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Abstract

Cellular service providers (CSPs) aim to optimize network
performance and enhance user experience by tuning net-
work configurations. However, this process often requires
continuous live network testing, which incurs significant op-
erational costs. In this paper, we focus on predicting the im-
pact of configuration changes using historical data, thereby
reducing the need for live network tests. A key challenge
in developing such a model is accounting for unobserved
external factors (e.g., weather, referred to as latents) that can
introduce confounding effects between configurations and
performance metrics. To address this, we employ interme-
diate network metrics, called Mobility, Access, and Traffic
(MAT) metrics, which are influenced by both configurations
and latents, and in turn, affect performance metrics. We in-
troduce Configuration Impact Prediction Analysis Toolkit
(CIPAT), a novel two-stage toolkit developed using a com-
prehensive real-world dataset from live LTE networks. Our
evaluation demonstrates that CIPAT enables CSPs to predict
the performance impact of proposed configuration changes
with up to 86% accuracy and 85% efficacy, thereby reducing
the operational costs associated with configuration tuning.
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1 Introduction

In cellular network management, optimizing configuration
parameters is a critical task for Cellular service providers
(CSPs) to enhance service quality. These configuration changes
are frequent, with thousands of attempts occurring weekly
in mid-sized North American cities, as illustrated in Fig. 1.

Traditionally, CSPs rely on a combination of domain knowl-
edge, experience, and vendor input to identify potential
configuration changes for live network testing. Once a con-
figuration is selected, it is implemented on a subset of the
network, followed by a 5-7 day assessment period to evalu-
ate its impact on Key Performance Indicators (KPIs). Based
on the results, the configuration may either be rolled out
network-wide or reverted. This process is time-consuming
and costly, prompting CSPs to minimize experiments that
lead to rollbacks [4]. Although prior works have developed
data-driven recommendation engines to identify effective
configurations [2—-4], they still require extensive testing on
the live network.

In this work, we introduce a data-driven toolkit that pre-
dicts the impact of configuration changes on KPIs. By leverag-
ing the historical data on configuration changes, our toolkit
forecasts the effects of new configurations without deploy-
ing them on live network. Therefore, this toolkit enables
CSPs to filter out the configuration changes likely to degrade
performance, thereby reducing the risk of costly rollbacks.

In principle, predicting the performance impact of configu-
ration changes in complex cellular networks requires sophis-
ticated regression models trained on extensive datasets. Prior
research [3] highlights that KPIs are influenced not only by
configuration parameters but also by relatively static intrin-
sic attributes, such as network morphology and hardware
(see Table 1). Therefore, a naive approach would involve
training a model to directly map configuration parameters
and attributes to KPIs.
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Figure 1: Market-wise frequency of change in configurations
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Examples
Transmission power,
Antenna tilt angle,
Handover threshold
Reference signal received
power/quality (RSRP/Q)
Control channel utilization,
Traffic volume

Examples
Morphology (urban/rural),
Attribute Hardware/software version,

BS type (micro/macro)
Throughput, Accessibility,

Retainability
Winter storm, Sports event
Lockdown, Holiday, Foliage

Type Type

Configuration

MAT KPI

Parameter

Latent
Variable

Table 1: Examples of the various types of variables

In practice, however, training such models is challenging
due to the impact of external factors — such as weather condi-
tions or large-scale events — that can significantly affect KPIs
independently of configuration parameters [5]. Hence, these
unobserved external factors, or latent variables, pose chal-
lenges in accurately capturing the dependencies between
configurations and KPIs. To mitigate the effect of latents, we
use observable intermediate network metrics, called Mobility,
Access, and Traffic (MAT) metrics, which are influenced by
both configurations and latents and, in turn, impact KPIs.
Consequently, MAT metrics isolate the effect of latents from
KPIs (see Fig. 2). Ifall such MAT metrics were known, then
the KPIs can be predicted irrespective of the external condi-
tions (snow, holiday). Our prior work [5] demonstrates that
MAT metrics are more effective predictors of KPIs than the
configuration parameters in the presence of latents.

In this work, we propose Configuration Impact Prediction
Analysis Toolkit (CIPAT), a novel latent-resilient toolkit de-
signed to predict the performance impact of configuration
changes. CIPAT employs a two-stage approach: the first stage
models the relationship between configuration parameters
and MAT metrics, while the second stage focuses on the
relationship between the MAT metrics and KPIs.

Since the MAT metrics are directly impacted by the latent
variables, predicting the magnitude of MAT metrics based on
the changes in the configuration parameters is challenging.
Instead, we predict the direction of change in MAT metrics in
the first stage, an approach which can be shown to be robust
against latents. Subsequently, we predict the direction of
change in KPIs from the direction of change in MAT metrics.

The remainder of this paper is organized as follows: In
Section 2, we detail the dataset used in this paper. We then
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Figure 2: Dependency graph. (a) One-stage. (b) Two-stage.

introduce CIPAT in Section 3, followed by the construction
of the two-stages of CIPAT in Sections 4 and 5. Finally, the
evaluation of CIPAT is presented in Section 6.

2 Dataset

A national cellular network is divided into multiple markets.
Each market contains multiple base stations (BSs) with each
BS operating multiple cells. We collected daily snapshots of
cell-level data from a tier-1 CSP for four markets over a span
of 20 months. The dataset includes five categories:

(1) Cell attributes: These are relatively static parameters
defining a cell’s operating characteristics. The attributes in-
clude the market, morphology (rural/suburban/urban), fre-
quency bands, bandwidth, BS type (macro/micro), hardware
and software versions, tower height and the DL MIMO mode
(closed loop MIMO/single stream MIMO). We denote the set
of attributes by A, and their values by a matrix A.

(2) Cell Configurations: These parameters, such as transmit-
ted power, antenna tilt angle and handover thresholds, are
tuned to optimize network based on deployment scenarios
and requirements. We denote the set of 318 configurations
by C and their cell-date-wise values by a matrix C.

(3) MAT metrics: These are network metrics monitored by
CSPs for each cell, assessing (i) User Mobility-related metrics
like distance and speed distributions, as well as attempted
and successful handovers; (ii) Cell Access-related metrics like
average signal strength; and (iii) Traffic metrics including
cell utilization and data volume. We use 56 MAT metrics,
denoted by a set M, with the values, denoted by a matrix M.

(4) Key Performance Indicators (KPIs): These are target
metrics such as average per-user throughput, call retainabil-
ity, and call accessibility to measure the quality of service
experienced by users.

(5) Derived variables: These include periodic variables like
the day of the week, which account for external periodic
influences on the network. These variables are not captured
by the CSP but are derived from the dates and attributes.

Notably, the dataset does not include latent variables, such
as historical weather data and large-scale events (e.g., sports),
which can have a substantial impact on KPIs. Exhaustively
listing all latents and measuring their impact is infeasible.

3 CIPAT: Introduction

We introduce CIPAT, designed to predict the performance
impact of configuration changes on KPIs purely from the
historical data. When a network operator seeks to predict
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the impact of changing a specific configuration parameter
(e.g., increasing the transmission power pMax) on a cell with
attribute values a, CIPAT facilitates this process through the
following stages:

Stage 1: Configuration to MAT metrics. (1) First, CIPAT
identifies the MAT metrics that are affected by the chosen
configuration parameter in cells with the attribute a. (2)
Next, CIPAT determines the direction of change in each
MAT metric resulting from the configuration change. These
directions represent a 56-dimensional orthant with the origin
at current values of MAT metrics. Each point within this
orthant signifies a possible value of the MAT metrics post-
configuration change.

Crucially, the key configuration parameters impacting the

MAT metrics and the associated direction of change can
be pre-determined from the dataset without requiring the
knowledge of latents (see Section 4).
Stage 2: MAT metrics to KPI. CIPAT uniformly samples
a large number of points within the orthant. CIPAT then
estimates the potential values of KPI for each point in the or-
thant using a pre-trained model that maps (MAT, attributes)
— (KPI). Since the relationship between MAT metrics and
KPI is not influenced by latents, such a model can be trained
from the dataset (see Section 5). By analyzing the fraction of
points that predicts an increment/decrement in the KPI, the
operator can make a decision on whether to implement the
proposed configuration change on the network. If a large
number of the sampled points from the orthant results in a
KPI decrement, it would imply that a configuration change
will change the MAT metrics such that the KPI with the MAT
metrics will be lower than the current KPI.

The two-stage process of CIPAT offers several additional
advantages. By incorporating domain-specific insights from
CSPs, Stage 1 can go beyond a purely data-driven approach,
allowing exploration of under-tested configurations. Addi-
tionally, the process also enhances prediction explainability.
Instead of a direct mapping of configurations to KPIs — which
may obscure critical insights if feasible — our approach pro-
vides a transparent mechanism through MAT metrics for
predicting the effects of configurations changes.

Note that CIPAT can be used to predict the impact of
configurations on various cell-level KPIs, including but not
limited to throughput, accessibility, and retainability. For the
sake of brevity and focused analysis, our subsequent discus-
sion predominantly centers on throughput as the selected
KPI In the subsequent Sections 4 and 5, we describe the
construction of each stage of CIPAT from the dataset.

4 Construction of Stage I

In this section, we present the construction of the first stage
of CIPAT: determining the relationship between configura-
tions and MAT metrics from the dataset. In the following,
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Figure 3: Configurations identified by FOCI for # RRC con-
nection in an LTE network
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we first outline the process of determining key configura-
tion parameters for each MAT metric and then describe the
procedure for identifying the direction of change of MATSs
w.r.t. changes in configurations.

Step 1: Determining influential configurations: We
use the Conditional Dependence Coefficient (CODEC) score
and the Feature Ordering by Conditional Independence (FOCI)
algorithm, as introduced in [1], to identify the key configu-
ration parameters for each MAT metric. CODEC score mea-
sures the proportion of variation in a MAT metric that is
explained by both - a subset of configuration parameters and
the attributes — beyond what is explained by the attributes
alone [1]. The FOCI algorithm is a feature selection method
that iteratively selects the configuration parameters to maxi-
mize the CODEC score between the chosen configurations
and the MAT metric, while conditioned on attributes.

To find the most influential configuration parameters for a
MAT metric on the cells with attribute value a, we first create
a conditional dataset containing cells with these attributes.
We then apply FOCI algorithm [1], using the MAT metric as
the target and the configuration set C as the feature set. The
FOCI algorithm identifies the configurations that maximize
the CODEC score, thus, identifying the configurations that
have maximum influence on the MAT metric.

For example, Fig. 3 illustrates the important configurations
identified by FOCI and their associated cumulative CODEC
score for the number of Radio Resource Control (RRC) con-
nections (a MAT metric) of cells in the LTE network. The algo-
rithm highlights several key configuration parameters, such
as transmitted power (pMax) and antenna tilt (Angle), which
are crucial for cell coverage. Additionally, handovers re-
lated parameters (InterFreqThr, gRxLevMin-InterFreq),
the physical layer parameters such as reference signal boost
(D1RsBoost), and load balancing-related parameters (IdleLB-
CapThresh, PDCCHLoadLevel) also significantly affect the
number of RRC connections of a cell. Furthermore, derived
periodic features such as the day of the week also play signif-
icant roles. These findings align with the expectations and
practices of CSPs.
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We note that the CODEC score achieved in Fig. 3 is 0.75,
which is below the maximum possible value of 1. This sug-
gests that some variability in the MAT metric remains un-
explained by the configurations, indicating that the latent
variables also significantly impact the MAT metrics. There-
fore, predicting the magnitude of the MAT metrics purely
based on configuration parameters is challenging. Instead,
we focus on determining the direction of change in the MAT
metrics due to changes in the configuration parameter.

Step 2: Identifying the direction of change: We aim
to determine whether changes in the configurations and
MAT metrics move in the same direction (both increases or
decreases together), or in the opposite directions (an increase
in configuration value decreases the MAT metric, or vice
versa). We begin by outlining the dataset processing steps to
identify the changes in configurations and their associated
changes in MAT metrics. Next, we describe the method for
determining the direction of change for each configuration-
MAT metric pair with a fixed attribute value.

(a) Data processing. For this analysis, we use daily snap-
shots of configurations, and compute differences between
consecutive dates. We define a configuration change ma-
trix, AC, where AC(i, ¢) represents the amount of change in
the configuration c in the i-th configuration change event
(indexed by date-cell pair of the event).

With the configuration change matrix established, the
next step is to asses the change in MAT metrics due to each
configuration change. To do this, we compare the median
MAT metrics (taken over a 7-day interval) before and after
each configuration change event and determine the direction
of change (positive or negative) in the MAT metrics. If the
relative change is within a 3% margin, we consider the MAT
metric unaffected to avoid considering the normal fluctu-
ations as significant changes. We denote the MAT change
matrix by AM, where AM(i,m) € {+1,—1,0} denotes the
direction of the change in the MAT metric m for i-th event.

(b) Attribute-wise change direction identification. Finally, to
estimate the direction of change in MAT metrics due to con-
figuration changes, we focus on the sign of the weights in a
linear model mapping AC — AM, which helps us determine
the direction of change instead of the magnitude.

In practice, we observe that the direction of change of a
MAT metric w.r.t. a configuration change may vary depend-
ing on the cell attributes. For example, the number of RRC
connections in an LTE network is impacted by the tilt angle
(as shown in Fig. 3). However, its impact on the RRC connec-
tion can differ based on the morphology; rural sites might
see increased connections with increasing tilt angle due to
better coverage, while urban sites might not be affected[2].
Thus, identifying the direction of change as a function of
attributes is crucial.
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To measure the direction of change in MAT metrics, we
first partition the dataset by the attribute values associated
with the cell of each configuration change event. Let a €
U(A) denote an attribute value. Then for each partition, the
subsets of AC and AM are denoted by AC, and AM,.

Since multiple configurations may be adjusted simultane-
ously [2], we use a linear model to isolate the effects of each
configuration on MAT metrics. Although the relationship
may not be strictly linear, the sign of the model’s weights
are sufficient to determine the direction of the relationship
(same or opposite). Formally, let W, be the weight matrix
where W, (¢, m) denotes the impact of a configuration ¢ on
the MAT metric m for a given attribute value a. Then,

W, =sgn| argmin |[AC,W — AM,||2 |- (1)
WeRICIXIMI
where W7 (¢, m) provides the relative direction of the change
for each configuration-MAT metric pair given the attribute
value a.

Note that, determining the direction of change in MAT
metrics due to configuration changes without the knowledge
of latents requires an underlying assumption that the direc-
tion of change remain consistent regardless of underlying
latents. This assumption can be validated by considering
known changes in the latent variables.

5 Construction of Stage II

In this section, we discuss the design of the Deep Neural Net-
work (DNN)-based regression model and training methodol-
ogy used to construct the second stage of CIPAT.

DNN architecture: A fundamental aspect of our DNN
design is that the relationship between KPIs and MAT met-
rics can vary based on the attributes of the cell. To address
these variations, we construct a DNN model with a shared
representation followed by tunable heads tailored to specific
attribute values.

Our model takes MAT metrics and attributes as inputs
and categorizes the attributes into two groups: (1) Mask at-
tributes, which can influence the relationship between MAT
metrics and KPIs in different ways, necessitating separate
models; and (2) Feature attributes, which exert a lesser in-
fluence and can serve as supplementary features. The clas-
sification of attributes into mask and feature categories is
performed heuristically.

The base of our model takes MAT metrics alongside the
one-hot encoded feature attributes to form a shared repre-
sentation. This base comprises seven hidden layers, each con-
sisting of fully connected layers activated by the leaky ReLU
function. Subsequently, the base branches into sub-channels,
called heads. Each value of mask attributes is paired with a
personalized head, which is responsible for tuning the shared
representation according to the specific values of the mask
attributes. Each head consists of two hidden layers and a fully
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connected output layer, all using leaky ReLU activations. Ulti-
mately, a mask selector, derived from the Kronecker product
of the one-hot encoded mask attribute values, determines the
final output by choosing the corresponding head. Notably,
backpropagation through the entire model affects only the
weights of the selected head and the shared representation.

Training methodology: We use two loss functions in train-
ing. Let y, y denote the true KPI and predicted KPI respec-
tively. First, we use Mean Square Error (MSE) loss given by
MSE(y,¥) = |y — §]|2. Second, we use the Wasserstein dis-
tance as a loss to ensure that the predicted KPI conforms to
the distribution of the ground truth. The Wasserstein loss
is calculated as follows: Let y(;, denote i-th sample after
sorting the vector y. Then, Wi(y,y) = % s Y@ — Jml-
Jointly, the training loss function is given by L(y,y) =
MSE(y,y) + 0.5W,(y.y). Finally, we use a standard MSE
loss for evaluation of the regression model.

We choose 5x10~* as the initial learning rate. To accelerate
the convergence, we decrease the learning rate by x0.9 if the
validation loss remains roughly unchanged for 5 consecutive
epochs. We use the batch size of 256 data samples.

6 Evaluation

In this section, we use a post-facto performance analysis to
show the effectiveness of CIPAT as a pre-filter for CSP.

In our analysis, we use the dataset detailed in Section 2.
We filter the dataset to only consider 189 out of 318 configu-
rations which were changed at least once over 490 days. We
set the DL throughput as the target KPI.

Evaluation metrics: To evaluate CIPAT as a filter for re-
jecting the configuration changes that degrade the cell-level
KPI, we use two criteria:

(1) Accuracy: If a configuration change is going to degrade
cell-level throughput, CIPAT should be able to identify it.
High accuracy implies CIPAT can filter most configura-
tion changes that result in throughput degradation.

(2) Efficacy: If CIPAT suspects a configuration change to
degrade cell throughput, the change should result in a
degradation with high probability. High efficacy implies
CIPAT only filters configuration changes that results in
a throughput degradation.

Accuracy and efficacy are essentially analogous to recall and
precision if we treat CIPAT as a binary classifier. Thus, de-
noting the event that the observed KPI is degraded due to a
configuration change by 9, and the event that CIPAT pre-
dicts throughput degradation due to a configuration change
by D, we can define the accuracy and efficacy of CIPAT as
P(D|D) and P(D|D), respectively.

Evaluation methodology: To evaluate the accuracy and
efficacy of CIPAT, we concentrate on four diverse markets
in the US, containing densely populated urban, suburban
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regions in plains and urban, suburban, rural regions with
diverse geography. We use the data of 260 consecutive days
for all cells in each market as a training dataset, and follow
the procedures outlined in Sections 4 and 5 to construct the
toolkit for each market.

We then define another 230 days period as the test period.
We select cell-date pairs from the test period that meet three
criteria: (1) at least one configuration change occurred, (2)
there was at least a 10% change (improvement or degradation)
in cell-level throughput, and (3) there was at least a 10%
change (improvement or degradation) in BS-level throughput.
We use 10% threshold to filter out fluctuations in KPIs that
are not attributable to configuration changes.

We process each configuration change event and the as-
sociated cell-date pair in the test period through CIPAT as
follows: The first stage predicts the direction of the change
in all MAT metrics due to the configuration change. Using
these predicted directions, the first stage constructs an or-
thant with the origin at the current MAT metric values for the
given date. This orthant is further constrained by two con-
ditions: (1) the number of attempted mobility management-
related procedures (e.g., handovers, RRC session setup) must
be higher than the number of successes, and (2) the range of
each MAT metric must not exceed the historically observed
ranges for the given attributes. CIPAT then uniformly sam-
ples 20,000 points from the orthant, representing the possible
values of MAT metrics post-configuration change. Then the
pre-trained DNN predicts the cell-level throughput at each
sampled point and determines the direction of predicted
throughput change for each point. Finally, the majority vote
is used to determine the predicted direction of throughput
change associated with the configuration change. We com-
pare the predicted direction with the observed direction of
throughput change and calculate the accuracy and efficacy.

Accuracy of CIPAT (P(D]D)): To measure the accuracy
of CIPAT, we count the number of configuration changes
from the test data that are correctly identified as degrad-
ing throughput. We then divide this by the total number of
degradations observed in the test data. The resulting ratio
represents the accuracy of CIPAT and its values for different
markets are presented in Table 2. CIPAT achieves up to 85%
accuracy in detecting throughput-degrading configuration
changes. However, its performance varies across markets,
with Market D exhibiting lower accuracy (around 70%). We
believe this is due to the diverse landscapes within this mar-
ket, encompassing both densely populated and unpopulated
areas as well as plains and mountains. Utilizing hourly aggre-
gated MAT metrics instead of daily aggregates and modeling
the impact of neighboring cells might improve accuracy in
such scenarios.

2381



ACM MLNextG 24, Nov. 18 2024, Washington DC, USA

Kartik Patel, Changhan Ge, Ajay Mahimkar, Sanjay Shakkottai, Yusef Shaqalle

Accuracy: P(D|D) Efficacy: P(D|D)
Market & Market attributes One All changes | All changes Novel Novel
CIPAT stage (CIPAT) (One-stage) changes changes
(CIPAT) (One-stage)

(A) Densely populated metropolitan downtown, plains 0.85 0.62 0.82 0.71 0.95 0.67
(B) Densely populated suburban, plains 0.74 0.88 0.86 0.78 0.93 0.75
(C) Densely populated urban and sparsely populated mountains and deserts 0.70 0.67 0.78 0.53 0.76 0.54
(D) Sparsely populated regions with mountains, plateaus, and deserts 0.78 0.56 0.78 0.52 0.81 0.51

Table 2: Accuracy and efficacy of CIPAT and one-stage model across markets: CIPAT performs better than the one-stage model,
particularly in markets with significant seasonal user dynamics. This highlights the benefit of the two-stage approach using
MAT metrics in addressing the impact of underlying latent variables.

Efficacy of CIPAT (P(D|D)): To evaluate the efficacy of
CIPAT, we analyze its ability to predict severe degradation
scenarios. We focus on configuration changes causing more
than 10% decline in BS-level throughput. In this setting, we
count the number of configuration changes that are correctly
identified as a potential degradation and divide this by the
total number of degradation predicted by CIPAT to calculate
the efficacy. The results are presented in Table 2.

Efficacy of CIPAT in predicting the impact of untested
configuration changes: Table 2 also highlights CIPAT’s
performance in predicting the impact of never-tried configu-
ration changes, which is a crucial challenge for CSPs. This
task is significantly challenging due to the lack of historical
data for such settings. We define a configuration value on
a cell X as “novel” if it has not been previously tested on
any cell with identical attributes to X. We then filter the
test set to include only these novel configuration values and
re-calculate the efficacy of CIPAT on this filtered dataset.
This estimates CIPAT’s effectiveness in predicting the im-
pact of untested configurations and shows the generalization
capability of CIPAT. The results are presented in Table 2.

Comparison with the one-stage model: We train a one-
stage model that use the configurations, the proposed change
in the configuration values, and cell attributes to predict po-
tential KPI degradation. The accuracy and efficacy of this
model are presented in Table 2. Our analysis reveals that
CIPAT outperforms the one-stage model by 10-40%, particu-
larly in markets characterized by significant seasonal user
dynamics. Moreover, CIPAT exhibits notably superior per-
formance in predicting the impact of novel configuration
changes (i.e., changes that were not observed in the train-
ing dataset, but occur in the test dataset). Such changes can
be interpreted as a form of “out-of-distribution” changes,
meaning that the test environment requires the model to
predict about scenarios not present in the training dataset.
This phenomenon aligns with a well-established principle
in causal inference: understanding relationships prevents
the learning algorithm from fitting models to spurious cor-
relations, thereby enhancing model performance on out-of-
distribution samples. In our context, CIPAT leverages an
extensive collection of MAT metrics and offers a systematic
process for learning relationships between configurations
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and KPI through MAT metrics. Consequently, it mitigates
the risk of learning spurious correlations between configura-
tions and KPI in the presence of latent variables. This crucial
distinction from one-stage model (which makes no efforts in
avoiding spurious relations) offers the improvement in the
efficacy even for unobserved configuration changes, thus,
indicates the generalization capability of CIPAT.

7 Conclusion

In this paper, we introduced CIPAT, a data-driven toolkit
designed to aid CSPs in configuration tuning by filtering out
potentially detrimental configuration changes. By leveraging
observable intermediate network metrics, or MAT metrics,
CIPAT can be constructed solely from historical data, elimi-
nating the need for prior knowledge of underlying external
factors. Our evaluation demonstrated CIPAT s accuracy and
efficacy in predicting KPI impacts, even for novel, untested
configuration changes, thus demonstrating generalization
capability of the toolkit. By proactively identifying configu-
rations that may degrade KPIs and result in a rollback, CIPAT
can empower CSPs to reduce the number of rollbacks on the
live network, thus, the cost of network management.
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