further improve the speed of this method, we developed machine

learning models to find out the distance from the spectrum of the interferometer since the spectrum analyzing method is relatively

slow. It was found that the Deep Neural Network model predicts the distance between the fiber and the target surface with a sufficient

precision (< 4 μm) when measuring the straightness error of a computer numerical control (CNC) machine tool. The proposed

method provides possibilities for noncontact precise monitoring especially in a limited space.

Keywords Optical fiber sensor · Smart monitoring · Deep neural network · Convolutional neural network
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1 Introduction

Optical sensors such as optical interferometry have been

widely applied in different areas such as environment science

[1-3], biology [4-6], and engineering [7-9]. It has also been

used in smart manufacturing such as high precision measurement

and positioning [10,11]. Compared with traditional interferometers

based on space optics, optical fiber sensors provide a more

stable environment since the detection light is guided inside

the fiber. Therefore, they are less sensitive to environmental

disturbances such as scattering and absorption fluctuation in

the air. Moreover, optical fiber sensors are compact [12-14],

and therefore can be installed in limited spaces. In this paper,

we use an optical Fabry-Pérot interferometer (FPI) as a

displacement sensor to reconstruct the three-dimensional (3D)

profile of a machine tool and measure the straight error of a

computer numerical control (CNC) machine tool. An open

optical fiber FPI has a simple structure and a higher finesse

compared with other types of interferometers such as

Michelson interferometers and Mach-Zehnder interferometer

due to its resonance nature [14,15]. Therefore, it has a higher

signal-to-noise ratio which makes it possible to work in non-

ideal environments. Commercial interferometers usually

monitor the distance based on the intensity change of a

Michelson interferometer, however this method needs high

precision calibration. In our previous research [16], we

introduced an open optical fiber FPI that gives the optical

distance between the fiber and the target directly from the

interference spectrum.

In this research, we will introduce the application of optical

fiber FPIs as distance sensors in smart manufacturing. First,

we will introduce the basic principle of FPI and the method to

reconstruct the 3D profile of a machine tool before and after

being used. The spectrum quality identification method and

the spectrum analyzing method will be introduced. Based on

the interference spectrum of the FPI, the distance between the

optical fiber and the surface of the target can be determined.

To reconstruct the 3D profile of the tool, we need to fix the

optical fiber while rotating the tool along its axis so that the

distance between the fiber and the surface of the tool can be

monitored. The distances between the fiber and points of the

surface of the tool allow us to measure the profile of the tool.

With the reconstructed profile, we can further calculate the

runout and the tool wear of the tool. To improve the analyzing

speed, different machine learning algorithms were trained to

find out the distance between the fiber and the target from the

interference spectrum. Then, the machine learning algorithm

was applied to analyze the spectra to measure the straightness

error of a CNC machine tool using the two-point method. The

measurement result of the proposed method will be evaluated

by a coordinate measurement machine (CMM).

2 Sensing Principle

2.1 Principle of Fabry-Pérot Interferometers

FPIs consist of two parallel reflection surfaces and the

space between them. In this experiment, we used a single

mode optical fiber (SMF) to form an open FPI to measure the

distance between the tip of the SMF and the surface of the

target. Fig. 1 (a) shows the basic working principle of the FPI

we used in this experiment. Incident light E
inc

 comes from the

light source and propagate along the core of the SMF. When

reaching the interface (Reflection Surface 1) between the Core

and the Medium between the SMF and Target, part of light

will be reflected by Reflection Surface 1 and the rest will

Fig. 1 Working principle of an optical fiber FPI. (a) Structure of FPI

used in this experiment, (b) a typical spectrum of an FPI
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propagate through the surface. Then, the light will be reflected

by the surface of Target (Reflection Surface 2) and then

reflected by Surface 1 again. Therefore, the light will be reflected

between Reflection Surface 1 and 2 and resonance occurs. The

structure formed by the two reflection surfaces and the space

between them is called a Fabry-Pérot cavity (FP cavity).

Due to the boundary conditions of the FP cavity, light with

wavelengths that are supported by the cavity will interfere

constructively and therefore have higher powers. Light with

wavelengths that are not supported by the cavity will interfere

destructively and therefore has lower powers. The reflected light

E
ref

 will propagate to the opposite direction along the core and will

be received by a spectrometer for further analysis. Fig. 1(b) shows

a typical experimental spectrum of an FPI, multiple maximums

and minimums can be seen on the spectrum. The maximums are

due to the constructive interference, whereas the minimums are

due to the destructive interference of the FP cavity.

The reflection spectrum is given in Ref. [16]:

(1)

where r
i
 is the reflection coefficient of Reflection Surface i, t

i

is the transmission coefficient of Reflection Surface i,

 is the phase change of the light when travel in

the cavity for a roundtrip, l is the geometric distance between

Reflection Surface 1 and Reflection Surface 2, n is the

refractive index of the medium at wavelength of 1,550 nm, and

λ
0
 is the wavelength of light in vacuum, and j is the imaginary

unit. Therefore, the wavelength of the maximums can be

calculated as [16]:

(2)

where m is the order number of the maximums. As we can see,

wavelength λ
m
 is proportional to geometric distance between

the surfaces l and refractive index of the medium n for a given

order number m. Therefore, if the refractive index n is known,

the distance between the surfaces is available from the

wavelengths of the spectrum. To calculate order number m, we

need to measure the free spectrum range (FSR) λ
FSR

, which is

defined as the wavelength difference between to adjacent

maximums and is available from the spectrum. The FSR can

also be calculated using [16]:

(3)

Combine Eqs. (2) and (3), we have:

(4)

Therefore, we have:

(5)

From Eq. (5), we can see the cavity length can be

determined by measuring the FSR between a maximum

wavelength λ
m
 when refractive index n is known.

2.2 Experiment Setups

2.2.1 Tool Profile 3D Reconstruction

Milling quality is largely influenced by the tool wear [17-19],

runout [20,21], and touch off error [22,23]. Therefore, tool

condition monitoring is crucial for the milling process to save

the tool’s life and improve the production efficiency. In this

section, we present an optic fiber sensor-based tool profile

measurement technique that can precisely reconstruct the 3D

profile of a milling tool. The position information, as well as

the runout error of the milling tool, can be computed according

to the reconstructed 3D profile. Based on this technique, a

micro milling tool was used to validate the performance of this

technique and its tool wear was evaluated.

Fig. 2(a) shows the setup for tool profile 3D reconstruction

The tool was held by the fixture with its axis pointing upward.

The fixture was fixed on a 6-axis hexapod with a positioning

accuracy of sub-micron level. The inset of Fig. 2(a) shows the

detail of the tool and packaged optical fiber. Fig. 2(b) shows

the structure of the packaged optical fiber. The bare fiber was

fed through the center of a stainless-steel ferrule and was fixed

at the end of the ferrule using epoxy. The stainless-steel ferrule

was fixed at the end of a stainless-steel tube using epoxy. The

packaged optical fiber was fixed on a fixture that will not

move with the tool. The axis of the fiber was perpendicular to

the axis of the tool. A gap was left between the end of the fiber

and the surface of the tool. Therefore, an FPI was formed by
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Fig. 2 Setup for tool profile reconstruction. (a) photo of experimental

setup, inset: Fabry-Pérot interferometer, (b) structure of the packaged

optical fiber
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the interface between the fiber and air and the surface of the

tool. During measurement, the tool was rotated and moved

upward after each rotation.

Fig. 3 shows the connection of the monitoring system. An

optical circulator is a 3-port device that when light incident

from port 1 will exit from port 2, and when incident from port

2 will exit from port 3. The incident light comes from the light

source and then enters port 1. Then the output light from port

2 will propagate to the FPI formed by the fiber and the tool.

The reflected light will propagate to the opposite direction

along the fiber and enters port 2. The output light from port 3

will then enter the spectrometer. The light source,

spectrometer, and hexapod were connected to the PC. The

coordinates and the timestamps of the tool, as well as the

corresponding spectra, were recorded by the PC. In this

experiment, we analyzed the spectra and reconstructed the

profile of the tool after the scan. The analyzing process can

also be done during the scan process to realize a real-time

profile reconstruction.

2.2.2 CNC Machine Straightness Error Monitoring

Straightness error is one of the innate geometrical errors

from the machine tool that can largely influence the

manufacturing precision [24-26]. However, straightness error

can change while the load of the machine tool changes, and

there is no portable online approach that can evaluate the

straightness error instantly. Therefore, in this section, we refer

to Ref. [25] and measure the straightness error of a milling

machine tool with Sequential Two Point (STP) method using

two optical fiber sensors. We have employed machine learning

algorithm to accelerate the spectrum analyzing algorithm in

order to realize an online straightness error measurement

technique.

Fig. 4 illustrates the setup utilized for online straightness

measurement. A commercially available CNC machine tool

was employed to measure the straightness error of its X-axis

guideway. Two optical fibers were installed on the machine

tool's base using glass ferrules. These glass ferrules, together

with the fibers, were affixed to the glass substrate using UV

curable epoxy. The optical fibers were oriented perpendicular

to the reference surface, facing in the positive direction of the

Y-axis. A standard block has been mounted to the surface of

the X-axis guideway and measured by these optical fiber

sensors. While the standard block can move with the X-axis

slide, the optical fibers remain fixed to the machine tool,

enabling the measurement of the standard block’s profile.

The standard block employed in this study is a low-cost 1-

2-3 block, possessing a squareness of 0.003" per inch, a

flatness of 0.002", and a parallelism of 0.002". According to

Ref. [25], the polishing process has been carried out on an

inexpensive polishing machine, and the profile of this polished

surface has been measured by a precision Hexagon Coordinate

Measurement Machine (CMM), shown in Fig. 5. The

measured area is 1.4 × 75.0 mm large with the measurement

spacing distance of 0.2 mm. The surface slope has been

calculated based on this surface profile using the central

difference approach. Ignoring the outliers, it appears that the

surface slope along X axis is around -3 to 2 μm per mm,

whereas that for Z axis is less than ±4 μm. This indicates that

when deviation of the optical fibers along Y axis (or Z axis)

is 1 mm, the measurement result from the optical fiber sensors

contains -3 to 2 μm (or ±4 μm) error. Generally, the sum of the

positioning error and the straightness error from the machine

tool can be less than 100 μm along all directions. The assembly of

the measurement setup has also been well adjusted to

minimize the assembly error from X and Z. Therefore, the

measurement error coming from the machine tool and the

assembly of the setup can only contribute to sub-micron scale

measurement error along Y axis, which guarantees an accurate

measuring result. Two optical fibers were connected to the

same interrogator using different channels to capture the wave

spectrum of the reflected light. The spectrometer has a

wavelength range between 1510 and 1590 nm. To have a

better performance, the distance between the tip of the optical

fiber and the polished surface of the standard block should be

maintained between 200 to 500 μm. For this experiment, the

initial gap was set to approximately 300 μm.

A PMAC motion controller (controller name, Delta Tau

Data Systems Inc.) was used to control the position of X-axis,

and it was connected to the same computer with the

interrogator to coordinate the measurement and the machine

tool’s movement. The optical fibers commence profiling the

standard block from its right edge to the left edge while the X-

axis slide moves in the positive direction from its relative zero

Fig. 3 Connection of the monitoring system

Fig. 4 Setup for online straightness error measurement. (a)

experiment setup, (b) measurement schematic diagram
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coordinate, shown in Fig. 4. After every 100 μm jogging

distance, the X-axis pauses for 5 seconds to allow the optical

fiber sensors to obtain 10 measurement results at the same

measurement point. The final measurement data was determined

by selecting the value with the highest occurrence, effectively

eliminating the influence of noise and machine tool vibrations.

The analysis reveals that each measurement point has a

minimum occurrence of more than 5, which guarantees the

accuracy of the final measurement.

The overall measurement system is compactable and can be

installed easily to any machine tool. In order to realize an

online measurement system, deep learning has been employed

to accelerate the spectrum analyzing process to predict the gap

distance between the end of the optical fiber and the polished

surface of the standard block. Since a distance of 67 mm has

been measured and we conducted more than 10 measurements

on a single measurement point, there can be around 6700

spectra generated from one optical fiber sensor (around

13+400 spectra for two optical fiber sensors for straightness

error measurement). We conducted 14 straightness error

measurement experiments and randomly selected 9 of them as

the training dataset, 2 of them as the validation dataset, and 3

of them as the testing dataset (while the number of the spectra

is 122339, 27116, and 54326 for training, validation, and

testing dataset). The dataset input is a one-dimensional tensor

which has 16001 features that depicts the spectrum between

the power and the wavelength drawn directly from the

interrogator. The label of the dataset is a scalar that is the

normalized measured distance (that equals to ).

The dataset label can be treated uniformly distributed within

the measurement range, but all the input spectra are unique due

to the environment noise. The training codes have been written

in Python with Pytorch Geometric library and run on an

NVIDIA RTX 3090 GPU and an Intel i7-10700k CPU.

ADAM optimization algorithm has been employed to adjust

the hyperparameters in the model and the mean square loss has

been applied for calculating the gradient descent. The training

batch size is set to 512 to utilize the maximum GPU memory

and provide a precise training gradient while the learning rate

is 0.005. The neural network structure is shown in Fig. 6.

All the hyperparameters have been optimized using grid

search. The first several layers of the neural network gradually

deepen the channels of the input tensor and compress the

tensor size while the last several layers have been designed to

further extract important features from the input. 77 epochs

have been applied for the neural network training according to the

maximum validation accuracy. The final averaged prediction

error is 0.3103 μm, 0.4886 μm, and 0.4782 μm for training,

validating, and testing. The training/validating/testing loss is

shown in Fig. 7.

3 Results and Discussion

3.1 Tool Profile 3D Reconstruction

Due to the resonance in the FPI formed by the SMF-air

interface and the air-tool interface, maximums and minimums

can be observed in the reflected spectrum. However, an ideal

FPI with two plane reflection surfaces requires a perfect

alignment of the surfaces. However, the tool has a curved

surface and therefore the two reflection surfaces cannot

maintain paralleled all the time. Due to the diverge of the

distance 300–

100

---------------------------------

Fig. 5 Surface profile of the standard block. (a) surface profile, (b)

surface slope along X axis, (c) surface slope along Z axis

Fig. 6 Neural network structure

Fig. 7 Training/validating/testing loss
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output light from the optical fiber, slight misalignment is still

acceptable with a cost of lower contrast of the interference

pattern. Fig. 8 shows different types of reflection spectra

collected during this experiment. First, we can see a common

trend of spectra shown as the translucent red curved arrow in

Fig. 8(a). This is due to the absorption of the tool material

which is determined by the molecular structure. Therefore, this

absorption spectrum cannot provide us the distance

information. Fig. 8(a) shows a poor spectrum due to a large

misalignment between the fiber surface and the tool surface.

This misalignment caused a low interference contrast that was

completely covered by the noise. Therefore, it is difficult to get

distance information from this spectrum. Fig. 8(b) shows a

better spectrum compared with Fig. 8(a). As we can see, the

interference pattern can be seen from this spectrum and

therefore we can calculate the distance between the optical

fiber and the tool surface. Fig. 8(c) shows a good spectrum of

which the interference contrasts higher due to a small

misalignment between the two reflection surfaces. Therefore,

it is necessary to classify the quality of the reflection spectrum.

The character of a high-quality spectrum is the higher

contrast of the interference pattern. Although the interference

pattern is a chirped signal instead of a periodical function,

Fourier Transform is still a good tool to classify the spectrum

quality within a small range of wavelength (80 nm in this

experiment). Since the fast Fourier transform (FFT) gives the

spatial frequency of the spectrum, we can estimate the FSR by

taking the reciprocal of its spatial frequency.

Fig. 9 shows the result given by FFT of the poor, better, and

good spectra in Fig. 8. Before evaluating, we need to estimate

the range of the FSR of the experimental spectrum using Eq.

(4) since we know the range of the distance between the fiber

and the tool. A quick estimation method in this experiment is

take approximation of Eq. (5) as

(6)

since λ
m

>> λ
FSR

. Let, λ
m

= 1550 nm, n = 1, and mm.

Then we get nm as shown in Fig. 9. For a poor

spectrum, no significant peak can be seen within this range.

And for better and good spectra, we can see significant peaks

between 1 and 2 nm which agrees with their corresponding

spectra in Fig. 8.

The method used in this experiment to quantitively evaluate

the peak is fitting the FFT curve between 0 nm and 5 nm

without the points between 0.2 nm 4 nm using a linear

function. Then, subtract the fitting curve from the FFT curve.

Fig. 10 shows the modified FFT of the three spectra. Then, we

can simply find the maximum amplitude to determine the

quality of the interference spectra. And we can use the

wavelength corresponding to the maximum amplitude as λ
m
.

To evaluate the resolution of the method based on Eq. (6),

we need to know the resolution of the FFT. Ref. [27] gives the

resolution of FFT in range  with sampling points N as:

(7)

Since the FSR is approximated as the reciprocal of the

spatial frequency given by the FFT, the resolution depends on

l

λ
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Fig. 8 Different types of spectra, (a) poor, (b) better, (c) good

Fig. 9 Approximated FSR calculation using FFT

Fig. 10 Modified approximated FSR
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the spatial frequency (wavenumber) of the maximum

amplitude of the FFT result. For spatial frequency at point f
m

and f
m+1

, the resolution of FSR is:

(8)

Therefore, the resolution depends on the spatial frequency

with the maximum amplitude after FFT. Assume we have

f
m

= 1/3 nm
–1

 for a spectrometer at rang 1510 to 1590 nm.

Then the resolution is R
FSR

= 0.108 nm. Substitute to the Eq.

(6) and use λ
m

= 1550 nm, n = 1, and λ
FSR

= 1/f
m

= 3 nm. We

have the resolution of distance between the fiber and the target

is R
od

= 13.914 μm. To further improve the resolution, a

manual process is given in Ref. [16]. The manual method has

a theoretical resolution of 4.45 nm. To improve the efficiency

of the manual method, a machine learning algorithm will be

introduced in the following section. The measurement range of

the FPI is determined by the quality of the signal. Using a

spectrometer with a wavelength range from 1510 nm to

1590 nm, the distance between the fiber and the target between

100 μm and 4 mm can be monitored. In order to obtain a high-

quality spectrum, the distance between the fiber and the target

should be maintained between 200 and 500 μm.

Now, since we know all the necessary parameters in Eq. (5),

we can calculate the distance between the fiber and the tool.

However, to recover the tool profile, we need some extra

information about the tool. For a new tool, the outer diameter

of the tool is usually provided by the vendor. The outer

diameter can be used to calculate the distance between the

measured point and the axis of the tool by knowing the

distance between the measured point and the optical fiber. Fig.

11 shows the method to reconstruct the profile of the new and

used tools. For new tools, we need to find the minimum

distance between the optical fiber and the tool d
n
. With

knowing the radius of the new tool r
n
, we can calculate the

distance between the optical fiber and the axis of the tool as

(9)

Then, the distance between the measured points and the

axis of the tool can be calculated as

(10)

where d is the distance between the optical fiber and the

measured point. It should be noted that since we are

monitoring the distance between the fiber and the tool, runout

can be seen in the reconstructed profile. However, the

existence can affect the accuracy of r, so it should be modified

to compensate the radial and axial runout. To find the

geometric center of the tool of each scan layer, we need the

coordinates of at least three tips of the tool to determine the

coordinates of the circle ( ) for the i
th

 layer. With all

the center coordinates, both the radial and axial runout can be

calculated. Since we assumed r
n
 was the distance between the

tool axis and the tip, the calculate r was incorrect. Therefore,

it should be recalculated after the runout effect is compensated.

For tools with two tips, the process can be simplified since the

center of the circle is at the center of the connection of the two

tips.

For used tools, we assume that there is no wear on the

points that are closest to the axis of the tool. Since the profile

of the new tool has been constructed, we know the distance

between the tool axis and the point that is closest to the axis,

noted as r
w
. Finding the maximum distance between the fiber

and the tool d
w
, then the distance between the optical fiber and

the tool axis is now:

(11)

Therefore, the profile of the used tool can be reconstructed

using the same method as Eq. (10).

Milling tool runout error largely influences the chip

thickness during the cutting which is one of the key factors

that affects the milling quality [22,23]. This runout error can

also be conducted by the 3D reconstruction of the milling tool.

Before reconstructing the 3D profile, we need to calculate the

runout of the tool first. As introduced before, we first assign a

value between the rotation center and the tip of the tool (here

we assign this value as 0.5 mm). With this value, we can

reconstruct a 3D profile with an error of the distance between

the monitored point and the axis of the tool. This error is

caused by a proportional scale of the distance between the

monitored point and the tool axis. Here we only need the

coordinates of the tool axis, which is not affected by this scale,

to calculate the runout. The distance between the monitored

point and the tool axis should be corrected after compensating

for both the radial and axial runout. Fig. 12 shows the shift of

the reconstructed profile due to the effect of runout. Fig. 12(a)

shows the coordinates of the tool center along the direction of

the fiber axis, and Fig. 12(b) shows the coordinates of the tool
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Fig. 11 Profile reconstruction of new and used tools
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center perpendicular to the fiber axis. The average coordinate

along the fiber direction is s
1

= 15.4 μm, and the angle

between the tool axis and the vertical direction is α
1

= 1.34
o

.

For those perpendicular to the fiber axis, the values are

s
2

= 85.1 μm and α
2

= 0.44
o

, respectively. Therefore, the radial

runout is μm and the axial runout is a =

arctan = 1.41
o

.

Fig. 13 shows the point cloud reconstruction of the tool

profile, the color is the distance of the point from the tool axis.

The scan step along tangential direction is 1
o

, and the scan step

along the axis direction is 0.1 mm. Fig. 13(a) and Fig. 13(c)

are the top and side of the reconstructed profile of a new tool,

respectively. As we can see, the helix structure of the tool is

reconstructed. The tips of the tool have a large distance from

the axis compared with other points. However, because we

throw away the low-quality spectra which are mostly the

sampling points that are close to the tool axis, we get relatively

less points close to the axis. Fig. 13(b) and Fig. 13(d) show the

top view and the side view of a very worn tool. As we can see,

the size of the tool along the radial direction is much smaller

than that of the new tool. The blade was worn out therefore the

outline of the tool has a rounded look compared with the new

tool.

Fig. 14 shows the image of the used tool of top view and

side view. Fig. 14(a) shows the top view of the tool and the

matching with the point cloud. The points come from the first

layer of the scan which is close to the top of the tool. As we

can see, since the cutters were worn out, no sharp edges can

be seen. Most points are located on the periphery of the tool,

with a small number of points inside the periphery. There are

two reasons for this difference: 1) the scanned points are

located slightly lower than the top of the tool; 2) the points

inside the periphery are on the flute of the tool due to this

location difference. Fig. 14(b) shows the side view of the tool.

We can see scratches on the side which indicate serious tool

wear.

To quantitively evaluate the tool, we measured the distances

from the axis to the 4 tips of the tool for each scanned layer.

Fig. 15(a) shows the measurement of the measurements, the

box plot (1.5IQR) of each layer is the statistics of the distances

of the 4 tips. As we can see, for the new tool, the distances are

close to the tool radius provided by the vendor (0.5 mm). The

difference is because we calculate the radius based on the

minimum distance between the tool surface and the fiber.

According to the box plots, the measured value varies between

0.48 mm and 0.50 mm. One possible reason is that the

sampled points may not be the tip of the tool exactly.

Increasing the sampling number for each cycle can reduce this

difference. For the used tool, we can see a curved shape of the

profile. The distance between the measured point and the tool

axis (radius hereinafter) on the top of the tool is the smallest.

The radius increases towards the shank, which means less tool

wear along this direction. Also, the radius of the four tips on

the top of the tool shows a significant difference. This is

because the nonuniform wear of the four cutters because of

multiple reasons such as the runout of the tool. Towards the

shank, the radius increases which indicates less tool wear. The

tool wear can be calculated by taking the difference of radiuses

between the new and the used tool as shown in Fig. 15(b). The

tool wears are calculated based on both the mean and the

median since there are some differences between them due to

the outliers. As we can see, the tool wears calculated by mean
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Fig. 12 Coordinates of the tool along the plane perpendicular to the

tool axis. (a) along axis of optical fiber, (b) perpendicular to axis of

optical fiber

Fig. 13 Point cloud 3d reconstruction of tool profiles, (a) new tool

(top view), (b) used tool (top view), (c) new tool (side view), (d)

used tool (side view), color bar: distance from the tool axis

Fig. 14 Image of used tool and matching with the point cloud. (a) top

view, (b) side view
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and median have a similar tendency. At the top of the tool, a

maximum tool wear of about 140 μm can be observed.

Moving toward the shank, the tool wear reduces to about

68 μm.

3.2 CNC Machine Straightness Error Monitoring

We have employed Sequential-Two-Point (STP) method to

separate the straightness error of the machine tool guideway

and the profile error of the standard block. We use two optical

fibers as displacement sensors, shown in Fig. 4(b), whose

spacing distance is L. The raw sensor outputs, P
A
(x) and P

B
(x)

from the displacement sensor A and B respectively, can be

represented by:

, (12)

where f(x) is the profile error from the standard block, and

e
y
(x) is the straightness error of the X-axis guideway along Y-

axis direction. Here, x
n

= n · L, and n = 0, 1, 2, 3, ..., N  which

illustrates the measurement position. The output difference

between these two sensors can eliminate the straightness error

term and provides the increment of the profile error. Therefore,

the equation for the separated profile error f (x) and the

straightness error e(x) can be expressed by:

, (13)

Using Eq. (12), we have conducted error separation

technique on three experiments (that are also the selected

testing dataset). The separated straightness error and the

profile error using both the conventional spectrum analysis

method are shown in Fig. 16. The spectra from two optical

fiber sensors have been processed by both the conventional

method (“Conv.” in Fig. 16) and the deep learning method

(“DNN” in Fig. 16). The calculated profile error has been

compared with the measurement result (“Profiler” in Fig. 16)

from a CMM (Model name, Company name). It can be seen

that the calculated profile error is very close to the CMM

measurement result. The standard block has around 30 μm

profile error over 67 mm range, and the straightness error of

the machine tool guideway is around 40 μm. Though the deep

learning method contributes to a larger prediction error, the

overall accuracy can still be maintained. Further, the deep

learning approach is able to process more than 6700 spectra

from one optical fiber sensor in batch within 50.727 s, which

guarantees the online measurement capability.

Also, we calculated the difference between the separated

profile error and the measurement result from the CMM,

shown in Fig. 17. It can be seen that, with the conventional
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Fig. 15 Maximum radius of new and used tools and the tool wear. (a)

maximum radiuses of tools, (b) tool wear along radial direction

Fig. 16 Separated profile error and straightness error

Fig. 17 Separated profile error compared with CMM result
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method, the first two experiments have a measurement error of

around 2 μm, while the error from the third experiment is a bit

larger, which reaches around 3 μm. The results based on the

deep learning method are larger since the average prediction

error of the deep learning method can be around 0.5 μm. This

prediction error from each measurement point can accumulate

according to the summation process in Eq. (2). However, the

largest measurement error based on the deep learning method

is under 4 μm, which is still acceptable considering the overall

30 μm profile error. The deep learning method provides a

compromised prediction result with a much faster speed,

which broadens the application field of this portable straightness

error technique. The straightness error measurement can be both

cost efficient and time efficient.

4. Conclusion

In this research, we introduced a method to use optical fiber

Fabry-Pérot interferometer (FPI) as distance sensor and its

application in smart manufacturing. The measuring system

includes a broadband light source, a spectrometer, an optical

circulator, and the supporting spectrum analyzing algorithm.

The Fast Fourier Transform (FFT) method was used to

calculate the distance between the optical fiber and the surface

of the target. To improve the speed of the spectrum analyzing

process, neural network models were built to find out the

distance between the fiber and the target.

First, optical fiber FPI was used to measure the distance

between a fixed fiber and a rotating tool. With the rotation of

the tool along its axis, the distance between the fiber and the

surface of the tool was measured. With a selection of effective

reflection spectra, the 3D profile of the tool can be

reconstructed. By reconstructing the profile of a new tool, the

runout of the spindle was calculated by finding out the

deviation of the center of the reconstructed 3D profile from the

origin. The tool wear can also be found by comparing the

reconstructed profile of the new and the used tools. The

analyzing method was introduced, which is robust for even

noisy spectrum. However, the analyzing method is slow since

large amounts of calculations are needed. To improve the

analyzing speed, machine learning models were trained to find

out the distance between the fiber and the target surface. Both

CNN model and DNN model were developed and the

difference between these models were compared. It was found

that the DNN model has a faster speed compared with the

CNN model. We applied the machine learning algorithm to

measure the straightness error of a CNC machine. The result

shows that the machine learning algorithm has an error of

under 4 μm compared with the measurement given by a

Hexagon Coordinate Measurement Machine. This difference

can come from both the measurement of the optical fiber

sensors and the Coordinate Measurement Machine. Moreover,

the difference of the measurement location on the standard block

can also introduce differences between the measurements.

Compared with mechanical methods, the proposed method

is a noncontact method that has a high measurement precision.

Compared with the commercially available interferometers,

the proposed method is based on the wavelength of the

interference spectrum instead of intensity. Therefore, the

proposed method is more robust to environmental fluctuations

which can cause a change of absorption in the air of the

detection light. Moreover, the sensitive element of the

proposed method is compact and therefore it is suitable for

monitoring in a limited space.
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