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Abstract

Modern semiconductor manufacturing technology have a high-quality requirement of the wafers, and therefore the wafer inspection technique
becomes increasingly important. During the manufacturing processes, particles can attach on the surface of the wafer which is an important factor
of the quality and can even make it impossible to use the wafer. In this research, we introduce a particle detection and identification method based
on the scattering and absorption spectra of the particles. A machine learning algorithm was developed to capture the feature of the particles and
is able to identify the particle material from the scattering spectrum. Three different particles (Al203, SiC, and Si) were used to test this system.
The validation accuracy achieves higher than 98% after 5 iterations training. The system was tested by scattering these three particles on the same
wafer in different regions without mixing with each other. The results shows that particle Al2O3 and Si were identified with a high accuracy,
whereas it is still challenging for the system to correctly label SiC particles. This can be improved by a larger dataset to enhance the generalization
ability of the machine learning model.
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1. Introduction automated system that is able to both detect and identify the
particles is need.
With the development of semiconductor industry, quality
control of wafers becomes important. Early laser scattering
methods used to detect the particles on the wafers are unable to
identify the materials of the particles [1]-[3]. Visual inspection
is still used to identify the materials of the particles and thus
requires skilled technicians and is time consuming. Dou and
Broderick [4] reported a new method to automatically detect
particles and identify the materials, but the particle detection
and material identification sub-systems are separated and
therefore the whole system is complicated. Hattori and Koyata
[5] developed a particle detection and identification system, but
scanning electron microscopy (SEM) and energy dispersive X-
ray spectroscopy (EDX) are used which is unaffordable to
medium or small manufacturers. Therefore, cost-effective

In this research, we introduce a method to detect and identify
the particles attached on the wafer surface using Light
Scattering Spectroscopy (LiSSP) technology and machine
learning algorithm. A beam of broadband light was used as the
detection light to detect the particles. Since the detection light
can be scattered to all the directions, it will be received by the
optical fiber connected to the spectrometer. According to Mie
scattering theory [6], scattered light is also a function of the
refractive index of the material, the size of the particle, and the
location of the observer. When the scattering angle and the
particle size is fixed, the only factor that affects the scattering
spectrum is the refractive index of the material. Since scattering
is a process of light-matter interaction, absorption can also
occur which further modifies the scattering spectrum.
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Absorption spectrum is widely used in material monitoring and
identification such as prediction of wafer quality,
characterization of noble metal nanoparticles, etc. using UV-
Vis absorption spectrum [7]-[9]. Therefore, it is possible to
detect and identify the particles by the scattering spectrum. In
order to capture sufficient hidden features in the scattered
spectrum, a convolution neural network was developed to learn
the labeled spectra obtained by the light scattered by different
particles. 45870 spectra were collected to train the network and
an accuracy of higher than 98% for the validation and testing
set was obtained.

2. Method
2.1. Monitoring Principle

In this experiment, we tried to detect and identify the material
of three different kinds of particles: SiC, Si, and Al,Os. From
classic optics theory, the particles are excited by the time
varying electric field of the detection light and introduce a time
varying polarization. This time varying polarization then emits
anew electromagnetic wave (light) to all the possible directions
which is known as the scattered light. Therefore, when the
particles are illuminated by the detection light, the light will be
scattered everywhere. Moreover, due to the absorption of the
particles, which is determined by the materials of the particles,
the absorption of light with different wavelengths for different
particles are different. In visible range, the different absorption
can be directly observed by human eye as different colors.
When the scattered light is received by a spectrometer, a
different spectrum should be shown for different particles.

Since the size of the particles are much larger than the
wavelength of the detection light (489.228 nm to 815.185 nm),
large particle scattering occurs. As shown in Fig. 1, put the
scatter on the origin of a spherical coordinate/Cartesian
coordinate. The observer is on point A. The projection of OA
on plane xOy is line section 7. Line section 7, is parallel with
axis z. The plane expanded by 7, and 7, is called the scattering
plane. The scattering light can be given by the scattering matrix

(6], [11]:
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where S; are elements of the amplitude scattering matrix, i is
the imaginary unit. Here we only consider the elastic scattering,
for which the wavelength of the scattered light is the same as
the incident/detection light. The inelastic scattering, for which
there is a shift of wavelength of the scattered light compared
with the incident/detection light is weak compared with its
elastic scattering counterpart. The elements of the scattering
matrix of the far field are given by the multipole expansion
[12]:
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where
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Pl(cos ) is the associated Legendre polynomial of the first
kind, which is expected since we are solving the wave equation
in spherical coordinates.
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where ¥, (x) = xj, (%), & (x) = xh,(ll)(x) are the Riccati-
Bessel functions. Here, the scattered light is independent of
angle ¢ because of the cylindrical symmetry around z axis as
shown in Fig. 1. @ = 2ma/A is the unitless size factor, where a
is the radius of the sphere and A is the wavelength of the
incident/detection light in vacuum.

4
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Fig. 1. Light scattered by a spherical particle with large diameter compared
with the wavelength of the incident light.

Fig. 2 shows the scattered light of a SiC sphere (refractive index
= 2.6353 at a wavelength of 632.8 nm incident light) with a
diameter of 50 um. As we can see, the strongest scattering
direction is 0° (the direction of the incident light). Then the
intensity rapidly decreases as the scattering angle increases.
Scattered light exists for all the directions, which agrees with
the optical theorem which states that for plane incident light
wave, the scattered light will propagate to all directions. This
important phenomenon will be the key to eliminate the strong
background light which will be introduced in section 2.2.
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Fig. 2. Example of scattered light of a spherical SiC.

For elastic scattering, although the wavelength of the scattered
light will not be changed, the scattering intensity for a specific
wavelength of incident/detection light can be different for
different materials. This phenomenon is due to the interaction
between light and the atomic/molecular structure of the scatter.
Fig. 3 shows a schematic drawing of the principle of the
scattering spectroscopy. Assume a broadband light is used as
the incident light as shown in Fig. 3 (b), after scattered, due to
the different scattering intensity for different wavelengths, the
light with a wavelength colored as yellow has a lower scattering
intensity and the scattered spectrum is distorted as shown in
Fig. 3 (c). Therefore, if a broadband light is used as the
incident/detection light, the spectrum of the scattered light is
determined only by the material of the scatter. For different
materials, the scattered light can be different. Therefore, Light
Scattering Spectroscopy (LiSSP) technology is used to identify
the material of the scatter. By constructing a one-to-one
mapping between the material of the scatter and the scattering
spectrum, the material of the scatter can be determined by
observing the characteristics of the scattering spectrum.
Therefore, the key to identify the materials of the particles is
that the scattering spectrum of the materials are different.
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Fig. 3. Schematical illustration of light scattering spectroscopy. a) the light
scattering process; b) the spectrum of the incident/detection light; c) the
spectrum of the scattered light.

2.2. System Setup

The particle identification system consists of the 4 parts: the
motion part, the illumination part, the receiving part, and the
analyzing part. The motion part is the subsystem that move the
wafer so that it can be scanned by the detection system. The
illumination part includes the light source and the light
delivering optical fiber (Lead-In Fiber). The receiving part
includes the light receiving fiber (Lead-Out Fiber) and the
spectrometer. The analyzing part is the analyzing algorithm
that is able to detect particles and identify the materials. Fig. 4
shows the drawing of the wafer inspection system. A
broadband light source (Thorlabs, MBBI1F1, wavelength 470
nm to 850 nm) in the visible range was used to provide the
detection light. The light was guided by the Lead-In Fiber to
illuminate the particles on the wafer. Then, the scattered light
will be received by the Lead-Out fiber to the spectrometer
(Ocean Optics, USB2000+, wavelength 489.228 nmto 815.185
nm). A 6-axis Hexapod (ALIO, Hybrid Hexapod, positioning
precision < 100 nm) was used to spin and move the wafer so
that the surface of the wafer can be scanned by the detection
light.

Broadband
Light Source

Lead-In Fiber

Spectrometer

,—[ cooc

PC

Lead-Out
Fiber

Hexapod

Fig. 4. Drawing of the wafer inspection system.

Polymer optical fiber (MIKROE — 1473, NA = 0.5) with a core
diameter of 980 um was used as the Lead-In Fiber. However,
when the light exits the fiber, a significant divergence will
occur which will reduce the power density of the illumination
light. For small particles, a high-power density of the
illumination light is required so that the scattered light is strong
enough to have a high signal to noise ratio (SNA). To increase
the power density, a convex lens was made on the exit side of
the optical fiber to focus the light so that the power density can
be improved. Fig. 5 a) and b) shows the image of two polymer
optical fibers (POFs) without and with convex lens,
respectively. The lens was made using clear UV curable resin.
A drop of resin was attached to tip of the POF. Due to the
surface tension, the resin shrinks and forms a spherical shape
with a smooth surface. Then, the light exit from the fiber will
be focused and the power density of the detection light will be
increased.
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POF w/o Lens

POF wklLens

Fig. 5. Microscope image of polymer optical fiber (POF) with and without
lens. a) POF without lens on the fiber; b) POF with lens on the fiber.

Fig. 6 shows the measurement of the intensity distribution of
the light exit from the POF with lens. Fig. 6 a) shows the
method to measure the light intensity distribution. A beam
profiler (Thorlabs, BC106-VIS) was used to measure the 2-D
intensity distribution of light projected on the sensing surface.
A single mode optical fiber (SMF) was attached with the POF
firmly to conduce non-contact measurement of the initial
distance between the SMF and the Beam Profiler (Lo) using the
method introduced in Ref. [13]. The distance between the tip
of the SMF and the POF (L)) was also measured using a
microscope. The measurement of Ly and L; are conducted only
once before the measurement of the beam profile of the light.
The initial distance between the POF and the Beam Profiler is
L = 676 um. After measurement of the initial distance and the
beam profile, the POF was moved away from the Beam Profiler
and the movement was measured using a linear encoder. The
beam profile was then measured for every movement of 0.1
mm. Fig. 6 b) shows the intensity distribution of the light exit
the POF. The distance between the POF and the Beam Profiler
increase along z axis. As we can see, we have a minimum light
spot size when the Beam Profiler is close to the POF. The size
increases with the increase of the distance between the Beam
Profiler and the POF. This is because the divergence of the light
of the POF without the lens is high, and the lens only helps to
reduce the divergence but was not able to focus the light into a
small spot. The beam size along y direction at L = 0.676 mm
is 1.12 mm, and at L = 5.676 mm is 3.13 mm (with respect to
1/e of the maximum intensity). By reducing the divergence of
the detection light, the power density of the detection light can
be improved.
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Fig. 6. Measurement of the intensity distribution of the light exit the POF
with lens. a) the measurement method; b) the intensity distribution, width (x
direction) 8.78 mm, height (y direction) 6.6 mm, length (z direction) 5 mm.

Fig. 7 shows the detection of scattered light and the relationship
between the fibers and the wafer. In Fig. 7 a), a beam of
Detection Light come from the Lead-In Fiber and is reflected
by the wafer. The incident angle of the Detection Light is 45°.
Therefore, when there is no particle on the wafer, all the light
is reflected by the mirror surface of the wafer with a reflection
angle of 45°. The Lead-Out Fiber is on the same side of the
Detection Light and therefore no reflection light can be
received by the Lead-Out Fiber. Fig. 7 b) shows when the
Detection Light hits the particle, the light is scattered to every
and therefore can be detected by the Lead-Out Fiber. In this
experiment, two POFs (Thorlabs, BFY200LS02, wavelength
400 nm to 2200 nm, NA = 0.39) were used to collect the
scattered light and then coupled into one POF and sent into the
spectrometer to improve the sensitivity. Fig. 7 c¢) shows the
front view of the Lead-In Fiber and the Lead-Out Fibers. The
angle between the Lead-In Fiber and the Lead-Out Fibers are
30°, all the three fibers points to the same position so that the
particle on the wafer can be detected. Fig. 7 d) shows the side
view of the three fibers. As we can see, in the side view the
three fibers overlap and therefore we can only see one fiber. All
the three fibers have a 45° angle with the surface of the wafer.
Therefore, when the spectrometer receives a strong light, it
means a particle is detected.
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Fig. 7. Lead-In and Lead-Out fiber to lunch detection light and detect
scattered light. a) and b) principles of scattered light detection; ¢) and d) front
view and side view of the Lead-In and the Lead-Out fibers.

2.3. Spectrum Analysis

There are two goals in this experiment: first we need to detect
the particles on the wafer, and second we need to identify the
material of the detected particles. To detect the particles, we
only need to focus on the intensity of the light received by the
spectrometer. Fig. 8 shows the spectra when no particle was
detected by the system and a particle was detected by the
system. As we can see, when there was no particle, the
spectrum has a low intensity. This is because most of the
detection light is reflected by the mirror surface of the wafer,
and the light received by the spectrometer is due to the impurity
of the material of the lens which also cause a weak scattering.
When a particle is detected by the system, the intensity of the
spectrum increases dramatically and can be easily
distinguished from that when there is no particle. The easiest
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way to compare these two spectra is taking the summation of
the intensity of all the sampling points:

I'=3h, )

where [, is the intensity of a specific sampling point with
wavelength 4. With this method, a spectrum with multiple
sampling points becomes a single number which is easier to
compare and requires less memory space.
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Fig. 8. Spectra when no particle is detected (green) and a particle is detected
(orange).

To detect the particles on the wafer, all the surfaces of the wafer
should be scanned. The strategy to scan the wafer is spin the
wafer for one full cycle with a distance between the center of
the wafer and the detection point of 7, and then shift the wafer
for a distance d and repeat the scan process until all the position
of the wafer is scanned. It should be noted that since we want
the particle spends the same amount of time under the detection
light when detected, we need to keep the line speed constant
instead of the angular speed. Therefore, the angular spin speed
should be

w(r) =v/r, (6)

where v is a constant and 7 is the distance between the scanned
point and the center of the wafer. Fig. 9 shows the scan result
of one Al,O3 particle on the surface of the wafer with a scan
speed of v = 0.5 mm/s and a sampling frequency of 10 Hz. In
this plot, each point is the value calculated from Eq. (5). As we
can see, a slow varying periodical pattern is observed which is
because of the pitch of the wafer. When the wafer spins, some
places are closer to the fibers which is shown as a relatively
higher intensity. With this periodical pattern we can determine
how many cycles the wafer spins and the relative position of
the particles detected by the system. Also, three peaks labeled
as Al,O, are detected. These are due to the Al,O3 particle we
want to detect. Since these three peaks are located in the same
position according to the periodical pattern and we have only
one AlO; particle, these are caused by the same particle
because the spot size of the detection light is slightly larger than
the shift d of two adjacent scanning cycles. The other weaker
peaks are caused by the dusts attached on the wafer during the
scanning process.
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Fig. 9. Scan result of one ALO; particle on the surface of the wafer with a
constant scan speed of v = 0.5 mm/s.

For the second goal, identification of the particle materials, we
need to compare the scattering spectrum of each material. Fig.
10 shows the scattering spectra received by the spectrometer of
different particle materials. Differences between these spectra
can be seen especially in the shaded region. This is because of
the different extinction coefficients for a specific wavelength
of the detection light cause by the atomic and molecular
structure of the material. However, it is difficult for humans to
learn and identify all the characteristics of the spectra since it
is also possible that the spectra may be distorted by some
known or unknown reasons. Fortunately, machine learning
algorithms do a good job of extracting the hidden
characteristics of data. In this experiment, a convolution neural
network (CNN) will be used to learn the characters of the
spectra of the materials. Scattering spectra under different
measurement conditions produced by known materials will be
used to train the CNN model. After training, a wafer with
mixed particles on the surface will be used to test the
performance of the model.
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Fig. 10. Scattering spectra of different particles.
3. Result and Discussion

Three different kinds of particles (44~149 um): Al,Os, SiC,
and Si were used in the experiment. The particles were
scattered randomly on the wafer. The distance between the
optical fibers and the surface of the wafer was set as 3 mm. The
scan speed and the shift speed were set as 0.5 mm/s and kept as
constant during the scan process. Then the wafer spins with an
angular speed is a function of the distance of the scan point and
the center of the wafer calculated by Eq. (6). The sampling rate
of the spectrometer was set as 10 Hz. Fig. 11 shows the
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measurement result of the system. As we can see, the slow
varying periodical pattern is due to the pitch of the wafer. It
should be noted that the period reduces with time. This is
because the system scans the wafer from its edge to the center.
Since the line speed is a constant, the angular speed increases
with the reduction of the radius r. Large number of peaks can
be seen, which is because of the particles detected by the
system.
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Fig. 11. Detection of particles on the surface of the wafer.

Since we know the scan speed and the time of the sampled
point, it is possible to reconstruct the distribution of the
particles. Fig. 12 shows the particle distribution on the wafer.
A bright strip on the edge of the of the wafer can be seen, which
was caused by the primary flat that the holder under the wafer
was illuminated by the detection light and large amount of light
was scattered everywhere. With the reconstructed surface, we
can easily find the distribution of the particles and evaluate the
quality of the wafer.

7.6e7
7.0e7

wu
i
L

i
h

| \ 1
e A

AN 6.0e7
ul il /

/" 5.0e7

K
B\ >
"

“

90 - 4.0e7
: 3.0e7

2.0e7
1.3e7

Fig. 12. Reconstruction of the particle distribution on the surface of the wafer.

A supervised learning model was developed to learn the
features of the spectra of particles with different materials. Fig.
13 shows the architecture of the model. Each input spectrum
has 2048 sampling points. 8 convolution layers were used to
capture the features from different levels. We follow vanilla
CNN structure as the backbone and use grid search to fine tune
our model which is shown in Fig. 13. Cross entropy loss was
used as the loss function, Adam (learning rate = 10) was used
as the optimizer. 45870 normalized and labeled spectra (Al,O3
= 21189, Si = 14560, SiC = 10121) were used to train the
model. AlLOs, Si, and SiC were labeled as 0, 1, and 2,

respectively. The dataset was separated by 0.7, 0.15, 0.15 as
training, validation, and testing datasets, respectively. The
batch size was set as 128. Since we are using an imbalanced
dataset, the weight for calculating the cross-entropy loss was
set as 0.2196, 0.3204, and 0.4600 for Al,Os, Si, and SiC,
respectively. The training was conducted on a personal
computer with a Intel 17 8700K CPU and a Nvidia RTX 3090
GPU and finished within 40 mins.
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Fig. 13. Architecture of the CNN model to identify the materials of the
particles from their scattering and absorption spectra.

Fig. 15 shows the training and testing history of the mode. As
we can see, training accuracy increase quickly after several
iterations. Testing accuracy and validation accuracies are
slightly lower than the training accuracy. After 5 iterations all
the accuracies reaches 98%. Fig. 15 b) shows the training,
testing, and validation losses. As we can see, the loss reduces
quickly below 0.5x1073 after 10 iterations. After 20 iterations,
the loss becomes stable and start to oscillate around 0.25x1073,
The confusion matrix is

Al,O3 Si SiC
" - 3000
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2000

%) 1500
1000

2 500
0

Fig. 14 | Confusion matrix of the training result.

The confusion matrix shows that most spectra can be labeled
correctly. SiC can be labeled as ALO3; by mistake, whereas
there is a lower chance to incorrectly label Al,O3 as SiC.
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g. 15. Training and Testing history of the CNN model to identify the
materials of the particles based on the scattering spectrum.

To test the CNN model in a real application, the surface of a
wafer was divided into three equal sections (Region 1, Region
2, Region 3), each region has a central angle of 120°. AL,Os, Si,
and SiC particles were scattered on Region 1, Region 2, and
Region 3, respectively. No different particles were mixed in the
same region. Fig. 16 shows the result of the CNN model, the
black, red, and yellow color represents AlOs;, Si, and SiC
particles, respectively. The distribution of particles in regions
is given by Table 1. By considering Al,O3 and Si, but assuming
SiC, the prediction accuracy is given by

a4 = CPAIZO;'-I- CPSi’ (7)

where CPyy, 0, is the correct prediction of AlOs, CPs; is the
correct prediction of Si, T is the total number of particles.
Therefore, the prediction accuracy for particle Al,O3 and Si, the
classification accuracy is 85.7% according to Table 1.
However, the classification accuracy of SiC is low since large
amount of SiC particles were labeled as AbOs. For Region 1
(AL,O3) and Region 2 (Si), the particle predicted by the CNN
model agrees well with the real particles scattered on that
region. However, in Region 3, it is difficult for the CNN model
to identify Al,O3 and SiC particles. This may because of the
generalization ability of the CNN model is still limited to
identify the difference of the spectra of these two particles. The
environment noise (such as wafer’s profile/waviness error,
noise from the spectrometer, particle properties), other than the
spectrum of the particles, might be learned by the model and
therefore cause confusion between Al,O3 and SiC although in
the testing set these two particles can be identified. This can be
improved by creating a larger dataset, with different size of the
particles on different wafers to mitigate the influence of the
environment noise. Also, from Table 1 we know this model
tends to incorrectly predict SiC as Al,O3 but unlikely to predict
Al,O3 as SiC. This agrees with the confusion matrix Eq. (7).
However, the probability to incorrectly label SiC as Al,Os is
much larger than that given by the confusion matrix.

Table 1. Distribution of particles in different regions, number in parentheses is
the percentage of the particle in the region.

AlLOs Si SiC

Region 1 5693 (81.4%) 1252 (17.9%) 53 (0.8%)
Region 2 847 (10.9%) 6934 (88.8%) 24 (0.3%)
Region 3 8980 (63.9%) 1475 (10.5%) 3595 (25.6%)

Region 3

Region 1

Region 2
Fig. 16 | Material identification using the CNN model.
4. Conclusion

In this research, we developed an optical inspection system
to detect and identify Al,O3, Si, and SiC particles attached on
the wafer based on the scattering and absorption spectrum. The
system consists of a 6-axis hexapod, a broadband light source,
a Lead-In Fiber with a convex lens, two Lead-Out Fibers, a
spectrometer, and a CNN model. The detection light was
focused by the convex lens on the Lead-In Fiber the enhance
the power density, and the scattered light was received by the
two Lead-Out Fibers. The Hexapod spins and moves the wafer
so that all the surface of the wafer can be scanned by the
detection light. The scattered spectrum was recorded by the
spectrometer and analyzed by the particle model and the CNN
model. The particle detection model was used to detect the
location of the particles so that the spectra of the particles can
be correctly selected to train the CNN model. The training
result shows that the model has a validation accuracy and a
testing accuracy higher than 98% after S iterations training. The
model was used to predict the material of the particles on a
wafer, where the particles were located in different regions
without mixing with each other. The testing result shows that
the CNN model was able to identify the materials with a high
accuracy for AbOs and Si but has a high risk to mislabel SiC
as ALOs;. This may because of the insufficient ability of
generalization of the model. To solve this problem, a larger
training dataset is needed. Compared with other wafer
inspection systems, this system can detect, locate, and identify
the material of the particles simultaneously. Also, this system
is cost-effective since other systems which are able to identify
the material of the particles use expensive equipment such as
SEM and EDX.
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