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Abstract
Cellular service providers (CSPs) require predicting the net-
work performance for various reasons such as analyzing
the impact of planned con!guration changes and large-scale
events on the network. Although network con!gurations are
widely considered as key predictors of performance, we claim
that they are insu"cient for accurately predicting cellular
network performance. The cellular networks are impacted
by unmeasured external factors (e.g., weather, called latents),
therefore, the performance prediction based solely on con!g-
urations may result in confounding e#ects. We show that the
Mobility, Access, and Tra!c (MAT) metrics should be consid-
ered in addition as network performance predictors. Using a
large dataset collected from a live cellular network, we vali-
date the claim and show the bene!t of using MAT metrics
for accurate performance prediction.

CCS Concepts
• Networks → Network performance modeling; Net-
work management; Wireless access points, base sta-
tions and infrastructure; • Computing methodologies
→ Neural networks.

Keywords
Network performance modeling, Network management
ACM Reference Format:
Kartik Patel†, Changhan Ge†, AjayMahimkar§, Sanjay Shakkottai†,
Yusef Shaqalle§. 2024. Predicting the Performance of Cellular Net-
works: A Latent-resilient Approach. In The 30th Annual Interna-
tional Conference On Mobile Computing And Networking (ACM
MobiCom ’24), November 18–22, 2024, Washington D.C., DC, USA.
ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3636534.
3697425

ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA

ACM ISBN 979-8-4007-0489-5/24/11. . . $15.00
https://doi.org/10.1145/3636534.3697425

0 10 20
Day index

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

Va
lu

e

DL Throughput DL Volume

Beginning of
Holiday Season

0 10 20 30
Day index

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

Va
lu

e

DL Throughput # RRC Connections

Hit by Snowstorm

(a) (b)

Figure 1: Impact of latents. (a) snowstorm and (b) holiday
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Figure 2: Dependency graph. (a) One-stage. (b) Two-stage.
1 Introduction
Accurate prediction of cellular network performance, mea-
sured by Key Performance Indicators (KPIs) like throughput,
is crucial for e"cient network management. Cellular service
providers (CSPs) use these predictions to assess the impact
of planned con!guration changes and prepare for large-scale
events such as concerts and sports events.
Traditional network performance prediction approaches

consider the network con!gurations as primary predictors [3].
However, we argue that the con!gurations are insu"cient
predictors of KPIs due to the signi!cant in$uence of exter-
nal factors, called latent variables. These include weather
conditions, environmental factors, and other unobserved in-
$uences that can signi!cantly a#ect KPIs. As shown in Fig.
1, a snowstorm or a holiday break can signi!cantly impact
LTE cell throughput, even without changes to network con-
!guration. Thus, latents present the challenge in accurately
capturing the relationship between con!gurations and KPIs.
In theory, KPIs can be predicted using the values of con-

!guration parameters and latent variables (see Fig. 2(a)). Un-
fortunately, exhaustively identifying and quantifying latent
variables and their impact on KPIs is impractical.

To address this, we propose a latent-resilient approach
that leverages the observable metrics, called Mobility, Access,
and Tra!c (MAT) metrics, to predict KPIs. MAT metrics are
impacted by both con!gurations and latent variables, thus,
can capture the variations associatedwith them (see Fig. 2(b)).
Furthermore, MAT metrics are observable network metrics
collected by CSPs, making them suitable for predictions.
Previous works [2, 4] correlate “LMRD parameters” (a

subset of a combination of MAT metrics and attributes) with
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LTE KPI 𝐿 Con!gura-
tion 𝑀 = C

MAT
𝑀 = M NR KPI 𝐿 Con!gura-

tion 𝑀 = C
MAT
𝑀 = M

DL Throughput 0.2323 0.6176 DL Throughput 0.0959 0.6641
Retainability 0.2999 0.4093 Retainability 0.0512 0.4613

Table 1: CODEC score 𝑁 (𝐿, 𝑀 |A).
KPIs to recommend network con!gurations. However, they
do not focus on predicting KPIs. We aim to show the utility
of MAT metrics for predicting KPIs.
Contributions: (i) Through real-world LTE and 5G data,
we prove that MAT metrics are better predictors of KPIs
compared to con!guration parameters. (ii) We develop a
Deep Neural Network (DNN) model to accurately predict DL
throughput using MAT metrics. (iii) As an example, we also
describe the use of MAT metrics for the task of predicting
the change in KPI due to con!guration changes.
2 Dataset
A national cellular network is partitioned into multiple mar-
kets, each containing multiple base stations (BSs). Each BS
contains multiple cells, the basic functional unit of a cellular
network. We obtained daily cell-wise snapshots of network
data from a top CSP in the US for four markets over a 20-
month period. The dataset encompasses !ve data categories:
(1) Cell attributes, such as BS type, hardware, frequency,

bandwidth and morphology, are relatively static parame-
ters which de!ne the operating characteristics of a cell. We
denote the set of attributes by A.

(2) Cell con"gurations, such as transmitted power, antenna
tilt angle and handover thresholds, are used to tune the net-
work depending on the deployment scenarios and require-
ments. We denote the set of 318 con!gurations by C.

(3)MATmetricsmeasure (i) User Equipments (UE)Mobility-
related metrics such as UE distance and speed distributions,
attempted and successful handovers; (ii) Cell Access-related
metrics such as average signal strength; and (iii) Tra"c met-
rics such as data volume and cell utilization. We consider 56
MAT metrics, denoted byM.
(4) Key Performance Indicators (KPI) such as average per-

user throughput, call retainability and call accessibility mea-
sure the quality of service experienced by the users.
(5) Derived variables, like the day of the week, represent

periodic factors that can account for a part of the external
in$uences on the network. They are not in the dataset but
are calculated from dates and attributes.

Notably, the dataset does not contain latent variables, such
as weather history and large-scale events (e.g., sports) which
can signi!cantly a#ect KPI. Exhaustively logging all latents
and quantifying their e#ects is a nearly impossible task.

3 Predicting KPI: Con!gurations or MAT?
3.1 Statistical validation
We use Conditional Dependence Coe"cient (CODEC) [1] to
statistically measure the conditional dependency between
features (con!gurations or MAT metrics) and KPIs.

3.1.1 CODEC score: Let the target variable be denoted by
𝐿 and two disjoint sets of features be denoted by 𝑀 and 𝑂 .
Then, the metric 𝑁 (𝐿, 𝑀 |𝑂), that quanti!es the dependency
between 𝐿 and 𝑀 conditioned 𝑂 , is de!ned as follows [1]:

𝑁 (𝐿, 𝑀 |𝑂) =
∫
E(Var(P(𝐿 ↑ 𝑃 |𝑀,𝑂) |𝑂))𝑄𝑅 (𝑃)∫
E(Var(1{𝐿 ↑ 𝑃}|𝑂))𝑄𝑅 (𝑃)

. (1)

𝑁 can be viewed as the fraction of variance in 𝐿 that is ex-
plained by (𝑀,𝑂) but cannot be explained by 𝑂 alone [1].

From a statistical perspective,𝑁 (𝐿, 𝑀 |𝑂) represents a theo-
retical limit on the predictive accuracy of a regression model
that aim to predict 𝐿 based on 𝑀 , for a given𝑂 . If𝑁 (𝐿, 𝑀 |𝑂) is
su"ciently large, then a good function approximator (such
as a neural network) can !nd a mapping from 𝑀 to 𝐿 (for each
value of 𝑂) with a minimal error. Conversely, a low value of
𝑁 (𝐿, 𝑀 |𝑂) indicates that the variability in 𝐿 cannot be ade-
quately represented by a function of 𝑀 alone (regardless of
𝑂), rendering neural network training ine#ective.

3.1.2 Evaluation: Using CODEC score, we show that MAT
metrics are better predictors of KPI compared to con!gura-
tions. Speci!cally, we consider each KPI as a target variable
𝐿 , and measure the degree of dependence (conditioned on
attributes) between KPI and (a) con!gurations, i.e., 𝑀 = C
and 𝑂 = A. (b) MAT metrics, i.e., 𝑀 = M and 𝑂 = A.
As shown in Table 1, we observe that when the set 𝑀 in-

cludes MATmetrics, the CODEC values are higher compared
to when set 𝑀 includes con!gurations. This means that MAT
metrics encode more information about KPI which con!gura-
tion parameters can not (see Fig. 2). Hence, we conclude that
MAT metrics are better predictors KPIs than con!gurations.

3.2 DNN-based validation
3.2.1 The structure of DNN: The architecture of our DNN
is based on the observation that the relationship between
KPI and MAT metrics can vary across di#erent attributes in
the cellular network. To accommodate this variability, we
use a shared representation within our DNN model but with
tunable heads for di#erent attribute values. Our model takes
both MAT metrics M and attributes A as inputs. It !rst cat-
egorizes attributes into (1) Mask attributes, and (2) Feature
attributes. The mask attributes signi!cantly in$uence the
relationship between MAT metric and KPI, thus, requiring
their own tunable heads. The feature attributes have lesser
impact on the characterization and can act as a feature to the
DNN model. We empirically determine the categorization
between mask and feature-attributes. The main branch of
the model takes MAT metrics and one-hot encoded feature
attributes as inputs. It contains 7 fully connected hidden
layers with leaky ReLU activation which forms a shared rep-
resentation. Then the main branch is split into sub-channels
for each value of mask attributes. Each sub-channel consists
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Model Mask/Feature Attributes (M/F) MSE wrt Variance = 0.015
DL MIMO
Mode

Freq-
uency

eNodeB
Type

Hard-
ware

Soft-
ware

Residual
Error

Improv-
ement

One-stage M F F F F 0.00638 42.54% N/A

Two-stage
(DNN)

F F F F F 0.00185 12.34% +30.20%
M F F F F 0.00197 13.10% +29.44%
M M F F F 0.00218 14.53% +28.01%
M M M F F 0.00204 13.62% +28.92%
M M M M M 0.00197 13.16% +29.38%

Common Mask Attributes Market, Morphology, Tower Height
Common Feature Attributes Weekday, Bandwidth

Table 2: Achieved MSE. Models are jointly trained across 4
markets of LTE network with varied mask attributes.
of 2 fully connected hidden layers and one output layer. Fi-
nally, the mask selector chooses the !nal outputs from the
channels depending on the value of the mask attribute.
3.2.2 Training methodology: We use a linear combina-
tion of MSE and Wasserstein distance as the loss function,
which is given by L(y, ŷ) = MSE(y, ŷ) + 0.5W1 (y, ŷ). We
choose 0.0005 as the initial learning rate and decrease the
learning rate by a factor of 0.9 if the validation loss remains
unchanged for 5 epochs. We use the batch size of 256 samples.
3.2.3 Evaluation: To achieve optimal performance of DNN,
we explore various selections of the mask attributes. Mask
attributes o#er a mechanism for !ne-tuning the model, en-
abling model optimization tailored to speci!c attributes. To
this end, we experiment with the combinations of mask and
feature attributes and summarize the MSE errors in Table 2.
While increasing the number of mask attributes theoret-

ically enhances model accuracy, our results show a more
nuanced relationship. We observe a consistent rise in MSE
as the number of mask attributes increases, due to reduced
training data for individual head layers, which decreases
accuracy. This highlights the need for careful selection of
mask attributes, prioritizing those with the strongest impact
on the KPI-MAT relationship to optimize performance.
3.2.4 Comparison with one-stage model: Here, we use
only con!guration parameters and attributes to predict Down-
link (DL) throughput for all date and cell combinations. We
employ a DNN similar to the one described in Sec. 3.2.1, but
with 152 neurons per layer to accommodate increased num-
ber of inputs. The market, morphology and tower height
are designated as mask attributes, while hardware, software,
enodeB type, frequency, MIMO mode and weekdays are con-
sidered as feature attributes. Following the training procedure
described in Sec. 3.2.2, we !nd that the MSE of One-stage
model and Two-stage model is 0.00638 and 0.00197, which
corroborates with the fact that using MAT metrics with at-
tributes are better predictors of KPI.
4 Assisting Con!guration Tuning
CSPs frequently tune the con!gurations to optimize the net-
work performance. To assist with the con!guration changes,
we design a MAT metrics-based toolkit, called Con!guration
Impact PredictionAnalysis Toolkit (CIPAT), that can predict
the performance impact of the con!guration changes before

implementing them on a live network. CSPs can use CIPAT
to !lter-out the con!gurations that may degrade the network
performance and avoid testing them on the network.

Speci!cally, CIPAT takes two inputs: (i) the proposed con-
!guration change, and (ii) the attributes of the cell where
the change is being considered. The !rst stage of CIPAT
predicts the direction of changes in MAT metrics resulting
from the proposed con!guration change and, subsequently,
the range of potential values of MAT metrics. The second
stage of CIPAT uses a DNN model to predict the change
in KPI for all potential values of the MAT metrics. Finally,
CIPAT compares the likelihoods of KPI improvement and
degradation, and then recommends or warns CSPs about
the potential impact of the con!guration change. Therefore,
CIPAT can answer one of the most important questions in
cellular network management: Should an operator go ahead
with a con"guration change on a live network?

Our post-facto analysis using the real-world dataset show
that CIPAT can successfully !lter up to 86% of the con!gura-
tions that degrade cell throughput. More importantly, CIPAT
can !lter up to 95% of the unobserved con!guration changes
(not observed in the training of CIPAT) that degrade the cell
throughput. Thus, CIPAT can help reduce the number of live
network tests with detrimental con!gurations [5].
5 Conclusion
This study demonstrates that con!guration parameters are
insu"cient for predicting cellular network performance, and
MAT metrics should be used instead. This observation holds
tremendous value for CSPs in assessing performance impacts
from factors such as con!guration changes or large-scale
events. To apply this insight, we propose a two-stage ap-
proach: CSPs should !rst evaluate how these events in$u-
ence MAT metrics and then use a regression model, such as
a DNN, to predict performance based on the MAT metrics.
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