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Abstract

Cellular service providers (CSPs) require predicting the net-
work performance for various reasons such as analyzing
the impact of planned configuration changes and large-scale
events on the network. Although network configurations are
widely considered as key predictors of performance, we claim
that they are insufficient for accurately predicting cellular
network performance. The cellular networks are impacted
by unmeasured external factors (e.g., weather, called latents),
therefore, the performance prediction based solely on config-
urations may result in confounding effects. We show that the
Mobility, Access, and Traffic (MAT) metrics should be consid-
ered in addition as network performance predictors. Using a
large dataset collected from a live cellular network, we vali-
date the claim and show the benefit of using MAT metrics
for accurate performance prediction.

CCS Concepts

« Networks — Network performance modeling; Net-
work management; Wireless access points, base sta-
tions and infrastructure; - Computing methodologies
— Neural networks.
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Figure 1: Impact of latents. (a) snowstorm and (b) holiday
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Figure 2: Dependency graph. (a) One-stage. (b) Two-stage.

1 Introduction

Accurate prediction of cellular network performance, mea-

sured by Key Performance Indicators (KPIs) like throughput,

is crucial for efficient network management. Cellular service

providers (CSPs) use these predictions to assess the impact

of planned configuration changes and prepare for large-scale

events such as concerts and sports events.

Traditional network performance prediction approaches
consider the network configurations as primary predictors [3].
However, we argue that the configurations are insufficient
predictors of KPIs due to the significant influence of exter-
nal factors, called latent variables. These include weather
conditions, environmental factors, and other unobserved in-
fluences that can significantly affect KPIs. As shown in Fig.
1, a snowstorm or a holiday break can significantly impact
LTE cell throughput, even without changes to network con-
figuration. Thus, latents present the challenge in accurately
capturing the relationship between configurations and KPIs.

In theory, KPIs can be predicted using the values of con-
figuration parameters and latent variables (see Fig. 2(a)). Un-
fortunately, exhaustively identifying and quantifying latent
variables and their impact on KPIs is impractical.

To address this, we propose a latent-resilient approach
that leverages the observable metrics, called Mobility, Access,
and Traffic (MAT) metrics, to predict KPIs. MAT metrics are
impacted by both configurations and latent variables, thus,
can capture the variations associated with them (see Fig. 2(b)).
Furthermore, MAT metrics are observable network metrics
collected by CSPs, making them suitable for predictions.

Previous works [2, 4] correlate “LMRD parameters” (a
subset of a combination of MAT metrics and attributes) with
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Configura- MAT Configura- MAT
tionP=C P=M tionP=C P=M
DL Throughput 0.2323 0.6176 || DL Throughput 0.0959 0.6641

Retainability 0.2999 0.4093 Retainability 0.0512 0.4613

Table 1: CODEC score T (x, P|A).
KPIs to recommend network configurations. However, they
do not focus on predicting KPIs. We aim to show the utility
of MAT metrics for predicting KPIs.

Contributions: (i) Through real-world LTE and 5G data,
we prove that MAT metrics are better predictors of KPIs
compared to configuration parameters. (ii) We develop a
Deep Neural Network (DNN) model to accurately predict DL
throughput using MAT metrics. (iii) As an example, we also
describe the use of MAT metrics for the task of predicting
the change in KPI due to configuration changes.

2 Dataset

A national cellular network is partitioned into multiple mar-
kets, each containing multiple base stations (BSs). Each BS
contains multiple cells, the basic functional unit of a cellular
network. We obtained daily cell-wise snapshots of network
data from a top CSP in the US for four markets over a 20-
month period. The dataset encompasses five data categories:

(1) Cell attributes, such as BS type, hardware, frequency,
bandwidth and morphology, are relatively static parame-
ters which define the operating characteristics of a cell. We
denote the set of attributes by A.

(2) Cell configurations, such as transmitted power, antenna
tilt angle and handover thresholds, are used to tune the net-
work depending on the deployment scenarios and require-
ments. We denote the set of 318 configurations by C.

(3) MAT metrics measure (i) User Equipments (UE) Mobility-
related metrics such as UE distance and speed distributions,
attempted and successful handovers; (ii) Cell Access-related
metrics such as average signal strength; and (iii) Traffic met-
rics such as data volume and cell utilization. We consider 56
MAT metrics, denoted by M.

(4) Key Performance Indicators (KPI) such as average per-
user throughput, call retainability and call accessibility mea-
sure the quality of service experienced by the users.

(5) Derived variables, like the day of the week, represent
periodic factors that can account for a part of the external
influences on the network. They are not in the dataset but
are calculated from dates and attributes.

Notably, the dataset does not contain latent variables, such
as weather history and large-scale events (e.g., sports) which
can significantly affect KPL. Exhaustively logging all latents
and quantifying their effects is a nearly impossible task.

3 Predicting KPI: Configurations or MAT?
3.1 Statistical validation

We use Conditional Dependence Coefficient (CODEC) [1] to
statistically measure the conditional dependency between
features (configurations or MAT metrics) and KPIs.

LTE KPI x NR KPI x
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3.1.1 CODEC score: Let the target variable be denoted by
x and two disjoint sets of features be denoted by P and Q.
Then, the metric T(x, P|Q), that quantifies the dependency
between x and P conditioned Q, is defined as follows [1]:

[ E(Var(P(x > t|P,Q)|Q))du(t)
[E(Var(1{x > t}|Q))du(t)

T can be viewed as the fraction of variance in x that is ex-
plained by (P, Q) but cannot be explained by Q alone [1].

From a statistical perspective, T (x, P|Q) represents a theo-
retical limit on the predictive accuracy of a regression model
that aim to predict x based on P, for a given Q. If T (x, P|Q) is
sufficiently large, then a good function approximator (such
as a neural network) can find a mapping from P to x (for each
value of Q) with a minimal error. Conversely, a low value of
T(x, P|Q) indicates that the variability in x cannot be ade-
quately represented by a function of P alone (regardless of
Q), rendering neural network training ineffective.

3.1.2 Evaluation: Using CODEC score, we show that MAT
metrics are better predictors of KPI compared to configura-
tions. Specifically, we consider each KPI as a target variable
x, and measure the degree of dependence (conditioned on
attributes) between KPI and (a) configurations, i.e., P = C
and Q = A. (b) MAT metrics, i.e., P = M and Q = A.

As shown in Table 1, we observe that when the set P in-
cludes MAT metrics, the CODEC values are higher compared
to when set P includes configurations. This means that MAT
metrics encode more information about KPI which configura-
tion parameters can not (see Fig. 2). Hence, we conclude that
MAT metrics are better predictors KPIs than configurations.

3.2 DNN-based validation

3.2.1 The structure of DNN: The architecture of our DNN
is based on the observation that the relationship between
KPI and MAT metrics can vary across different attributes in
the cellular network. To accommodate this variability, we
use a shared representation within our DNN model but with
tunable heads for different attribute values. Our model takes
both MAT metrics M and attributes A as inputs. It first cat-
egorizes attributes into (1) Mask attributes, and (2) Feature
attributes. The mask attributes significantly influence the
relationship between MAT metric and KPI, thus, requiring
their own tunable heads. The feature attributes have lesser
impact on the characterization and can act as a feature to the

T(x,P|Q) = (1)

DNN model. We empirically determine the categorization
between mask and feature-attributes. The main branch of
the model takes MAT metrics and one-hot encoded feature
attributes as inputs. It contains 7 fully connected hidden
layers with leaky ReLU activation which forms a shared rep-
resentation. Then the main branch is split into sub-channels
for each value of mask attributes. Each sub-channel consists
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Model Mask/Feature Attributes (M/F) MSE | wrt Variance = 0.015
DL MIMO | Freq- | eNodeB | Hard- | Soft- Residual | Improv-
Mode uency | Type ware | ware Error ement

One-stage M F F F F 0.00638 | 42.54% N/A
F F F F F 0.00185 | 12.34% | +30.20%
Two-stage M F F F F 0.00197 | 13.10% +29.44%
(DNN) M M F F F 0.00218 | 14.53% +28.01%
M M M F F 0.00204 | 13.62% +28.92%
M M M M M ]0.00197 | 13.16% | +29.38%

Common Mask Attributes ‘ Market, Morphology, Tower Height
Common Feature Attributes ‘ Weekday, Bandwidth

Table 2: Achieved MSE. Models are jointly trained across 4
markets of LTE network with varied mask attributes.

of 2 fully connected hidden layers and one output layer. Fi-
nally, the mask selector chooses the final outputs from the
channels depending on the value of the mask attribute.

3.2.2 Training methodology: We use a linear combina-
tion of MSE and Wasserstein distance as the loss function,
which is given by L(y,y) = MSE(y,§) + 0.5W,(y,y). We
choose 0.0005 as the initial learning rate and decrease the
learning rate by a factor of 0.9 if the validation loss remains
unchanged for 5 epochs. We use the batch size of 256 samples.
3.2.3 Evaluation: To achieve optimal performance of DNN,
we explore various selections of the mask attributes. Mask
attributes offer a mechanism for fine-tuning the model, en-
abling model optimization tailored to specific attributes. To
this end, we experiment with the combinations of mask and
feature attributes and summarize the MSE errors in Table 2.

While increasing the number of mask attributes theoret-
ically enhances model accuracy, our results show a more
nuanced relationship. We observe a consistent rise in MSE
as the number of mask attributes increases, due to reduced
training data for individual head layers, which decreases
accuracy. This highlights the need for careful selection of
mask attributes, prioritizing those with the strongest impact
on the KPI-MAT relationship to optimize performance.

3.24 Comparison with one-stage model: Here, we use

only configuration parameters and attributes to predict Down-
link (DL) throughput for all date and cell combinations. We

employ a DNN similar to the one described in Sec. 3.2.1, but

with 152 neurons per layer to accommodate increased num-
ber of inputs. The market, morphology and tower height

are designated as mask attributes, while hardware, software,

enodeB type, frequency, MIMO mode and weekdays are con-
sidered as feature attributes. Following the training procedure

described in Sec. 3.2.2, we find that the MSE of One-stage

model and Two-stage model is 0.00638 and 0.00197, which

corroborates with the fact that using MAT metrics with at-
tributes are better predictors of KPI.

4 Assisting Configuration Tuning

CSPs frequently tune the configurations to optimize the net-
work performance. To assist with the configuration changes,
we design a MAT metrics-based toolkit, called Configuration
Impact Prediction Analysis Toolkit (CIPAT), that can predict
the performance impact of the configuration changes before
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implementing them on a live network. CSPs can use CIPAT
to filter-out the configurations that may degrade the network
performance and avoid testing them on the network.

Specifically, CIPAT takes two inputs: (i) the proposed con-
figuration change, and (ii) the attributes of the cell where
the change is being considered. The first stage of CIPAT
predicts the direction of changes in MAT metrics resulting
from the proposed configuration change and, subsequently,
the range of potential values of MAT metrics. The second
stage of CIPAT uses a DNN model to predict the change
in KPI for all potential values of the MAT metrics. Finally,
CIPAT compares the likelihoods of KPI improvement and
degradation, and then recommends or warns CSPs about
the potential impact of the configuration change. Therefore,
CIPAT can answer one of the most important questions in
cellular network management: Should an operator go ahead
with a configuration change on a live network?

Our post-facto analysis using the real-world dataset show
that CIPAT can successfully filter up to 86% of the configura-
tions that degrade cell throughput. More importantly, CIPAT
can filter up to 95% of the unobserved configuration changes
(not observed in the training of CIPAT) that degrade the cell
throughput. Thus, CIPAT can help reduce the number of live
network tests with detrimental configurations [5].

5 Conclusion

This study demonstrates that configuration parameters are
insufficient for predicting cellular network performance, and
MAT metrics should be used instead. This observation holds
tremendous value for CSPs in assessing performance impacts
from factors such as configuration changes or large-scale
events. To apply this insight, we propose a two-stage ap-
proach: CSPs should first evaluate how these events influ-
ence MAT metrics and then use a regression model, such as
a DNN, to predict performance based on the MAT metrics.
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