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Abstract. Filtering is concerned with online estimation of the state of a dynamical system from partial and
noisy observations. In applications where the state of the system is high dimensional, ensemble
Kalman filters are often the method of choice. These algorithms rely on an ensemble of interact-
ing particles to sequentially estimate the state as new observations become available. Despite the
practical success of ensemble Kalman filters, theoretical understanding is hindered by the intricate
dependence structure of the interacting particles. This paper investigates ensemble Kalman filters
that incorporate an additional resampling step to break the dependency between particles. The new
algorithm is amenable to a theoretical analysis that extends and improves upon those available for
filters without resampling, while also performing well in numerical examples.
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1. Introduction. The filtering problem of estimating a time-evolving state from partial
and noisy observations arises in numerous applications, including numerical weather predic-
tion, automatic control, robotics, signal processing, machine learning, and finance [45, 11, 42,
5, 29, 36, 43]. When the state is high dimensional and the dynamics governing its evolution are
complex, the method of choice is often the ensemble Kalman filter (EnKF) [15, 18, 17, 23, 19].
In this filtering algorithm, a Kalman gain matrix defined via the first two moments of an
ensemble of particles determines the relative importance given to the dynamics and the ob-
servations in estimating the state. The size of the ensemble controls both the accuracy and
the computational cost of the algorithm. Operational implementations of EnKF give accurate
state estimation with a moderate ensemble size, significantly smaller than the state dimension
[23]. However, nonasymptotic theory that explains the successful performance of EnKF with
moderate ensemble size is still not fully developed. An important impediment to such a theory
is the presence of correlations between particles, since the Kalman gain used to update each
particle depends on the entire ensemble. This paper investigates a modification of EnKF that
incorporates a resampling step to break these correlations. The new algorithm is amenable
to a theoretical analysis that extends and improves upon those available for filters without
resampling, while also maintaining a similar empirical performance.
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1.1. Resampling in filtering algorithms. Resampling techniques are routinely employed
to enhance particle filtering algorithms which assimilate observations by weighting particles
according to their likelihood [12, 13]. For particle filters, resampling converts weighted par-
ticles into unweighted ones to alleviate weight degeneracy and achieve variance reduction at
later times [10, Chapter 9]. In contrast, EnKF assimilates observations by using unweighted
particles and relying on a Gaussian ansatz and Kalman-type formulae. EnKF avoids weight de-
generacy by design, but remains vulnerable to filter divergence and ensemble collapse [22, 26];
several works have proposed using resampling to remedy these issues.

An early discussion of resampling for EnKF can be found in [4], which replaces the stan-
dard Gaussian ansatz with a more flexible sum of Gaussian kernels. The paper [52] introduced
bootstrap methods for identifying and alleviating the impact of spurious correlations, thereby
enhancing the robustness of the Kalman gain. The work [32] proposed a resampling scheme to
improve the performance of deterministic filters in nonlinear settings. This method involves
periodically resampling the ensemble based on a “bootstrapping” approach as suggested by
[4], which is fundamentally based on a kernel density technique taken from the particle filter-
ing literature. Closest to our work is the paper [39], which demonstrates that resampling the
Kalman gain in the conditioning step of EnKF can help prevent the ensemble from collapsing
over time, consequently enhancing ensemble stability and reliability. The numerical experi-
ments in [39] suggest that, relative to the nonresampled setting, EnKF algorithms that employ
resampling give more reliable prediction intervals with a slight trade-off in the accuracy of
their point predictions.

Ensemble Kalman methods are also used for offline parameter estimation and, relatedly, as
numerical solvers for inverse problems; see, e.g., [21, 1, 33, 24, 7]. While not the focus of this
paper, we point out that resampling techniques have also been investigated in this context.
For instance, [51] removes particles that significantly deviate from the posterior distribution
via a resampling procedure, thus improving the performance of standard implementations. A
similar idea is also considered in [50], which proposes adding an extra resampling step in each
iterative cycle. This method improves the convergence of the iterative EnKF by perturbing
the shrinking ensemble covariances to prevent early stopping while preserving the consistent
Kalman update direction of standard implementations.

1.2. Our contributions. Whereas previous work investigates resampling from a method-
ological viewpoint [4, 52, 32, 39], the primary objective of this paper is to demonstrate that
resampling strategies provide a promising approach to the design of ensemble Kalman algo-
rithms with nonasymptotic theoretical guarantees. We consider a simple parametric resam-
pling scheme: at the beginning of each filtering step, members of the ensemble are indepen-
dently sampled from a Gaussian distribution whose mean and covariance match those of the
ensemble at the previous time-step. Thereafter, the filtering step can be carried out using any
of the numerous existing EnKF variants [17, 46]. For the resulting algorithm, which we term
REnKF, we establish theoretical guarantees that extend and improve upon those available for
filters without resampling.

Our theoretical guarantees hold in the linear-Gaussian setting in which we provide a de-
tailed error analysis of the ensemble mean and covariance as estimators of the mean and
covariance of the filtering distributions, given by the Kalman filter [25]. Our theory covers
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both stochastic and deterministic dynamical systems; in addition, it covers both stochastic
implementations based on perturbed observations [16] and deterministic implementations based
on square-root filters [46, 3, 6]. Importantly, our error-bounds are nonasymptotic and
dimension-free: they hold for any given ensemble size and are written in terms of the effective-
dimension of the covariance of the initial distribution, and of the dynamics and observation
models. The nonasymptotic and dimension-free analysis of ensemble Kalman updates has re-
cently been considered in [2], which demonstrated rigorously the success of ensemble Kalman
updates whenever the ensemble size scaled with the effective dimension of the state as op-
posed to its ambient dimension. Given that ensemble Kalman algorithms are often employed
in problems where the state dimension is very large, our results also contribute to the theoret-
ical understanding of why ensemble methods are able to perform well even when the ensemble
size is taken to be much smaller than the state dimension. This paper extends the results in [2]
by providing new bounds over multiple assimilation cycles. Our work may also be compared
to [37], which puts forward a nonasymptotic and dimension-free analysis of a multistep EnKF
that utilizes a different modification than the one used to define REnKF. Specifically, [37]
employs an additional projection step that determines the effective dimension of the method.

Other multistep analyses were limited to square-root filters with deterministic dynamics
[28, 2] and to asymptotic analysis of stochastic implementations [28], which, while ensuring
consistency of the filters, do not explain their practical success when deployed with a small
ensemble size. The key reason why existing nonasymptotic analyses [2] do not extend to sto-
chastic implementations and dynamics is that these additional sources of randomness further
complicate the correlations between particles, which we break via resampling.

We numerically illustrate the theory in a linear setting and also demonstrate the suc-
cessful performance of REnKF on the Lorenz 96 equations [34], a simplified model for atmo-
spheric dynamics widely used to test filtering algorithms [35, 36, 30, 44]. In our experiments,
REnKF performs similarly to standard, nonresampled EnKF in fully and partially-observed
settings. Moreover, the results are robust to the noise level in the dynamics and in the
observations. Python code to reproduce all numerical experiments is publicly available at
https://github.com/Jiajun-Bao/EnKF-with-Resampling.

1.3. Qutline. The rest of this paper is organized as follows. Section 2 formalizes the
problem setting and provides necessary background on EnKF. Section 3 introduces and an-
alyzes the new REnKF algorithm. The main result, Theorem 3.2, gives nonasymptotic and
dimension-free error bounds. We report numerical results that confirm and complement the
theory in section 4. Proofs are collected in section 5. We close in section 6 with a discussion
of our results and directions for future research.

1.4. Notation. For a vector u= (u(1),...,u(d))’ and ¢ >1, luly = (Z?Zl lu(i)|7)"/9 and
lu| = |ul2. For a random variable X and ¢ > 1, we write || X||, = (E |X |9V and || X]| = || X ||,
X ~ N (m,C) denotes that X is a Gaussian random vector with mean m and covariance C,
and we denote its density at a point x by N (z;m,C). Si denotes the set of d x d symmetric
positive-semidefinite matrices, and SfiF , denotes the set of d x d symmetric positive-definite
matrices. For two d X d matrices A, B, A = B implies A — B € Si . and A = B implies
A— B e 8%, and similarly for <, <. For a n x m matrix A = (Az‘j)?!ﬁj:p the operator norm is
given by [A] = supy,_—1|Av|z. 1{S} denotes the indicator of the set S. The identity matrix
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will be denoted by I, and on occasion its dimension will be made explicit with a subscript.
The n X m zero matrix will be denoted by Oy, xm-

2. Problem setting and ensemble Kalman filters. We consider a d-dimensional unob-
served state process {u'9)};50 and a k-dimensional observation process {y)};>1 whose rela-
tionship over discrete time j is governed by the following hidden Markov model:

(2.1) (Initialization) u® ~ N (@, 20,
(22) (Dynamics) W =) 10, € N0E), =L
(2.3) (Observation) y9) = Hul) 4 00, n\) B N(0,T), i=1,2,...

We assume that the initial distribution A/ (u(?), £(©) where pu(® € R?, 1) ¢ Si+, the model
dynamics map ¥ : R — R?, the observation matrix H € R¥*? and the dynamics and observa-
tion noise covariance matrices = € Si, I'e S_’ﬁ . are known; otherwise, they may be estimated
from the observations; see, e.g., [19, 8, 9]. We further assume that the random variables w0,
{¢ (j)}jzl, and {nV )}jzl are mutually independent. All methods and theory presented in this
paper extend immediately to dynamics and/or observation models that are not time homo-
geneous at the expense of a more cumbersome notation. Additionally, nonlinear observations
can be dealt with by augmenting the state; see, e.g., [3].

For a given time index j € N, the filtering goal is to compute the filtering distribution
p(uD|Y ), where Y) := {y(D ... 4@}, The filtering distribution provides a probabilistic
summary of the state u(9) conditional on observations up to time j. Given access to the
filtering distribution at the preceding time-step j — 1, p(u?)|Y?)) may be obtained by the
following two-step procedure:

(2.4) (Forecast) p(u? |y =Dy = /N(u(j);\l'(u(j_l)), 2)p(u Dy U=1) dy =1,
(2.5) (Analysis) p(uD|Y DY o N (y9); Hul) D)p(ul?) |y 0=D),

The forecast distribution p(u?)|Y U=1) represents our knowledge of the state at time j given
observations up to time j — 1, and its computation in (2.4) utilizes the dynamics model (2.2).
In the analysis step (2.5), the new observation y; is assimilated through an application of
Bayes formula with prior given by the forecast distribution and likelihood determined by the
observation model (2.3). Closed-form expressions for the filtering and forecast distributions
are only available for a small class of hidden Markov models [41]. For problems outside this
class, many algorithms have been developed to approximate the filtering distributions, or, if
this is too costly, to find point estimates of the state [45, 43].

This paper is concerned with EnKF algorithms that belong to the larger family of Kalman
methods. These methods invoke a Gaussian ansatz for the forecast distribution, so that Bayes
formula in the analysis step can be readily applied using the conjugacy of the Gaussian fore-
cast distribution and the Gaussian likelihood model (2.3). The distinctive feature of EnKF
is that the Gaussian approximation is defined using the first two moments of an ensemble of
particles. Then, in the analysis step each individual particle is updated with a Kalman gain
matrix which incorporates the forecast covariance. Several stochastic and deterministic imple-
mentations for the analysis step have been proposed in the literature; see, e.g., [23, 46, 17]. In
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Algorithm 2.1, an example of a stochastic implementation of EnKF—commonly referred to as
the Perturbed Observation EnKF—is provided for reference, and will be our focus for this work.
At time j = 0, an initial ensemble of N particles are independently drawn from the initial
distribution in (2.1). These ensemble members are then sequentially passed through forecast
and analysis steps: In the forecast step, the ensemble is propagated through the system dy-
namics yielding the j-th forecast ensemble. In the analysis step, the new observation y/) is
assimilated by updating each ensemble member according to a Kalman-type formula, yielding
the jth analysis ensemble. Although the initial ensemble members are mutually independent,
the dependence structure of the ensemble is highly nontrivial beginning at the analysis step
at time j = 1. Indeed, note that the Kalman Gain K is a nonlinear transformation of the
entire forecast ensemble, and this matrix is used to update each of the ensemble members
when constructing the analysis ensemble. The recursive nature of the algorithm further com-
plicates the dependence structure of the ensemble, rendering a nonasymptotic analysis highly
challenging.

The stochastic variant of EnKF in Algorithm 2.1 is arguably the most popular in applica-
tions [15, 48]. Unfortunately, as noted in [20, 2] and further discussed in section 3, it is harder
to analyze from a nonasymptotic viewpoint than deterministic variants of the EnKF.

The output 1) of EnKF gives a point estimate of the state u¥) at time j. For such a
state-estimation task, EnKF is very effective [31]. Additionally, the output $0) may be used
to construct confidence intervals. However, as often noted in the literature [14, 31] and further
discussed in section 4, caution should be exercised when using ensemble Kalman algorithms for
such uncertainty quantification tasks. EnKF performance for state estimation and uncertainty

Algorithm 2.1. Ensemble Kalman filter (EnKF).
1: Input: ¥, H = T, 19, 20 N. Sequentially acquired data {y(j)}jzl.
2: Initialization: u” "~ N(@E©, 20y 1<n<N.

3: For j=1,2,... do the following forecast and analysis steps:
4: Forecast:

) =Wy D)+ €9, DR N(0,E), 1<n<N,

@6 Lo_ly GO — L N(a0) ) T
N,; —N_lgwn — i) (@) — )"
5: Analysis
KW =COH"(HCYH" +T)!
yé) y()+n£), n,ﬁj)“d/\/(o ), 1<n<N,
1 & 1 XN
v = = 3] () _ 5 () — T
N; 2 N_1;<un D) (uld) — g9,

6: Output: Analysis mean 7iU) and covariance SO for 7i=12,...
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quantification tasks can be assessed by the error in approximating the mean and covariance
of the filtering distributions; the theory in subsection 3.2 adopts such performance metrics. If
the moments of the filtering distributions are not available, performance metrics such as root
mean squared error and coverage of confidence intervals can be employed [31], and we do so
in the numerical experiments in section 4.

3. Ensemble Kalman filters with resampling. In this section, we first introduce and moti-
vate our main algorithm, EnKF with resampling (REnKF). We then present the nonasymptotic
theoretical analysis of REnKF in a linear model dynamics setting.

3.1. Main algorithm. The idea underlying REnKF, which is outlined in Algorithm 3.1, is
to employ a resampling step at each filtering cycle to break the correlations between ensemble
members described in section 2. We consider here a particularly simple parametric resampling
scheme in which at the beginning of each filtering cycle, ensembles are independently sampled
from a Gaussian distribution whose mean and covariance match those of the analysis ensemble
at the previous time step. Although the resampling mechanism can be made to be more
sophisticated—for example, one may consider nonparametric resampling schemes in which the
empirical distribution of the ensemble is used instead—we note that such complications may
be difficult to justify given the simplicity, theoretical guarantees (subsection 3.2), as well as the
computational scalability and empirical performance (section 4) of the proposed resampling
strategy. Other than the resampling step, the forecast and analysis steps of REnKF agree
with those of EnKF, and consequently any of the stochastic or deterministic implementations
of EnKF can be adopted. Our focus here is on the stochastic implementation of EnKF in
Algorithm 2.1. As discussed in the next subsection—see Remarks 3.1 and 3.3—mnonasymptotic
theory for deterministic implementations can be obtained as a by-product of the theory that
we develop.

Notice from Algorithm 3.1 that correlations between particles could alternately be broken
by resampling between the forecast and analysis steps. While such an approach would be
amenable to a nonasymptotic analysis akin to the one we develop, we empirically found that
resampling after the forecast step significantly deteriorates the performance of the filter in
nonlinear settings. A heuristic explanation is that resampling tacitly introduces a Gaussian
approximation, and the filtering distribution is better approximated by a Gaussian than the
forecast distribution when the dynamics are nonlinear and the observations are Gaussian.

Algorithm 3.1. Ensemble Kalman filter with resampling (REnKF).

1: Input: ¥, H,Z T, 4 20 N. Sequentially acquired data {y)};>;.

2: Initialization: Set (¥ = 1(©) and 50 = 50,

3: For j=1,2,... do the following resampling, forecast, and analysis steps:
4: Resampling:

(3.1) uf DI N (RUD,E0D) 1<n <.

5: Forecast: Do (2.6).
Analysis: Do (2.7).
Output: Analysis mean ) and covariance 1) for j=1,2,...
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3.2. Nonasymptotic error bounds. Here we present theoretical guarantees for REnKF in
a linear dynamics setting. We introduce the setting and necessary background in subsec-
tion 3.2.1. Then, the main result is stated and discussed in subsection 3.2.2.

3.2.1. Setting and preliminaries. We consider REnKF in the following linear version of the
hidden Markov model governing the relationship between the state and observation processes:

(3.2)  (Initialization) u® ~ N (50,

3.3)  (Dynamics u@ = A0 4 @) @D A (0,2), i=1,2,...
(3.3) (Dy ) j

(3.4) (Observation) y(j) = Hu + n(j), n(j) LLd- N(0,T), ji=1,2,...

with 49 independent of the ii.d. sequences {£9)} and {nW}. Thus, we assume that the
dynamics map ¥ in (2.2) is linear and represented by a given matrix A € R?*?, In this
case, it is well known that the forecast distributions p(u?)|Y U=1) = N (u0);m) CU=1) and
the filtering distributions p(u|Y0)) = A (u9); 4@) $0)) are both Gaussian, and the means
and covariances of these distributions are given by the Kalman filter [43]. We aim to derive
nonasymptotic bounds between the outputs 1) and £ of REnKF and the output ) and
»0) of the Kalman filter.

We follow the exposition in [28] and introduce three operators that are central to the
theory: the Kalman gain operator 2, the mean-update operator .4, and the covariance-
update operator €, defined, respectively, by

(3.5) H St R>E L o (C)=CH"(HCH" +T)7!
. MR x S RY, M (m,Chy) = m+J£/(C)(nym),
(3.7) ¢:St -8, €)= (I — ¥ (C)H)C.

With this notation, the mean and covariance updates from time j — 1 to time j given by the
Kalman filter are summarized in Table 1. The table also shows the correspondm% updates
for REn KF, where aU—Y, €9 and 77(] ), respectively, denote the sample means of {uy) ™

n 1
{f N |, and {nn)}N ; SU=D denotes the emplrlcal covariance of {u(] N N 1 and C’gfg =
(5’(@)) denotes the empirical cross-covariance of {un 1)} _, and {5 N_,. Finally, following

[20, 2], we refer to

OV .= ¢ (CYYTW) —T)¢ T(CW)
+ (I = (CONH)CYD o T(CD) + o (CONCINT (I - HT T (CD))

as the offset, where % denotes the empirical covanance of {77(] ) év 1, and 653,7) denotes the

empirical cross-covariance of {un }N ; and {n N

Remark 3.1 (deterministic implementations). As noted earlier, our presentation and analy-
sis will focus on the stochastic (perturbed observation) implementation of EnKF described in
Algorithm 2.1, and which is used within REnKF; see Algorithm 3.1. We claim that this ap-
proach is sufficient to cover both deterministic and stochastic updates. Indeed, [2] shows that
deterministic and stochastic updates at time j can be succinctly written as
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Table 1
Kalman filter and REnKF updates in terms of the operators (3.5), (3.6), and (3.7).

Kalman filter REnKF
Forecast Mean m\ = Apl—b M) = AgU—1 4 £
Forecast Cov. ~ CW=ARUDAT +53  CW=ASU"DAT +ED 4 ACY) +CY) AT
Analysis Mean H(j) — ///(m(j)’c(j);y(j)) ﬁ(j) =4 (M (5) C(J) (J)) + j(c(])) (J)
Analysis Cov. »W =g (CW) $O) = (f(C(])) +0W)

58) E(J’) — '///(,\m(j)’é(j)/? + 90%/(5(3'))77(]')’
S0) =4(CY)) 4 0OV,

where ¢ =1 for the stochastic update and ¢ = 0 for the deterministic update. Therefore, rela-
tive to the deterministic update, theory for the stochastic update is additionally Comphcated
by the need to consider the term %(C(J))nm in the mean update and the offset term O i
the covariance update. Accordingly, we are able to provide a result for the resampled version
of the deterministic (square-root) EnKF as a by-product of our more general theory, and we
refer to Remark 3.3 for further discussion.

3.2.2. Main result. We define the effective dimension [47] of a matrix @ € Si by

Tr(Q)
Q-

where Tr(Q) and |@| denote the trace and operator norm of Q. The effective dimension
quantifies the number of directions where () has significant spectral content and may be
significantly smaller than the ambient dimension d when the eigenvalues of ) decay quickly. As
such, it is a more refined measure of complexity in high-dimensional problems with underlying
low-dimensional structure. The monographs [47, 49] refer to r2(Q) as the intrinsic dimension,
while [27] uses the term effective rank. This terminology is motivated by the observation that
1 <7r9(Q) <rank(Q) < d and that r9(Q) is insensitive to changes in the scale of @Q; see [47].
We now state our main result, Theorem 3.2, which provides nonasymptotic bounds on the
deviation of REnKF from the Kalman filter for any time j.

Theorem 3.2. Consider REnKF, Algorithm 3.1, with linear dynamics ¥(-) = A-. Suppose
that N > ro(XO) v ro(T) V ra(E). For any j=1,2,..., and ¢> 1,

j r (0) ro(= r
(3.10) |||ﬁ(]) |||q<61 (\/ 2(12\370 ) \/\/ QJ(V ) \/\/ 2]<VF)> 7
(3.11) [156) — E(j)’Hq < (\/W(JZV(O)) v \/TQJ(VE) y \/T2](VF)> ,

where u(j) and 9 are the mean and covariance of the filtering distributions, and c1,co are
potentially different universal constants depending on

(3.9) ro(Q) :=

SO 1AL |H DT EL 0.4

and ¢ additionally depends on {|y) — Hm(e)‘}ggj.
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With the exception of [37, Theorem 3.4], which relies on covariance inflation and an
additional projection step, Theorem 3.2 seems to be the first result in the literature that
provides nonasymptotic guarantees on the performance of a stochastic EnKF over multiple
assimilation cycles. We note that the assumption N > ro(3(0) V ro(T) V ro(Z) is merely
for convenience and can be removed at the expense of a more cumbersome statement of the
result. Importantly, the bounds (3.10) and (3.11) are nonasymptotic, in that they hold for
a fixed ensemble size N. Further, the bounds are dimension-free as they do not exhibit
any dependence on the state-space dimension d, implying that the ensemble need not scale
with d in order for the algorithm to perform well, as has been observed empirically in the
literature and confirmed in our numerical results in section 4. Finally, similar to previous
accuracy analyses for square-root ensemble Kalman filters [38, 2], variational data assimilation
algorithms [44, 30], and particle filters [43, Chapters 11 and 12], our proof relies on induction
over the discrete time index j and does not account for potential dissipation of errors due to
filter ergodicity. As a result, the constants ¢; and ¢y grow with j and our bounds (3.10) and
(3.11) do not hold uniformly in time without, for instance, stability requirements on A.

Remark 3.3 (resampled square-root filter). While the result in Theorem 3.2 is specific
to the stochastic REnKF in Algorithm 3.1, using the observation made in Remark 3.1 it is
possible to show that for a deterministic variant, namely the square-root REnKF, and under
the same assumptions on the ensemble size made in Theorem 3.2, we have that

. . 0) ro(2)
~G) _ || < \/T2(E \/2
@Y = p !Hq_01( v VYV N )
s . o (2(0)) ro(Z)
|||E(J) _ E(])mq <co <\/ ~ V i 7

where c¢1,cy are potentially different universal constants depending on |E(0)\, |Al, |H]|, T~
2], ¢, j, and ¢ additionally depends on {|y¥) — Hm®)|},<;. In contrast to (3.10) and (3.11),
the bounds in (3.12) do not depend on the effective dimension of the noise covariance, ra(T'),
nor do the associated constants depend on |I'|. The statistical price to pay for utilizing
stochastic rather than deterministic updates is captured by these terms. We further note that
[2, Corollary A.12], gives a nonasymptotic and multistep analysis of a simplified version of
the square-root filter (without resampling) with deterministic dynamics (that is, = = Ogxq)-
In such a setting, [2, Corollary A.12] implies the following bounds:

(3.12)

H,

N Y

9

0

179 = pOll, < ey ZE2L, S0 — 50y, <y
where ¢3, ¢4 are potentially different universal constants depending on |X()|, |4, |H|, T,
q, j, and c3 additionally depends on {|y) — Hm()|},<;. Theorem 3.2 should further be
compared to [28, Theorem 6.1], which is also limited to the case = = Oy4x4 and shows that
119 — p@)||, < EN~1/2 and [0 — E(j)]Hq < ¢,N~2 where ¢, ¢} are universal constants
with the same dependencies as c3 and c4. Importantly, the bounds in [28, Theorem 6.1] do
not capture the dependence of the algorithm on the prior covariance and also cannot be easily
extended to handle stochastic dynamics Z > 0 as accomplished in Theorem 3.2.
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4. Numerical results. In this section, we investigate the empirical performance of REnKF
(Algorithm 3.1) and provide detailed comparisons to the stochastic EnKF (Algorithm 2.1).
In subsection 4.1, we consider a linear dynamics map, ¥(-) = A., with the primary goal
of demonstrating the bounds of Theorem 3.2 in simulated settings. In subsection 4.2, we
study a nonlinear setting where ¥ represents the At-flow of the Lorenz 96 system, and At
is the (constant) time-span between observations. The aim of this subsection is to show
that REnKF achieves comparable performance to EnKF even in challenging nonlinear regimes,
further motivating the study of resampling in the context of ensemble algorithms. In both
subsections 4.1 and 4.2, we examine the performance of REnKF and EnKF under varying noise
levels, ensemble sizes, and state dimensions. Additionally, in subsection 4.2, we consider cases
in which we have access to either fully observed or partially observed dynamics. These scenar-
ios offer a comprehensive perspective on the adaptability of REnKF to varying observational
conditions, thereby highlighting its potential for wide applicability in real-world situations
where data are often limited or incomplete. For all experiments, we generate a ground-truth
state process {u(j)}fzo for a time-window of length J =200 using the initialization (2.1) and
dynamics model (2.2). For each set of system parameters we examine, a unique set of obser-
vations {y(j)}j:1 is generated from the ground-truth state process utilizing the observation
model (2.3). Python code to reproduce all numerical experiments is publicly available at
https://github.com/Jiajun-Bao/EnKF-with-Resampling.

4.1. Linear dynamics. In this subsection, we numerically investigate the performance of
REnKF for the linear-Gaussian hidden Markov model (3.2)—(3.4) analyzed in subsection 3.2.
We will consider a variety of choices for the initial distribution, the dynamics noise covariance,
and the observation noise covariance. Throughout, we take identity dynamics A = I; and full
observations H = I;. To compare the performance of EnKF and REnKF, we will consider the
following metrics:

J
1 )
(4.1) (Mean error) ELinear = jg a9 — 9|,
7=1
11 5
4.2 I width W==% =% 2x1 x
(42)  (CI width) IR

J d
15l )iy e (20)(; ()
(4.3) (CI coverage) V=53023 1{u(])(z)6<u(3)(z)i1.96 2)}

The mean error (4.1) quantifies the approximation of the EnKF/REnKF analysis mean
to the mean pu) of the KF. Our theory for REnKF provides nonasymptotic bounds for this
error, and our numerical results will show that this error is similar to that of EnKF in a
variety of settings. The confidence interval (CI) width and coverage in (4.2)—(4.3) assess the
ability of the filter to provide reliable uncertainty quantification: a short interval with high
coverage would be preferable, but an overconfident short width interval with low coverage
can lead to a misleading and potentially dangerous assessment of uncertainty. We illustrate
these three metrics in Figure 1, which corresponds to a setup outlined in Table 2. This setup
will be further explored in subsection 4.1.1. As depicted in the plot, the indicator in (4.3)
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Figure 1. State estimation and uncertainty quantification for coordinate u(1) in the linear setting with
ensemble size N = 10 and small noise o = 10™*. Note that the Kalman filter (KF) is optimal in the linear
setting.

Table 2
Performance metrics in the linear setting with d = 20.

Small noise Moderate noise Large noise
Ensemble Metric a=10"* a=10"2 a=10""1
EnKF Mean error 0.0608 0.6133 1.9931
REnKFMean error 0.0616 0.6199 2.0310
N=10 EnKF CI width 0.0194 0.1940 0.6134
REnKFCI width 0.0188 0.1875 0.5930
EnKF CI coverage (%) 39.57 38.90 38.35
REnKF CI coverage (%) 37.83 37.14 36.58
EnKF Mean error 0.0193 0.1930 0.6243
REnKF Mean error 0.0209 0.2091 0.6739
N =40 EnKF CI width 0.0278 0.2780 0.8790
REnKF CI width 0.0274 0.2739 0.8663
EnKF CI coverage (%) 69.94 69.26 68.90
REnKF CI coverage (%) 68.65 67.76 67.43

corresponds to whether the solid blue line (representing the true states) fall within the shaded
confidence intervals. We point out that the ability of ensemble Kalman methods to provide
reliable uncertainty quantification, especially in nonlinear settings, has often been questioned
[14, 31]. Our results will show that the CIs obtained with REnKF have similar width and
coverage as those obtained by EnKF, but that coverage for both algorithms is not reliable
when the ensemble size is small (subsections 4.1 and 4.2) or the dynamics are highly nonlinear
(subsection 4.2).

Since the outputs {0, i(j)}jzl of EnKF and REnKF are random, for each experiment we
run both algorithms M times and we report the average value of the metrics (4.1), (4.2), and
(4.3) as well as the value of M. More details can be found in Appendix A.

4.1.1. Effects of noise level and ensemble size. We perform two distinct analyses to
assess the impact of different variables on the performance of EnKF and REnKF. The first,
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which we term the noise-level analysis, investigates the relationship between mean error,
Elinear, and the noise level, a. The second analysis, referred to as the ensemble-size analysis,
explores how the mean error varies with the ensemble size, N. Both analyses are carried out
using a fixed state dimension d = 20.

In the noise-level analysis, « is varied over a grid of 15 evenly spaced values between 1016
and 1, allowing us to investigate a range of scenarios beginning with those with virtually no
noise to those with substantial noise. In order to isolate the influence of o, we maintain the
initial distribution with a fixed zero mean and covariance (%) = 1078 x Iy, as well as a fixed
ensemble size of N = 20. In the ensemble-size analysis, IV is varied between 10 and 100,
in increments of 10. To isolate the effects of N, we fix a = 10~ and maintain the initial
distribution to have a fixed zero mean and covariance (0 = 1.1a x I59. The covariance is
adjusted to represent a higher initial uncertainty level compared to the noise-level analysis.
The factor 1.1 was introduced to ensure that the initial states possess a slightly different
level of uncertainty relative to the noise in the dynamics and observations. Both analyses
are averaged over M = 10 runs of the algorithms. The results of both analyses are depicted
in Figure 2. In addition to Erinear, in Table 2 we consider the effect of varying o and N on
CI widths, W, and CI coverage, V. Here, we categorize the levels of noise as being either
small, moderate, or large, which correspond to « values of 1074, 1072, or 10~ respectively,
as described under Case A in Table 3. Further, we repeat the experiments with ensembles
of size N =10 and N = 40. For the experimental settings summarized in Table 2, the state
dimension and initial distribution are taken as in the ensemble-size analysis described earlier.
These metrics are calculated based on averages over M = 100 runs of the algorithms.

The results in Figure 2 and in Table 2 confirm that across a wide variety of linear experi-
mental settings, REnKF exhibits similar performance to EnKF as measured by the mean error,
CI width, and CI coverage.

3.5 2.00
3.0 1.75
25 1.50]
1.25]
©2.0 ©
: ;i
=5 -51.00
w15 L
0.75
1.0
/ 0.50
0.5 /
/ 0.25
0.0
0.00
0.0 0.2 0.4 0.6 0.8 1.0 20 40 60 80 100
a N
—— ENnKF RENKF

Figure 2. Effects of a and N in the linear setting with d = 20.
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4.1.2. Effects of state dimension and spectrum decay. We now study the sensitivity of
EnKF and REnKF to changes in the state dimension, d. Recall that our main result, Theo-
rem 3.2, implies that REnKF performs well whenever the ensemble size scales with the largest
of the effective dimensions of the noise covariances: (), T', and =. This motivates our study
of covariance matrices with structure summarized in Cases A and B of Table 3. In Case A,
the effective dimension of the covariance matrix is proportional to the state dimension, d,
and so the theory suggests that REnKF will do well only if the ensemble size also scales with
d. In Case B, we consider covariance matrices that are diagonal, with ith diagonal element
proportional to i~? where > 0 is a rate parameter controlling the speed of decay. Table 4
demonstrates that two matrices of this form that are equal in dimension may differ drastically
in their effective dimension for different choices of 5. Here, then, the theory suggests that
REnKF will do well so long as the ensemble size scales with the effective dimension, which
may be much smaller than d. To test our theory, we run REnKF under both Cases A and
B in Table 3 where d is varied over the set {2',22,...,28} and where the ensemble size is
fixed at N = 10 throughout. For both cases we fix o = 10~* and for Case B we consider
B €{0.1,1,1.5}. Figure 3 presents the results of averaging Epinear over M = 10 runs of the al-
gorithm in each of the experimental set-ups. We see that for all choices of 8, EnKF and REnKF
exhibit near-identical performance. For Case A, the performance deteriorates as d increases
and this behavior is identical across all three displays. For Case B, when = 0.1 (first display)
so that the effective dimension increases significantly with dimension as described in the first
row of Table 4, the performance deteriorates significantly as d increases. As f is increased to
1 in the second display, so that the effective dimension grows slowly with d, performance de-
teriorates at a much slower rate. This is further pronounced in the final display with g = 1.5.

Table 3
Covariance matriz settings explored numerically in subsections 4.1.2 and 4.2.

Noise Case A Case B (1=1,...,d) Case C
Dynamics (=) El=ax Iy 2B =axi? EC=axly
Observation (I) M=axly rB=axi? I'“=ax I%
Prior (2(©) (A =11xz4 (2B =11x2E (2O =1.1xE°
B=0.1 , B=1.0 B=15 _
0s| N=10 0s|  N=10 / 0s| N=10 /
Y ; / 06 | 06 |
o i ; i / i
g : /; : / |
£ ! ! J !
304 | 0.4 | // 0.4 |
0.2 i 02 : 0.2 i
00 5= 3=3 " 16 3 & 138 256 %0 5 4 5 16 32 6 138 256°0 5 a6 16 32 6 138 256
d d d
—e— EnKF Case A RENKF Case A EnKF Case B « RENKF Case B

Figure 3. Effect of spectrum decay in the linear setting.
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These numerical results demonstrate the key role played by the effective dimension in de-
termining the performance of EnKF and REnKF, and are in agreement with Theorem 3.2 for
REnKF.

4.2. Lorenz 96 dynamics. In this subsection, we extend our numerical investigation of
REnKF to the nonlinear setting by taking ¥ in (2.2) to be the At-flow of the Lorenz 96
equations. Here At represents the time-span between observations, which is assumed to be
constant. Assuming the following cyclic boundary conditions u(—1) = u(d — 1), u(0) = u(d),
and u(d+ 1) =u(1) with d >4, the system is governed by:

du(1)

(4.4) T (w(@+1)—u(@—2)u(i—1) —u(i)+ F, i=1,...,d.

In our experiments, we set At =0.01, F' =8, and the state dimension d is subject to variation.
The choice F' = 8 leads to strongly chaotic turbulence, which hinders predictability in the
absence of observations [36]. For the observation process (2.3), we consider both full obser-
vations in which H = I, and partial observations in which only two out of every three state
components are observed. The latter setting results in a modified H € R% *4 which corre-
sponds to I; with every third row removed. This observation set-up is motivated by [44, 29],
which prove that observing two-out-of-three coordinates of the Lorenz 96 system suffices in
order to tame the unpredictability of the system and achieve long-time filter accuracy in a
small noise regime. As in subsection 4.1, we examine various choices of initial distribution,
dynamics noise covariance, and observation noise covariance. To compare EnKF and REnKF,
we make use of the same CI width (4.2) and CI coverage (4.3) metrics as in subsection 4.1.
However, since in the nonlinear setting the mean of the filtering distribution is not available
in closed form, we replace the metric Epinear with

J
1 (i ;
(4.5) Eros = 5 E :‘M(]) _ U(])bv
j=1

which quantifies the accuracy of the filter as an estimator of the ground-truth state process
{u(j)}jzl. As before, the metrics we report are averaged over M runs of the algorithms.

In Table 5, we compare the performance of REnKF and EnKF. In the case of full observa-
tions, the covariance configuration is outlined in Case A of Table 3, and in the case of partial
observations it is outlined in Case C of Table 3. We repeat the experiments with ensembles of
size N =21 and N =84, and the metrics are computed over M = 100 runs of the algorithms.
In Figure 4, we present a single representative simulation of the first component u(1)—which
is observed—and the third component u(3)—which is unobserved—corresponding to a par-
ticular choice of parameters in Table 5. Additional experiments in the accompanying Github

Table 4
Effective dimension of initialization and noise covariances used in Figure 3.

State dimension (d) 2 4 8 16 32 64 128 256
£=0.1 1.93 3.70 7.02 13.25 24.89 46.64 87.25 163.05
£5=1.0 1.50 2.08 2.72 3.38 4.06 4.74 5.43 6.12
s=15 1.35 1.67 1.93 2.12 2.26 2.36 2.44 2.49
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Figure 4. State estimation of coordinates u(1) (observed) and w(3) (unobserved) in a partially observed
Lorenz 96 system with ensemble size N = 21 and small noise & = 10~*. REnKF accurately recovers observed
and unobserved coordinates of the state.

repository show that, as the noise level « increases, state estimation remains effective for
observed variables but deteriorates for unobserved ones. This behavior explains the larger
error for moderate and large noise levels in the partial observation set-up in Table 5.

In Figure 5, we further analyze the effects of varying a (column 1), N (column 2), and
d (column 3) on EL96 in both the full observation (row 1) and partial observation (row
2) settings. More precisely, in the first column of Figure 5, « is varied over a grid of 15
evenly spaced values between 10716 and 1 while holding fixed N = 20 and d = 42. In both
full and partial observation settings, we take the initial distribution to have zero mean and
covariance (0 = 1078 x I . In the second column of Figure 5, the ensemble size N ranges
from 10 to 100, increasing in steps of 10, while fixing o = 10~% and d = 42. In both full and
partial observation settings, we take the initial distribution to have zero mean and covariance
¥ = 1.1 x I45. In the third column of Figure 5, the dimension d is varied over the values in
{6,18,30,42,54,66,78,90,102} which are all multiples of 3 to facilitate convenient calculations
in the partially observed setting. We fix N =20 and o = 10~* and in both full and partial
observation settings, we take the initial distribution to have zero mean and covariance £(0) =
1.1a x 14, respectively.
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Table 5
Performance metrics for the Lorenz 96 model with d =42.

Full observation Partial observation
Moderate Moderate
Small noise noise Large noise Small noise noise Large noise
Ensemble Metric a=10"*" a=10"2% a=10"' a=10"* a=107% a«a=10"
EnKF Mean error 0.1011 0.9573 3.0231 0.4064 3.3882 10.5921
REnKFMean error 0.1016 0.9616 3.0335 0.4071 3.3565 10.6379
N =21 EnKF CI width 0.0208 0.2083 0.6586 0.0266 0.2660 0.8412
REnKFCI width 0.0205 0.2047 0.6475 0.0258 0.2584 0.8167
EnKF CI coverage (%) 50.24 51.55 51.61 39.62 43.25 43.26
REnKF CI coverage (%)  49.07 50.34 50.44 38.25 42.04 41.87
EnKF Mean error 0.0582 0.5682 1.7971 0.2919 2.4181 7.6282
REnKF Mean error 0.0590 0.5760 1.8218 0.2977 2.5004 7.9011
N =284 EnKF CI width 0.0281 0.2813 0.8895 0.0438 0.4383 1.3861
REnKF CI width 0.0279 0.2785 0.8806 0.0412 0.4120 1.3033
EnKF CI coverage (%) 87.96 88.61 88.61 71.47 75.31 75.30
REnKF CI coverage (%) 86.80 87.52 87.52 69.25 72.54 72.61
Full Observation
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Figure 5. Effects of a, N, and d in the Lorenz 96 example.

Our findings, as illustrated in Table 5 and Figure 5, demonstrate that REnKF achieves
performance comparable to that of EnKF, even in challenging nonlinear regimes. Notably, for
both algorithms we observe a slightly inferior performance with partial observations compared
to full observations under identical conditions. Moreover, a consistent trend is noticed in the
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dependency of EL96 on the noise level, state dimension, and ensemble size. Notice, however,
that the performance of REnKF deteriorates further in non-Gaussian settings with partial
observations, large N, and large noise. Such worsened performance may be partly explained
by the additional Gaussian assumption tacitly imposed in the resampling step, which further
destroys the non-Gaussian structure of the problem for nonlinear forward models. Table 5 fur-
ther demonstrates that REnKF is as effective as EnKF in the task of uncertainty quantification.
Nevertheless, both EnKF and REnKF encounter difficulties in delivering reliable uncertainty
quantification, especially in scenarios with partial observation and small ensemble size.

5. Proof of Theorem 3.2. The result will be established by strong induction on the mean
bound (3.10) and the covariance bound (3.11) along with induction on two additional bounds:
forany j=1,2,... and ¢>1

(5.1) TSI g < ear2(5),

(5.2) NEW — || < e <\/T2(]2V(0)) y \/TQJ(VE) y \/rzj(\?) ,

where c3 and ¢4 are again potentially different universal constants that depend on the same
parameters as co in the statement of Theorem 3.2. We will refer to (5.1) as the covariance trace
bound and to (5.2) as the forecast covariance bound. In this section, we require the following
additional notation: given two positive sequences {a,} and {b,}, the relation a,, < b,, denotes
that a,, < cb, for some constant ¢ > 0. If the constant ¢ depends on some quantity 7, then
we write a <; b. Throughout, we denote positive universal constants by ¢, ci,ca,cs,cq, and
the value of a universal constant may differ from line to line. In some cases, the explicit
dependence of a universal constant on the parameter 7 is indicated by writing (7).

This section is organized as follows. Subsection 5.1 contains preliminary results. We then
prove the base case j =1 in subsection 5.2. Finally, in subsection 5.3 we show that the bounds
(3.10), (3.11), (5.1), and (5.2) hold for j assuming they hold for all £ < j — 1.

5.1. Preliminary results.
Lemma 5.1 (operator norm of covariance). For any j >0, let ©U) be the analysis covariance
at iteration j. Then,
j—1
20| < [A[SO] 11237412 < c(| 4], LIS, ).
(=0
Proof. By Lemma B.6, |€(C)| <|C|, and so

[£9] = |6(CD)| < [0D] = |ASU VAT + 5| < AP0 + )
7—1
<|AMBYDHAPIE + B < - < APEQ 1) 14
=0

Lemma 5.2 (trace of offset). For any j > 1, we have that
THOY) < [HPFW) — T[r PI59| THE0)
+2(1+ [COY H P00 |C) | H| THCD).
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Proof. Write OU) = Z?zl 6?) with

O .= ¢ (CONTW) — 1) T(CWD),
0Y) = (1 — 2 (COYH)CH) T (CD),
0% .= o (CONCINT(I — HT T (CD)).

By linearity of the trace, Tr( ) = Ze 1Tr(0(j )). Note first that by Lemma B.6 applied
four times

T(OF) < [T9) ~ T Te( T (CO)r (C))
=0V —T|Te(HCYHT +T) 'H(CYTCVHT(HCVH +T)7)
<O —T||(HCYHT +T) 'PTe((CONTCVHT H)
<|HP[TW —T|(HCOHT + 1)~ P|CD T (CV))
<|[HPTY — |0 PICV (W),

where the final inequality holds since HCWH T 4T = T implies that T~! > (Hé(j)H—r +I)~!
Invoking once more Lemma B.6 repeatedly, we get that

TH(OF) =Te(I - # (C ‘>H>00 AT (D))
<|(I - (COYH)|Te(CY)x T (CV))
<|(I-(C J)H)||(HCJ)HT+I‘) YTe(HCWCH))
<|(I - (COYE)|(HCYVHT +T) wc )| H|Te(C))

<A +[COHPIT ) IEY|CHH|Te(CD),
where the last inequality holds since, by Lemma B.1,
(I = A (COVH)| <1+ | (CO||H| <1+ [COYHITT.

Finally, note that since 6§J ) = (59 ))T, the analysis of 6§J ) follows in similar fashion. [ |

5.2. Base case. In the next four subsections we establish the covariance trace bound
(5.1), the forecast covariance bound (5.2), the mean bound (3.10), and the covariance bound
(3.11) in the base case j = 1.

5.2.1. Covariance trace bound. Since %) = 20, we directly obtain that

T EO)lly = Tr(EO) = [£Ora(5).
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5.2.2. Forecast covariance bound. Let q € {q,2q,4q}. It follows by the triangle inequal-
ity, Theorem B.5, and Lemma B.7 that

= = = Al
1D = O, <1APIS® = ZOlq + IED — Elllq + 21AI11C g

9 (E)

’ ’

Se 147180

N
ro(32(0) ro(=
ro(32(0) ro(=
(5.3) < c(|A], |29, 2], q) (\/ 2(JE\;O)V\/ 21(\7 )

5.2.3. Mean bound. By Lemma B.2,
17 = 1Ol = 2 @D, EW;y®) — . (D, D5y D)l + 1 (ED)a D],
<1 = m O] 4 HPE D oy~ m O,

~—

+ICW — O JHIPH (1 + [H PR Wl — Hm)
+ 112 (CP)nM] -
The mean bound (3.10) with j =1 is then a direct consequence of the bounds that we now
establish on |||[m™®) —m™|||4 for q € {g,2¢} and on |||# (CO)7MV||,.
Controlling |||m™) — mW|||, for g € {g,2¢}. Tt follows by the triangle inequality and
Lemma B.9 applied twice that

;—
—
._4

N —m Dl <A = 1Ol + 11ED g Sq 14112

ro(3(0) ro(=
<c(|A], 129,12, 9) <\/ 2(5\370 : \/\/ 2](\f >) '

Controlling \|\<%/(5(1))7’/(1)H\q By Cauchy-Schwarz
112/ )1l < 11 (CO) g 17 12g-

We bound each term in turn. By Lemma B.9, |||7™M|]l2g $q +/Tr(T)/N = /|T|r2(T)/N, and
by Lemma B.1 and the forecast covariance bound (5.3),

11 (CD)laq < [HITHIED 20 < [HIT (JIED = COll1gg +1C))

(0) =
< PO (AL 2 2 ) (1 vy /2D [rlE) ) .
Therefore,

r (0) ro(= r
1@V, < 1[50, I, B 0 ) W Ry,

5.2.4. Covariance bound. From Lemma B.3 and the forecast covariance bound derived
in subsection 5.2.2, we have

| |
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=D — =M, < 1g (D ) (CO)Il, + 101,
<[ICY - cOy, (1 + =PI oM
+ (| H? \1“ N [HA T PICODNCO g ICY = WLy + [10M]],

_ _ 79 (3(0) ro(2 ~
< ef| AL 1HL, I, 1O 2], ) <\/ 20 ij)) IOV,

To derive the covariance bound (3.11), we need to control the offset term [[|OM)]|| g First,
using the triangle inequality we write

O], < 14 (COYED )T (D), + (1 — 2 (EO) R T ED),
A (CONCIN (1~ HT AT (ED)]],
=100l + 105 g + 11Ol

We next bound each term in turn.
Controlling H]O%D\Hq. By Lemma B.1, Theorem B.5, and the forecast covariance bound
(5.3), it holds that

Il#(CD)TW =) T(CM)]],
<[ (E D)3, IED =T,
<|H PRI CD 3, IFD = Tl

— 2
AL EINIAEE: (1 v 2ED ), [l >>

1 = ra(I')
SC(’H|7|F|¢|F 1|7":“7|E(0)|7q) Ta

where the last inequality uses the fact that N > ro(2O)) v 7o(Z) V 1o (T).
Controlling \\\Ogl)\\\q. By Lemmas B.1 and B.7 and the forecast covariance bound (5.3),
we get

rrr<f—%<A<1>> >6<1>%T<6<1>>m < COT - Oy CW]I,
< 19 @)1+ 1 @) HNEWII,
< NEE, (1T NED g + [HPT 2G5,

< (A, 1=O), 2] 9) <1v \/Tz(]zv(o)) y \/TQJ(VE) v \/sz(\f))
< (IHPIDY + [HTID) (159 v [T) (\/ ey \/ MJ(VE v \/ mz(vr ) )

N
- - 7o (2(0) ro(2 ro(T
< (1AL JHL 0 LSO 50 W 50 |\ fr2E) D

N
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. (1 (1 (1
Controlling [[|05"][l4- Note that [[O"[[l = 105" lls

5.3. Induction step. In this subsection, to reduce notation we write ) = r2(i(o)) \%

T2 (E) \/ T2 (F)
N \V
it holds that

Throughout, we work under the inductive hypothesis that, for all £ <j —1,

T EE D)l < eara(89),  ICC = V]|l < 202,

5.4 -
o0 Y = 1 Olllg < s IIE® — 2O, < a2,

where ¢1, ¢o, ¢3, and ¢4 are constants depending on ||, |A|, |H|, [T, |T|,|Z|, ¢, and 7, and c3
additionally depends on {|y¥ — Hm®|},<,_;. For the remainder of the proof, ¢ and ¢’ denote
constants that depend on |2, |A|, |H|,|T~!|,|T'|,|Z|,¢, and j, and ¢’ additionally depends on
{]y® —Hm|},<,_; and are potentially different from line to line. In the next four subsections
we show that, under the inductive hypothesis, the four bounds in (5 4) also hold for ¢ = j.
Throughout, we use without further notice that |S(| < ¢(|A[,|Z], |2@],£), which was proved
in Lemma 5.1.

5.3.1. Covariance trace bound. By Lemma B.3, Tr((g(a(j_l))) < Tr(a(j_l)) follows from
the fact that €(CU~D)<CU-D and so

ITe(EV D) g < [ Te(€(CU)) g + [ T (OV D)l < | Te(CYD) |y + [T (O D)l

We will show that both of the terms on the right-hand side are bounded above by a constant
times 75(X(0).
Controlling || Tr(CU~Y |4 Noting first that

E [C(j—l)

av?, i(j‘Q)] =E {ASU‘Q)AT +E0D 4 40UV 4 CYTD AT gD 8072
—F [AS(J'*2)AT’ﬁ(J?2)7§(j—2) _ASUOAT,
and by Lemma B.6, it holds almost surely that
Tr(ASU2AT) < |APTH(E02) = [AR|S0-D |y (S6-2)),

Then, by iterated expectations and Lemma B.8, we have
E (@) =B [ [(Te(@0))" | a0-2, 5672
<,E [E [(Tr (60—1) _ E[GU-D[{0-D), §<j—2>]))" ’ﬁu—m’ g;@—m”

+E [(Tr (E[ CU-D|pu-2) 56— 2)]>)q}

<E (ME[OW %Z,EU”J)) ST (B[00 002, £0-2]))
e () e (ne )
< ‘]\752 2(ZO) 4 [APery ()7 < ery (5O,

where the second to last inequality holds by the inductive hypothesis (5.4).
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Controlling ||OU~Y |4- By definition, we have
AG—1 A1)y (TG —1 T(AG-1 AGi—1 AG-1) 2 T (AG-1
OU=D = (CYU=DYTU=Y 1)z T(CU=D) + (I — ¢ (CU ))H)an ) T(CU—Y)
AG-1)Y(AG-1\T T o T(AG-1
+ A (CUT)(CH) (I = BT T(C07))
::Ogj—l) +O§3_1) —l—Oé]_l).

1) 1)
Therefore, | Tr(OU~ 1))Hq<\|T1f( O™ )lg + 1T (OF ™) g + | Tr(OF ™) -
Controlling ||Tr(O(J 1)||q By Lemma52
T

OV ) < [HPTU-D )0 2ICU- | Te(CU- D),

and so
1)
ITx(OF =)l < [HIP[0 ! P|IEG—) —T)|C0- 1!T1"( U,
<[HPTPTYD = Dlll2g 1OV 1114g] Te(CY) g
By Theorem B.5, ||[[U~D —T[]2g Sq 1T ) , and by the inductive hypothesis (5.4) and the

fact that |CU—D| <|AP|X0U-2)| 4 |Z], we have
NCY™Dlllag < |CU™D [+ [|CU™D = CUD||lgg < c(1v Q).

We have also previously shown that || Tr(CG—1) Nag Sr2(2©). Noting that (1V Q)ry(X0) <
ro(2), we get that HTJr(O(J 2 )Hq < ey (20,
Controlling ||| Tr( O(] 2 )\Hq By Lemma 5.2,

Tr(OY V) < (1 + |CU-DHP )T Y H||CY D Te(CU-Y).
Therefore,
1
1T (OF )l < (14 [ICY=V][lag| H 2T NITHHCG [ ag T (CYI™D) g

By iterated expectation and Lemmas B.7 and B.8 we have, for q € {q, 2q,4q},

—~ ~ . ~ 1/q
-1 -1 ~(5—2 D -2

S(G-2) 7“2@(3'72)) r2(I)

(IS2 v [ B v
s ro(26-2))
(5.5) < (S92 llyq v 1D | [[{) F5
2

By the triangle inequality and the inductive hypothesis (5.4), it follows that

HIEG 2 lgq < 18072 = 20|l + 5072 < c(1v ),
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and also that

Tg(z(j_2))
N

Using identical arguments to those used to control |||Tr(Oy ol=b )

ITe (O V)|l < era(2O).

2q

l|l4, we have that

Controlling || Tr(OY ™) |,. Note that | Tr(OY V)|, = | Te(OY V)|,

5.3.2. Forecast covariance bound. Let q € {¢,2¢,4q}. By the triangle inequality, the
inductive hypothesis (5.4), and Theorem B.5, we have

1B — DY, < |APISUD = UD]lg + | [ED —Z]llg + 21 AlNCE
<[AP (JISU7D = SUD]lg 4+ S6-D — $6D]|) + | ED —Zllg + 2 ANCL

<d|AP (1590~ SV, +0) +[2] <1v\/ }V))mmwcugruq

The forecast covarlance bound (5.2) is then a direct consequence of the bounds that we now
establish on |||C’ ||| and |||S’ i1 E(j_1)|||

Controlling |||CU5H| By an identical analysis to the one used in bounding H]C’ ||| in
(5.5), we have that
(5.6) IICY? \H S

Controlling |||SU~1) — f](j_l)|||q. By iterated expectations and Theorem B.5, we have

18971 — SU-D])? = [|56~Y - S6-0js] :E[E [|5<j—1>_§j Dja| 500 56~ 1)”

it
SqE el (TZ(EO ))> ) @(j—l)‘qm( r(2U-1) )

N
< \/Eyi(j—l)p E

By the covariance trace bound proved in subsection 5.3.1 and the inductive hypothesis
(5.4), we then have that |||SU—D — $0-1) ||| < Q.

5.3.3. Mean bound. By Lemma B.2, we have
139 = 1Dy = |t (2D, CD;y D) — .t (0D, D3y D)+ 13 (ED)7 D],
< [im® —mﬂ>|H + [HPITIIED g 12D = m |,
q

N

Tr(iu‘—l))] !

+|||5(j)— CO|IJHITH @+ [HP L CD Dy — HmW|
+ 1112 Ca 9.
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The induction step for the mean bound (3.10) is then a direct consequence of the bounds that
we now establish on |||[m) —mU)|||, for g € {¢,2¢} and on |||# (CW)D||,.

Controlling |||m9) — mW|||4 for q € {q,2q}. Tt follows by the triangle inequality and the
inductive hypothesis (5.4) that

17D —m@|llg < A0 = uG=D g + [IED]
<141 (a6~ = A g + AT = w6V ) + 1152

(i (i _ (=
<14 (1897~ 59V g + ) + ela)Ey 2.

By iterated expectations, Lemma B.9, and the covariance trace bound proved in subsec-
tion 5.3.1, it follows that

a1 — gG-D||j3 = E[jai—Y) — G-V} =E [E WH) _ =Dy ‘ el gwn“

~ . /2
< g | (TEYY) q <c ra(£©)\ 2
~q N —= N )

and so [[[A0) — m@)[|; < 9.
Controlling ||| (CW)7 ]| ,. Note first that |||.# (CO)g||ly < [[[7# (CD)|[l2g 179 |12g-

We then have by Lemma B.9, [|[79|||2, <, \/Tr(r = \/|F|T2]S, , and by Lemma B.1 and the
forecast covariance bound established in subsection 5.3.2, we have

117 (€D l2g < 1HITHIIEDllzq < [HIID ™ (JICD = €Dl +1C D))
<|H|T Ye(1vQ).
Therefore, ||| (CO)7W|||, < €.

5.3.4. Covariance bound. By Lemma B.3, we have

IIED — D), < [I1€(CV) =€), + 11091l
<[ICY = CO (1 + AP H|CW))
+ (AP + 1AM PICODNICDlggICY = CD g + 11OD]-

The induction step for the forecast covariance has been proved in subsection 5.3.2, and so in
order to show the induction step for the covariance bound we need only control the offset
term. First, using the triangle inequality, we write

HODIl, < 1 (C)@TY) =) T(C)), + III(I = (CV)H )5“)%T(A(j))lll
+ [l (CONCINT (T = HT 2 T(COI|, =107 ll4 + 1105”14 + 105l

We next bound each term in turn.
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Controlling HO Hq By Lemma B.1, the forecast covariance bound established in subsec-
tion 5.3.2, and Theorem B.5, it holds that

H@?)HfHW(A‘”)(“)— D)2 T (ED)|,
_ o~ 2 ~
< 1 (D) (13, IITD =Tl < [HPT2NED [, IITD =Ty,

c(1v Q) \/”](VF) < C\/’"QJ(VF),

where the last inequahty uses that by assumption N > ro(2(©)) v ro(Z) V ro(I).

Controlling HO Hq By Lemma B.1, inequality (5.6), and the forecast covariance bound
established in subsection 5.3.2, we get

1057l =ll(Z — %(C())H)@@%T(A“))\H < | (NI = (CO)H Y,
<1 (C)|(1+ |2 (C" )HHD!CW,!H

<R, (1HITTNED llog + [HFID EIICD) 2, ) < .

i,

Controlling ||(3§j)Hq. Note that ||6§j)||q = ||5§j)\|q.

6. Conclusions. This paper has investigated REnKF, a modification of EnKF with im-
proved theoretical guarantees. Theorem 3.2 gives nonasymptotic error bounds for a stochastic
EnKF over multiple assimilation cycles. Numerical experiments demonstrate that the benefits
of introducing resampling for theory purposes do not come at the price of a deterioration in
state estimation or uncertainty quantification tasks.

Resampling techniques for ensemble Kalman algorithms deserve further research. From
a theory viewpoint, resampling offers a promising path to develop long-time filter accuracy
theory, blending our inductive analysis with existing results that ensure long-time stability of
the filtering distributions [44]. From a methodological viewpoint, other resampling schemes
can be considered [40]. Finally, while our numerical investigation has focused on settings
where the standard EnKF algorithm is effective, an important open problem is to identify
dynamical systems and/or observation models for which resampling may offer an empirical
advantage.

Appendix A. Metrics for numerical results. In this appendix, we give a more exten-
sive description of the Monte Carlo procedure utilized to calculate the metrics referred to
in section 4. We summarize the approach in Algorithm A.1. We require the following ad-
ditional notation: We write diag(A) = (A11, As2,...,Aqq)". For a function g : R — R,
g(u) = (g(u(1)),...,g(u(d))) " is the elementwise application of g to w.

Appendix B. Technical results.

B.1. Additional notation. Given a nondecreasing, nonzero convex function % : [0, 00] —
[0, 00] with ¢(0) = 0, the Orlicz norm of a real random variable X is [ X||,, = inf{t > 0 :
E[¢(¢t~1X])] < 1}. In particular, for the choice ¥,(z) = ¢* — 1 for p > 1, real random
variables that satisfy || X sz < oo are referred to as sub-Gaussian, and those that satisfy
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Algorithm A.1. Metrics calculation for numerical results.

1: Fixed quantities: Ground-truth state {u{ }J o, observations {y()}/_, and KF

Jj=b
means {u() }‘]]:

2: Monte Carlo trials: For m=1,2,..., M run algorithm A € {EnKF(2.1),REnKF(3.1)}
and obtain {ﬂ%)’A, i%)’A}i’%.
Mean error:

J
1 .
(Al) m Linear — j Z ]) A 2, m ,L96 — Z |M A —
Confidence interval: Let a( DA diag(E,(%)’ ), then compute
1A = A 41,96 x gl)A (Interval),
2 1
WA = . 96 Z G2 (Average width),
(A.2)
1 d . 4
VA = a7 ; ; 1{u) (3) e 19A(G)} (Average coverage).
3: Output
1 < 1 <
Eﬁlnear M mzz:l TAn, Linear> Eﬁgﬁ - M et TAn L96>
(A.3) Y Y
WA — = N\ WA VAZ LN \A
w W VEa

1 X | 4, < 00 are subexponential. The random vector Y is sub-Gaussian (subexponential) if
||UTYH¢2 <00 (||UTYHTZ)1 < 00) for any vector v satisfying |v|o = 1.
B.2. Background results.

Lemma B.1 (properties of the Kalman gain operator [28, Lemma 4.1 and Corollary 4.2]). Let
K be the Kalman gain operator defined in (3.5). Let P,Q € 84, T' € Si+, and H € RF*4,
The following hold:

H(Q) — # (P)| <[Q — PIIH|IT™| (1 -+ min (|P|. Q) [HPITY).
(@) < |QIH|T,
[ = A (QH| < 1+|Q|HP|T"].
Lemma B.2 (properties of the mean-update operator [28, Lemma 4.10]). Let .# be the
mean-update operator defined in (3.6). Let m € R? be a random vector, and let Q be a random

matriz such that Q € Sd almost surely. Let P € S‘fr, e 8++, HeR: y cRF, and m' € R?
be deterministic. Then for any 1 < q < oo and y € R¥ it holds that
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2 (m, Qsy) — A (!, Pi)ll < [[lm =[]+ [HIP D@l || Im — m]],
+1Q = Pl HIT™HA + [HPLTH[ Py — Him|.
Lemma B.3 (properties of the covariance-update operator [28, Lemmas 4.6 and 4.8]). Let €

be the covariance-update operator defined in (3.7). Let P,Q,m,m’,y, H, and T all be defined
as in Lemma B.2. Then, for any 1 <q < oo, it holds that

027(Q)=Q, [¢@QI<]e],
<@ — PIll,(1 + [H*IT~H||P])
+(HPTT -+ HATT LY@ = Pllla-

11€(Q) =€ (P)

g

Theorem B.4 (Gaussian norm concentration, [49, Exercise 6.3.5]). Let X € R? be a Gaussian
random vector with E[X] = p~, var[X] = £X. Then, for any t > 1, with probability at least
1 —ce™ it holds that

X — 5l S/ TE) + 12X I3 V)

Theorem B.5 (covariance bound, [27, Corollary 2]). Let Xi,..., X, be i.i.d. copies of a
d-dimensional Gaussian vector X with E[X] =0 and var[X]=3%. Let &= 15" X, X[ be
the sample covariance estimator. For any q > 1, it holds that

(), TQ(Z)) |

n n

112 = Z[llq Sq 12 (
Lemma B.6. Let A,B eSi. It holds that

TH(AB) < |A| TH(B).

Lemma B.7 (cross-covariance estimation—unstructured case). Let u1,...,uy € R? be 4.i.d.
Gaussian random vectors with Elui] = m, and let var[ui] = C. Let ny,...,nn € RF be i.i.d.
Gaussian random vectors with Elm] =0 and var[n] =T, and assume that the two sequences
are independent. Let

N
N 1 N +
Cuy = =g 2 =)= )T,

and assume that N >r9(C) V ro(T). Then,

[1Cullla 4 (1C1 v ITY) (\/ S \/ ¥ )) |

Proof. By [2, Lemma A.3], there exists a constant ¢ such that, for all £ > 1, it holds with
probability at least 1 — ce™! that

Cunl S(CIV T (\/TQEVC) Ry ;) .

Integrating the tail bound then yields the result. |
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Lemma B.8. Let Xi,...,X;, be i.i.d. copies of a d-dimensional Gaussian vector X with
E[X]=0 and var[X]=3. Let £ =137 X, X;" be the sample covariance estimator. Then,
for any & > 1, it holds with probability at least 1 — 2% that

| THE) — TH(S)| < ¢ Tr(X) <\/§\/ i) :

. < TT(E).
q~9 \/ﬁ

Proof. Let Z;; = Zj_jlﬂXij and note that, for any ¢ > 0,

Further, for any q>1,

I TH(E) - Tr(E)

n d
P(Tx(S) — Te(D)| > 1) =P( (S -3)[ > 1) =P [ D [ Y (X3 -EX}) || >nt
i=1 \j=1
d
=P Z sz ~EZ) || >nt
Note that the random variables Z;l:l Ejj(Zin - EZZQJ) for i=1,...,n are independent, mean-
zero, and subexponential with ¢; norm at most CTr(X), since
d d
2 2 2
> (25 —EZy)| <) %l|Zh-EZ,, < CZEJJH il
=t v 9T
d
2
= %5l Zi15, < CZ 55 = CTr(%).
j=1 3=1

The second inequality holds due to the Centering Lemma, [49, Lemma 2.6.8]. Therefore, by
Bernstein’s inequality we have

2

Z Zzﬂ ~EZ2) || >nt §2exp(—cmin<(TrthE))2,T:EtE))>.

i=1 \j=1

For the expectation bound, we note that

I|Te(Z) — Te(S)|[l; = /0 TP(THE) - () > 1) dt
SCq+q/ootq_1P(|Tr(A) Tr(X)| > t)dt

§<q+2q e 1exp< cmm( 2))2’%%))“
. <q+2qcmax< @AY T )(Tr<z>>q>_

nQ/2 nd

Taking ¢ =Tr(X)/n, it then follows that
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~ 1 Tr(X
1T ~ T, ¢+ T ma (o, 2 ) 5 T, 0
Lemma B.9. Let X1,..., X, be i.i.d. copies of a d-dimensional Gaussian vector X with

E[X] =y, and let var[X]=X. Let X = + SN X, Then, for any ¢>1,

Tr(X%)
N

Proof. Let cg:=c14/Tr(X)/N where ¢; is a sufficiently large positive constant, then

11X = plllg <q

(e}

BIX -l = [ BIX—ulr > dy<d+ [ BIX—pl> )y

C2

q—1
o0 Tr(X - Tr(X
:cg+/ q(c r]if)—’—t> P(!X—u|>cwrji7)+t>dt,
ca—cTr(X/N)

where the last equality holds by a change of variable. By Theorem B.4 it follows that P(|X —
p| > ey/Tr(2) +t) < exp(—ct?/|X]), and so the expression in the above display is bounded

above by
cg—i—/:CTr(E/N)q (c Tr]g)) +t> -1 exp( CT;Q) »
s [4((5) s 50
:03+q<;F(q/2) (’ZN| " ;( NE ) WJ?‘)
[

)
seta(2ram ()4 L <Cﬂf)>q/2>

Therefore,

I = il Saca-t yf L [T | [T

where the last inequality holds since Tr(X) > |X| and the choice of ¢s. [ |

REFERENCES

[1] S. I. AANONSEN, G. NEVDAL, D. S. OLIVER, A. C. REYNOLDS, AND B. VALLES, The ensemble Kalman
filter in reservoir engineering—a review, SPE J., 14 (2009), pp. 393-412.

[2] O. AL-GHATTAS AND D. SANZ-ALONSO, Non-asymptotic Analysis of Ensemble Kalman Updates: Effective
Dimension and Localization, preprint, https://arxiv.org/abs/2208.03246, 2022.

Copyright (© by SIAM and ASA. Unauthorized reproduction of this article is prohibited.


https://arxiv.org/abs/2208.03246

Downloaded 01/24/25 to 38.140.150.106 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

440

O. AL-GHATTAS, J. BAO, AND D. SANZ-ALONSO

[3] J. L. ANDERSON, An ensemble adjustment Kalman filter for data assimilation, Mon. Weather Rev., 129

(2001), pp. 2884-2903.

[4] J. L. ANDERSON AND S. L. ANDERSON, A Monte Carlo implementation of the nonlinear filtering problem

5] M.
6] C.

[7] N.

Y
Y

[15]
[16]

[17]
18]

[19]

[20]

KoHE Q0 Q@ @

(21]
[22] J.
23] P.

[24]

[26]

27] V.

28] E.

M
25] R.
D

to produce ensemble assimilations and forecasts, Mon. Weather Rev., 127 (1999), pp. 2741-2758.
AscH, M. BOCQUET, AND M. NODET, Data Assimilation: Methods, Algorithms, and Applications,
SIAM, Philadelphia, 2016, https://doi.org/10.1137/1.9781611974546.

H. Bisnopr, B. J. ETHERTON, AND S. J. MAJUMDAR, Adaptive sampling with the ensemble transform
Kalman filter. Part I: Theoretical aspects, Monthly Weather Rev., 129 (2001), pp. 420-436.

K. CHADA, Y. CHEN, AND D. SANZ-ALONSO, [terative ensemble Kalman methods: A unified perspec-
tive with some new variants, Found. Data Sci., 3 (2021), pp. 331-369.

. CHEN, D. SANZ-ALONSO, AND R. WILLETT, Autodifferentiable ensemble Kalman filters, STAM J.

Math. Data Sci., 4 (2022), pp. 801-833, https://doi.org/10.1137/21M1434477.

. CHEN, D. SANZ-ALONSO, AND R. WILLETT, Reduced-Order Autodifferentiable Ensemble Kalman Fil-

ters, preprint, https://arxiv.org/abs/2301.11961, 2023.

. CHOPIN AND O. PAPASPILIOPOULOS, An Introduction to Sequential Monte Carlo, Vol. 4, Springer,

2020.

. CrIisAN AND B. Rozovskil, The Ozford Handbook of Nonlinear Filtering, Oxford University Press,

2011.

. DEL MORAL, Feynman-Kac Formulae, Springer, 2004.
. DOUCET AND A. M. JOHANSEN, A tutorial on particle filtering and smoothing: Fifteen years later, in

Oxford Handbooks in Mathematics, Oxford University Press, Oxford, New York, pp. 656-705.

G. ERNST, B. SPRUNGK, AND H.-J. STARKLOFF, Analysis of the ensemble and polynomial
chaos Kalman filters in Bayesian inverse problems, SIAM/ASA J. Uncertain. Quantif., 3 (2015),
pp- 823-851, https://doi.org/10.1137/140981319.

. EVENSEN, Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo

methods to forecast error statistics, J. Geophys. Res.: Oceans, 99 (1995), pp. 10143-10162.

. EVENSEN, The ensemble Kalman filter: Theoretical formulation and practical implementation, Ocean

Dynam., 53 (2003), pp. 343-367.

. EVENSEN, Data Assimilation: The Ensemble Kalman Filter, Springer-Verlag, Berlin, Heidelberg, 2009.
. EVENSEN AND P. V. LEEUWEN, Assimilation of Geosat altimeter data for the Agulhas current using

the ensemble Kalman filter with a quasigeostrophic model, Mon. Weather Rev., 124 (1996), pp. 85-96.

. EVENSEN, F. C. VOSSEPOEL, AND P. J. VAN LEEUWEN, Data Assimilation Fundamentals: A Unified

Formulation of the State and Parameter Estimation Problem, Springer, Cham, 2022.

. FURRER AND T. BENGTSSON, Estimation of high-dimensional prior and posterior covariance matrices

in Kalman filter variants, J. Multivariate Anal., 98 (2007), pp. 227-255.

. GU AND D. S. OLIVER, An iterative ensemble Kalman filter for multiphase fluid flow data assimilation,

SPE J., 12 (2007), pp. 438-446.

HARLIM AND A. J. MAJDA, Catastrophic filter divergence in filtering nonlinear dissipative systems,
Commun. Math. Sci., 8 (2010), pp. 27-43.

L. HOUTEKAMER AND F. ZHANG, Review of the ensemble Kalman filter for atmospheric data assimi-
lation, Mon. Weather Rev., 144 (2016), pp. 4489-4532.

. A. TcLEsias, K. J. H. Law, AND A. M. STUART, Ensemble Kalman methods for inverse problems,

Inverse Problems, 29 (2013), 045001.
E. KALMAN, A new approach to linear filtering and prediction problems, J. Basic Eng., 82 (1960), pp.
35-45.

. KELLy, A. J. MaipA, AND X. T. ToNG, Concrete ensemble Kalman filters with rigorous catastrophic

filter divergence, Proc. Natl. Acad. Sci., 112 (2015), pp. 10589-10594.

KovrrcHinNskIil AND K. Lounici, Concentration inequalities and moment bounds for sample covariance
operators, Bernoulli, 23 (2017), pp. 110-133.

KWIATKOWSKI AND J. MANDEL, Convergence of the square root ensemble Kalman filter in the large
ensemble limit, SIAM/ASA J. Uncertain. Quantif., 3 (2015), pp. 1-17, https://doi.org/10.1137/
140965363.

Copyright (© by SIAM and ASA. Unauthorized reproduction of this article is prohibited.


https://doi.org/10.1137/1.9781611974546
https://doi.org/10.1137/21M1434477
https://arxiv.org/abs/2301.11961
https://doi.org/10.1137/140981319
https://doi.org/10.1137/140965363
https://doi.org/10.1137/140965363

Downloaded 01/24/25 to 38.140.150.106 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

ENSEMBLE KALMAN FILTERS WITH RESAMPLING 441

[29] K. Law, A. STUART, AND K. ZYGALAKIS, Data Assimilation, Texts Appl. Math. 62, Springer, Cham,
2015.

[30] K. J. Law, D. SANZ-ALONSO, A. SHUKLA, AND A. M. STUART, Filter accuracy for the Lorenz 96 model:
Fized versus adaptive observation operators, Phys. D, 325 (2016), pp. 1-13.

[31] K. J. Law AND A. M. STUART, Evaluating data assimilation algorithms, Mon. Weather Rev., 140 (2012),
pp. 3757-3782.

[32] W. G. LawsoN AND J. A. HANSEN, Implications of stochastic and deterministic filters as ensemble-
based data assimilation methods in varying regimes of error growth, Mon. Weather Rev., 132 (2004),
pp. 1966-1981.

[33] G. L1 AND A. C. REYNOLDS, An iterative ensemble Kalman filter for data assimilation, in SPE Annual
Technical Conference and Exhibition, Society of Petroleum Engineers, 2007.

[34] E. N. LORENZ, Predictability: A problem partly solved, in Proceedings Seminar on Predictability, Vol. 1,
Reading, UK, 1996.

A. MAJDA AND X. WANG, Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows,
Cambridge University Press, 2006.

[36] A. J. MAJDA AND J. HARLIM, Filtering Complex Turbulent Systems, Cambridge University Press, 2012.

[37] A. J. MaiDA AND X. T. TONG, Performance of ensemble Kalman filters in large dimensions, Comm.
Pure Appl. Math., 71 (2018), pp. 892-937.

[38] J. MANDEL, L. CoBB, AND J. D. BEEZLEY, On the convergence of the ensemble Kalman filter, Appl.
Math., 56 (2011), pp. 533-541.

[39] I. MYRSETH, J. SETROM, AND H. OMRE, Resampling the ensemble Kalman filter, Comput. Geosci., 55
(2013), pp. 44-53.

[40] C. NAESSETH, S. LINDERMAN, R. RANGANATH, AND D. BLEI, Variational sequential Monte Carlo, in
International Conference on Artificial Intelligence and Statistics, PMLR, 2018, pp. 968-977.

[41] O. PAPASPILIOPOULOS AND M. RUGGIERO, Optimal filtering and the dual process, Bernoulli, 20 (2014),
pp. 1999-2019.

[42] S. REICH AND C. COTTER, Probabilistic Forecasting and Bayesian Data Assimilation, Cambridge Uni-
versity Press, 2015.

[43] D. SANZ-ALONSO, A. STUART, AND A. TAEB, Inverse Problems and Data Assimilation, London Math.
Soc. Stud. Texts 107, Cambridge University Press, 2023.

[44] D. SANZ-ALONSO AND A. M. STUART, Long-time asymptotics of the filtering distribution for partially
observed chaotic dynamical systems, STAM/ASA J. Uncertain. Quantif., 3 (2015), pp. 1200-1220,
https://doi.org/10.1137/140997336.

[45] S. SARKKA AND L. SVENSSON, Bayesian Filtering and Smoothing, IMS Textb. 17, Cambridge University
Press, Cambridge, 2023.

[46] M. K. TrppETT, J. L. ANDERSON, C. H. BisHop, T. M. HAMILL, AND J. S. WHITAKER, Ensemble
square root filters, Mon. Weather Rev., 131 (2003), pp. 1485-1490.

[47] J. A. TroPP, An Introduction to Matriz Concentration Inequalities, Found. Trends Mach. Learn. 8, Now
Publishers, Tampa, FL, 2015.

[48] P. J. VAN LEEUWEN, A consistent interpretation of the stochastic version of the Ensemble Kalman Filter,
Q. J. Roy. Meteorol. Soc., 146 (2020), pp. 2815-2825.

[49] R. VERSHYNIN, High-Dimensional Probability: An Introduction with Applications in Data Science, Camb.
Ser. Stat. Probab. Math. 47, Cambridge University Press, 2018.

[50] J. Wu, J.-X. WANG, AND S. C. SHADDEN, Improving the Convergence of the Iterative Ensemble Kalman
Filter by Resampling, preprint, https://arxiv.org/abs/1910.04247, 2019.

[51] J. Wu, L. WEN, AND J. L1, Resampled ensemble Kalman inversion for Bayesian parameter estimation
with sequential data, Discrete Contin. Dyn. Syst. Ser. S, 15 (2022), pp. 837-850.

[52] Y. ZHANG AND D. S. OLIVER, Improving the ensemble estimate of the Kalman gain by bootstrap sampling,
Math. Geosci., 42 (2010), pp. 327-345.

[35]

Copyright (© by SIAM and ASA. Unauthorized reproduction of this article is prohibited.


https://doi.org/10.1137/140997336
https://arxiv.org/abs/1910.04247

	Introduction
	Resampling in filtering algorithms
	Our contributions
	Outline
	Notation

	Problem setting and ensemble Kalman filters
	Ensemble Kalman filters with resampling
	Main algorithm
	Nonasymptotic error bounds
	Setting and preliminaries
	Main result


	Numerical results
	Linear dynamics
	Effects of noise level and ensemble size
	Effects of state dimension and spectrum decay

	Lorenz 96 dynamics

	Proof of Theorem&#x2009;&#x2009;<0:xref 0:ref-type="statement" 0:rid="the3-2" >3.2</0:xref>
	Preliminary results
	Base case
	Covariance trace bound
	Forecast covariance bound
	Mean bound
	Covariance bound

	Induction step
	Covariance trace bound
	Forecast covariance bound
	Mean bound
	Covariance bound


	Conclusions
	References
	Appendix A. Metrics for numerical results
	Appendix B. Technical results
	Additional notation
	Background results


