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Abstract 

Modern semiconductor manufacturing technology have a high-quality requirement of the wafers, and therefore the wafer inspection technique 
becomes increasingly important. During the manufacturing processes, particles can attach on the surface of the wafer which is an important factor 
of the quality and can even make it impossible to use the wafer. In this research, we introduce a particle detection and identification method based 
on the scattering and absorption spectra of the particles. A machine learning algorithm was developed to capture the feature of the particles and 
is able to identify the particle material from the scattering spectrum. Three different particles (Al2O3, SiC, and Si) were used to test this system. 
The validation accuracy achieves higher than 98% after 5 iterations training. The system was tested by scattering these three particles on the same 
wafer in different regions without mixing with each other. The results shows that particle Al2O3 and Si were identified with a high accuracy, 
whereas it is still challenging for the system to correctly label SiC particles. This can be improved by a larger dataset to enhance the generalization 
ability of the machine learning model. 
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1. Introduction 

With the development of semiconductor industry, quality 
control of wafers becomes important. Early laser scattering 
methods used to detect the particles on the wafers are unable to 
identify the materials of the particles [1]–[3]. Visual inspection 
is still used to identify the materials of the particles and thus 
requires skilled technicians and is time consuming. Dou and 
Broderick [4] reported a new method to automatically detect 
particles and identify the materials, but the particle detection 
and material identification sub-systems are separated and 
therefore the whole system is complicated. Hattori and Koyata 
[5] developed a particle detection and identification system, but 
scanning electron microscopy (SEM) and energy dispersive X-
ray spectroscopy (EDX) are used which is unaffordable to 
medium or small manufacturers. Therefore, cost-effective 

automated system that is able to both detect and identify the 
particles is need. 

In this research, we introduce a method to detect and identify 
the particles attached on the wafer surface using Light 
Scattering Spectroscopy (LiSSP) technology and machine 
learning algorithm. A beam of broadband light was used as the 
detection light to detect the particles. Since the detection light 
can be scattered to all the directions, it will be received by the 
optical fiber connected to the spectrometer. According to Mie 
scattering theory [6], scattered light is also a function of the 
refractive index of the material, the size of the particle, and the 
location of the observer. When the scattering angle and the 
particle size is fixed, the only factor that affects the scattering 
spectrum is the refractive index of the material. Since scattering 
is a process of light-matter interaction, absorption can also 
occur which further modifies the scattering spectrum. 
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Absorption spectrum is widely used in material monitoring and 
identification such as prediction of wafer quality, 
characterization of noble metal nanoparticles, etc. using UV-
Vis absorption spectrum [7]–[9]. Therefore, it is possible to 
detect and identify the particles by the scattering spectrum. In 
order to capture sufficient hidden features in the scattered 
spectrum, a convolution neural network was developed to learn 
the labeled spectra obtained by the light scattered by different 
particles. 45870 spectra were collected to train the network and 
an accuracy of higher than 98% for the validation and testing 
set was obtained. 

2. Method 

2.1. Monitoring Principle 

In this experiment, we tried to detect and identify the material 
of three different kinds of particles: SiC, Si, and Al2O3. From 
classic optics theory, the particles are excited by the time 
varying electric field of the detection light and introduce a time 
varying polarization. This time varying polarization then emits 
a new electromagnetic wave (light) to all the possible directions 
which is known as the scattered light. Therefore, when the 
particles are illuminated by the detection light, the light will be 
scattered everywhere. Moreover, due to the absorption of the 
particles, which is determined by the materials of the particles, 
the absorption of light with different wavelengths for different 
particles are different. In visible range, the different absorption 
can be directly observed by human eye as different colors. 
When the scattered light is received by a spectrometer, a 
different spectrum should be shown for different particles. 

Since the size of the particles are much larger than the 
wavelength of the detection light (489.228 nm to 815.185 nm), 
large particle scattering occurs. As shown in Fig. 1, put the 
scatter on the origin of a spherical coordinate/Cartesian 
coordinate. The observer is on point A. The projection of OA 
on plane xOy is line section . Line section  is parallel with 
axis . The plane expanded by  and  is called the scattering 
plane. The scattering light can be given by the scattering matrix 
[6], [11]: 

 

where  are elements of the amplitude scattering matrix,  is 
the imaginary unit. Here we only consider the elastic scattering, 
for which the wavelength of the scattered light is the same as 
the incident/detection light. The inelastic scattering, for which 
there is a shift of wavelength of the scattered light compared 
with the incident/detection light is weak compared with its 
elastic scattering counterpart. The elements of the scattering 
matrix of the far field are given by the multipole expansion 
[12]: 

 

 

where 

 

 is the associated Legendre polynomial of the first 
kind, which is expected since we are solving the wave equation 
in spherical coordinates. 

 

where ,  are the Riccati-
Bessel functions. Here, the scattered light is independent of 
angle  because of the cylindrical symmetry around  axis as 
shown in Fig. 1.  is the unitless size factor, where  
is the radius of the sphere and  is the wavelength of the 
incident/detection light in vacuum. 

 

Fig. 1. Light scattered by a spherical particle with large diameter compared 
with the wavelength of the incident light. 

Fig. 2 shows the scattered light of a SiC sphere (refractive index 
= 2.6353 at a wavelength of 632.8 nm incident light) with a 
diameter of 50 μm. As we can see, the strongest scattering 
direction is 0° (the direction of the incident light). Then the 
intensity rapidly decreases as the scattering angle increases. 
Scattered light exists for all the directions, which agrees with 
the optical theorem which states that for plane incident light 
wave, the scattered light will propagate to all directions. This 
important phenomenon will be the key to eliminate the strong 
background light which will be introduced in section 2.2. 
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Fig. 2. Example of scattered light of a spherical SiC. 

For elastic scattering, although the wavelength of the scattered 
light will not be changed, the scattering intensity for a specific 
wavelength of incident/detection light can be different for 
different materials. This phenomenon is due to the interaction 
between light and the atomic/molecular structure of the scatter. 
Fig. 3 shows a schematic drawing of the principle of the 
scattering spectroscopy. Assume a broadband light is used as 
the incident light as shown in Fig. 3 (b), after scattered, due to 
the different scattering intensity for different wavelengths, the 
light with a wavelength colored as yellow has a lower scattering 
intensity and the scattered spectrum is distorted as shown in 
Fig. 3 (c). Therefore, if a broadband light is used as the 
incident/detection light, the spectrum of the scattered light is 
determined only by the material of the scatter. For different 
materials, the scattered light can be different. Therefore, Light 
Scattering Spectroscopy (LiSSP) technology is used to identify 
the material of the scatter. By constructing a one-to-one 
mapping between the material of the scatter and the scattering 
spectrum, the material of the scatter can be determined by 
observing the characteristics of the scattering spectrum. 
Therefore, the key to identify the materials of the particles is 
that the scattering spectrum of the materials are different. 

 

Fig. 3. Schematical illustration of light scattering spectroscopy. a) the light 
scattering process; b) the spectrum of the incident/detection light; c) the 

spectrum of the scattered light. 

2.2. System Setup 

The particle identification system consists of the 4 parts: the 
motion part, the illumination part, the receiving part, and the 
analyzing part. The motion part is the subsystem that move the 
wafer so that it can be scanned by the detection system. The 
illumination part includes the light source and the light 
delivering optical fiber (Lead-In Fiber). The receiving part 
includes the light receiving fiber (Lead-Out Fiber) and the 
spectrometer. The analyzing part is the analyzing algorithm 
that is able to detect particles and identify the materials. Fig. 4 
shows the drawing of the wafer inspection system. A 
broadband light source (Thorlabs, MBB1F1, wavelength 470 
nm to 850 nm) in the visible range was used to provide the 
detection light. The light was guided by the Lead-In Fiber to 
illuminate the particles on the wafer. Then, the scattered light 
will be received by the Lead-Out fiber to the spectrometer 
(Ocean Optics, USB2000+, wavelength 489.228 nm to 815.185 
nm). A 6-axis Hexapod (ALIO, Hybrid Hexapod, positioning 
precision < 100 nm) was used to spin and move the wafer so 
that the surface of the wafer can be scanned by the detection 
light. 

 

Fig. 4. Drawing of the wafer inspection system. 

Polymer optical fiber (MIKROE – 1473, NA = 0.5) with a core 
diameter of 980 μm was used as the Lead-In Fiber. However, 
when the light exits the fiber, a significant divergence will 
occur which will reduce the power density of the illumination 
light. For small particles, a high-power density of the 
illumination light is required so that the scattered light is strong 
enough to have a high signal to noise ratio (SNA). To increase 
the power density, a convex lens was made on the exit side of 
the optical fiber to focus the light so that the power density can 
be improved. Fig. 5 a) and b) shows the image of two polymer 
optical fibers (POFs) without and with convex lens, 
respectively. The lens was made using clear UV curable resin. 
A drop of resin was attached to tip of the POF. Due to the 
surface tension, the resin shrinks and forms a spherical shape 
with a smooth surface. Then, the light exit from the fiber will 
be focused and the power density of the detection light will be 
increased. 
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Fig. 5. Microscope image of polymer optical fiber (POF) with and without 
lens. a) POF without lens on the fiber; b) POF with lens on the fiber. 

Fig. 6 shows the measurement of the intensity distribution of 
the light exit from the POF with lens. Fig. 6 a) shows the 
method to measure the light intensity distribution. A beam 
profiler (Thorlabs, BC106-VIS) was used to measure the 2-D 
intensity distribution of light projected on the sensing surface. 
A single mode optical fiber (SMF) was attached with the POF 
firmly to conduce non-contact measurement of the initial 
distance between the SMF and the Beam Profiler (L0) using the 
method introduced in Ref. [13]. The distance between the tip 
of the SMF and the POF (L1) was also measured using a 
microscope. The measurement of L0 and L1 are conducted only 
once before the measurement of the beam profile of the light. 
The initial distance between the POF and the Beam Profiler is 

. After measurement of the initial distance and the 
beam profile, the POF was moved away from the Beam Profiler 
and the movement was measured using a linear encoder. The 
beam profile was then measured for every movement of 0.1 
mm. Fig. 6 b) shows the intensity distribution of the light exit 
the POF. The distance between the POF and the Beam Profiler 
increase along z axis. As we can see, we have a minimum light 
spot size when the Beam Profiler is close to the POF. The size 
increases with the increase of the distance between the Beam 
Profiler and the POF. This is because the divergence of the light 
of the POF without the lens is high, and the lens only helps to 
reduce the divergence but was not able to focus the light into a 
small spot. The beam size along y direction at  
is 1.12 mm, and at  is 3.13 mm (with respect to 
1/e of the maximum intensity). By reducing the divergence of 
the detection light, the power density of the detection light can 
be improved. 

 

Fig. 6. Measurement of the intensity distribution of the light exit the POF 
with lens. a) the measurement method; b) the intensity distribution, width (x 
direction) 8.78 mm, height (y direction) 6.6 mm, length (z direction) 5 mm. 

Fig. 7 shows the detection of scattered light and the relationship 
between the fibers and the wafer. In Fig. 7 a), a beam of 
Detection Light come from the Lead-In Fiber and is reflected 
by the wafer. The incident angle of the Detection Light is 45°. 
Therefore, when there is no particle on the wafer, all the light 
is reflected by the mirror surface of the wafer with a reflection 
angle of 45°. The Lead-Out Fiber is on the same side of the 
Detection Light and therefore no reflection light can be 
received by the Lead-Out Fiber. Fig. 7 b) shows when the 
Detection Light hits the particle, the light is scattered to every 
and therefore can be detected by the Lead-Out Fiber. In this 
experiment, two POFs (Thorlabs, BFY200LS02, wavelength 
400 nm to 2200 nm, NA = 0.39) were used to collect the 
scattered light and then coupled into one POF and sent into the 
spectrometer to improve the sensitivity. Fig. 7 c) shows the 
front view of the Lead-In Fiber and the Lead-Out Fibers. The 
angle between the Lead-In Fiber and the Lead-Out Fibers are 
30°, all the three fibers points to the same position so that the 
particle on the wafer can be detected. Fig. 7 d) shows the side 
view of the three fibers. As we can see, in the side view the 
three fibers overlap and therefore we can only see one fiber. All 
the three fibers have a 45° angle with the surface of the wafer. 
Therefore, when the spectrometer receives a strong light, it 
means a particle is detected. 

 

Fig. 7. Lead-In and Lead-Out fiber to lunch detection light and detect 
scattered light. a) and b) principles of scattered light detection; c) and d) front 

view and side view of the Lead-In and the Lead-Out fibers. 

2.3. Spectrum Analysis 

There are two goals in this experiment: first we need to detect 
the particles on the wafer, and second we need to identify the 
material of the detected particles. To detect the particles, we 
only need to focus on the intensity of the light received by the 
spectrometer. Fig. 8 shows the spectra when no particle was 
detected by the system and a particle was detected by the 
system. As we can see, when there was no particle, the 
spectrum has a low intensity. This is because most of the 
detection light is reflected by the mirror surface of the wafer, 
and the light received by the spectrometer is due to the impurity 
of the material of the lens which also cause a weak scattering. 
When a particle is detected by the system, the intensity of the 
spectrum increases dramatically and can be easily 
distinguished from that when there is no particle. The easiest 
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way to compare these two spectra is taking the summation of 
the intensity of all the sampling points: 

 

where  is the intensity of a specific sampling point with 
wavelength . With this method, a spectrum with multiple 
sampling points becomes a single number which is easier to 
compare and requires less memory space. 

 

Fig. 8. Spectra when no particle is detected (green) and a particle is detected 
(orange). 

To detect the particles on the wafer, all the surfaces of the wafer 
should be scanned. The strategy to scan the wafer is spin the 
wafer for one full cycle with a distance between the center of 
the wafer and the detection point of , and then shift the wafer 
for a distance  and repeat the scan process until all the position 
of the wafer is scanned. It should be noted that since we want 
the particle spends the same amount of time under the detection 
light when detected, we need to keep the line speed constant 
instead of the angular speed. Therefore, the angular spin speed 
should be 

 

where  is a constant and  is the distance between the scanned 
point and the center of the wafer. Fig. 9 shows the scan result 
of one Al2O3 particle on the surface of the wafer with a scan 
speed of  and a sampling frequency of 10 Hz. In 
this plot, each point is the value calculated from Eq. (5). As we 
can see, a slow varying periodical pattern is observed which is 
because of the pitch of the wafer. When the wafer spins, some 
places are closer to the fibers which is shown as a relatively 
higher intensity. With this periodical pattern we can determine 
how many cycles the wafer spins and the relative position of 
the particles detected by the system. Also, three peaks labeled 
as Al2O2 are detected. These are due to the Al2O3 particle we 
want to detect. Since these three peaks are located in the same 
position according to the periodical pattern and we have only 
one Al2O3 particle, these are caused by the same particle 
because the spot size of the detection light is slightly larger than 
the shift  of two adjacent scanning cycles. The other weaker 
peaks are caused by the dusts attached on the wafer during the 
scanning process. 

 

Fig. 9. Scan result of one Al2O3 particle on the surface of the wafer with a 
constant scan speed of v = 0.5 mm/s. 

For the second goal, identification of the particle materials, we 
need to compare the scattering spectrum of each material. Fig. 
10 shows the scattering spectra received by the spectrometer of 
different particle materials. Differences between these spectra 
can be seen especially in the shaded region. This is because of 
the different extinction coefficients for a specific wavelength 
of the detection light cause by the atomic and molecular 
structure of the material. However, it is difficult for humans to 
learn and identify all the characteristics of the spectra since it 
is also possible that the spectra may be distorted by some 
known or unknown reasons. Fortunately, machine learning 
algorithms do a good job of extracting the hidden 
characteristics of data. In this experiment, a convolution neural 
network (CNN) will be used to learn the characters of the 
spectra of the materials. Scattering spectra under different 
measurement conditions produced by known materials will be 
used to train the CNN model. After training, a wafer with 
mixed particles on the surface will be used to test the 
performance of the model. 

 

Fig. 10. Scattering spectra of different particles. 

3. Result and Discussion 

Three different kinds of particles (44~149 μm): Al2O3, SiC, 
and Si were used in the experiment. The particles were 
scattered randomly on the wafer. The distance between the 
optical fibers and the surface of the wafer was set as 3 mm. The 
scan speed and the shift speed were set as 0.5 mm/s and kept as 
constant during the scan process. Then the wafer spins with an 
angular speed is a function of the distance of the scan point and 
the center of the wafer calculated by Eq. (6). The sampling rate 
of the spectrometer was set as 10 Hz. Fig. 11 shows the 
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measurement result of the system. As we can see, the slow 
varying periodical pattern is due to the pitch of the wafer. It 
should be noted that the period reduces with time. This is 
because the system scans the wafer from its edge to the center. 
Since the line speed is a constant, the angular speed increases 
with the reduction of the radius . Large number of peaks can 
be seen, which is because of the particles detected by the 
system. 

Fig. 11. Detection of particles on the surface of the wafer. 

Since we know the scan speed and the time of the sampled 
point, it is possible to reconstruct the distribution of the 
particles. Fig. 12 shows the particle distribution on the wafer. 
A bright strip on the edge of the of the wafer can be seen, which 
was caused by the primary flat that the holder under the wafer 
was illuminated by the detection light and large amount of light 
was scattered everywhere. With the reconstructed surface, we 
can easily find the distribution of the particles and evaluate the 
quality of the wafer. 

Fig. 12. Reconstruction of the particle distribution on the surface of the wafer. 

A supervised learning model was developed to learn the 
features of the spectra of particles with different materials. Fig. 
13 shows the architecture of the model. Each input spectrum 
has 2048 sampling points. 8 convolution layers were used to 
capture the features from different levels. We follow vanilla 
CNN structure as the backbone and use grid search to fine tune 
our model which is shown in Fig. 13. Cross entropy loss was 
used as the loss function, Adam (learning rate = 10-5) was used 
as the optimizer. 45870 normalized and labeled spectra (Al2O3

= 21189, Si = 14560, SiC = 10121) were used to train the 
model. Al2O3, Si, and SiC were labeled as 0, 1, and 2, 

respectively.  The dataset was separated by 0.7, 0.15, 0.15 as 
training, validation, and testing datasets, respectively. The 
batch size was set as 128. Since we are using an imbalanced 
dataset, the weight for calculating the cross-entropy loss was 
set as 0.2196, 0.3204, and 0.4600 for Al2O3, Si, and SiC, 
respectively. The training was conducted on a personal 
computer with a Intel I7 8700K CPU and a Nvidia RTX 3090 
GPU and finished within 40 mins. 

Fig. 13. Architecture of the CNN model to identify the materials of the 
particles from their scattering and absorption spectra. 

Fig. 15 shows the training and testing history of the mode. As 
we can see, training accuracy increase quickly after several 
iterations. Testing accuracy and validation accuracies are 
slightly lower than the training accuracy. After 5 iterations all 
the accuracies reaches 98%. Fig. 15 b) shows the training, 
testing, and validation losses. As we can see, the loss reduces 
quickly below 0.5 10-3 after 10 iterations. After 20 iterations, 
the loss becomes stable and start to oscillate around 0.25 10-3. 
The confusion matrix is 

Fig. 14 | Confusion matrix of the training result. 

The confusion matrix shows that most spectra can be labeled 
correctly. SiC can be labeled as Al2O3 by mistake, whereas 
there is a lower chance to incorrectly label Al2O3 as SiC. 
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Fig. 15. Training and Testing history of the CNN model to identify the 
materials of the particles based on the scattering spectrum. 

To test the CNN model in a real application, the surface of a 
wafer was divided into three equal sections (Region 1, Region 
2, Region 3), each region has a central angle of 120°. Al2O3, Si, 
and SiC particles were scattered on Region 1, Region 2, and 
Region 3, respectively. No different particles were mixed in the 
same region. Fig. 16 shows the result of the CNN model, the 
black, red, and yellow color represents Al2O3, Si, and SiC 
particles, respectively. The distribution of particles in regions 
is given by Table 1. By considering Al2O3 and Si, but assuming 
SiC, the prediction accuracy is given by 

 

where  is the correct prediction of Al2O3,  is the 
correct prediction of Si,  is the total number of particles. 
Therefore, the prediction accuracy for particle Al2O3 and Si, the 
classification accuracy is 85.7% according to Table 1. 
However, the classification accuracy of SiC is low since large 
amount of SiC particles were labeled as Al2O3. For Region 1 
(Al2O3) and Region 2 (Si), the particle predicted by the CNN 
model agrees well with the real particles scattered on that 
region. However, in Region 3, it is difficult for the CNN model 
to identify Al2O3 and SiC particles. This may because of the 
generalization ability of the CNN model is still limited to 
identify the difference of the spectra of these two particles. The 
environment noise (such as wafer’s profile/waviness error, 
noise from the spectrometer, particle properties), other than the 
spectrum of the particles, might be learned by the model and 
therefore cause confusion between Al2O3 and SiC although in 
the testing set these two particles can be identified. This can be 
improved by creating a larger dataset, with different size of the 
particles on different wafers to mitigate the influence of the 
environment noise. Also, from Table 1 we know this model 
tends to incorrectly predict SiC as Al2O3 but unlikely to predict 
Al2O3 as SiC. This agrees with the confusion matrix Eq. (7). 
However, the probability to incorrectly label SiC as Al2O3 is 
much larger than that given by the confusion matrix. 

Table 1. Distribution of particles in different regions, number in parentheses is 
the percentage of the particle in the region. 

 Al2O3 Si SiC 

Region 1 5693 (81.4%) 1252 (17.9%) 53 (0.8%) 

Region 2 847 (10.9%) 6934 (88.8%) 24 (0.3%) 

Region 3 8980 (63.9%) 1475 (10.5%) 3595 (25.6%) 

 

 

Fig. 16 | Material identification using the CNN model. 

4. Conclusion 

In this research, we developed an optical inspection system 
to detect and identify Al2O3, Si, and SiC particles attached on 
the wafer based on the scattering and absorption spectrum. The 
system consists of a 6-axis hexapod, a broadband light source, 
a Lead-In Fiber with a convex lens, two Lead-Out Fibers, a 
spectrometer, and a CNN model. The detection light was 
focused by the convex lens on the Lead-In Fiber the enhance 
the power density, and the scattered light was received by the 
two Lead-Out Fibers. The Hexapod spins and moves the wafer 
so that all the surface of the wafer can be scanned by the 
detection light. The scattered spectrum was recorded by the 
spectrometer and analyzed by the particle model and the CNN 
model. The particle detection model was used to detect the 
location of the particles so that the spectra of the particles can 
be correctly selected to train the CNN model. The training 
result shows that the model has a validation accuracy and a 
testing accuracy higher than 98% after 5 iterations training. The 
model was used to predict the material of the particles on a 
wafer, where the particles were located in different regions 
without mixing with each other. The testing result shows that 
the CNN model was able to identify the materials with a high 
accuracy for Al2O3 and Si but has a high risk to mislabel SiC 
as Al2O3. This may because of the insufficient ability of 
generalization of the model. To solve this problem, a larger 
training dataset is needed. Compared with other wafer 
inspection systems, this system can detect, locate, and identify 
the material of the particles simultaneously. Also, this system 
is cost-effective since other systems which are able to identify 
the material of the particles use expensive equipment such as 
SEM and EDX. 
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