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Abstract. This paper analyzes a popular computational framework for solving infinite-dimensional Bayesian
inverse problems, discretizing the prior and the forward model in a finite-dimensional weighted in-
ner product space. We demonstrate the benefit of working on a weighted space by establishing
operator-norm bounds for finite element and graph-based discretizations of Matérn-type priors and
deconvolution forward models. For linear-Gaussian inverse problems, we develop a general theory
for characterizing the error in the approximation to the posterior. We also embed the computational
framework into ensemble Kalman methods and maximum a posteriori (MAP) estimators for nonlin-
ear inverse problems. Our operator-norm bounds for prior discretizations guarantee the scalability
and accuracy of these algorithms under mesh refinement.
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1. Introduction. Bayesian inverse problems on infinite-dimensional Hilbert spaces arise
in numerous applications, including medical imaging, seismology, climate science, reservoir
modeling, and mechanical engineering [6, 10, 12, 15, 30]. In these and other applications, it is
important to reconstruct function input parameters of partial differential equations (PDEs)
based on noisy measurement of the PDE solution. This paper analyzes a framework for nu-
merically solving infinite-dimensional Bayesian inverse problems, where the discretization is
carried out in a weighted inner product space. The framework, along with a compelling demon-
stration of its computational benefits, was introduced in [10] for solving PDE-constrained
Bayesian inverse problems using finite element discretizations. We develop a rigorous analy-
sis that explains the advantage of working on a weighted space. Our theory accommodates
not only finite element discretizations but also graph-based methods from machine learning.
For linear-Gaussian inverse problems, we bound the error in the approximation to the poste-
rior. More broadly, we embed the discretization framework into ensemble Kalman methods
and mazimum a posteriori (MAP) estimators for nonlinear inverse problems and study the
accuracy and scalability of these algorithms under mesh refinement.
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An overarching theme of this paper is that, by suitably choosing the weighted inner prod-
uct, one can ensure accurate approximation of the infinite-dimensional Hilbert inner product
as the discretization mesh is refined. Following this unifying principle, we analyze the finite
element discretizations considered in [10] together with graph-based discretizations. Finite
elements are predominant in scientific computing solutions of PDE-constrained inverse prob-
lems (see, e.g., [6, 10, 33]), whereas graph-based methods have been used, for instance, to solve
inverse problems on manifolds [27, 28, 32] and in machine learning applications in semisuper-
vised learning [4, 25]. For both types of discretization, we obtain operator-norm bounds for
important classes of prior and forward models. Specifically, we will use Matérn-type Gaussian
priors and deconvolution forward models as guiding examples.

Matérn priors play a central role in Bayesian inverse problems [49], spatial statistics [53],
and machine learning [47]. Efficient algorithms for sampling Matérn priors within the com-
putational framework of [10] have recently been investigated in [2]. Here, we obtain new
operator-norm bounds for both finite element and graph-based discretizations. The former
relies on classical theory, while the latter extends recent results from [51]. Deconvolution
forward models arise in image deblurring and heat inversion, among other important appli-
cations. Since the seminal paper by Franklin that introduced the formulation of Bayesian
inversion in function space [21], heat inversion has been widely adopted as a tractable testbed
for theoretical and methodological developments; see, e.g., [25, 23, 27, 55]. Here, we derive
operator-norm bounds for both finite element and graph-based discretizations.

For linear-Gaussian inverse problems, operator-norm error bounds for prior and forward
model discretizations translate into error bounds in the approximation of the posterior. We
formalize this claim under a general assumption, which we verify for our guiding examples
of Matérn priors and deconvolution. Additionally, we apply the computational framework
in [10] to algorithms for nonlinear inverse problems beyond the Markov chain Monte Carlo
method for posterior sampling considered in [46]. Specifically, we investigate (i) ensemble
Kalman methods [14, 31], where we show, building on [26], that the effective dimension which
determines the required sample size remains bounded along mesh refinements; and (ii) MAP
estimation [19, 33], where we show, building on [3], the convergence of MAP estimators
under mesh refinement to the MAP estimator of the infinite-dimensional inverse problem.
These results complement the vast literature on function-space sampling algorithms (see e.g.,
[1, 16, 23, 45]) and demonstrate that ensemble Kalman methods and MAP estimation can
be scalable and accurate under mesh refinement. We exemplify the new theory for MAP
estimation in the nonlinear inverse problem of recovering the initial condition of the Navier—
Stokes equations from pointwise observations of the velocity field [18, 17, 43].

The well-posedness of the posterior measure under perturbations is one of the hallmarks
of the Bayesian formulation of inverse problems [39, 40, 50, 55]. For a fixed prior measure,
the error in the posterior measure caused by discretization of the forward model can be
bounded in Hellinger distance [18] and Kullback—Leibler divergence [41]. Posterior stability
under perturbations to the prior measure, in addition to perturbations to the likelihood,
have been recently investigated using Wasserstein distance [52] and more general integral
probability metrics [22]. These results hold even when the prior and the perturbation are
mutually singular, as is the case for a discretization of the prior measure. In the linear-
Gaussian setting, the Wasserstein distance bounds in [52] yield a stability theory similar
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to ours; however, bounding the Wasserstein distance between the prior measures requires
trace bounds on the covariance operators, whereas our results only necessitate operator-norm
bounds.

1.1. Qutline and main contributions.

e Section 2 reviews the formulation of a Bayesian inverse problem in a Hilbert space
and presents our general discretization framework. We introduce the heat inversion
problem with Matérn Gaussian process prior as a model guiding example, and then
illustrate how finite element and graph-based methods can be interpreted within our
discretization framework.

e Section 3 presents a novel analysis of the error incurred in our discretization framework
for linear-Gaussian Bayesian inverse problems. Theorems 3.3 and 3.4 quantify the
errors in the discretized posterior mean and covariance operators to their continuum
counterparts, up to universal constants. We then verify the assumptions of this general
theory for the finite element and graph-based discretizations of the heat inversion
problem and thus derive error bounds for these popular discretization schemes.

e Section 4 formulates the ensemble Kalman update within our general discretization
framework. The results in this section give nonasymptotic bounds on the ensemble
estimation of the posterior mean and covariance in terms of a notion of effective dimen-
sion based on spectral decay of the prior covariance operator. We then show that the
effective dimension of the discretized prior covariance can be controlled by the effective
dimension of the continuum covariance, which is necessarily finite. Consequently, the
ensemble approximation will not deteriorate under mesh refinement.

e Section 5 considers posterior measures resulting from nonlinear Bayesian inverse prob-
lems and their MAP estimators. We show that with a suitable discretization of the
forward model, the MAP estimators of the computationally tractable discretized pos-
terior measures converge to the MAP estimators of the continuum posterior. Finally,
we apply the theory to the inverse problem of recovering the initial condition of the
Navier—Stokes equations from pointwise observations.

e Section 6 closes the paper with conclusions and directions for future work.

1.2. Notation. Si denotes the set of d x d symmetric positive-semidefinite matrices, and
Si o+ denotes the set of d x d symmetric positive-definite matrices. Similarly, Sf denotes the
set of symmetric positive-semidefinite trace-class operators from a Hilbert space H to itself,
and Sf - denotes the set of symmetric positive-definite trace-class operators from H to itself.
Given two normed spaces (X, - ||x) and (Y| - |y), and a linear mapping A : X — Y, we
denote the operator norm of A as [[Aflop 1= supz =1 [|Az[ly. B(X,Y) denotes the space of
all bounded linear operators from X to Y. Given two positive sequences {a,} and {b,}, the
relation a, < b, denotes that a,, < cb, for some constant ¢ > 0. 15 denotes the indicator of
the set B. Given a matrix A € SﬁlrJr, we denote the weighted inner product as (i, 0) 4 := 4! A7,
and the corresponding weighted norm is denoted as |||/ 4 := V@l Ad. Finally, || - ||2 denotes
the usual Euclidean norm on R?.

2. Problem setting and computational framework. This section contains necessary back-
ground. Subsection 2.1 overviews the formulation of Bayesian inverse problems in Hilbert
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space. Subsection 2.2 describes the computational framework analyzed in this paper. Finally,
subsection 2.3 shows how finite element and graph-based methods for inverse problems in
function space can be viewed as particular instances of the general framework.

2.1. Inverse problem in Hilbert space. Let H be an infinite-dimensional separable Hilbert
space with inner product (-, -)3. Consider the inverse problem of recovering an unknown u € H
from data y € R% related by

(2.1) y=Fu+n, n~N(0,T),

where F : H — R% is a linear and bounded forward model, and 7 represents Gaussian
observation noise with known covariance matrix I' € Sier' Nonlinear forward models will be
considered in section 5. The observation model (2.1) implies a Gaussian likelihood function

1
(2.2) Tike (y|u) o< exp <—2HZ/ - ]—"uH%1> :

We adopt a Bayesian approach [33, 50, 57] and let pg = N (mg,Cp) be a Gaussian prior measure
on H, where Cy: H — H is a trace-class covariance operator defined by the requirement that

(2.3) (v,Cow)g = E4~Ho {(v,(u—mo)%{((u—mo),w)pﬂ] Yo, we H,

and mo € H is assumed to belong to the Cameron-Martin space E = Im(Cé/ %) C H. The
Bayesian solution to the inverse problem is the conditional law of u given y, which is called the
posterior probability measure jipost. Application of Bayes’ rule in infinite dimensions [55] char-
acterizes the posterior as a change of measure with respect to the prior, with Radon—Nikodym
derivative given by the likelihood,

d/«‘post 1

dro (u) = Eﬂlike(mu)a

(2.4)

where Z = [ e (y|u) dpo is a normalizing constant. Since the prior is Gaussian, and the
forward model is linear and bounded, the posterior is also Gaussian, fipost = N (Mpost, Cpost ),
where

(2.5) Mypost = Mo + CoF* (FCoF* +T) Yy — Fmy),
(2.6) Cpost = Co — CoF* (FCoF* +T) 1 FCo.

Here, F* denotes the adjoint of F, which is the unique map from R% to # that satisfies
(Fu,y) = (u, F*y)n VueH,yeRY.

In subsection 2.2, we will review the computational framework in [10] to approximate the
posterior. The idea is to replace the inverse problem (2.1) on the infinite-dimensional Hilbert
space H with an inverse problem on a finite-dimensional weighted inner product space. Under
general conditions on the discretization of the forward model and prior measure, the posterior
mean and covariance of the finite- and infinite-dimensional inverse problems are close together;
this claim will be formalized and rigorously established in section 3.
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2.2. Computational framework. This subsection gives an overview of the computational
framework presented in [10]. Let {¢1, 2, ..., ¢, } be a basis for an n-dimensional space V C H.
For u =", ui¢; €V, we denote by @ = (u1,...,u,)T the vector of coefficients of u in this
basis. We will endow the space of coefficients with a weighted inner product that is naturally
inherited from the inner product in H. Specifically, for any u,v € ¥V, we have

(u, )y =@ MG = (@, ),

where the matrix M = (M;;)',_; is given by

This observation motivates us to introduce the inner product space R’, defined by vector
space R™ and inner product (-,-)as. We remark that for both the finite elements and graph-
based discretizations introduced in subsections 2.3.1 and 2.3.2, the corresponding basis {¢; }
will not be orthonormal; consequently, M # I and R%, will not agree with the standard
Euclidean inner product space. We now aim to replace the inverse problem (2.1) with an
inverse problem on the weighted space R,

To begin, we define a discretization map P : H — R, that assigns to u € H the vector
u* € R}, satisfying

1 -
(2.7) Pu=ia*=(u},...,us)" =arg min iHu— Elulgbl
1=

Upy..oyUn

»

In practice, this discretization can be computed by solving the linear system Mu* = 5, where
b; = (u, ¢;)3. Conversely, our theoretical analysis will rely on an extension map P* : R}, —
V C H that assigns to a vector 4 € R}, the element P*u €V defined by

=1

One can verify that (Pu,v)y = (u, P*¥)y, so that P* is the adjoint of P, as our notation
suggests. Similarly, one can verify that the map P*P :H — V C H is the orthogonal projection
onto V, so that PP*: R}, — R, is the identity map.

We are ready to introduce the inverse problem on the weighted inner product space R7,.
In analogy with (2.1), we seek to recover @ € R}, from data y related by

(2.9) y=Fi+n, n~N(0T),

where F': R}, — R% is a discretized forward model, identified with a matrix F € R%*",
(Here and henceforth we will abuse notation and identify linear maps and matrices without
further notice.) The map F' should approximate F in the sense that | F — F'P||,p is small;
we refer the reader to subsections 3.2.2 and 3.3.2 for examples arising from discretization of
PDE-constrained forward models in function space. In analogy with (2.2), the likelihood of
observed data y given a coefficient vector # € R}, is given by

. 1 .
Tike (Y| 1) o< exp <—2I|y - FUH%—l) :
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Following the analogy with subsection 2.1, we choose a Gaussian prior pf =N (g, Cp) on the
space R%,, with Lebesgue density

(2.10) 7o (1) o< exp (—;w—mo,q;l(ﬁ—mo)m).

For the prior mean, we take mg = Pmyg; for the prior covariance, we may take an invertible
operator Cp : R}, — R}, that well approximates Cp, in the sense that ||Co — P*CyP||,p is small;
we refer the reader to subsections 3.2.1 and 3.3.1 for examples arising from discretization
of Matérn-type Gaussian processes. Similar to (2.3), the prior covariance Cy satisfies, by
definition, that

[(17, (@ — 1)) ar{ (i — m),w>M] Ve, @ € RY,.

While we view p as a Gaussian measure on R’},, it is helpful to note that, as a multivariate
Gaussian distribution on R™ equipped with the standard inner product, we have that uj =
N (i, CF), with covariance CF = CoM 1.

Applying Bayes’ rule as in (2.4), we can express the posterior as a change of measure with
respect to the prior:

:ugost _ i ) —
,U/g —Zhﬁllke(y|u)-

(2.11)
Since the space R, is finite-dimensional, we recover the standard Bayes’ formula for the
posterior distribution with Lebesgue density given by

. 1 . | P
212 afealily) coxp (3l Pl ~ (- 0, Cy (@~ o)) ).

As in the infinite-dimensional setting, the posterior pup,. = N (Mpost, Cpost) is Gaussian with
an analogous expressions for its mean mpes; and covariance Cpost. A note of caution is that
in the weighted space R}, a careful distinction must be made between the adjoint and the
matrix transpose. We present a detailed discussion of this distinction in Appendix A. In
particular, if the forward model is given by matrix F € R%*" then the adjoint map is given
by Fi=M-1FT e R"*% Thus,

(2.13) Tipost = 1Mo + CoFH(FCoF* + 1)~y — Fifg),
(2.14) Chost = Co — CoFY(FCoF* +T) "1 F .

One can also view the posterior as a Gaussian measure in the standard Euclidean space,
. . . . . E _ _1

in which case the covariance operator is given by Cpg = CpostM ™. For completeness, we
include the expressions for the posterior mean and covariance in Euclidean space written in

terms of the Euclidean prior covariance as

(2.15) Tipost = Mo + CEFL(FCFFT 4-T) 7 (y — Fiyp),
(2.16) Cl=C§ —CPFT(FC{FT +T)'FCJ.
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Table 1
Roadmap of the discretizations analyzed in this paper as particular examples of the general computational
framework introduced in subsection 2.2.

Domain Basis Discretization Error bounds
D Lagrange finite elements subsection 2.3.1 subsection 3.2
M Random geometric graphs subsection 2.3.2 subsection 3.3

Notice that both pairs of equations (2.13)—(2.14) and (2.15)—(2.16) are analogous to their
infinite-dimensional counterparts in (2.5)-(2.6). However, our theory and examples in the
next subsection will demonstrate the advantage of working on the weighted inner product
space. Specifically, we will show that finite element and graph discretizations of important
classes of prior covariance and the forward model give discretized quantities F? and Cp that
well approximate in operator norm their infinite-dimensional counterparts F* and Cpy; the
same would not be true for the Euclidean analogues F7 and CF.

2.3. Inverse problems in function space. As particular instances of the computational
framework reviewed in the previous subsection, here we consider discretizations of inverse
problems in function space using finite elements and graphs. To illustrate the ideas, we focus
on inverse problems with Matérn-type priors and deconvolution forward models, introduced
in Examples 2.1 and 2.2 below. We let H = L?(Q2) be the Hilbert space of square integrable
functions on Q with the usual inner product (-,-) r2()- Yor finite element discretizations, we
take Q =D to be a sufficiently regular domain D C R¢, while for graph discretizations we take
) = M to be a d-dimensional smooth, connected, compact Riemannian manifold embedded
in RP. These choices of domain Q reflect popular settings for finite element and graph-based
discretizations in Bayesian inverse problems.

We next introduce our examples of prior and forward models, followed by a discussion of
their finite element and graph discretizations, both of which will be analyzed in a unified way
in section 3.

Ezample 2.1 (Matérn-type prior). We will consider Gaussian priors pg = N (mg,Cy) with
Matérn covariance operator Cyp and mean mg in the Cameron-Martin space I m(Cé/ 2). Specif-
ically, for positive integer o, we define Co = A%, where A~!: L?(Q) — H?(Q) is the solution
operator for the following elliptic PDE in weak form:

(2.17) /Q@Vu-Vp—i-/Qbup:/pr Vpe HY(Q).

That is, for f € L?(Q), A~ f = u, where u solves (2.17). Here and below, integrals are with
respect to the Lebesgue measure if 2 =D and with respect to the Riemannian volume form
if Q= M. In the case 2 =D, we assume for concreteness Dirichlet boundary conditions and
take H(Q) = H} (D). In the case Q = M, we take H!(Q2) = H'(M). We emphasize that we
view A~! as a map from the right-hand side of the elliptic PDE to the solution. To ensure
that a solution to the PDE exists, is unique, and is sufficiently regular, the coefficients © and
b must be positive and sufficiently smooth; precise assumptions will be given in our theorem
statements. Choosing these coeflicients to be spatially varying allows one to encode additional
prior information about the unknown, such as anisotropic correlations. The parameter « in
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the covariance Cy = A~ controls the regularity of prior draws. For simplicity, we restrict our
attention to positive integer-valued «, but extensions to fractional values are possible [2, 7].
If the domain € is sufficiently regular, « is chosen to be large enough, and ©,b are positive
and sufficiently smooth, then the covariance operator Cy is trace-class on L?(£2) [55].

Ezample 2.2 (deconvolution forward model). Consider the heat equation

{vt(x,t) =Av(z,t), z€Q,t>0,

(2.18) v(z,0) =u(z), x €.

In the case Q = D, we supplement (2.18) with Dirichlet boundary conditions v(x,t) =0, x €
OD. We let G : L*(Q) — L?(2) map an input function u € L?(£2) to the solution to (2.18) at
time t = 1. It is well known that the heat equation admits a variational characterization, which
will lend itself more naturally to the numerical approximations introduced in subsections 2.3.1
and 2.3.2. We consider a linear observation model given by local averages of the solution over
a Euclidean ball of radius § > 0, which approximate pointwise observations:

5 5 5
(2.19) Ov= |v°(x1),...,v (xdy)} , v (931):/ v(z,1).
Bg(ﬂl‘l)mQ
We then write our forward model as
(2.20) F:=004G.

The utility of considering the local average observation map is that it is a bounded linear map
from L?(2) to R%, whereas pointwise observations are only bounded from subspaces of L?(£2)
with enough regularity to guarantee almost everywhere continuity. While the forward map
given by the heat equation is sufficiently smoothing to guarantee the solution is continuous,
the graph-based approximations to the forward map that we will consider may only converge
in L2(Q). In those cases, it will be more convenient to consider the local average observations,
as in [25].

2.3.1. Finite element discretizations. The use of finite elements within the computa-
tional framework reviewed in subsection 2.2 was proposed and numerically investigated in [10].
Here, the domain € is an open, bounded, and sufficiently regular subset D C R%. We let V be a
finite element discretization space with basis functions denoted by {¢; }?:1. For concreteness,
we restrict our attention to linear Lagrange polynomial basis vectors. These basis functions
correspond to nodal points {z;}7_; € R9 such that ¢;(x;) = &;; fori,j € {1,...,n}. The domain
D is partitioned by a mesh into elements ej,eg,... with h; := diameter(e;) and h := max h,.
Two canonical families of Lagrange elements include d-simplexes and d-hypercubes. A d-
simplex is the region e C R? determined by d + 1 distinct points (for d =1 this is an interval,
and for d = 2 is a triangle). A d-hypercube is a product of d intervals on the real line,
e = la1,b1] x -+ x [ag,bg] € R%. As the mesh is refined (that is, as we take h — 0), the
dimension of V grows. To emphasize that we are considering a family of subspaces indexed
by the mesh width parameter h, we adopt the notation V = V), as is typical in the finite
element literature. The theory we will present in subsection 3.2 holds for uniform (and, more
generally, quasi-uniform) mesh refinements.

Ezample 2.3 (finite element approximation of Matérn covariance). For an operator B :
L?(D) — L?(D), one can consider the action of this operator restricted to the subspace Vy,
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given by By = P*PBP*P : V;, — Vy, which is a finite-dimensional linear map. The matrix
representation B of this operator must satisfy

/ 6:B6; dz = (&, BE,)ar.
D

where €; is the coordinate vector that corresponds to ¢;. This implies that B : R}, — R}, can
be written explicitly as

(2.21) B=M"'K,

where

(2.22) Kij_/ (ﬁquﬁjdx, i,jE{l,...,n}.
D

In particular, when representing the differential operator A defined in (2.17), we get that K
is given by the stiffness matrix with entries

(223)  Kiy= /D O(2)V64(x) - Voy(2) + b(@)os(a)é; (x) da, 1,5 € {1,...,n}.

One can verify that both A= M~'K and A~! = K~'M are self-adjoint in the weighted inner
product space. Recall that the coefficients of the Galerkin approximation to the elliptic PDE
(2.17) are given by solving the linear system

Ki=b,

where b; = [, foidx for 1 < i < n, see [44]. Since we have that b= Mf (where f= Pf),
we see that A~} f =K 'M f is precisely the Galerkin approximation to A~ f. We will show
in subsection 3.2.1 that the matrix Cp : RY, — R%, given by Cp = A= = (K1 M)* well
approximates the continuum Matérn covariance operator Cy.

Ezample 2.4 (finite element approximation of heat forward model). The variational for-
mulation of the heat equation (2.18) naturally leads to a semidiscrete Galerkin approximation

(2.24) vn(w, 1) =Y A (t)¢i(x),
=1

which is required to satisfy that, for all ¢ € Vy,
avh
b ot "’
(2.26) / on (@, 0)6(x) dar = / ()6 (x) da, =0,
D D

(2.25) (x)dz + /D Vo -Vo(x)de =0, te(0,1],

This leads to a system of differential equations for the time-dependent coefficients A%(t),

" o . , .
(2.27) ;;Aﬂ%%ANﬂ+JQﬂV@):O, i=1,...,n,
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n
(2.28) > MA(0)=g;, i=1,...,n,
=1

where Mz’j = <¢ia¢j>L2(D)> Kij = <¢i7_A¢j>L2('D)a and g = <u,gbi>L2(D). Note that A(t) =
(AL(),... ,A”(t))T € R},. Given the eigenpairs of K and M, this system of differential equa-
tions can be solved analytically. However, computing the eigenpairs may be prohibitively
expensive in practice, so the solution is often approximated by a time-discretization of the
semidiscrete problem. One such classical time discretization of (2.25) is the Crank-Nicolson
method: find v,’i € Vp, for k=0,...,1/At such that, for every ¢ € Vp,

(2.29)

/Dv’g(:c) _A:’]i_l(x)¢(w)dx+/73v (vﬁ(x) +2v2—1(m)> V() dr =0, k=1,... 1/At,
(2.30)

/D o (2) () dz = /D w(@)d(x) dx.

This leads to a system of linear equations analogous to (2.27) for the coefficients Ai ~ AT (kAt)
for k=0,...,1/At—1:

M+ KAt - M- KAt »
%Akﬁ-l:#‘Aka kzl,,l/At—l,

MAy =3, k=0.

The second equation is simply the requirement that Ay be given by the orthogonal projection
onto V, as Ag = Pu. We write the mapping from the coefficients of the initial condition to
the coefficients of the solution at t =1 as G : R}, — R}, where

(2.31) G ((M +2KAt>_1 (M_QKAt>>A1t.

We denote by O : R}, — R% the map from coefficients to observations. Our discretized
forward model F': R}, — R% is then given by

(2.32) F:=0G.

We remark that the observation map O applied to the numerical solution to the heat equation
is an integral of a piecewise linear function. Such an integral can be computed exactly via
quadrature methods, which are typically tractable in low dimensions (e.g., d =1,2,3). Since
finite element methods are seldom implemented in higher dimensions in practice, we make the
simplifying assumption that the observation map can be evaluated exactly for functions in Vj,.

2.3.2. Graph-based discretizations. We will now see how the graph-based discretizations
considered in [25] fit into the above framework. Here we let 2 = M be a d-dimensional smooth,
connected, compact, Riemannian manifold embedded in RP. We assume further that M has
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bounded sectional curvature and Riemannian metric inherited from RP. Without loss of
generality, we let M be normalized such that vol(M) = 1. We assume we have access to a
point cloud M,, = {x1,...,2,} C M of n samples from the uniform distribution v on M.
We let v, = %2?21 0z, denote the empirical measure of M,,. We will show that this setting
naturally fits into our computational framework with basis vectors of the form ¢;(z) =1y, (x),

where the sets {U;}_; C M form a partition of M. We recall the following result from [24].

Proposition 2.5 (existence of transport maps). There is a constant ¢ such that, with prob-
ability one, there exists a sequence of transport maps T, : M — M, such that v, = Ty
and

1/d d T
(2.33) lim sup n 7 supsep (2, T ()
n—00 (logn)ca
where cg=3/4 if d=2 and cq=1/d otherwise.
In the above, v, = Ty indicates that (T, }(U)) = ~,(U) for all measurable U, and da
denotes the geodesic distance. We denote the preimage of each singleton as U; = T,, *({z;}).

The sets U; form a partition of M, and by the measure preserving property of T}, all have
mass Y(U;) =1/n. It follows from Proposition 2.5 that we have U; C Bag(z4,ep), where

<eg,

logn)®
en = sup dpm(z, Tp(2)) S %
zeM n
These sets will be used to define our basis functions ¢;(x) = 1y, (z), which correspond to locally
constant interpolations of functions in L?(M). We can then interpret vectors of function values
on the point cloud M,, as coefficient vectors in R7,, where the corresponding mass matrix is
M=1ir,.
n

Ezample 2.6 (graph approximation of Matérn covariance). In the manifold setting, we
opt to approximate the elliptic differential operator via the graph Laplacian. We define a
symmetric weight matrix W € R™*" that has entries W;; > 0 corresponding to closeness
between points in M,, by
2(d+2)

(2.34) Wi = o hiF? Ljfavs—a; [l <hn} -

Here v; denotes the volume of the d-dimensional unit ball, and h, denotes the graph con-
nectivity. Defining the degree matrix D = diag(dy,...,d,), where d; = Z?:l Wij, we give
the unnormalized graph Laplacian by A%" = D — W. This operator can be shown to con-
verge pointwise and spectrally to —A (the Laplace-Beltrami operator) in the manifold setting
[5, 11]. This construction can also be generalized to elliptic operators with spatially varying
coefficients. To do so, we define a nonstationary weight matrix W with entries

- 2(d +2)
(2.35) Wij =Wij\/©(2:)O(z;) = g2 Lz la<hn} O(x:)O(x;) .-

We then define A9 = D — W where D;; = Py Wij. Denoting B,, = diag(b(x1),...,b(zn)),
we approximate the differential operator A as the matrix A:R’, — R’, given by

(2.36) A=A® 1 B,.
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Both A and A~! are symmetric and self-adjoint in the weighted inner product space. The
matrix Cp : R}, — R}, given by Cyp = A™* will be shown to well approximate the continuum
Matérn covariance operator Cy in subsection 3.3.1.

Ezample 2.7 (graph approximation of heat forward model). For our graph-based approx-
imation of the heat forward model, we consider the differential equation

{%t — —AUny,, t>0,

(2.37) Ot

We let Gy, @ R, — Rl map up, € R, to the solution v, (1) of (2.37). Given the eigenpairs
of the graph Laplacian, denoted {()\S),w(f )}?:1, we can explicitly write the solution to this
ordinary differential equation (ODE):

(2.38) Grlun) = fjexp (—A,@) (U, ) a1
=1

The computations presented above for both the prior covariance discretization and the heat
forward model do not require the explicit computation of the sets U; that partition M and
define our basis vectors. In order to exactly compute the observation map defined in (2.19),
we would need to know precisely the sets U;. To circumvent this challenge, we instead consider
a surrogate observation map O, : R}, — R% that only requires knowledge of the point cloud

M,

T 1
5 5 5
(2.39) onvn:[vm,...,vm] C =Y Uk
k:IkGBg(:Ej)mMn

for 1 < j < d,, where [v,(1)]; denotes the kth entry of the vector v,. For the purposes of
our analysis, it will be necessary to make the assumption on the boundary of Bs(xr) N M.
In particular, we assume that length (9(Bs(xy) " M)) = Cs; for 1 < j < d,,, where Cs; is a
constant that depends on M, 4, and the observation point x;.

Our discretized forward model F': R, — R% is then given by

(2.40) F:=0,Gy.

3. Error analysis. This section analyzes the computational framework introduced in sec-
tion 2. We start in subsection 3.1 by establishing error bounds on the infinite-dimensional
posterior mean and covariance based on a general assumption. Next, we verify this assump-
tion in the function space setting of subsection 2.3, studying finite element discretizations
(subsection 3.2) and graph-based methods (subsection 3.3).

3.1. Error analysis: General computational framework. The main results of this subsec-
tion, Theorems 3.3 and 3.4, quantify the errors in the mean and covariance approximations

(31) Em = ||mpost - P*mpostHHa
Ec = ||Cpost - P*CpostPHo;m
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where we recall that P:H — R7}, is the discretization map defined in (2.7) and P*: R}, —
V C H is the extension map defined in (2.8). Our bounds on &, and ¢ will rely on a general
assumption on (i) the closeness of the covariance operator Cp : H — H and its discrete approx-
imation Cp : R}, — R}, encoded in an assumption on the operator norm ||Co — P*CoP||op;
(ii) the closeness of the forward model F : H — R% and its approximation F : R}, — R%,
encoded in an assumption on the operator norm ||F — F'P||,p; and (iii) the closeness of the
finite-dimensional space V and the infinite-dimensional space H, encoded in an assumption
that the orthogonal projection operator P*P :H —V is close to the identity.

Assumption 3.1. The following hold:
(i) (Error in approximation of prior covariance.) There is a constant r; € R and a function

1 : N = R with lim, o 11(n) = 0 such that ||Coy — P*CoP||op < r191(n).

(ii) (Error in approximation of forward model.) There is a constant 7o € R and a function
2 : N —= R with limy, o 12(n) = 0 such that | F — FP||op < ratha(n).

(iii) (Error in orthogonal projection.) There is a Hilbert space H' continuously embedded
in ‘H, a constant r3 € R, and a function ¥3: N — R with lim,_, ¢3(n) = 0 such that,
for every u e H', ||(I — P*P)ully <rspz(n)||lullp-

In subsections 3.2 and 3.3, we will verify Assumption 3.1 for the important examples of
finite element and graph discretization spaces, Matérn-type prior covariance operators, and
deconvolution forward models. In these examples, we will take the space H' in Assump-
tion 3.1(iii) to be an appropriate Sobolev space contained in the Cameron—Martin space
Im(C/?).

To establish upper bounds on the mean and covariance approximation errors (3.1) and
(3.2), we will first prove a lemma similar to the lemmas in [26] and [36]. Following the approach
in these papers, we introduce the Kalman gain operator

(3.3) H Sy x B(H,R%) = B(R% H),  #(C,F)=CF(FCF*+TI)"L

Unlike [26, 36], we view the Kalman gain operator as a function of not just the covariance but
of both the forward map and the covariance. The following lemma shows that the Kalman
gain operator is pointwise continuous.

Lemma 3.2 (continuity of Kalman gain update). Let % be the Kalman gain operator defined
in (3.3). Let C1,Co € Sy, let Fy, Fo € B(H,R%), and let T € Siy_,_. The following holds:

(3.4) | (C1, F1) — K (Ca, F2)l|op < c1]|C1 — Callop + 2| F1 — F2llop,
where

5 O T~ llop 1 F2llop + 1T H I, lICallop 11 llop | 72115

op’
c2 =0 loplICullop + P15, ICLIG 17115, + T~ flop I Co 5, I Fillopl| F2lop-

Proof. Applying Lemma A.8 from [26] (which was stated for matrices but also holds in
our infinite-dimensional setting), we get that

|1 (F1,C1) = A (F2,Co) lop < T loplICLFF = CoF5 lop
+ I CF lop | FLCLFT = FaCoF llop-
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We can then bound each of these terms with the triangle inequality as follows:

[C1FT — CoF5 |lop = [|C1FT — C1F5 + C1F5 — CaF5lop
< ||Cl||0p||]:1 _]:2”010 + H-7:2”0p||cl _C2||op

and
| F1C1FT — FoCoF5 |lop = | F1C1 F — FoCi Fi + FoCi Fi — F2CaF5 ||op
< ||Cl]:ik||0p||]:l _f2’|0p + ||]:2||0p||cl]:f _C2]:2*||0p-
Combining these three displayed inequalities gives the desired result. |

Theorem 3.3 (mean approximation error). Consider the error e,, in (3.1) between the true
posterior mean in (2.5) and its finite-dimensional posterior approximation in (2.13). Then,
under Assumption 3.1 it holds that

(3.6) em < rib1(n) + rhba(n) + rivs(n),
where
ry =2cir1lly — Fmoll2,
rh = 2cora|ly — Fmoll2 + r2llmoll# || (Co, F)llop,
ry = r3llmo|l,
and cy, ¢y are defined as in (3.5).
Proof. By the definition of &, in (3.1) and an application of the triangle inequality,
em < [|mo — Pl + (| (Co, F) — A (P*CoP, F'P)||op|ly — Friiol|2
+ 112 (Co, F)lop | Fmo — Friio|2.

We next bound each of the terms on the right-hand side. By Assumption 3.1(iii) and the fact
that mg = Pmg, we have that

(3.7)

(3.8) [mo — P*mig |y = [Imo — P* Pmoll3 < r3llmol

ws(n).
By Lemma 3.2 and Assumption 3.1(i) and (ii), we have that
| (Co, F) — A (P*Co P, FP)|lop < e1[|Co = P*CoPllop + c2|| F = FPllop
< ari(n) + coratha(n).
By Assumption 3.1(ii) and (iii) we have that
ly = Frivo|| < [ly = Fmoll + | Fllopllmo — Pmollw + |7 = FPllopllmoll»
<y = Fmoll + ([ Fllopllmollzravs(n) + [Imollnraia(n).
This implies that for n sufficiently large, it holds that

(3.9)

(3.10) ly — Fmioll2 < 2[ly — Fmoll2-

Finally, by Assumption 3.1(ii) we have that

(3.11) [ Fmo — Frigll2 < [|F = FPlopllmoll# < rallmollsiba(n).

Plugging the bounds (3.8), (3.9), (3.10), and (3.11) into inequality (3.7) gives the desired
result. |
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Theorem 3.4 (covariance approximation error). Consider the error ec in (3.2) between the
true posterior covariance operator in (2.6) and its finite-dimensional posterior approximation
in (2.14). Then, under Assumption 3.1 it holds that

(3.12) ec <rii(n) + raa(n),
where

r1 =71+ 2171 Fllopl|Collop + 2r1 [ Fllopll# (Co, F) llops
ry = 2ca12[| FCollop + 2/|Collopll-# (Co, F)llop:
and c1, c2 are defined as in (3.5).

Proof. By the definition of e¢ in (3.2) and an application of the triangle inequality,

(3.13) ec <||Co = P*CoPllop + || (Co, F) — H (P*Co P, F'P)||op || FCo.P|lop
+ Hf%/(COa]:)HOPHJ:CO _FCOPHOP-
By Assumption 3.1(i) we have that
(3.14) 1Co = PCoP|lop < T19p1(n).
As in the previous proof, applying Lemma 3.2 and using Assumption 3.1(i) and (ii) gives
(3.15) [ (Co, F) = A (P*CoP, FP)|op < c1r19p1(n) + corappa(n).
The triangle inequality along with Assumption 3.1(i) and (ii) yield the bound
[FCo — FCoPllop < | FP|lopllCo — P*CoPllop + || F = FPllop|Collop
< 1|[FPoptpr(n) + 72([Collopta(n).

Assumption 3.1(i) and (ii) guarantee that, for sufficiently large n,

(3.16)

(3.17) [1EPllop <2[[Fllop and  [|[FCoPllop < 2[[Flopl|Collop-

Plugging in the bounds (3.14), (3.15), (3.16), and (3.17) into (3.13) gives the desired
result. |

3.2. Error analysis: Finite element discretizations. The following result applies Theo-
rems 3.3 and 3.4 to quantify the errors in the finite element approximations to the posterior
mean and covariance operators in the setting considered in subsection 2.3.1.

Theorem 3.5 (finite element posterior mean and covariance approximation). Consider the
discretization proposed in subsection 2.3.1 with a finite element space Vi of linear Lagrange
basis vectors and time discretization step of At. Assume the prior mean function is chosen to
be in the Sobolev space H*(D). Let O(z) € CY(D), let b(x) € L>®(D), and assume that both
functions are (almost surely) bounded below by positive constants. The errors in the mean and
covariance approrimations are bounded by

[Mpost () — P Mipost|| L2 (D) S pmin{2:s} L A2,
Hcpost - P*COPHop S, h2 + AtQ.
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This result follows from Theorems 3.3 and 3.4 upon verifying that Assumption 3.1 holds
for the finite element discretizations of our model Bayesian inverse problem. Verifying these
assumptions will be the focus of the following three subsections. In so doing, we will view
the ¢; in Assumption 3.1 as functions of the mesh width h, noting that this quantity de-
termines the dimension n of the discretization space. For simplicity, we have restricted our
discussion to linear Lagrange basis vectors. As our general theory suggests, higher degree
polynomials could be used in the finite element approximations to yield faster convergence
rates.

3.2.1. Finite element approximation of Matérn-type prior covariance. Here we show
that the finite element approximation to the covariance operator given in subsection 2.3.1
satisfies Assumption 3.1(3i).

Theorem 3.6 (operator-norm error for finite element prior covariance approximation). Let Cp:
L*(D) — L%(D) be the prior covariance operator defined in section 2, and let A=® : R, — R%,
be the finite-dimensional approximation defined in subsection 2.3.1 corresponding to a finite
element space Vj, with piecewise linear basis functions. Let ©(x) € CY(D), let b(x) € L>(D),
and assume that both functions are (almost surely) bounded below by positive constants. Then,
there exists a constant ¢ independent of h such that

(3.18) |Co — P*A™YP||yp < ch?.

The proof can be found in Appendix B. This shows that the finite-dimensional prior
approximation proposed in subsection 2.3.1 satisfies Assumption 3.1(i) with 1y (h) = h2.

3.2.2. Finite element approximation of heat forward model. We now show that the
discretized finite element forward map given in (2.32) satisfies Assumption 3.1(ii).

Theorem 3.7 (operator-norm error for finite element forward map approximation). Let F :
L*(D) — R be the forward model defined in (2.20), and let F : RY, — R% be the finite-
dimensional approzimation defined in (2.32) corresponding to a finite element space Vy con-
sisting of linear Lagrange basis vectors and a time-discretization step of At. Then, there exist
constants ¢1 and cy independent of h and At such that

(3.19) | F — FPlop < c1h® + c2 At2.

The proof is given in Appendix B. We see that Assumption 3.1(ii) holds for the Crank—
Nicolson discretization with 15 (h) = h? + At2.

3.2.3. Finite element orthogonal projection. We first verify that the orthogonal projec-
tion of the prior mean function onto the finite element subspace V;, converges as in Assump-
tion 3.1(iii) as the mesh is refined. We let mg(x) € H*(D). Since we require that the mean
function lies in the Cameron-Martin space E = Im(Cé/ 2), we must have that s > a. We
assume that V), consists of piecewise linear basis functions. Since s > « > d/2, the Sobolev
embedding theorem guarantees that functions in H*(D) are continuous. Consequently, the
prior mean function can be well approximated by piecewise linear interpolants and, in turn,
by its orthogonal projection onto V. Assuming that the finite element space Vj, is given by a
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quasi-uniform mesh refinement of D with linear Lagrange basis functions, [44, Theorem 6.8]
guarantees that, for any mo € H*(D), there exists an element U € V,, such that

Imo — Ul|2(py < ch™™ 2 mg|| g1 (-

Since the orthogonal projection is defined to minimize the L?(D) error over all functions in
Vi, we have that, for any mg € H*(D),

(3.20) lmo — P* Prmoll 2(p) < mo — Ul 2oy < ch™ ™2 |[mo| - ()

We see that Assumption 3.1(iii) holds for the finite element discretization with s(h) =
pmin{2s} and H' = H*(D).

We have now verified that Assumption 3.1 holds for the finite element discretization,
proving Theorem 3.5.

3.3. Error analysis: Graph-based approximations. The following result applies Theo-
rems 3.3 and 3.4 to quantify the error in the graph-based approximations to the posterior
mean and covariance operator in the setting considered in subsection 2.3.2.

Theorem 3.8 (graph-based posterior mean and covariance approximation). Consider the dis-
cretization proposed in subsection 2.3.2. Assume we are in a realization in which the con-
clusion of Proposition 2.5 holds and we have that o > (5d + 1)/4. Let b(z) be Lipschitz, let

O(z) € CY(M), and suppose that both are bounded below by positive constants. Then, if we

. 1 cd . . . .
take the scaling hy < 1/ (05173 , the errors in the posterior mean and covariance approrima-

tions are bounded by

— fa _ 1
[Mpost (2) — P*Mipost|| 12 (a1 S (logn) & n i,

ICpost = P*CpostPllop S (logn) ¥ n ™3,

where cg=3/4 if d=2 and cq=1/d otherwise.

This result follows from Theorems 3.3 and 3.4 upon verifying that the graph-based dis-
cretization satisfies Assumption 3.1 for our model problem. Verifying these assumptions will
be the focus of the following subsections. In all that follows, we assume we are in a realization
where the conclusion of Proposition 2.5 holds.

3.3.1. Graph-based approximation of Matérn-type prior covariance. The following theo-
rem shows that the covariance operator constructed in section 2.3.2 satisfies Assumption 3.1(ii).
The proof can be found in Appendix C.

Theorem 3.9 (operator-norm error for graph-based prior covariance approximation). Let b(x)
be Lipschitz, ©(x) € CY(M), and suppose that both are bounded below by positive constants.

Let a> (5d+1)/4, and take hy, <1/ (105172% . Then,

”CO - P*(AS + Bn)_ap”oz) = (logn)%n_i,

where cq=3/4 if d=2 and cq=1/d otherwise.
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Remark 3.10. The proof of Theorem 3.9 in Appendix C follows that of Theorem D.1 in [51].
However, since we are working with the covariance operator (as opposed to the square root of
the covariance operator as is the case when sampling the Matérn fields), we get convergence
rates for a > (5d + 1)/4 as opposed to a > (5d 4+ 1)/2. The rates of convergence are still the
same, since the error is still dominated by the error in approximating the eigenfunctions.

We have shown that the graph-based finite-dimensional approximation to the prior co-
c 1
variance proposed in subsection 2.3.2 satisfies Assumption 3.1(i) with ¢y (n) = (logn)+ n” 34,
where cg=3/4 if d=2 and ¢4 =1/d otherwise.

3.3.2. Graph-based approximation of heat forward model. We show that the graph-
based approximation of the heat forward model, together with the surrogate observation
operator, satisfies Assumption 3.1(iii). The proof can be found in Appendix C.

Theorem 3.11 (operator-norm error for graph-based forward map approximation). Let F =

O, G, be the forward model defined in subsection 2.3.2. Take hy, =< (105172,%. Then,

(3.21) |F = P*FPlgp < (logn) n .

We have shown that the graph-based finite-dimensional approximation to the forward
model proposed in subsection 2.3.2 satisfies Assumption 3.1(ii) with vo(n) = (logn)7 n™ 1,
where ¢q=3/4 if d=2 and ¢4 =1/d otherwise.

3.3.3. Graph-based orthogonal projection. Finally, we verify that the orthogonal pro-
jection of the prior mean function onto the subspace V = span{ly,(z)}} ; converges as
in Assumption 3.1(iii). Since the mean function must lie in the Cameron—Martin space
E = Im(Cé/ 2), we necessarily have that mo(z) € H'(M). The following result from [24,

Lemma 12] quantifies the convergence rate of the projected mean function.

Lemma 3.12 (Lemma 12 in [24]). There exists a constant cyq independent of n such that,
for every mg € HY (M), we have

. (logn)“
(3.22) [mo — P*Pmo|| r2(am) < emenllmoll gy S WHmOHHl(M)-

We see that Assumption 3.1(iii) holds for the graph-based discretization with s(n) =
(kfl%cd and H' = H'(M). For large n, this term will be dominated by 1 (n) and t(n).

We have now verified that Assumption 3.1 holds for the graph-based discretization, prov-
ing Theorem 3.8.

4. Sample size requirements for ensemble Kalman updates. In this section, we formu-
late the ensemble Kalman update in weighted inner product space and show that the effective
dimension of the discretized problem is controlled by the effective dimension of the continuum
problem, which is finite.

4.1. Ensemble approximation to finite-dimensional posterior. To implement an ensem-
ble Kalman approximation to the finite-dimensional Gaussian posterior given by (2.12), we
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need to draw samples from the Gaussian prior distribution, N (g, Cy) given by (2.10). To do
so, we draw & @)~ N (0,I) and compute samples

(4.1) u =g+ LEV) | w9 ~ N (g, C),

for 1 <j < J, where L is a linear map from R™ — R’ such that Cy = LL* = LLT M. Recall
that given samples u(M, ... u(/) ~N(0,C) from a GausAsian measure in a Hilbert space H, the
sample covariance operator is defined as the operator C: H — H,

J
- % S (W, wypu®, we .

=1

As such, the sample covariance operator on R, is given by
12
O -~ ) _ 7 @ _ T
Co = 71 E_ (u mo) (u mo)" M,

where mg = %Z}le u9) is the sample mean. The perturbed observation ensemble Kalman
update transforms each sample from the prior ensemble via

. . ~ ~ -1 . . N1
(4.2) v =49 4 Oy F <FCOFh + F) <y — Fu9) 4 n(])) . ) LLELN(O,F).

We then output the sample mean and covariance of the transformed ensemble, given by

J J
(4.3) mpost = j Z and post = Z mpost ('U(j) - mpost)TM-
j=1 J:

4.2. Ensemble Kalman approximation: Error analysis. We now want to derive nonasymp-
totic expectation bounds for the error in the ensemble approximation to the infinite-dimensional
posterior. We consider the errors

(4.4) Em = E |mpost — P Fipost |31,
(4.5) ¢ =E||Cpost — P*Crost Pllop-

Controlling these errors will amount to controlling the error between the ensemble approxima-
tions and the finite-dimensional approximations using the theory from [26] and then applying
our results from section 3. Since the dimension of the discretized covariance matrices increases
as the mesh is refined, we will require bounds that do not have an explicit dependence on the
dimension. To do so, we define the effective dimension of a mapping Cy : R, — R}, to be

Tr(Co)
1Collop’
where || - ||op is the operator norm from R}, to R%,. When the eigenvalues of Cj decay rapidly,

the effective dimension rj/(Cp) is a better measure of dimension than the nominal state
dimension n [60]. We will show in subsection 4.3 that for the finite element discretization,

(4.6) ru(Co) :=
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the effective dimension of the discretized operator is controlled by the effective dimension
of the continuum operator, defined to be r(Cy) = %, where || - ||op denotes the operator
norm from H to H. Since the prior covariance operator must be chosen to be bounded and
trace-class, this quantity is necessarily finite. As such, the error bounds that we now derive
for the ensemble approximation will not degenerate as the mesh is refined, despite the state

dimension increasing arbitrarily.

Theorem 4.1 (mean ensemble approximation error). Let &, be the expected error between the
infinite-dimensional posterior mean and the ensemble posterior mean with an ensemble of size
J, as defined in (4.4). Assume that the finite-dimensional approzimations satisfy Assumption
3.1; that for n sufficiently large, r3;(Co) < cr(Co) for some constant ¢ independent of n; and
that J > 1y (Co). Then, it holds that

(4.7) Em < ri1(n) + rhba(n) + rhs(n) +r

:
-

where the constants v are independent of n and J.
Proof. By the triangle inequality, we decompose the expected error as

EHmpost(fU) _P*Apost HL2 <E||mpost( ) P*mpost( )HL2 ‘HEHmpost _mpostHM-

The first term on the right-hand side is deterministic and is bounded by Theorem 3.3:

B [[mpost (x) = P*ipost ()| 22 = [mpost () — P1iipost (7) | 2 S r111(n) + rotb2(n) + r3ibs(n).

For the second term on the right-hand side, we recall [26, Theorem 3.3], which guarantees the
following:

~ / C [ro(T
(4.8) EHmpost_mpostHMSC;z TM((]0>+CZ 7425(7)’

where ¢, = ([|Collop” V [ ColI2,) (IFlop V I F14y) (T lop V IIP~1]2,) (1V ly = Frfio]|), and

& = 1Flopl Tl opIT]fo /2|]C’0Hop The quantity r2(I") is the effective dimension of I' in the
usual Euclidean inner product space. The quantities ¢/, and ¢!/ depend on n; however, under
Assumption 3.1 each of the discretized operators appearing in the constants can be made
arbitrarily close to their continuum counterparts when n is sufficiently large. In particular,
we can take n to be large enough such that the following two bounds hold:

<= (Il(folll/2 v IColl3 ) (1F o v IFl5p) (0™ lop VITHIZ,) (1V Iy = Frol2)
e < ¢ = 2||FlloplIT ™ loplIT 1552 1Co lop-

From these bounds combined with our assumption that r3;(Cy) < ¢r(Cp), we take rj =
Ved\/r(Co) + "+/r(T), and the result follows. [ |
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Theorem 4.2 (covariance ensemble approximation error). Let ¢ be the expected error be-
tween the infinite-dimensional posterior covariance and the ensemble posterior covariance with
an ensemble of size J, as defined in (4.4). Assume that the finite-dimensional approxrimations
satisfy Assumption 3.1; that for n sufficiently large, rpr(Co) < cr(Co) for some constant ¢
independent of n; and that J >ry(Co). Then, it holds that

(4.9) Ee <Pl (n) + rhpa(n) + le

where the constants r, are independent of the discretization dimension n and the ensemble
size J.

Proof. The proof proceeds similarly to that of Theorem 4.1. We decompose the error as
(4.10) E |[Cpost — P*Cpost Pllop < E ||Cpost — P*Cpost Pllop + E||Cpost — Crost |l op-
The first term on the right-hand side is deterministic and is controlled by Theorem 3.4:
E ||Cpost - P*CpostPHOP = ||Cpost - P*CpostPHOP = Tll@bl(”) =+ Téd’Z(n)-

For the second term, we use [26, Theorem 3.5, which guarantees that

(411) Euapost — Chostllop S €, W +! (\/TMSCO) v \/T2§F)> )

where

cn = (1C0llop V 1Colla,) (IE 113, v 1 115p) (1T lop Vv ITHIZ,)
(1Fllop VI E1l,) (C7HEVATTHZ) (ICollop VI llep) (ICollop V 1Co1?) -

1
CTL

Again, the quantities ¢, and ¢!/ depend on n; however, under Assumption 3.1 each of the dis-
cretized operators appearing in the constants can be made arbitrarily close to their continuum
counterparts when n is sufficiently large. In particular, we take n to be large enough such
that the following two bounds hold:

¢ < =2 ([Collop V [ICollay) (IFI1Z, V 11F15p) (T lep VIITTHIZ,)
cn <" =2(I1Flop V IIF5,) (CHIVITTHZ) (ICollop V ITllop) (ICollop V lIColl?) -
With these bounds and our assumption that r3/(Co) < cr(Co), we take r3 = /e \/7(Co) +

d"(/en/7(Co) Vro(T)), and we are done. [ |

The results in [26] also prove high probability bounds for the error in the posterior means
and covariances, which are stronger than the expectation bounds used here. High probability
bounds can be just as easily obtained within our computational framework, but we elect to
present the expectation bounds for simplicity of exposition.
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4.3. Effective dimension of prior covariance. The results in the previous subsection relied
on the assumption that the effective dimension of the discretized covariance operator in the
weighted inner product space is bounded above independently of the discretization level for
sufficiently large n. We will now show that this assumption does indeed hold for the finite
element covariance discretization given in subsection 2.3.1. To get an upper bound for 4.6,
we need an upper bound for Tr(Cj) and a lower bound for ||Cy||as. The following result uses
classical eigenvalue approximation results and our operator-norm convergence result to derive
such a bound.

Theorem 4.3 (effective dimension upper bound). Let the assumptions of Theorem 3.6 hold.
Then, for h sufficiently small, there exists a constant T independent of h such that

Tr(Co)
4.12 Co) < —5——F—.
) )= [T, — 2
Consequently, for any constant ¢ > 1, taking h < /7(1 — %)HCO”op guarantees that
(4.13) ra(Co) < er(Co).

Proof. By Theorem 3.6 we have that
1Co — P*CoP||op < Th®

for some constant 7 independent of h. Applying the reverse triangle inequality to this inequal-
ity gives us that

HP*COPHop > ”COHOP —Th?.

Then, using the fact that the R7, matrix operator norm coincides with the L?(D) operator
norm of any mapping in the weighted inner product space, we get that

(4.14) 1Collop > IiCollop — 1.

To upper bound the trace of Cy we proceed to bound the eigenvalues of Cjy. Recall that
Co= A" We let {)\g)};‘zl denote the eigenvalues of A, and let {\()}, denote the eigen-
values of the continuum differential operator A, both in ascending order. To characterize
these eigenvalues, we can use classical finite element eigenvalue estimates. In particular, we
refer the reader to [54, Theorem 6.1], which proves that the eigenvalues of the finite element
approximation overestimate the eigenvalues of the continuum differential operator. That is,
for each i =1,...,n we have that A() < )\s). It then follows that

n

(4.15) T(C) = 300 < 3 00) < 3 (A0 = Tr(c).
=1 =1

i=1
Combining (4.14) and (4.15) gives (4.12), completing the proof. [ ]

Remark 4.4. In the graph-based approximation setting, one must work slightly harder
to derive such an upper bound on the effective dimension, as the eigenvalues of the graph
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Laplacian are not guaranteed to overestimate the eigenvalues of the Laplace—Beltrami opera-
tor. Further, the eigenvalue estimates in Proposition C.1 only hold for eigenvalues that satisfy
hoVAKR) < 1, which typically only holds up to some k < n. As such, it may be most natural
to consider a truncated prior covariance that retains only the portion of the spectrum that
provably approximates the continuum operator, as is done in [23].

5. Convergence of MAP estimators under mesh refinement. For many inverse problems
of interest, the forward model is not linear. In this section, we will see how our computational
framework and analysis can be leveraged to guarantee the convergence of the discretized max-
imum a posteriori (MAP) estimators to their continuum counterparts in nonlinear Bayesian
inverse problems as the mesh is refined. In particular, our framework very naturally fits into
the theory developed in [3], from which we will show I'-convergence of the relevant Onsager—
Machlup (OM) functions and consequently convergence of the MAP estimators (up to subse-
quences). Under reasonable conditions on the nonlinear forward model (see Assumption 2.7
in [55]), the posterior can still be characterized as a change of measure with respect to the
prior as in (2.4),

dipost _l _1 _ 2
(5.1 () = Zoxp (=l - Fw)lE ).

where Z = [, exp (—=®(u)) duo(u). For a general F, this posterior measure will no longer be
Gaussian. As such, it is difficult to fully characterize the posterior measure. One particularly
useful point summary of the posterior measure is a MAP estimator. In infinite dimensions, the
notion of a MAP estimator was introduced in [19] as the maximizer of a small ball probability.
The theory of MAP estimation in function spaces has been further refined in [3, 34, 35, 37, 38].
For u € H, we let B®(u) C H be the open ball centered at u with radius 6. A MAP estimator
(or strong mode) for fipest is any point uMAY € H satisfying

. Hpost (B(S (UMAP)) )
2 | =1, M;s= ost (B .
(5.2) 61_1}(1) M, ) ) zlelglip t(B°(u))

It is shown in [37] that the MAP estimators of (5.1) with a Gaussian prior po =N (mg,Cp) in
a separable Hilbert space are precisely characterized by the minimizers of the OM functional
Iost : H — R given by

O(u) + Io(u) if u—moeIm(Cy/?),

400 otherwise,

(5.3) Tost (u) = {
where
_ 1 2 R STy 9
@)= Sy~ F)lE and  Io(u) = 2y~ mo)
In more general settings, the minimizers of (5.3) may not coincide with MAP estimators de-
fined as in (5.2), and a weaker notion of MAP estimator is required [29]. The optimization

problem of minimizing (5.3) is in general difficult, if not impossible, to solve analytically. The
computational framework put forth in subsection 2.2 provides a tractable finite-dimensional
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optimization problem that provably approximates the infinite-dimensional problem. The dis-
cretized posterior measure in (2.11) gives the following OM functional:

(5 4) I(n) (u) B {Q)(”)(u) + Ién) (u) fu—me IHl((P*CrOP)l/Q)7
’ post - .
+00 otherwise,

where

1 Lo
0 (u) = glly ~ F(Pu)llfr  and 15" = S| (P*CoP)Y>(u —mo) 3.
Here F : R}, — Rk‘ is a discretized approximation to F, and the operator (P*COP)T/ 2 —
Z?:l(/\,(f ))*a/ ZP*W(LZ )@ P*yY) is the MoorePenrose pseudoinverse of (P*CyP)'/?. We remark
that u — m € Im((P*CoP)"/?) if and only if u,m € V, so we can equivalently write (5.4) as
1% R7, — R, with

n) L q Lo—1/2, .
(5.5) Lok (@) = S ly = F@) R + 1G5 (@ = o) 31,

which can be minimized by methods from the breadth of literature on finite-dimensional
optimization problems. To apply the results in [3], we first review some preliminary definitions
and results regarding I'-convergence.

Definition 5.1. Let I,I, : H — R. We say that I, T-converges to I, or T-lim,_o0 I, = I,
if, for every u € H, the following two conditions hold:
(a) (I'-lim inf Inequality.) For every sequence {un}, converging to u in H,

(5.6) I(u) <liminf I, (up).

n—o0

(b) (I'-lim sup Inequality.) There exists a sequence {u,}5> , converging to u such that

(5.7) I(u) > limsup I, (uy,).
n—oo

Definition 5.2. A sequence of functionals {I,}5°, is equicoercive if, for all t € R, there
exists a compact subset Ky CH such that, for all n, I;1([—o0,t]) C K.

Definition 5.3. Let I,1,:H —R. We say that I, converges continuously to I if, for every
u € H and every neighborhood V' of I(u) in R, there exist N € N and a neighborhood U of u
such that n> N and v’ € U imply that I,,(u') € V.

Continuous convergence is a stronger notion of convergence than pointwise convergence
and I'-convergence, but it is implied by uniform convergence of I,, to I in the case when I is
continuous [42]. The following classical result can be found, for instance, in [8].

Proposition 5.4. Let I, I :H — R with T-limy, 0 I, = I, and let {I,,}°>, be equicoercive.
Then,

(5.8) II%-iLHI: lim inf I,

n—oo H
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and if {u, }5° is a precompact sequence such that lim,_,o In(uy,) = miny I, then every limit
of a convergent subsequence of {u,}° | is a minimizer of I. In particular, if each I, has a
minimizer u,, then any convergent subsequence of these minimizers is a minimizer of 1.

Essentially, this proposition states that I'-convergence is the correct notion of convergence
of functionals to guarantee that their minimizers also converge. We now use our results from
subsection 3.2 and the results in [3] to prove convergence of the finite element discretized MAP
estimators as the mesh is refined.

Theorem 5.5 (convergence of MAP estimators). Let the covariance operator Co : H — H
and its discrete approzimation Co: R, — RY, satisfy Assumption 3.1, and let the orthogonal
projection operator P satisfy Assumption 3.1. Assume additionally that the approximate for-
ward model is such that ®™ converges to ® continuously as n — co. Then, the corresponding
sequence {I;th}zo:l of OM functionals given in (5.5) satisfies that

(5.9) F—Jlm I(n)t = Ipost;

oo POS

and the cluster points as n — oo of the MAP estimators of the posteriors g, are MAP
estimators of the continuum posterior fipost.

Proof. Assumption 3.1(i) and (iii) imply that, as n — oo, P*CyP converges to Cp in
operator norm, and P*Pmg converges to mg in H. Therefore, we can apply Theorem 5.5
in [3] to conclude that Iy = I'-lim,_ I(()n) and that the sequence {I(()n)}fle is equicoercive.
Then, under the assumption that & — & continuously as n — oo, applying Theorem 6.1
in [3] gives us that I'-lim, Iézgt = I,0st, and the sequence {Iézgt}le is also equicoercive
since ®™ > 0 in our setting. Thus, by Proposition 5.4 we conclude that if u,, is a minimizer

(n) 0o o
of I05, n > 1, then any convergent subsequence of {u,};2; converges to a minimizer of Ijest.

Since the minimizers of the OM functionals Iéﬁit and Ipes coincide with the MAP estimators
of ugé)st and fipost, respectively, we have hence shown that any convergent subsequence of
MAP estimators of the discretized posterior converges to a MAP estimator of the continuum

posterior. m

We have demonstrated how Assumption 3.1(i) and (iii) can be verified for finite ele-
ment and graph-based discretizations. For nonlinear forward maps, verifying the continu-
ous convergence of the discretized potential may not be straightforward. Lemma B.9 in [3]
shows that if the approximate forward map is of the form F(P*P-), then the corresponding
potentials converge continuously. The following example illustrates an important problem
where the approximate forward model is not of this form; nonetheless, we will show in The-
orem 5.7 that continuous convergence—as well as Assumption 3.1(i) and (iii)—can still be
verified.

Ezample 5.6 (Eulerian data assimilation for the Navier-Stokes equations). Eulerian data
assimilation is concerned with learning the initial condition of a dynamical system from point-
wise observations of the state at fixed spatial locations. This example briefly reviews Eulerian
data assimilation for the Navier—Stokes equations, an important model problem in numerical
weather forecasting. We refer the reader to [18, 17] for a more detailed discussion.
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As described in [48, 59], the Navier—-Stokes equations on the two-dimensional torus D =
T? = [0,1]? can be written as an infinite-dimensional dynamical system

dv

(5.10) E:IJA’U—FB(U,’U):]C, v(0) = u,
on the Hilbert space
(5.11) 7—[:{veLger(’D):/pvdw:O,V-v:O}

equipped with the standard L?(D) inner product. The Stokes operator A in (5.10) is self-
adjoint, positive, and densely defined on ‘H and has a complete set of eigenpairs, {()\(i), Q) )12y,
with increasingly sorted eigenvalues. The energy-conserving quadratic nonlinearity B(v,v)
arises from projection under the Leray operator [58]. For u € H and f sufficiently regular [18,
48], there exists a unique solution to (5.10) such that v € L>(0, T; H'T%) C L*°(0,T; L>=(D)).

We wish to determine the initial condition u from noisy observations of the velocity field
v at time ¢ > 0 and fixed spatial locations x1,...,xx € D, given by

(5.12) yp =v(xg,t) +nx, k=1,... K,

where 7 ~ N(0,T'). This Eulerian data assimilation task can be formulated as an inverse
problem with nonlinear forward map

(5.13) Flu) = (v(a,t)7,... vk, ") eR,

where d, = 2K. We consider a Gaussian prior measure 1o ~ N (mg,Cp), where Co = A~* with
a>1 and my € H*(D). Here, powers of A are defined spectrally. The posterior measure can
then be characterized as in (5.1).

We discretize the inverse problem on the space spanned by the first n eigenfunctions
{@D(i) i, of the Stokes operator. Note that since the eigenfunctions are orthonormal, the
weighted inner product described in subsection 2.2 coincides with the usual Euclidean in-
ner product. The discretized prior covariance operator Cy : R® — R" is then given by
Co = diag ((/\(1))*0‘, ey (A(”))*a). The discretized forward map is given by a Galerkin ap-
proximation to the PDE solution, defined via the projection P : H — R™ given in (2.7). We
denote by vV the solution to the (finite-dimensional) ODE

d N
(5.14) %—FVAUN—FPB(UN,UN):PJC, oV (0) = Pu.
We then define
(5.15) F(u):(UN(xl,t),...,vN(J:dy,t))T

Given these approximations, we have a discretized OM functional exactly in the form of (5.5).

For the Eulerian data assimilation problem summarized in Example 5.6 and further de-
tailed in [18], we can verify the assumptions of Theorem 5.5 to obtain the following result.
The proof can be found in Appendix D.
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Theorem 5.7 (MAP estimation for Eulerian data assimilation). Let f € L?(0,T;H?*) with
s > 0, and consider the FEulerian data assimilation problem summarized in FExample 5.6.
Then, as n — oo, the sequence {I;(;th}%ozl of discretized OM functionals satisfies that

(5.16) P'nlggo éﬁlt = Ipost;
and the cluster points of the MAP estimators of the posteriors p, are MAP estimators of
the continuum posterior [ipost.

6. Conclusion and future directions. This paper analyzed a computational framework for
solving infinite-dimensional Bayesian inverse problems. Working on a weighted inner product
space, we have studied finite element and graph-based discretizations in a unified framework,
using Matérn-type priors and deconvolution forward models as guiding examples. We have
established error guarantees for linear inverse problems and analyzed ensemble Kalman al-
gorithms and MAP estimators applicable in nonlinear inverse problems. In future work, our
analysis may be extended to other types of discretizations, priors, and forward models. The
generality of our presentation will facilitate the integration of numerical analysis for PDEs to
obtain similar error guarantees for other priors and forward models. Additionally, our general
approach for obtaining error bounds for discretizations of covariance operators and forward
maps will also facilitate the analysis under mesh refinement of other algorithms for nonlinear
inverse problems.

Appendix A. Adjoints in weighted space. Let X and Y be two Hilbert spaces. Recall
that [56], given A € B(X,Y), the adjoint of A is the unique map A* € B(Y, X) such that

(A.1) (Az,y)y = (z, A"y) x Vee X,VyeY.

In R™ equipped with the usual Euclidean inner product, the adjoint of a matrix coincides
with the matrix transpose. However, for linear maps to and from the weighted inner product
space R}, the structure of the adjoint specified by (A.1) no longer coincides with the matrix
transpose. For the case where A € B(R’},,R},), we have that A* must satisfy

il AT MG = (AW, 0) pr = (@, A0y = 0T MA*G Vi, 0 € RY,
from which it follows that A* =M ~1AT M. Similarly, for F' € B(R},,R%), F 7 must satisfy
@' FTy = (Fit,y) = (@, Fly)yy =@ MF'y V@ eRY, VyeRY,
from which it follows that F?=M—1FT,

Appendix B. Proofs of subsection 3.2. This appendix contains the proofs of Theo-
rems 3.6 and 3.7 in subsection 3.2. The proofs rely on classical finite element method conver-
gence results from [44].

Proof of Theorem 3.6. We let f € L?(D) with Ilfll2(p) # 0. We proceed by induction on
a. For a=1 we have that

AT f = P*AT P f pap) < ch? AT fllr2(p) < eh®|| AT lopll fll 2 (p)
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by [9, Theorem 14.3.3] and boundedness of the PDE solution operator from L?(D) to H?(D)
(see [20, Chapter 6.3]). Dividing both sides by || f||2(p), we have that

A~ = P*ATIP|,, < ch?

for a constant ¢ independent of h, completing the base case. Now, we assume that for some
integer > 1, we have that

|A=® = P*A=P)|,, < ch?.

We then consider the quantity || A=+ f — P*A—e=1pf|| r2(p)- Then, by the triangle inequal-
ity, we have that

AT = P M) T P f|papy < AT (AT = P*ATP) fl|2(p)
+ (A7 = P*ATP)P* A7 P f| 2.

The first of these terms can be controlled using the boundedness of A~! as in the proof of the
base case,

AT (AT = P*ATP) fll 2oy < IATHEIATf = PTAT P fll 2 (p) < e ATH5,02 1 f L 22y,

and the second follows from the submultiplicativity of the operator norm and the inductive
hypothesis,

[(A= = P*A=P)P* A" Pf| ) < A = P* APy | P* A~ P ()
< e A loph? 1 12

We conclude that
A= = P*ATPop S B2,

completing the proof. |

Proof of Theorem 3.7. Let u € L*(D) with ||ul| f2(py # 0. We denote v = Gu and v, = GPu.
We then have that

|Fu~ FPuls < [Ollopllo ~ vnll o) < 10llap (exh?l[vl =0y + AP | Pl )

where the first inequality uses the fact that O is a bounded linear operator from L?(D),
and the second uses [44, Theorem 9.6], which is a classical finite element error result for the
Crank—Nicolson method. Then, since G : L?(D) — H?(D) is bounded and ||P||,, = 1, we get
that

|Fu— FPully < c1[[0]op |G loph? [l 12(p) + 2| Ollop A2 ]l (-

Dividing both sides by ||lu||z2(p) gives the desired result. [ |
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Appendix C. Proofs of subsection 3.3. This appendix contains the proofs of Theo-
rems 3.9 and 3.11 in subsection 3.3. The proofs rely on existing spectral convergence results
from [51]. We denote by {( o ) 7(1)) n and {(A®)®)}2°, the eigenpairs of the matrix A
defined in (2.36) and the operator A deﬁned in (2.17), with the eigenvalues in ascending order.
We recall the spectral convergence results derived in [51].

Proposition C.1. Suppose k =k, is such that h,VA®) <1 for large n. Then,
k) \(k)
])\% AV €n
(C.1) NG <c I +hn VA )
where ¢ is a constant depending on M, ©, and b.

Proposition C.2. Let A be an ezgenvalue of A with multiplicity £. Suppose that hy,V Ak») < 1
and €, < hy for n large. Let iy, (kn) ?(k "D e orthonormal eigenvectors of A as-
gl

sociated with eigenvalues )\( "),...,)\(k"M Then, there exist orthonormal eigenfunctions
Ppln) =) of A so that, for j=kn,... kn+£—1,

1/2
(C.2) I1P*) — )| 2 g <c]3/2< + hy, \/AU)

where ¢ is a constant depending on M, ©, and b.

Proof of Theorem 3.9. Let f € L?(M). Note that k, was chosen such that we can apply
(C.2) and (C.1) to quantify the errors in the eigenvalues and eigenvectors up to i = k,,. We
denote

u=Cof = Af = ZA“ (D) 2,

=1

up = P*(AY) + B,) “Pf = ZM (Pf, D)y PrpD.

We remark that (Pf, 7(3)>M = (f, P*wni )L2(M)> SO We can also write

n

=Y (AT P D) 2y PR

=1

We want to bound |[u — un||z2(aq). To do so, we introduce four intermediate quantities

kn
upr = Z(/\gf))_%f, P oy PFOYD),

=1

kn

Unp,

e

-
Il
—

AL, PO oy P,

>

n

ik = AN P D) g,

i=1
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k'n

ufn =Y A7) oy

=1

We will bound the difference between each pair of consecutive functions. By Weyl’s law [13,
Theorem 72], we have that

L%M)S( Z (A(i))_%) 5( Z 2'_45) < </k x_?)QSk}L—Q‘;-

i=k,+1 i=k,+1

(C.3)  |ju—uk

By (C.1) and Weyl’s law, we have that Al > Akn) > ke from which we get

(C4)  lun = |2y = ( > (A,(f>>‘2a!<f,P*wﬁ>>m(m>\2> <A Sha
i=k,+1

Next, we note that since /\g) and A are bounded from below by mingeqb(x) > 0, and 2z~

is continuously differentiable away from zero, the mean value theorem guarantees that

‘()\(i))—a — (A

<af¢g| ’)\,(f) — A0

for some £ between )\7(5) and A . This inequality, combined with Proposition C.1, implies that

(D)~ (A9 SO0 (54 1Y)

<a (Aﬁ:’) A W)) o )A,@ 0

fori=1,...,k,. Using this fact, we get that
(C.5)

_ b Lo A_2% b e '2§
ek = @ 2y < (Z (D)= — (D)= ) < (ZM()) 2 (mmnm) )

=1
€ il : €
<[z (1)) —2a+1 <[ zn
< (Geem) (Goor=n) = (Geem).

where the last step follows if o > %—i— % This is implied by the requirement that o > (5d+1)/4.
Next, we use (C.2) to deduce that

(C.6)
kn . . . krn ' c
i — 3 [y S SO AD) 9O = PO apny S 3 OO) 05 [ 4 by VAD
i=1 i=1 "
€ b € u €
< e S (\y—ati < [En - E L < S

i=1 i=1
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where the last step follows if o > %d + %. Finally, we use the Cauchy—Schwarz inequality to
get that

kn
[ub — P | g2 gy = || D (90D = P) 12 ag) (AD) @
(C.7) ’fl L2(M)
- DN—a[,.(i x 1 (i €n
§Z()\()) 1@ — P L2 ) S h*+hn,
i=1 n

where the last step follows by the same argument as for the previous expression if o > %d+ %.
Combining (C.3), (C.4), (C.5), (C.6), and (C.7) and taking k, =< n*ia", we see that the error
is dominated by

1 2a
P n %

o= P*(AD 4 Ba) “Pllop Skis * + /5" +hn < (logn) n~as,

as desired. |
Proof of Theorem 3.11. Let u € L*(M) with [|u| 12 a) # 0. We write

(C.8) v=G0u= Zexp( A0 ) (u, @) 12 M)w

(C.9) v, =G Zexp( ) (Pu, 1[1( )L ( )P*%(f).

We then consider the quantity
(C.10)  [[Fu—FPullz=[0v— 0", ]2 < [Ollopllo = vall 20y + 100 O™ 0l 2.

We first want to bound |[v — vp| z2(ar). To do so, we introduce the following intermediate
quantities:

o =3 exp (=A9) (s PO sy P,
=1
kn

Ty =) _exp (—A(i)> (u, P L2y P,
=1
kn

= exp (‘A(i)> (u, Pof) 2 a0,
'L—l

= ZGXP ( ) ) L2y @,

We proceed to bound the dlﬂerence between each pair of consecutive functions, as in the proof
of Theorem 3.9. By Weyl’s law, we have that

b=l < (3 e (- )) (> eXp(—zi))N(/:exp(_xs)dx)

i=k,+1 i=k,+1
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This integral does not have a nice closed form solution. However, for any fixed o > 0, it holds
that exp(—xQ/ 4y < z74/d for g large enough. Assuming that n is large enough such that this
inequality holds for x = k,,, we then have the bound

0o 2 1 2a
L2(M)§</k fv_4a/dd1‘> Sk T

While this bound is not necessarily sharp, the operator-norm error will still be dominated by
the error in approximating the eigenfunctions, so the final bound will still be the same. By

(C.1) and Weyl’s law, we have that A) > Akn) > kd from which we get

(C.11) v — vPn

1

||vn—v£z"uw)=< > exp (A9 |<u,P*¢,<:>>L2(M>|2>

(C.12) i=ky+1
1 1. 2
<exp (—2)\gg )> < exp (—21%1) .
Next, we note that since e is continuously differentiable, for each i =1, ..., k,, we have that

exp(—A®) — exp(f)\(i))’ < exp(f()\g) A A@'))) ‘Aﬁ;’) A0

Sexp(—AD) <Z" + hn\/)\(i)) :

From this, we get that

HU:CL” _ f}’rk]in ||L2(/\/t) < ( S exp (—AS?) —exp (—)\(i)) D
(C.13) S (exp (—2A<i>) (;n + hn, A(i)>2> 2

NI

Next, we use (C.2) to deduce that

kn
9% = ey £ Do exp (A0 ) 90— Pyl a
=1
kn c
< @) ,;2 [En (4)
NZGXp( 4 )” b YA
(C.14) -
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Finally, we use the Cauchy—Schwarz inequality to get that

kx

> 69 = PD) gy exp (-2 ) p

=1

b K _
[0 — 0" [| L2 (Ag) =

L2(M)
kn . . . €

S exp (<AD) 49— PUD g S |7+ B
i=1 "

where the last step follows by the same argument as for (C.14). Combining (C.11), (C.12),
2d+41
(C.13), (C.14), and (C.15) and taking k, <n i , we see that the error is dominated by

(C.16) o= vallop S~ % /7 + b S (logn) n 5,
n

as desired. Taking the supremum of both sides over all |[u| z2(aq) =1, we get that

(C17) 16— P*GuPlloy SKE ¥ 22+ o £ Qo)

(C.15)

Now we proceed to bound [|Ov, — O™vy,||2. Recall that, for k=1,...,d,, we have
Ouli= [ e = (on. Lo (@) 2ou
F B5(wk OM ,LZI ( )m ( )
and

n 1 "
[O" v, = - D (@)1, () (1) = (Pon, L, (), ) M
=1

where 1p,(;,)nm, € Rl is the vector with ith entry 1 if z; € Bs(wy) for all x; € M,,. Note
that here the points x; are in the point cloud M,,, whereas the x; are the points at which the
balls of radius ¢ in the observation operator are centered. By our definition of P, it follows
that we can write

[Onvn]k = <Un, P*]]-B(s(cck)ﬂ/\/ln ($)>L2(M)
Consequently, we can apply the Cauchy—Schwarz inequality to get the bound

dy
1OV, — O™vnll5 =Y (U, 1, () m (@) = P g, o, () 120m)
(C.18) o

<ZHU7L”L2 HﬂBg ()M — P ]1Bs(a:k NM,, ||L2(M

From (C.16), we have that

41 41
[onll L2 Ay < [J0llL2my + e(ogn) s n™5a <|[Gllopllul| L2(ag) + c(logn) +n™ 3.
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Hence, for n large enough it holds that

(C.19) [onllL2(v) < 2[1G lloplluell 22 (an)-

It then remains to bound |1p; (4, (1 — P*]]'Bg(wk)ﬂ/\/lnH%Q - To do so, we can write

P ]]‘Bg(a?k ﬂM Z 1]‘U ]]‘Bg CCk xl Z ]]‘U 135 xk) ( (‘r))’
since T),(z) = z; for all = € U;. Since the sets U; partition M, we have that

P, znm, (7) = 1, @onm (Ta(z)) -

We then see that [|1g,(z,)nm — P*]lB&(xk)mMnH%Q(M) is exactly the measure of the set where
the indicator functions 15, () am (Tn(2)) and 1g, (4, ) () are not equal. Thus, we simply
need to bound the measure of the sets

Ek:{xe/\/l x € By(ap), Tn(z )géB(;(xk)}U{xEM:a:gEBg(a:k),Tn(a?)EB(;(xk)}.

We remark that for any x € U; C Bs(xy), we also then have that T,,(z) € U; C Bs(xy). For
U; C Bs(zy), we have U; C Ekc Similarly, for any x € U; C Bs(x)¢, we also have that
T, (x) € U;, so = ¢ Bs(xx) and Ty,(z) ¢ Bs(zy). Hence, for U; C Bs(zy)¢, we have U; C ES.
Since any U; that are entirely within Bs(xy) and any U; that are entirely outside of Bs(xy)
are contained in the complement of Fj, and the sets U; partition M, we must have that E}, is
contained in the union of the sets U; that have nontrivial intersection with both Bj(xy) and
Bs(x1,)¢. That is, Ej, is contained in the union of the sets U; that intersect the boundary of
Bs(x) N M,

E, C Ek = U U;.
ZULma(Ba(Ik)ﬂM)

From Proposition 2.5, we have that sup,c rq dam (2, T (x)) =€5,. That is, the geodesic distance
between any two points in a set U; is at most 2¢,. This fact, combined with the assumption
that length (O(Bs(xx) N M)) = Cs i, gives us that

(C.20) ¥ (Ek) < 2eplength (O(Bs(xr) N M)) =2Cs gep.

The constant Cj, depends on d, M, and k but not n. This inequality, combined with (C.18)
and (C.19), gives us that

. logn )<
(C.21) 10V, — O™ 0,|[5 < 2y |G| opCi agn S d (nl/d)

Plugging (C.16) and (C.21) into (C.10) and taking the supremum of both sides over all
Hu||Lz(M) =1 yields

(C.22) | F = FPllop S (logn) & n =3 + \/dy(logn)%n_i.

In our setting, where the dimension of the observations is fixed, the error will be dominated
by the first of these two terms. |
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Appendix D. Proof of Theorem 5.7.

Proof of Theorem 5.7. We want to verify the assumptions of Theorem 5.5 for the setting
of Eulerian data assimilation described in Example 5.6. First, we verify that the discretized
prior mean converges to the continuum prior mean in H. Since my € H*(D), we have from
equation (4.7) in [18] that

. 1
||m0 —P Pm0|]%2(p) S ﬁ”mOH?H”('D)’

which verifies convergence of the discretized prior mean. Next, we verify operator norm
convergence of the discretized prior covariance. For any u € H with |lu||z2(p) =1,

> ) ‘ > N 1
ICou — P*CoPull7apy= > (A(z))—2a<u’,¢(z)>%2(D) <> (/\(Z)> S Y IS 2ol
i=n+1 i=n+1 i=n+1
Hence, we have that
. 1
(D.1) ICo = P*CoPllop S ——»
n 2

and since a > 1, we have shown operator-norm convergence of the discretized prior covariance.

It remains to show that the discretized potential ®(™ converges continuously to ® as
n — oo. That is, we want to show that for every u € H and every € > 0, there exist N € N
and 0 > 0 such that if n > N and v’ € Bs(u), then ‘(IJ(”)(u’) —®(u)| <e. Fix ue X and € > 0.
From Lemma 3.2 in [17], we have that for any u,u’ € H and f € L?(0,T;H), there exists a
constant L(||ullz>(py, |u'||L2(p), | flo, to, T') such that

IF (uw) = F(u)[r-+ < Llju = l| 12Dy,
provided that ¢ > tg > 0. We then see that
O(u) = (u') = 5 (ly — Fw)llr- = lly = F()llr-1) ([ly = F(u)llp-+ + ly = F(')|[r-1)
1F (u) = F () lp-+ ([ly = Fw)l[e-r + [ly — F(u')|lp-)

17 () = F(u)[e=2 2llylle-2 + [F (w)llp-2 + [[F ()2 )

IN

IN
T T T T

IN

Lllu—'|| 20y 2lylle- + 2l F (u) o+ 4 Lilu — o[l 12(p)) -

Exactly the same argument can be carried out for ®(u') — ®(u) and yields the same upper
bound, from which we conclude that

1
(D2)  [®(uw) —2(u)| < Sl =vllz2) 2llylle-+ + 2017 (@) [r-+ + Lollu = 'l 2(py) -

From Lemma 4.2 in [18], we have that for the Galerkin approximation v™ in (5.14) to the true
solution v in (5.10), there exists a constant L (||u||2(p), to,T) such that, for any ¢ >t >0,

lo(t) = o™ ()| L (p) < L([[ull 20y (n),
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where ¢(n) — 0 as n — oo, and fL(HuHLz(D)) is continuous and increasing in ||ul|z>(py. It
follows from this inequality that

1F (") = F()llr- < L(u' | 2p)) ¥ () < L(|[ull 2(p) + 8)¢b(n).

Then, we observe that

@(u) 8" w) = 3 (ly = F@) e~ lly — FYe—) (ly = F) s + ly = P )
< SIF @)~ Pl (ly = F e+ lly — F () r-1)
< SIF@) = P e @l + 1F@)le + [P ) )
< Ll 2oy + 806 (m) (2Nl + 217 )l + EJul2o) + D))

Again, the same argument carried out for ® (u/) — ® (/) yields the same upper bound, and
we conclude that

(D.3)
a(u!) ~ 8 (w)| < S Ellullzz(oy + 8 (m) (2l + 2 Flle-s + E(lullzay +0)m)).

From (D.2) we see that we can pick § small enough such that [®(u) — ®(u')| < § for any
v’ € Bs(u) C H, and from (D.3) we can pick N large enough such that for any n > N, we have
(') — @M (u')| < § for any u’ € Bs(u) C H. Consequently, there exist N and & such that
for any n > N and v’ € Bs(u) € H,

(D.4) ®(u) — M ()| <,

proving continuous convergence of ® to ® as n — co. We can then apply Theorem 5.5 and
complete the proof. [ ]
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