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and reward distributions resulting in the best expert changing across episodes. We show that by bootstrap-
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1 Introduction

Recommendation systems for suggesting items to users are commonplace in online services such
as marketplaces, content delivery platforms, and ad placement systems. Such systems, over time,
learn from user feedback and improve their recommendations. An important caveat, however, is
that both the distribution of user types and their respective preferences change over time, thus
inducing changes in the optimal recommendation and requiring the system to periodically “reset”
its learning.

We consider systems with known change-points (a.k.a. episodes) in the distribution of user-
features and preferences. Examples include seasonality in product recommendations where there
are marked changes in interests based on time-of-year, or ad placements based on time of day.
While a baseline strategy would be to re-learn the recommendation algorithm in each episode, it
is often advantageous to share some learning across episodes. Specifically, one often has access to
(potentially, a very) large number of pre-trained recommendation algorithms (a.k.a. experts), and
the goal then is to quickly determine (in an online manner) which expert is best suited to a specific
episode. Crucially, the expert policies are invariant over episodes and can be learned offline—given
samples of (observed context, recommended action) pairs from the deployment of one expert in
the past, one can infer the policy approximately. The problem is then to efficiently “transfer” this
approximate knowledge to the online phase to accelerate the learning of the episode-dependent
best expert.

As a specific example, we take the case of online advertising agencies, which are companies
that have proprietary ad-recommendation algorithms that place ads for other product companies
on newspaper websites based on past campaigns. In each campaign, the agencies place ads for a
specific product of the client (e.g., a flagship car, gaming consoles) to maximize the click-through
rate of users on the newspaper website. At any given time, the agency signs contracts for new
campaigns with new companies. The information about product features and user profiles form
the context, whose distribution changes across campaigns due to change in user traffic and updated
product lineups. This could also cause shifts in user preferences. In practice, the agency already has
a finite inventory of ad-recommendation models (a.k.a. experts, typically logistic models for their
very low inference delays of micro-seconds that is mandated by real-time user traffic) from past
campaigns. On a new campaign, online ad agencies bid for slots in news media outlets, depending
on the profile of the user that visits their website, using these pre-learned experts (see References
[28, 38]). In this setting, agencies only re-learn which experts in their inventory work best for their
new campaign, possibly fine-tuning them across campaigns. Our work models this episodic setup,
albeit without fine tuning of experts between campaigns.

In this article, we study the contextual bandit problem with stochastic experts in the episodic
setting. In the single-episode case, we develop an Importance Sampling—based strategy that shares
information across experts and provides horizon-independent regret guarantees when expert poli-
cies and context distributions are known. In the episodic case, we generalize our methods to func-
tion with approximate knowledge of these quantities.

1.1 Main Contributions

We formulate the Contextual Bandit with Stochastic Experts problem. Here, an agent interacts
with an environment through a set of N experts. Each expert i is characterized by a fixed and
unknown conditional distribution over actions in a set V given the context from X. We also ex-
tend this to the episodic case, where this agent-environment interaction is carried out over E
episodes. At the start of episode e, the context distribution p.(-) as well the distribution of re-
wards g.(+|v, x) changes and remains fixed over the length of the episode denoted by T. At each
time, the agent observes the context X, chooses one of the N experts, and plays the recommended
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action V to receive a reward Y. Note here that the expert policies remain invariant across all
episodes.

The goal of the agent is to track the best expert to maximize the cumulative sum of rewards.
Here, the best expert is one that generates the maximum average reward averaged over the ran-
domness in contexts, recommendations, and rewards. In the episodic setting, the agent seeks to
track the episode-dependent best expert, which may change across episodes due to differences in
the environment. Due to the stochastic nature of experts, we can use Importance Sampling (IS)
estimators to share reward information to leverage the information leakage.

Our main contributions are as follows:

(1) Divergence-based Upper Confidence Bound (D-UCB) Algorithm: We develop the
D-UCB algorithm (Algorithm 1) for the contextual bandit with stochastic experts problem, which
employs a clipped IS-based estimator to predict expert rewards. We analyze this estimator and
show exponentially fast concentrations around its mean in Theorem 1. We also provide horizon-
independent regret guarantees for D-UCB in Theorem 3 that scale as O(C;N) with N experts
where C; is a problem-dependent constant. Additionally, we extend this to the case where the
expert policies are only known approximately and provide the Empirical D-UCB (ED-UCB) al-
gorithm (Algorithm 3) for this setting. We also show that with well-approximated experts, using
ED-UCB leads to regret performance that scales as O(C,N) with C, as another constant (similar
to that of the full-information setting of D-UCB) in Theorem 6.

Further, in Section 4.2, we also show that, with some mild assumptions, these regret bounds
can be improved to O(log N) and present strategies to improve computational complexity of our
algorithms at the cost of some regret.

(2) Theoretical Contributions: Authors in Reference [30] study the best-arm identification
problem in our setting and design a successive elimination algorithm wherein the sequence of
expert plays in each epoch is decided before any samples are observed. Thus, they provide con-
centration results for Clipped IS-based estimators in the setting where the number of samples
collected under each expert is a priori known using Chernoff-type analyses.

In contrast, we study the cumulative regret setting in this work and develop a Upper Confi-
dence Bound-style randomized bandit algorithm to choose experts at each timestep. This results in
the number of samples under each expert at any time being a random quantity, which restricts the
use of Chernoff bounds. We prove online concentration bounds for the Clipped IS-based estimator
(Theorems 1, 14) that are valid under any arbitrary causal policy; that is, any policy that chooses
experts based purely on observations made in the past. We achieve this by analyzing a carefully
constructed martingale and show that the mean of the estimator concentrates around the true
mean of the expert exponentially fast, similar to the deterministic sample setting above due to the
information leakage across experts . To the best of our knowledge, these types of results have not
been established, and our technique may be of independent interest.

(3) Episodic Behavior with Bootstrapping: In Section 6, we also specify the construction of
the approximate experts used by ED-UCB in the case when the supports of X, V are finite in the
episodic setting. We show that if the agent is bootstrapped with O(|V|log(T) + log(|X|NT\/E))
samples per expert, then the use of ED-UCB over E episodes, each of length T, guarantees a
regret bound of O(E(N + 1) + NVE/1?), where the dominant term does not scale with T. These
are presented in Theorem 8 and Corollary 8.1, respectively. Our regret bound lies in between
those of D-UCB in the full information setting and naive optimistic bandit policies (e.g., UCB in
Reference [2], KL-UCB in Reference [9]), demonstrating the merits of sharing information among
experts. We also mention how our methods can be extended to continuous context spaces in
Section 7.
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(4) Empirical evaluation: We validate our findings empirically through simulations on the
MovieLens 1M [18] and CIFAR10 [19] datasets in Section 8. We provide soft-control on the genre
of the recommendation for users that are clustered according to age and show that the performance
of ED-UCB is comparable to that of D-UCB and significantly better than the naive strategies for
multi-armed bandits.

1.2 Related Work

Adapting to changing environments forms the basis of meta-learning [5, 34], where agents learn to
perform well over new tasks that appear in phases but share underlying similarities with the tasks
seen in the past. Our approach can be viewed as an instance of meta-learning for bandits, where
we are presented with varying environments in each episode with similarities across episodes.
Here, the objective is to act to achieve the maximum possible reward through bandit feedback,
while also using the past observations (including offline data, if present). This setting is studied in
Reference [4], where a finite hypothesis space maps actions to rewards with each phase having its
own true hypothesis. The authors propose a UCB-based algorithm that learns the hypothesis space
across phases while quickly learning the true hypothesis in each phase with the current knowledge.
Similarly, linear bandits where instances have common unknown but sparse support is studied in
Reference [36]. In References [11, 20], meta-learning is viewed from a Bayesian perspective, where
in each phase an instance is drawn from a common meta-prior that is unknown. In particular,
Reference [11] studies meta-linear bandits and provides regret guarantees for a regularized ridge
regression, whereas Reference [20] uses Thompson sampling for general problems, with Bayesian
regret bounds for K-armed bandits.

Collective learning in a fixed and contextual environment with bandit feedback, where the
reward of various arms and context pairs share a latent structure, is known as Contextual Bandits
(References [1, 3, 7, 13-15, 21, 32] among several others), where actions are taken with respect to
a context that is revealed in each round. In various works [1, 16, 17, 32], a space of hypotheses
is assumed to capture the mapping of arms and context pairs to reward, either exactly (realizable
setting) or approximately (non-realizable), and bandit feedback is used to find the true hypothesis
that provides the greedy optimal action, while adding enough exploration to aid learning.

In the context of online learning, Importance Sampling (IS) is used to transfer knowledge
about random quantities under a known target distribution using samples from a known behav-
ior distribution in the context of off-policy evaluation in reinforcement learning [26]. Clipped IS
estimates are also commonly studied to reduce the variance of the estimates by introducing a con-
trolled amount of bias [8, 12, 23, 30]. Bootstrapping from prior data has been used in References
[16, 37] to warm-start the online learning process.

Meta-learning algorithms take a model-based approach, where the invariant-structure (hypoth-
esis space in Reference [4] or meta-prior in References [11, 20]) is first learned to make the optimal
decisions, while most contextual bandit algorithms are policy-based, trying to learn the optimal
mapping by imposing structure on the policy space. Our approach falls in the latter category of
optimizing over policies (a.k.a. experts) from a given finite set of policies. However, contrary to the
commonly assumed deterministic policies, each policy in our setting is given by fixed distributions
over arms conditioned on the context (learned by bootstrapping from offline data). Using the esti-
mated experts, in each episode (where both the arm reward per context and context distributions
change), we quickly learn the average rewards of the experts by collectively using samples from
all the experts.

Previously, in Reference [31], we studied the non-episodic version of this problem in the full-
information setting where expert policies and context distributions are known to the agent.
The strategy presented therein guarantees a worst-case regret that scales logarithmically in the
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time-horizon. Their analysis built upon the results of Reference [30] that studied a best-arm iden-
tification variant of the problem. In this work, we tighten the existing guarantee and prove a
constant (time-independent) regret bound. Further, we provide techniques that reduce the com-
putation complexity to be logarithmic in the number of experts per time (previously linear in
the number of experts per time). We then generalize the full information setting to the case of
empirical experts and unknown context distributions and also study the episodic version of the
problem.

2 Problem Setting

An agent interacts with a contextual bandit environment through a set of expertsIT = {xy, ... 7N}
At each time t, the agent observes a context X; € X drawn independently from a fixed but un-
known distribution p(-). The agent then selects an expert 7, (or simply, expert k;) that recom-
mends an action V; from a finite set of actions V. The agent then receives a reward Y; € [0, 1]
distributed according to q(:|X;, V;).

Given a context X, the action recommended by expert i is sampled from the conditional distribu-
tion 7;(+|X). The choice of expert at this time t can be instructed by the set of historical observations
(Xns kny Vi, Yn)n<: and the current context X;. We assume that the agent is only given access to
all conditional distributions in I, while the context and reward distributions are unknown.

Regret: The objective of the agent in our contextual bandit problem is to perform competitively
against the “best” expert in I1. We define py(x, v, y) £ p(y|v, x)7(v]x)p(x) as the distribution of
the corresponding random variables when the expert chosen is 7 € II. The expected reward of
expert k is then denoted by, g = Ex[Y], where E; denotes expectation with respect to distribution
Pk(). The best expert is given by k* = arg max [n)fik-

The goal of the agent is to minimize the regret till time T, which is defined as R(T) = Y./, y* -
E[pk, ], where p* = py-. Note that this is analogous to the regret definition for the deterministic
expert setting of Reference [22]. We use A = y* — jix as the optimality gap in terms of expected
reward for expert k. Let ¢ = {1, ..., un}. We further assume that for all i € [N], y; > y.

Remark. In contextual bandits, the best arm can change with the revealed context. However,
learning this context-dependent best arm is often not tractable in practice when the arm/context
spaces are large. As an alternative, access to a set of functions (or experts), each mapping contexts
to actions, is assumed, and the learner is now tasked with competing with the best expert in this
given set [1, 3, 32, 33]. This notion of regret is especially useful when the number of experts N is
much smaller than the |'V|X|, where V is the set of arms and X is the set of contexts. Such experts
are usually learned using offline data and in combination with domain-specific knowledge. For
more details around this, we refer the reader to Chapter 18 of Reference [24].

3 Clipped Importance Sampling-based Estimator

The experts being modeled as conditional distributions over arms given contexts allows us to
leverage IS to use rewards collected under one expert to estimate the rewards of all other experts.
Mathematically, the expected reward of expert k can be written as

nk(vm} |

7 (VIX) @

Hk = ]Ek[Y] = ]Ej [Y

Note here that, after the second equality, the expectation is taken under expert j and the rewards
are re-weighted appropriately. This has been termed as information leakage and has been leveraged
before in the literature of best-arm identification [6, 23, 30].
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The equation above is only valid for infinitely many samples from expert j. Further, the small
values of the denominator 7;(V|X) can introduce large variances in a standard empirical estimator
of Equation (1). To work around these issues, we use a Clipped IS based estimator, similar to that
introduced in Reference [30].

We first define an f-divergence metric that is crucial to the design and analysis of this estimator.
We define the conditional f-divergence as follows:

Definition 1. Let f(-) be a non-negative convex function such that f(1) = 0. For two joint distri-
butions px y(x,y) and gx, y(x,y) (and the associated conditionals), the conditional f-divergence

. . X|Y
Dy(pxivllgx|y) is given by: D(pxvllxiy) = Eqx , [F(ZLED].

Recall that ; is a conditional distribution of V' given X. Thus, Dr(r;||7) is the conditional
f-divergence between the conditional distributions 7; and ;. We now introduce the M;; measure:

Definition 2. (M;; measure) [30] Consider the function fi(x) = x exp(x — 1) — 1. We define the
following log-divergence measure: M;; = 1 + log(1 + Dy, (7;||7;)), Vi, j € [N].

We also assume that the divergence between any two experts is upper bounded by M < oo, i.e.,
M > max; je[n] M;j. This immediately implies that every expert in [N] recommends every action
in V with a non-zero probability for every context in X.

To define our Clipped IS-based estimator, we recall that the history of observations until time

t includes the set {X,, ks, Vo, Yu }n<, and the context X;. To ease notation, we will write rj, (t) =
i (Ve | Xe)
e, (Ve [Xy)

The estimator for the mean reward of expert i at time ¢ is defined as:

to be the IS ratio between expert i and the expert k; chosen at time ¢.

t
1 Y,
A_(t) - - s
M= 7 Zs:l Mik

Fik,(s) - 1 {riks(s) < 2log (%) Miks} : ()

s

Here, Z;(t) = 3}; Nj(t)/M;; is the normalizing constant for expert i with N;(t) as the number
of times expert j has been selected by time t. The bias-variance trade off is controlled by the

\/tlogt

adjustable term €(t). Formally, we define e(t) = Cw( 70 ), where C is a constant. The function
w(-) is defined as w(x) =y < y/log(2/y) = x.

Intuition: The clipped IS estimator is a weighted average of the samples collected under dif-
ferent experts, where each sample is scaled by the importance ratio as suggested by 1. At each
time t, the adjustable term e(t) is calculated to be used in the clipper levels. Then, the estimator is
recomputed to include the re-weighted samples collected under other experts in the past that fall
below the new clipper levels. Observe here that, since €(t) decreases with time, the clipper levels
are increasing and thus, this estimator is asymptotically consistent.

Compared to the vanilla IS estimator in Equation (1), the clipped IS estimator above drops sam-
ples with large importance sampling ratios (due to the indicator function), leading to a biased
estimate of the true mean p;. However, as observed by authors in Reference [6], adding a con-
trolled amount of bias to an importance sampling estimator helps its concentration behavior due
to reduced variance. This variance reduction is thanks to the fact that the clipping leads to an
estimate bounded within a smaller range compared to the vanilla (potentially unbounded) estima-
tor. Additionally, the clipper-level values and the weights are dependent on the divergence terms
M;j’s. When the divergence M;; is large, it means that the samples from expert j is not valuable
for estimating the mean for expert i. We will show in Theorem 1 that this leads to exponential
concentrations of the clipped IS estimate /1;(¢) around the true mean ;.
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4 Divergence-based Upper Confidence Bound Algorithm

Recall that the goal of the agent is to remain competitive with the best expert in the given set
of experts II. We propose an optimistic index-based algorithm motivated by the popular Upper
Confidence Bound (UCB) algorithm for stochastic Multi-armed Bandits [2]. Our algorithm uses
the Clipped IS estimators developed in the previous section to compute a high-probability upper
confidence bound for the mean of each expert. At each time, the policy chooses experts greedily
according to these UCB’s. The Divergence-based UCB algorithm (D-UCB) is summarized in
Algorithm 1.

ALGORITHM 1: D-UCB: Divergence-based UCB for Contextual Bandits with Stochastic Experts

1: For timestep t = 1, observe context X; and choose a random expert 7 € II. Play an arm drawn
from the conditional distribution 7(V|X).

2: fort=2,...,T do

3 Observe context X;

4 Letk, = argmax, Up(t — 1) £ fg(t — 1) + si(t = 1).

5. Sample action V; from the distribution 7, (:|X;).

6

7:

Observe the reward Y;.
end for

Here, the confidence bonus in Algorithm 1 for the estimator fix () at time ¢ is chosen as si(t) =
3
2e(t).
2

4.1 Regret of D-UCB

In this section, we discuss the performance of D-UCB. To upper bound the expected regret in-
curred by our algorithm by time T, we require concentration guarantees for the estimators i (T).
In Reference [30], the authors provide concentration bounds for these estimators assuming that
the number of times an expert is played by time T is known. However, in our case, since the ex-
perts are chosen in an online fashion, the number of times an expert is chosen by time T is a
random variable upper bounded by T. Since the existing analysis does not apply in this case, we
prove the following Lemma using martingale concentrations in place of the Chernoff bounds used
previously to account for the random nature of expert plays. This lemma provides exponentially
fast concentrations for the estimator in Equation (2) around the true mean of the corresponding
expert.

THEOREM 1. For any expert j € [N], the estimator [i;(t) defined in Equation (2) satisfies
ey _ . ripy’e
P(1-B0) g ——=] <it) <A+ pH)y|=1-2 -~ ,
(6100 (1= ) < 50 = 1+ o) 2 1 - 200 (-
when f(t) and e(t) < y are fixed non-negative constants and M > max; ; M;; is thefinite upper bound
on the divergence between any two experts.

By design, in the D-UCB (Algorithm 1), the mean estimates of all experts are updated at each
time. This departs from the stochastic bandit variant, where the mean of only the played arm is
updated. Therefore, we expect that after sufficient time has passed, the mean estimates of all the
experts are close to their true counterparts. Indeed, we show that this intuition holds and, to this
end, we define a series of problem-dependent times 7; for all i € [N] as follows:

. , t 9C*M? log?® (6C/;)
71 = min {t : Cw (\/log t/t) < y} , Tk, = min {t > 1 ot > Ai . (3)
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Remark 2. We note here that the times 7; for all i € [N] defined above are deterministic
constants that do not scale with time ¢. In particular, these are not the random number of times
expert i is played, which is the notation commonly used in bandit literature.

Recall here that Ay = p* — i is the suboptimality gap of expert k, M = max; je[n] M;;. Without
loss of generality, we assume that the experts are indexed such that 0 = A; < Ay < As,...An and
thus, ty < N1+ £ To.

With 7 as defined above, using the results of Theorem 1, we can establish the following
statements:

(1) Forallt > 7y, P(Up«(t) < p*) < t72.
(2) Forany k : Ay > 0, forall t > 7, P(Ug(t) > p*) < t72

Together, these two statements give us the following corollary:
COROLLARY 2.1. For any suboptimal expertk : Ay > 0, at any timet > 1y, P(k; = k) < 2/s2.

Since the above is true for each time t after 7, since limr_,« Zthl /12 = 7*[6, we can show that
expert k is only chosen a constant number of times from then on. Extending this argument to
all suboptimal experts, we can conclude that after time 7,, the optimal expert is played all but a
constant number of times. This leads to our main constant regret result below:

THEOREM 3. The regret incurred by Algorithm 1 by time T is upper bounded by

2 N N-1
T
R(T) < ? ZAk + NAN + Z (Tk - Tk+1)Ak.
k=2 k=2

Remarks. (1) Value of C: In the above, we use C = 16M/, with y the lower bound on the reward
of all experts and M the upper bound on the divergence between any pair of experts. However, our
empirical evaluations show that we observe that smaller values of C also lead to constant regret.

(2) About M: We have assumed that all experts recommend all actions with non-zero prob-
ability, guaranteed by M < co. While this assumption leads to clean analysis for constant regret,
it is not clear if it is necessary. For example, suppose there exists an action v € V that is only
ever played by only one expert in [N] with a low probability under any context x € X. It is rea-
sonable that the effect of this action on the mean reward of this expert is low and can be upper
bounded. Hence, we might be able to recover constant regret by simply ignoring this action in the
cases where the rewards obtained by this action are low. This would require a more careful regret
analysis that builds on the methods used to prove Theorem 3.

(3) Comparing to Linear Bandits: The structure we impose on the experts and their inter-
actions with the actions leads to the leakage of information across experts. Indeed, other settings,
most famously that of linear bandits [25], also share similarities in that playing one action leads
to non-trivial information about other actions. However, linear bandit-like formulations can not
achieve the constant regret guarantees we are able to provide. This is due to the fact that, in our
setting, playing one arm explicitly generates a “pseudo-sample” for every other arm using the
clipped importance sampling estimators. When the clipper levels are large enough, this leads to
us essentially operating in the full-information setting, albeit with a potentially larger variance of
reward per expert. However, in a linear bandit, this property can not be guaranteed—first, there
can be no information leakage in orthogonal directions and, further, rewards from one arm can
not be scaled uniformly to infer rewards from another.
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4.2 Reducing Computation

In each round ¢ of the D-UCB algorithm (Algorithm 1, the agent computes mean estimates of
each of the N experts using all the observations up to time ¢ — 1 to form the respective UCB
indices. Recall that the clipper levels of the estimator defined in Equation (5) are increasing over
rounds. Hence, updating these at each round is computationally expensive. To work around this
cumbersome update procedure, we introduce a variant of D-UCB called D-UCB-lite in Algorithm 2.
Here, at each time, the algorithm updates only a small subset of the experts using only a fraction
of the collected samples. The rationale being that if we carefully choose the rate at which each
arm is updated over time, then, provided enough samples, the algorithm should still be able to
distinguish between the true best expert and the remainder.

ALGORITHM 2: D-UCB-lite: D-UCB with Intermittent Updates

1: For timestep t = 1, observe context X; and choose a random expert 7 € II. Play an arm drawn
from the conditional distribution 7(V|Xy).

2: For each expert, set Bx(1) = Ui(1) and initialize Ni(t) = 1.

3: fort=2,...,T do

4:  Observe context X;

5. Let k;, = argmax; Bi(t — 1).

6:  Sample action V; from the distribution 7, (-|X;), observe the reward Y;.

7. Sample a subset S’(t) of experts of size log N — 1 uniformly from [N]\{k;}.

8

9

for k € S’(t) U k; do
if Ni(t) < [t7 | then

1 1
10: By (t) = Ur(Lt7]), Ni(t) = [t7 ].
11: else
12: Bi(t) = Bi(t — 1).
13: end if
14:  end for
15: end for

This algorithm is similar to D-UCB in all aspects other than the index update rule. In contrast,
D-UCB-lite first samples a (log N — 1)-sized subset S’(t) of experts at time . For each expert, it
maintains a counter N (t) that is updated to be the number of samples used to build a current
index of expert k. The algorithm then updates the indices of the chosen expert k; and those in

1
S’(t) only if they have not used |t # | samples by time ¢ for some chosen f > 1. In the worst case,
1
this algorithm updates log N experts with |7 | samples each at every timestep (rather than N
experts with ¢ samples each).

Specifically, at round T, D-UCB incurs a computational cost that scales as O(TN). This is be-
cause D-UCB needs to update the estimates of each of the N experts at the new clipper level at
time T using all T collected samples. In contrast, D-UCB-lite has a computational complexity of

1
O(T?# log N) at round T. The intermittent update strategy naturally loses performance compared
to D-UCB. The following lemma specifies this loss:

LEMMA 4. With ¢ = N/log N, define 1y 5 = min{t : t — 2clogt > Tlﬁ} and for any k # 1, 7. g =
min{t > 7,5 :t — 2clogt > Tkﬁ}. The regret of D-UCB-lite in Algorithm 2 can be bounded as

r 20N

2 N
R(T)STN"[;AN+H—ZA]C+ —_—
3 k=2 t=1 [t —2clogt]|?
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Recall here that 7; are defined in Equation (3). The final summation converges for all values
of f < 2 recovering the time-independent regret guarantees as in Theorem 3, albeit with a larger
numerical value.

In Appendix D, we also discuss a specific generative model under which our regret scales loga-
rithmically in the number of experts N (as opposed to the linear scaling suggested by Theorem 3).

5 Empirical Experts and Unknown Context Distributions

In the previous sections, we developed the clipped importance sampling estimator that relied cru-
cially on the knowledge of the expert distributions 7;(V|X) for all i € [N]. Further, to compute the
divergence metric M;;, the agent also needs to use the context distribution chosen by nature. In
practice, however, it is often the case that these two distributions are not readily accessible to the
policy designer.

The most natural alternative to knowing the expert policies explicitly is to estimate them em-
pirically using offline samples and use these estimates in D-UCB to compute the mean estimates.
These expert policies appear in our mean estimators in Equation (2) in the form of the IS ratios
and are used to scale rewards as well as decide the state of the clippers. Therefore, to maintain our
constant regret guarantee, we not only need to control for error in the estimate of 7x(V|X), but
also in the IS ratios r;;(V|X) for each pair of experts.

Similarly, in the case where context distributions are unknown, empirical estimation can be car-
ried out to produce estimates of the M;; divergence measures to be used in the reward estimators.
Unfortunately, this is not feasible when the size of context set X is large. To work around this,
we will only assume access to a universal lower bound on the probability of occurrence of any
context.

The rest of this section will be devoted to modifying the Clipped Importance Sampling estimator
in Equation (2) to use the empirical estimates of the corresponding expert policies.

5.1 Empirical Clipped IS-based Estimator

We begin by defining our empirical expert policies and translating their error to the error in the
IS ratios. Recall that we write r;;(V|X) = m(VIV)/z;(v|X) as the IS ratio between experts i and j and
further abuse this by denoting 7;;(V|X) as the empirical IS ratio between experts i and j. That is,
for empirical estimates 7, for all k € [N], we have 7;;(V|X) = #(VIX)/#;(v|x).

PROPOSITION 5. Suppose & to be the maximum error in the empirical expert policies, i.e., Vi €
[N, |7 = 7illeo < €. Additionally, let m;(V|X) > py > 0 for all i,v, x. Then, the following hold for
all (x,v) e X X V:

_ &
pvpy — &)

The proof of the above follows from Lemma 5.1 in Reference [10]. We note here that the as-
sumption of a universal lower bound py on the probability mass 7;(V|X) is necessary to guar-
antee finiteness of the IS ratio. If for any expert j this does not hold, then given samples from
this expert, we would not be able to infer anything meaningful about any of the other experts.
This is also true for our discussions in the previous section when the expert policies were known
completely where this assumption was implicit in that M = max; je[n] M;; was assumed to be
finite.

We now introduce the Empirical Clipped Importance Sampling—based Estimator, similar to its
non-empirical counterpart in Equation (2). To this end, we define the following natural lower

¢
pvpy + &)

rij(vlx) = r;;(vlx) = Fij(vlx) - rij(vlx) < 7ij(vlx) = Fij(olx) +
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bound to the M;; divergence measures in Definition 2.

D) 2 px Y > (HVIX) =€) fi (£, (VIX)), M;; 2 1+log(1+ Dy(ill). (@)

xeX veV

Recall here that fi(x) = x exp(x — 1) — 1. Additionally, px > 0 is the lower bound on the occur-
rence of any context, i.e., px > minyey p(x). We are now ready to define our empirical reward
estimator. Suppose (X, ks, Vs, Ys)s<; is the historical observations up to time t and X, is the pro-
vided context. We define our empirical clipped IS estimator for the mean of expert i at time ¢ as

i = > (Miz,-ks(s) 1 {m(s) < 21og (%) Miks}) . )

1 \—iks

As before, we have Z;(t) = 2! _, 1/Mik5 for ks the expert selected at time s and e(t) is the term
that balances bias and variance (defined using this new version of Z;(t)).

The empirical IS estimator Y;(t) is designed to be underestimate of the true mean i, on av-
erage. Additionally, its mean is also lesser than the mean of the full information IS estimator in
Equation (2), making it further biased. We compensate for this by enlarging the confidence bonus
(sk(t) in Section 3) by the maximum bias that Yj(¢) can have by time t.

The UCB index of expert i € [N] at time ¢ is set to be

U/ = T+ et) + Sei(t), ext) = max [ry 1 oon( i, | (6)

JE[N], (v, x)eVxX

The index U/ (t) consists of three terms: the first is the estimate we define in Equation (5). The
error term e;(t) captures the maximum error in our estimate due to the inherent inaccuracies in the
empirical expert policies. Finally, the last term defines the length of the upper confidence interval,
which is characterized by €;(t) (which appears in the clipper level of the estimator). It can be shown
that with high probability, this index U/(t) is an over-estimate of the true mean y; of expert i. We
summarize the ED-UCB algorithm in Algorithm 3.

ALGORITHM 3: ED-UCB: Empirical D-UCB

1: Inputs: Empirical experts 7; for i € [N] with maximum error £, lower bounds px, py.

2: For timestep t = 1, observe context X; and choose a random expert 7z € II. Play an arm drawn
from the conditional distribution 7(V|Xy).

3: fort=2,...,T do

4:  Observe context X;

5:  Let k; = argmax; U/ (t — 1) with U/(t) as in Equation (6)

6:  Observe the realization of the arm V; and reward Y;.

7: end for

5.2 Regret Bounds

The order of operations in proving regret bounds for ED-UCB are similar to that of D-UCB in 4.1.
The key difference is that concentration bounds are now required on the estimator in Equation (5)
instead of its D-UCB counterpart that assumes access to all expert policies. We defer the develop-
ment of these bounds to the Appendix. As done previously, we then produce a sequence of times
7/ for i € [N] as follows:
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Terip = min{t : Vi, j € [N],7;;<2log(2/ei())M,; }

7/ = min {t 2 Tepip Cw(\/logt/t)ﬁy},
; g / ittt (or772),
Vi:A; > 0,7] =min{t > 7| :loétz(Ai—y—le)z . (7)

These times can be used to a similar result to Corollary 2.1. Our final regret result follows:

THEOREM 6. Suppose the empirical estimation error £ is such that for all expertsi € [N],

J1+phyi -1

pvy
Consider 7/ for k € [N] as defined in the above. Then, for T > 7, > 0, the expected cumulative regret
of ED-UCB is bounded as

I = 7illo < & <2

2 N N-1
T 7
R(T) < 3 E Ak+T],VAN+ E (TI:—Tk_H) Ak == R(N),
k=2 k=2

where A = (A, ..., AN) is the vector of suboptimality gaps.

Remarks. (1) Value of constants: To analyze ED-UCB, we use C = 32M/y(1-py). However, as
with D-UCB, our empirical results suggest that smaller values suffice to achieve constant regret.

(2) Dependence on N and intermittent updates: We note here that all the discussions car-
ried out in Section 4.2 also apply in the empirical case above. That is, ED-UCB also enjoys the
improved scaling in N under the generative model for suboptimality gaps, and the computational
complexity can be improved via the intermittent update strategy.

(3) Updating empirical expert policies online: We assume that the empirical expert policies
remain unchanged during the learning process. However, in practice, it is sensible to improve these
estimates with the online collected data. Indeed, this can be done, but it makes analyzing the online
regret more complex due to evolving expert policy estimates: The form of Theorem 3 depends on
a universal error bound for all empirical expert estimates at a level £. By updating experts online
based on collected samples, it is unclear how this error evolves with time, as the rewards are
random. We note that our regret result above is powerful, as it implies that updating expert policy
estimates online is not necessary to achieve constant regret.

(4) Misspecifying &: The legitimacy of the upper bound on expert policy estimation errors &
is imperative to guarantee the constant regret of ED-UCB. If this value is inaccurate, i.e., 3i € [N] :
|l7; — #illo > &, then we can not guarantee that the UCB index of this expert is strictly below the
true mean of the best expert (or above, if this was the best expert). Owing to this, we can no longer
guarantee constant regret.

6 Extending to Episodes

In this section, we study the episodic setting. Here, the agent is to act on the environment for a
total of E episodes, each with T timesteps. In each episode, the distribution of contexts p.(x) as
well as the reward distribution g.(y|v, x) is held fixed but can change across episodes. Since the
set of experts that the agent accesses remain fixed across episodes, the respective policies can be
learned offline and reused in each episode to guarantee constant regret via Theorem 6. We recall
our advertising example, where the agency learns the experts in its inventory before deployment
and reduces the task of placing advertisements in each campaign to one of selecting the best expert
from its roster. In most cases, learning these policies while the recommendations are generating
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rewards can be prohibitive due to the size of the context set X and the action set V. However, in
practice (including our advertising example), this learning can be carried out offline by repeatedly
querying these experts for recommendations, thus decoupling this process with that of reward
accumulation.

Based on this observation, we suggest the use of basic sampling to build empirical expert policies
that are bootstrapped into ED-UCB at the start of each episode. This choice helps us to implicitly
handle the changes in the reward distributions in each episode. The reward distribution g, only
affects the generated rewards Y; and the average rewards y; ., which affects the suboptimality
vector A.. The estimation procedure in Equation (5) adapts to the former, while the latter simply
causes the constant upper bound to vary with episodes. Thus, in what follows, we study the boot-
strapping process and provide a corollary for the case when the expert policies are learned online.
We also abuse notation here by using subscripts of the episode index wherever necessary.

6.1 Bootstrapping with Offline Sampling and Online Sampling

To use empirical estimates in each episode, the agent must learn all expert policies sufficiently
well, characterized by the maximum error £. To this end, we assume that the agent is allowed to
sample from a context distribution p,,;or(x) such that for any x € X, pyrior(x) = px > 0. In the
context of our practical advertising example, this can also be thought of as trying to estimate the
expert policies from a large pool of data collected from previous ad campaigns. Bootstrapping and
warm-starting methods are common in contextual bandit algorithms; for examples, see References

[16, 37], among others.
. . A }1_ 4 29
To achieve constant regret per episode, Theorem 6 suggests the use of & = 2%
2|V | log(2T)
é_’Z

. Using

Chernoff bounds, for a fixed expert, under a fixed context, collecting n = would imply a

maximum error of ¢ with probability at least 1 — T™! [35]. However, since the sampling procedure
is probabilistic through p,;or(x), we have the following lemma:

k’g(l);w. Let & be the event that after sampling each experti € [N]

X
A times, we acquire at least n samples under each context x € X. Then, P(E§) > 1 — #@

LEMMA 7. DefineA = ;—)’: +

ALGORITHM 4: Meta-algorithm: ED-UCB for Episodic Bandits with Bootstrapping

1: Inputs: Sampling oracles for true agent policies r;(-|-), parameters px, py,y,E, T.

2: Bootstrapping: Play each expert A times to build approximate experts 7;(:|x).

3. Episodic Interaction:

4: fore=1,2,...Edo

5. Play a fresh instance of ED-UCB (Algorithm 3) with parameters 7;, py, px, y for T steps.
6: end for

This lemma specifies that under the event &, the maximum error in the empirical expert policies
is bounded by ¢ with probability at least 1 — T~!. The agent then instantiates ED-UCB at the start
of each episode. This process is summarized in Algorithm 4. A straightforward application of the
Law of Total Probability leads to the following theorem:

THEOREM 8. The regret of the agent in Algorithm 4 is bounded as

1 NVE
1 = EIN+1)+ ——|.
( +T2\/E) O(( AT )

Here, R(A.) is defined as the regret bound defined by Theorem 6 for episode e.

T
R(T,E) < VE+E + (Z R(Ae)
e=1
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This result extends to the online setting naturally. In this case, the agent spends the first AN
timesteps collecting samples and builds the empirical estimates of the experts. After this time, the
agent continues as if it were bootstrapped. Since these expert policies do not change with episodes,
the agent only incurs this additional AN regret once. We summarize this in the following corollary:

CoROLLARY 8.1. The online estimation of the estimation oracles adds an additional regret of AN
to that in Theorem 8. The total regret of the online process can be bounded as

NVE

T |

R(T,E) = O |N1log(NT*VE) + E(N + 1) +

Remark. As observed at the end of Section 5.2, using online samples to improve estimates of
expert policies in practice could lead to improved regret performance. Even if we were to improve
these estimates at the end of each episode, the improvements would depend on the trajectory of
observations that are random. Thus, for our analysis, we assume that empirical estimates are not
updated after bootstrapping.

7 Discussions

How useful is information leakage: The most natural alternative to considering the informa-
tion leakage across the experts is to treat each of them independently. In this case, the problem
reduces to a standard multi-armed bandit problem, where each expert is treated as an arm. In this
case, the optimistic UCB strategies (as in References [2, 9]) explore each suboptimal expert log T
times by time T, thus resulting in an overall regret that scales as O(N log T). In contrast, leverag-
ing the information leakage through Importance Sampling as in D-UCB does not necessitate any
exploration beyond the time 7;(analogously 7] in the empirical formulation) and thus suffers regret
that does not scale in the horizon. This carries on to the episodic setting, where naive UCB-type
algorithms (that reset after each episode) incur a regret of the order O(EN log T), but without the
need for any bootstrapping.

Lack of lower bound py : Our assumption of the knowledge of py allows us to develop IS
estimates that are finite, leading to constant regret. If there exist a sub-optimal expert that does
not satisfy this bound, then it would have to be explored at a logarithmic rate, since there is no
information leakage with respect to this expert. However, samples could still be shared among the
other experts through the use of D-UCB, making it a stronger baseline than naive policies. The
question of optimality in this case remains open.

Infinite context spaces: The context distribution p,(x) has only been used in the quantities
M, and the upper bound M (Equation (4)). For continuous contexts, the results in Section 5 can
be extended by assuming knowledge of upper and lower bounds on the density function p,(x) and
swapping out the summation for an integral in Equation (4). This can further be extended to the
episodic case by assuming access to approximate oracles for expert policies.

Stochastic episode lengths and unknown change-points: Our analysis extends to the set-
ting where the number of episodes and the length of each episode are random quantities with
upper bounds E, T, respectively. In the case where the end of the episode is not communicated
to the agent, ED-UCB can potentially be slow to adapt to the modified environment, which leads
to linear regret. Thus, tracking the best expert in unknown non-stationary environments is an
important avenue for future work.

Lower bounds: The use of Importance Sampling in our estimators implies that samples col-
lected under one expert also serve as samples (up to scaling and clipping) for all other experts.
Intuitively, this implies that after some initial exploration, playing the best expert at each time
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should provide the agent enough evidence to discredit other experts. Therefore, in the single-
episode setting, it is reasonable to expect a time-independent constant lower bound; the upper
bounds of ED-UCB and D-UCB are in agreement of this intuition. We note however, that an al-
gorithm that learns the best arm per-context can incur negative linear regret with respect to our
defined best expert. Thus, producing lower bounds on regret in our setting and under stronger
notions of the best expert as well the number of bootstrapping samples necessary in the episodic
case serve as two important avenues of future work.

8 Experiments

We now present numerical experiments to validate our results above. We build two sets of semi-
synthetic experiments using the CIFAR-10 [19] and MovieLens 1M [18] datasets; we describe them
below. We compare our D-UCB and ED-UCB algorithms with the naive UCB [2] and KL-UCB [9]
methods that do not leverage the information leakage. For all our experiments, we set the value
of the constant C = 0.02 for both D-UCB and ED-UCB. We use the best values of constants for the
naive algorithms as suggested by Reference [24].

An Image Classification Setup: Using the CIFAR-10 dataset, we build 5 classifiers. Each of
these is trained over data from 9 of the 10 labels, with a different label being omitted per classifier.
We use these to build 5 experts: Given an input image, with probability 0.8, the expert recommends
the class suggested by its associated classifier or recommends a uniformly random class with prob-
ability 0.2. This gives us experts that output each of the 10 classes with probability at least 0.02
for any image. Further, we use classes to form contexts as follows: For an image from class c, the
context is provided as “possibly an image of class c¢”. We also sub-sample a set of 1,000 test
images (100 per class), called the “test set.”

Mapping this back to our episodic bandit setup, we have |X| = 10 contexts, N = 5 experts, and
|V| = 10 arms (or recommended classes). In the online phase, in each episode, we sample a context
from the corresponding context distribution X; ~ p.(x) and an image from the test set with this
(possible) class uniformly at random. We choose an expert according to each of our evaluated
algorithms and provide the recommended label as its output. The expert then observes a binary
reward: 1 if the output was the true label of the image and 0 otherwise. We set px = 0.05 and use
pv = 0.02 to generate the necessary number of samples to form the empirical expert policies for
ED-UCB. The results are averaged over 300 independent runs and presented in Figure 1.

A Movie Recommendation Setup: We use the MovieLens 1M dataset [18] with 1 million rat-
ings of approximately 3,900 movies by 6,000 users to construct a semi-synthetic bandit instance.
First, we complete the reward matrix (scaled down to (0, 1)) using the Softlmpute algorithm of
Reference [27] included in the fancyimpute package [29]. We filter the number of movies to
618 using the completed matrix by eliminating ones that are mostly rated 0. Then, we cluster
these movies based on seven genres, namely: Action, Children, Comedy, Drama, Horror,
Romance, Thriller and users based on ages between 0-17, 18-24, 25-49, 49+. At this stage,
the average reward of all (age,genre) pairs are close to each other. To induce some diversity, we
boost the rewards of the following (age,genre) pairs by 0.008: (0-17,Children), (18-24,Horror),
(18-24,Thriller), (25-49,Action), and (25-49,Drama).

Experts are then randomly generated over the set of genres randomly with py = 0.002. Given an
age group (context) and genre (expert-recommended action), a movie of the selected genre is picked
uniformly, and the reward is obtained from the completed reward matrix. We build empirical expert
policies using Theorem 8 with py = 0.2 and a prior distribution satisfying px = 0.05 for 5 episodes
of length 10° each. The averaged results of 100 independent runs are presented in Figure 2.

In both Figures 1 and 2, our Importance Sampling-based policies show large improvements in
regret over the naive baselines. In the movie recommendation case of Figure 2, the mismatch in
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Fig. 1. Experiments on the CIFAR-10 dataset: The experiment consists of 5 episodes with 5 x 10° steps each.
Plots are averaged over 300 independent runs, error bars indicate one standard deviation. Indices of the best
expert and the minimum suboptimality gaps are presented.
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Fig. 2. Experiments on the MovieLens 1M dataset: The experiment consists of 5 episodes with 10° steps each.
Plots are averaged over 100 independent runs, error bars indicate one standard deviation. Indices of the best
expert and the minimum suboptimality gaps are presented.

pv in the sampling process causes the empirical estimates being formed with fewer samples than
theoretically recommended. However, we empirically observe that ED-UCB still heavily outper-
forms the naive bandit policies and is comparable in regret to D-UCB. Some additional empirical
results can be found in Appendix F. These present some cases where the assumptions we make
about the environment do not hold.

Appendices

The Appendix is structured as follows: We first discuss the proof of our regret results for ED-UCB
(Algorithm 3) in Section 5 at length. The results for D-UCB (Algorithm 1) in Section 4.1 will then
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follow simply from these with similar arguments; we provide short proofs of these results. Next,
we provide the proofs for our scaling and computational improvements discussed in Section 4.2.
Finally, we prove the episodic results from Section 6.

A Useful Concentrations

We begin by proving regret guarantees for ED-UCB in Algorithm 3, which will immediately imply
all our results for D-UCB in Algorithm 1. We begin with some basic concentrations. First is a result
about L; deviations of empirical probability distributions.

LEMMA 9. Let p be a probability vector with S points of support. Let p ~ L Multinomial(n, p) be an

n

empirical estimate of p using n i.i.d. draws. Then, for any S > 2 and § € (0, 1), it holds that

X 2Slog (%) X 2Slog (%)
Pllp = pll 2 \[———2 | < Pllp = plls 2 \[—> | <5
n n
ProoF. The result follows from that of Reference [35] as ||x||c < [|x]|; for any vector x. O

Next is the proof of Proposition 5, which provides confidence bounds for ratios of random vari-
ables. We restate it here for convenience:

PROPOSITION (RESTATEMENT OF PROPOSITION 5). Suppose & to be the maximum error in the em-
pirical expert policies, i.e., Vi € [N], ||m; — || < €. Additionally, let 7;(V|X) > py > 0 foralli, v, x.
Then, the following hold for all (x,v) € X X V:

& _ &
pvipy = &) pvipy +&)

Proor. The proof follows the result of Lemma 5.1 in [10]. To ease notation, we fix an arbitrary
s € S and denote pig = mi(s), Xy = #x(s) for k € {i, j}. Under the event that ||y — Xg|le < & for
k € {i,j}, we have

rij(v|x) = r;(vlx) == Fij(vlx) - rij(v|x) < 7i(v|x) = Fi(v]x) +

\%

Hi— & p £ (1+ﬂ)

pitE o pté Hj

Hi & 1-c¢
Zz‘m(” c)
_ K ¢

pi  cle+&)

X;
X

The upper bound is proved similarly. Since the choice of s € S was arbitrary and the event
|tk — Xklloo < & holds with probability at least 1 — §, the result follows. o

B Proofs of Results in Section 5.2
B.1 The Simpler Case of Two Experts

We begin by considering two experts, i, j. We are given access to t samples from expert j and seek
to estimate the mean of expert i using the approximate policies 7;, 7; with maximum error £. The
arguments in this section closely follow the analysis of the two-armed estimator in Reference [30].
We note here that we work with values of £ as in Theorem 6; i.e.,

Jitpyri-1 £ ( 1 L\ ey

<2 — = [fad
pvy pv

-0 @v+D)- 2
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12:18 N. Sharma et al.
We refer the reader to Proposition 5 for the definitions of r; j(v|x),7i j(vlx). Using the proposition,
we also have

L’j(le) < fij(’0|x) < Fij(le)-

For an arbitrarily chosen € € (0, 1), we write

q’:min{a:Pi (L.j>a)s§}, (8)

q:min{a:]}”i(r,-j>a)sg>. 9)
One can easily check the following claim using basic properties of indicator functions:

Cramm 1. With n,n’ as above, for any € € (0,1), we have that n’ < n. Further, 1{r;; < n} >
]1{71']' < ’]/}

Our estimator for y; based on ¢ samples from expert j is then defined as
t
. 1 _ ,
VG0 = 3 ) Yer 1 {Fi(s) < '} (10)
s=1

We recall the following result on the full information IS estimator (Lemma 1 in Reference [30]):

LEmMA 10. With n as in Equation (8) and the full information IS estimator as
t
A 1
HOES D Yorg(o)1 {rij(s) < n}- (11)
s=1

Then, for allt > 1, it holds that E;[Y,'(j, 1)] < p; < E;[Y]'(j,1)] + &.

We now compare our estimator in Equation (10) to the full information estimator in
Equation (11). Due to Claim 1, it holds trivially that Y;(j, t) < Y;(j, t). Consider the following chain:

?i(ja t) = ?i(j’ t) + }N,i(j7 t) - ?i(j’ t)
<.+ 3 D0 ()~ 01 7ts) < ')

t

G0+ - 2 (756~ 2, 01G6) < 1)
G

t)+eij'

2

IA

<Y

Here, the second inequality holds, since e;; := max, x 7;j — L.j]l{ﬂj <np'}>0and Yy <1. Asa
result of the arguments above, we have the following Lemma:

LEMMA 11. With Y;(j, t) and Y;(j, t) as defined in Equations (11) and (10), respectively, and e;j :=
maxo,x Fij = I 1{Fi; < n'}, it holds that

E;[Y:(, )] < Ej[Y;(, )] < E;[Y:G, )] + ey

Together with Lemma 10, we have the following corollary:
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COROLLARY 11.1. The mean of the estimator Y;(j, t) according to the distribution of arm j satisfies

. €
E;[Y;(G,t)] € |pi — 2 e Hif- (12)

B.1.1  Simpler Clipper Levels. In this section, we move from the abstract clipper levels in
Equation (8) to those based on divergences as in the estimator used in ED-UCB. To this end, us-
ing Markov’s inequality, we have Pi(ﬁi}. > a) < exp(—a)E i[exp(gij)]. Suppose that the RHS of the
above is upper bounded by £. That is, exp(a) > 2E il(rij)]. Consider the following chain:

Ei[exp([ij)] —e+e (Ej[rij exp(rij -1)- 1]) >e+e (Ej[fij eXp(L.j -1)- 1]) =e+ eQﬂ(niHnj).

Therefore, the RHS of the Markov inequality is upper bounded by 5 if exp(a) > 2 Z(e +eD 1(7r,~ [l7;))
or, equivalently, if a > log(e) +M,;. However, by definition, we must have that n’ < log(%) +
Mij = 210g(%)M1‘j'

Therefore, we redefine our original estimator in Equation (10) to use this new clipper level
ai(j,€):=2 log(%)Mlj. We have

t
0.0 = 5 Dy (7 (5) < o). (13)
s=1

We also restate Lemma 11 for convenience:

LEMMA 12. For Y;(j, t) defined as above, and e;; = max, x Tij — Eij]l{Fij < a;(j,e)},

E;[Y;(j,t)] € [Ili - g = eij, i - (14)

B.2 Estimator Concentrations
The Clipped IS-based estimator with empirical policies is defined in Equation (5). To pro-
vide concentrations for this estimator, we define the following filtration by time t: 7 =
o({ks, Xs, Vs, Y} s ! k;). Note that the filtration at time t contains information about all the obser-
vations up to time ¢ — 1 as well as the choice of the arm at time ¢. We now define the following
martingale that will be used to analyze the estimator:

Li(D)

7|
—zk

Li(l

Ay :=0,A; := Z i) ZE
I=1 —lkl I=1

where, to ease notation, we write L;(I) = leikl(l)]l{rl-k,(l) < aj(k;, 1)}. Since F;_; contains knowl-

edge of k;, the second term in A can be further simplified using p;(I) = E[L;(I)|F7-1] as

L _ 5 )

I=1 Mikz I=1 Mikl

A =

Remark 13. Using Lemma 12, we can write that p;(l) € [p; — 5 — ei(t), pi], where e;(t) :=
max; €;j.

It is easy to see that |[A; — As—1| < 4log(§). Therefore, using the Azuma-Hoeffding inequality
for martingales with bounded differences, we can write:

L) <o D) p
|Z_ ,U |>ﬁ)£2exp(—m).
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We are now ready to state and prove our concentration result.

THEOREM 14. The estimator Y;(t), as in Equation (5), satisfies

1% (v — 2e:(t))*
128M?2 log? (%))

(Y(t) ¢ [(1 —ﬁ)( G e'(t)) S+ P

)SZexp -

fort such that €;(t) <y, f > 0 and M = (1 — px)|X||V|fi(®v/1-pv).
Proor. Upper Tail: For any f(t) > 0, we have the following chain:

1+ @) (max#z(l)) Z L > Z # v X B(t) x maxy,(l)
—ik;

md pWt (y
My, M

’- ei(t)) .
The final inequality uses Remark 13 with e(t) < y < y; for all i € A. Thus, we have that

! L) _ 5 ) Bty
P [Tz ﬁ(t))(rlféﬁﬂi(l))ﬁp(z DR R m))

I=1 —lkl =

tB2(t) (L — ei(t))?
32M2 log® (%)

<exp|-—

(2) Lower Tail: Again, for any f(t) > 0,

t
(1-B(2) (mm u,a)) Z

Therefore, we have that

P (700 < (- s ) < 7 (Z i< (5 m))

1=1 —lkl

) (L - a)

< ex
2(_2
32M210g (—e(t))

Combining the two tails above and using Remark 13, we have

tB2(t) (L - ei())’
32M2 log? (%)

P (¥i() ¢ [(1 = ) (- -eat0) , (1L + BO)pi]) < 2exp |-

B.3 Per-expert Concentrations

In this section, we provide concentration results for optimal and sub-optimal experts separately.
We begin with the following claim:

Cramv 2. Forallt > T¢y;, and allk € [N], ex(t) = “5-
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Proor. Fix i,j € [N] and (v, x) € V x X, arbitrary. Consider at some t > T,

rij(vlx) - Kij(v|x)ﬂ {7ij(v|x) < aij(t)}

=7;j(v|x) - fij(le) (By definition of T,;;;)
_& ( 1 L) v
pv

+ < .
(v -8 (v +9) 2
Since this holds for the arbitrary choice of i, j, v, x, it must hold that e (t) < Y"%. O
The following lemmas provide concentrations for the best expert and suboptimal experts:
LemMA 15. Let f.(t) = Cw( k’%) and 7] be as in Equation (7). Then, for allt > 7], it holds that
PU,.(t) < p*) < %

Proor. We have that for t > 7/,

P(UL. <) < P (*k*a) <p = 2 - k)

- l* t
<P (fi®) <47 =4 L0 - (1= L) (ﬁ 0 o)

=P (f/k*(t) <(1-B.() (,U* - ﬁk;(t) - ek*)) :

In the above, the first inequality follows, since (Z; () < t, w(x) increasing = fi-(t) > f;.(t)) and
the second is due to (f.(t) <y < p* < 1fort > 7]). Applying Theorem 14 with e(t) = f(t) =
By (t) (this choice is valid for €(t) due to the definition of 7{) and using Claim 2, we have

B (0ty* (1= pv)’

128M?2 log? (

PU,.(t) < p*) < exp| - ;
ﬁ;_*(t))

Consider the exponent:

R s e B Vil

2 = T 12802 > 2logt.
128M? log? (ﬂ, Z(t)) log (Z/Cw(x/b%”))
e
The final inequality holds for the choice of C = ﬂ%% and because log(‘f/(% > x fora > 1,asis
the case with C. Substituting this exponent completes the proof. O

LEMMA 16. Let 7, be as in Equation (7). Then, for allt > 7, and k # k*, P(U/(t) > p*) < %

Proor. Note that Z(t) > ﬁ Since w(x) is increasing in x, using ¢ > 7., we can write

3C [ MA/tlogt
_W(_"g)+Yﬂ

“Bi(0) + exlt) < T [ = )

3C (Ak=ypv)/3c
3C | erevipse | ypv

2 2 2
Iog ((Akfypv)/ac)

C Meypr v A

2 3C 2 2

IA
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Here, the penultimate equality follows from the definition of the w function. Therefore, we can
write

ﬁk( )

P (UAt) > p*) =P (?k(t) > - k(t))

<P (f/k(t) >t — %)

<P (?k(t) > g + %)

<P (f/k(t) > Uk (1 + %))

<P (ffk(t) > e (1+ ﬁé(f))) :

The penultimate inequality uses y; < 1and the final one follows, since §; (t) < fi(t) < 2 (), +

ex(t) < 5+ Thus, we can now apply Theorem 14 with S(t) = €(t) = f,(t) and follow the exponent
boundlng arguments as in Lemma 15 to obtain the required result. ]

The two lemmas above lead to the following useful corollary:

COROLLARY 16.1. For all suboptimal experts k # k* and t > t,, we have that

2
Pk =k) < .

Proor. Consider any suboptimal expert k : Ax > 0 and time ¢ > 7/. We bound the probability
that it is played as follows:

Pk, =k) =P (ke =k, UL(t) > p) + P (ke = k,UL(t) < p*)
=P (ky = K|UL(t) 2 ") - PUL() 2 p*) + P (kr = k|UL(8) < p*) - P(UL(E) < i)
<P (k; = k|UL(t) = p") + P (UL(t) < p)
< P(UL(E) > p*) + P(UL(8) < p*)

2

t_z.

Here, the first inequality uses the fact that probabilities are bounded by 1, then, we use
{kt kIU'*(t) > p*} € {U/(t) > p*}. Finally, we use the results of Lemmas 15, 16 above, since t >

> i
T >

B.4 Proof of Theorem 6

Proor. Using Corollary 16.1, we can bound the regret using the following chain:

T N
Z Z APk, = k)

t=1 k=2

E[R(T)]

’

1 T T N-
Z Ay + Z ANP(k; = N) + Z Z APk, =
t=1 tzrj’v k:

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 9, No. 3, Article 12. Publication date: August 2024.

IA



Bandits with Stochastic Experts: Constant Regret, Empirical Experts, and Episodes 12:23

TN T N-2
<WM+M:+§:MH+§:MHMh=—D+§:ZMW®=M
tTN tTNl — _
< AN (TJ’\I+%2)+AN—1 ((T&_l—fl/\])+%2)+-~+Az ((TZ,—T?:)+%2)
e
:?; k+TNAN+Z Tk+1

C Proofs of Results in Section 4.1

All our results for ED-UCB can be used to derive results for D-UCB by setting & = 0 and replacing
the empirical IS ratios and divergences with their true values. In particular, Theorem 14 can be
modified to prove Theorem 1. Then, with 7; defined as in Equation (3), we arrive at high proba-
bility error bounds for the UCB indices of the best and suboptimal arms separately (analogous to
Lemmas 15, 16). These are then used to conclude Corollary 2.1. The result of Theorem 3 then fol-
lows from arguments similar to those in Theorem 6. We present short versions of these results
below.

C.1 Estimator Concentrations
We begin with the following counterpart to Remark 13:
LEMMA 17. For all times | and all experts j € [N], we have

m—ﬂl<wmsm, (15)

where p;(1) is defined in the proof of Theorem 1.
Proor. We first note that under the filtration %;_y, M) is a constant and k(/) is fixed. There-
fore, following the notation in Theorem 1, we have the following chain:
() = E [L;(D|Fi- |
7 (Viey (DX k1) (D)
=Erq |V
7y (Vey (D1 Xk (D)
7 (Viery (DI X k1) (D)
-Eroy | Vi
7)) (Vi (D1 Xy ()
Q) 7 (Viey (D X k(o) (D)
> u —P; > 2log(2/e(t))Mir
! (”k(l)(Vk(l)(l)|Xk(l)(l)) g JKD

(if) e(t)
> - —.

X 1{r; > al}]

Here, (i) follows from the fact that Y € [0, 1] and (ii) follows from Lemma 2 in Reference [30]. O
Now, we are ready to prove Theorem 1.

Proor oF THEOREM 1. We will reuse notation from Theorem 14 for convenience. Let ¥ be the
filtration formed by the observation until time s and the expert chosen at time s + 1. We define the
martingale {A} with Ay = 0 and

l 1] 5

= - e
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where, to ease notation, we define
_ 7 (Viey (D1 X ko) (D)
7ty (Vieey D1 Xy (1)

= 210g(2/€(t))Mjk(1), Li) =Y xrx1{r <a}.

With p;(1) := E[L;(D)|Fi-1] and B; = 3]_, Aﬁ’i 3) we rewrite Ag as A; = By — X)_; A’Zg;)
Since |As — As_1| < 4log(2/e(t)), the Azuma-Hoeffding inequality implies that
t
:u]( ) ( X2 )
> —— . (16)
( Z M| =% ) P\ s2t(l0g(2/e(0)?
(1) Upper tail We have that
t
pi (1) ( X )
> + S | —
( Z My * ) P\ B2(log(2/e(n))
Consider the following chain:
t t
ﬁ( )t }’/3(1‘)1‘
1+ (1)) (max i(l ) —— max y;(l) >
(PO gy oD Z Mijkq) ,2‘ My~ M i Z‘ M)
where the final inequality comes about as a consequence of e(t) < y and y;(l) > pj — it) >y -

?. The latter is proved in Lemma 17. We also use the fact that M := max; x M. Thus, we have

PARSEE! S o) Z.0%
P Btz<1+ﬁ<t>)(mgxuj<z>); MM) ( ZZ T 2M)
<o (- Yip)t
= P T o8M2(log(2/e(1))? )
This implies that
2 (t)zt
(.Uk(t)>(1+ﬁ(t)) (maxm(l))) exp( 128Mfafg(2/e(t)))2). (17)
(2) Lower Tail We have that
< 2o st
S DMu )P\ s2oge/e@)7 )
Using similar arguments as above, we can write
~ AR S U 710L
P(Bts(l ﬂ(t))(mlmuj(l));Mjk(l)) ( Z My ZM)
< exp (- y: B’
= P T 282 (log(2/e(1)))? )
This implies that
rEp)’t
(uk(t><<1—ﬁ<t>> (mmuj(l))) exp( 128M2(10g(2/€(t)))2). (18)

Since the choice of j € [N] was arbitrary, combining Equations (17), (18) above with Equation (15)
from the lemma above, we have the result. O
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C.2 Per-expert Concentrations

We begin with the best expert and show that it is overestimated with high probability.

LEMMA 18. Letr; = min{t : f'(t) := Cw(—'clttlogt) <y} be as in Equation (3). Then, forallt > i,
the index of the best arm formed using the Clipped Estimator satisfies

. 1
P (Ui () > 1) 2 1= .

Proor. Since Zi(t) <t and w(x) is increasing, we have that (¢) > f’(t). Now, we have the

following chain:
yeitlogt ))

Zi(t)

4o 59

t

P (Ui (t) < ) = P (ﬁk*(t) <p - ZCw

(i)
é P (ﬁk*(t) <pt—ptCw

@y (ﬁk*(t) <pt -t -1 - ﬂ’(t))%ﬂ’(t))

<P (ﬁk*(t) <(1-p8®) (,,* _ ﬂ;t))) .

Here, (i) uses the observation above and that p* < 1. (ii) follows from the fact that f'(¢) < 1.
Now, we use Theorem 1 with f(t) set to be sample-path independent f'(t) to write

~ }/zﬂ’(t)zt
128M2(log(2/p'(1)))2 ]

P (U-(1) < ') < exp (

Similar to the arguments in Lemma 15, with C = ¥ we can upper bound the exponent by
—2logt. This leads to the result. m]
We now bound the probability of overestimating a suboptimal expert.

LEMMA 19. Let 1y be as in Lemma 18 and 7y as in Equation (3). Then, for anyk # k*, foranyt > i,
we have that

N 1
P(Uk(t)<ﬂ)21—t—2

9C2M? log T log?(6C/ay,)
7

k

PrOOF. We have that Z;(t) > & and t > . Additionally, w(x) is increasing in

x. Therefore, we can write that

3C [+/citlogt - 3C [ MAJcitlogt
2\ Tz | T2 :
3C (M cltlogT)
< —w|———
2 t
3C M+Jcqlog T

w
2 3CMA/c; longog(f’C//\k)
Ak
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3C Ax/3c
wl| —r

2 log(Ak/jC)

where the last equality follows from the fact that w(x) =y < log(% = x. Using the argument
above along with the fact that Ay = p* — pg and pg < p* < 1, we have the following chain:

P (U(t) > 1) = P (ﬁk(t) . m)

<P ((t) > p* ——k)

IA

IA

2

[
p(k<t>>,,k+7k)
[

P | fig(t) > px (1+%))

(i) MA/tlogt
< Par(t) > px (1 + EW (—Og)))
2 t
2 (3C/,)2 w [ MA/logt/t
< exp| Y Gt ( ) (19)

128 M2 log (z/CW(\/bg—,,))

In (i), we have used the fact that A;/2 > %W(M— ‘ttlogt) from the chain just before. Here, the
final inequality applies Theorem 1 (bounds for the upper tail error) with y(¢) = %w(M— "ilogt) and
€(t) = p’(t) defined in Lemma 18. Upper bounding the exponent by —2log ¢ using arguments in
Lemma 15 gives us the result. O

These lead to Corollary 2.1.

PrROOF OF COROLLARY 2.1. The proof follows the same chain of reasoning as Corollary 16.1 with
all the empirical quantities replaced by their full-information counterparts. We have

P(ke = k) =P (kr = k, U= (t) 2 p*) + P (ke = k, Up(t) < pi*)
<P (k; = k|Up (1) = 1) + P (Up- () < )
< P(Uk(t) > p7) + P(Up(2) < 1)

2

t_z.

Again, we use that {k; = k|Ug-(t) > p*} C {Ux(t) = p*} in the second inequality. The result fol-
lows by applying Lemmas 18, 19. O
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C.3 Proof of Theorem 3

Proor. Using Corollary 2.1, we can bound the regret using the following chain:

E[R(T)] = ZZAkP(k, k)

=1 k=2
n—1 T N-1
< Z Ay + Z ANP(k; = N) + Z Z AP (k; =
=1 t=1N t=1N k=2
”2 TN-1—1 T N-2
< ovAy + Ay Z An-1 + Z An_iP(k, =N -1)+ Z Z APk, = k)
t=TN I=TN-1 t=TN-1 k=2
2 ? 7l
< AN (TN + ?) + AN—l ((TN—l - TN) + ?) + -+ Az ((Tg — ’['3) + ?)
2N N-1
= ?kZAk +nAN + kZ(Tk_Tk+1)~
=2 =2

D Proofs of Results in Section 4.2 and Tighter Regret Bounds

We prove our improved computational complexity result:

PROOF OF LEMMA 4. Let S(t) = S’(t) U k; for S'(t) defined as in Algorithm 2. Define Ej(t) =
{3t" € [t — 7,t] : k € S(t")} as the event that expert k has been updated at least once in the last ¢
timesteps from ¢, for some 7 to be chosen. We have that

PEL(t)=P@t e[t-r,t]:keS(t) <P@t' €[t—r.,t]  keS(t)
- (1_ logN)T 3 (1_ logN)T
N-1 N

Recall that in vanilla D-UCB, we have that for t > 7;, P(U!(t) < p*) < t~?(analog to Lemma 15).
In case of D-UCB-lite, we can write for ¢t > 7y g,

P(By(1) < ") = P(B(t) < 1", Exc- (1)
+P(BL(1) < 4" EE.(1)
< P(By(1) < " |Ex- (1)) + P(EC. (1))

= P(Ue(LE'7 ) < g ") + P(EL.(1)
(for some t’ € [t — 7,t])

logN\"
< (IL)
t'7 N
1 logN\"
(ke
(t-7)7 N
1 1

+ 7,
2 (t—2clogt)?
where the final inequality holds for the choice of 7 = 2clog ¢. Similarly, for any suboptimal arm k,
2
after time i g, we can write P(B(t) > p*) < t72 4+ (t —2clogt) #.
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The regret result follows using these two statements and the regret decomposition in the proof
of our regret theorem in Appendix B.4. O

The result of Theorem 3 implies that average regret of D-UCB is bounded by a problem-
dependent constant (for any i € [N], 7; is a constant). However, there are two things to note here:
First, the upper bound expression is linear in the number of experts N and, second, the algo-
rithm updates each of these N experts once per iteration. In this section, we further examine these
observations.

Scaling with N: We first provide the regret improvement result in the case where the subop-
timality gaps are drawn from a generative model. Specifically, consider a generative model where
A3 < --- < Ay are the order statistics of N — 2 random variables drawn i.i.d. uniform over the
interval [A,, 1]. Let pa denote the measure over these A’s.

COROLLARY 19.1. Under the generative model pa above, the regret of Algorithm 1 can be bounded

M*log N log?(1/A
as B, [R(T)] = O(F—ETE 0

Proor oF COROLLARY 19.1. The analog to Lemma 16 in the full information setting guarantees
aCiM?log?(55)

that for arm k, P(Ug(t) > p*) < t72 for t > 2- for an « large enough. Note here Ay in

Ay
the log term has been replaced with a smaller A;. The regret can now be decomposed as
2 N aC*M?log? (Zﬁ) N-1 aC?M? log? ("’A—C) A2
R(T)<—2Ak+ A 2 +Z i 2 (1_ 2k)
3= N k=2 k An

M“logz(Aiz) ( N-1 A2

1+21— Zk)

k=2 k+1

It only remains to prove that under the considered generative model, the inner expression is
O(log N). We start by observing that by Jensen’s inequality, we get

AZ A 2
Z_k <1- IEPA [_k] .
Ak+1 Ak+1

1-E,,

Let X = A, Y = Ay for some k > 3. Then, we have that the joint distribution of X, Y under
the generative model to be

flx,y) =

Thus, we have

_ ' Yo [x (N -1)! x— Ay \F! y—As N-3-k 1
= /y=A2 /x:Az (E(k - DN -k -3)! (1 - Az) ) (1 1z Az) : mdxdy
Lot (= Aa+ Ay (N - 1)! N
/h:o ‘/a:O ((1—Az)b+A2 C(k-1)!(N-k-3) a b dxdy)

1opb o, (N -1)! NSk
/bzo /azo (E "k—1D!(N-k-3)1" 'b dxdy)

k
k+1

(N -1)! x — Ay \F! LY N=5=k 1
%—1MN—k—$JI—AJ (_1—AJ A=A

IA
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Therefore, we have

N-1 2 N-1 N-1
A k? 2k +1 2
E El— k s1+§1——=1+ <1+ <1+2logN.
Pa 2 2 2
k=2 Ak+1 k=3 (k + 1) k=3 (k + 1) k=3 (k + 1)
This completes the proof. |

Note that this corollary shows that under the defined generative model for the gaps in the means
of experts, the dependence on N can be improved from linear to logarithmic.

E Proofs for Results in Section 6
We begin by proving that with A, n as defined, with high probability if each expert is played A
times, each context x € X is seen n times.

Proor oF LEMMA 7. We fix a context x and expert i arbitrary. Then, we have that

2
P(x seen < n times after A pulls of i) < P(Z < n) < exp (—ZA (p(x) - %) )

1
|XINTVE
In the above, Z ~ Binomial(A, p(x)) and the final inequality uses the definition of A. We say expert
i is incomplete if there exists a context x € X s.t. x has been seen < n times after A pulls of arm i.
Then, a series of union bounds gives us the result.
N
P(EF) = P(Ji € [N] incomplete) < Z Z P(x seen < n times in A pulls of arm i)

i=1 xeX

< exp (-24(p%-278x)) =

<ZN:Z 11
= 4 \XINTVE ~ TVE

i=1 xeX
O

Next, we provide the final regret result for the agent bootstrapped with A samples per expert.

Proor oF THEOREM 8. Lemma 7 gives us that with probability at least 1 — ﬁ, each expert

has at least n samples before the agent interacts with the environment. Under this event, using
Lemma 9, the agent can build empirical experts with maximum error £ w.p. at least 1 — T~!. There-
fore, conditioning on the event & and then on the event that the approximate experts are accurate,
we have the following chain:

1 1\ (1 1\ <
RE,T) = eeZ[E]Re(T) < " x ET + (1 - T—\/E) (? x ET + (1 - ?) 2 R(Ae))

T
<VE+E+ (ZR(AE)) (1 + T;\/E) .

F Additional Empirical Evaluations

In this section, we will provide a few additional experimental results that shed light on some of the
key assumptions we use to develop D-UCB and ED-UCB. First, we will see how the precision of
the empirical policy estimates affects the regret of ED-UCB and then move on to the assumption
of bounded divergence between experts.
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Fig. 3. Precision of empirical estimates on regret of ED-UCB: The experiment consists of one episode of
3 x 10% steps. The legend indicates the number of samples used to form the empirical expert policies used
by ED-UCB in Algorithm 3. Plots are averaged over 300 independent runs. The results suggest that using
estimates with higher precision leads to lower regret.

F.1 Precision of Empirical Estimates

For the results shown in Figure 3, we consider the same setting as our image classification setup
in Section 8. Instead of using Theorem 8 to instruct the number of samples to be used to form
the empirical expert policies, we set a fixed budget of 100M, 1M, and 1K samples. Then, we split
these samples across the different contexts using a fixed context distribution. We reuse this same
distribution in the online evaluation. We then spawn three instances of ED-UCB with ¢ being
set at the value recommended by 6, which is inaccurate for all three sets of empirical estimates.
All other parameters are kept unchanged. As is to be expected, the results show that there is
an inverse relationship between the number of samples used to compute the empirical policies
(or equivalently, their precision) and the regret they achieve.

However, we note the following: We believe that our recommendation for the number of samples
to use in Lemma 7 is loose. The constant regret achieved using 1M samples in Figure 3 provides
potential evidence of this. However, we stress that the results displayed in the figure are only
a random sample path of choosing a random context distribution, partitioning the samples ran-
domly across contexts, and sampling random rewards according to this distribution. That is, the
figure by itself is not proof that using lesser samples than recommended can guarantee constant
regret.

F.2 Infinite Divergence

Here, we consider the case of unbounded divergence where our D-UCB and ED-UCB algorithms
are not suitable. In this case, the M;j measure is infinite for some tuple of experts i, j. This occurs
when there exists an arm that is never recommended by expert j. To fit this, we create modi-
fied versions of the two algorithms above. Specifically, we replace Dy, (rr;||;), M;; in D-UCB and
D, (illj) M, in ED-UCB with

Dy (millm) = ) px) ] f(m)n,(wx), Mj; = 1+ log(1 + D}, (milI)))

xeX veV:ri(v]x)>0 ﬂj(le)

Dy =px ), >, (HVIX=E) fi(ry(VIX)). M, =1+ log(1 + Dy Gllj).

xeX veV:iaj(v|x)>0
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Fig.4. Unbounded divergence with modified D-UCB and ED-UCB: The experiments consist of one episode of
3 x 10? steps. Plots are averaged over 250 independent runs. We consider modified versions of our proposed
algorithms and the toy environments with setups detailed in Section F.2, where the maximal divergence
between a pair of experts is unbounded. In the first setting, the mean reward and the probability of picking
the problematic arm are low. Therefore, it does not affect the regret much and thus we only suffer constant
regret as before. However, in the second setting, the low-probability problematic arm has high mean reward,
thus leading to logarithmic exploration much like vanilla UCB.

The above quantities are finite surrogates for the potentially infinite original divergence mea-
sures. They are constructed by ignoring the terms from the problematic arm. We note here that
these modified versions are only sensible when the zero-probability arm is chosen with low prob-
ability. This modification makes it so the Clipped importance sampling estimates are always well
defined. Further, samples of some arm v € V that is only picked by expert k € [N] are only used
to update the estimates of this expert and have no impact on any other estimates. This also leads
to unequal number of samples being used to compute the estimates of different experts.

For the experiments, we create toy environments with two contexts X;, X, and three actions
Ay, Ay, As. We consider two experts operating on these environments with expert policies and
reward settings summarized in Tables 1 and 2.

As Expert 2 never picks arm As, the upper bound on the divergence is no longer finite. For
context distribution, we pick X; with probability 0.55 and X, with probability 0.45. We set px =
0.1, py = 0.05 and note that the value of py is inaccurate (the true value is 0). In Figure 4, we
present the results of our experiments on both reward settings. Under Setting 1, the rewards from
As as well as the chance of Expert 1 picking it are small. Thus, it does not affect the mean rewards
of the experts much. This leads to our modified methods achieving constant regret. However, in
Setting 2, this arm is associated with high rewards, leading to the high uncertainty. In this case,
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Table 1. Expert Policies

Expert1l | A; | Ay | As Expert2 | A; | Az | As
X1 0.8 | 0.1 | 0.1 X1 0.2 08| 0.0
X5 0.2 | 08| 0.1 X5 081 02| 0.0

Table 2. Reward Distributions

Reward Setting 1 | A; | Ay | As Reward Setting 2 | A; | Ay | As
X1 09| 0.1 ] 0.1 X4 0.1 ({01]09
X5 0.1 |09 ] 0.1 X, 0.1 ({01]09

the performance of the modified D-UCB algorithm is comparable to that of vanilla UCB, while
modified ED-UCB is slightly worse. We note that ED-UCB is subpar in this case, as it works off of
inaccurate information about the environment (specifically, its value of py).
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