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Analysis of a Computational Framework for Bayesian Inverse Problems:

Ensemble Kalman Updates and MAP Estimators under Mesh Refinement\ast 
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Abstract. This paper analyzes a popular computational framework for solving infinite-dimensional Bayesian
inverse problems, discretizing the prior and the forward model in a finite-dimensional weighted in-
ner product space. We demonstrate the benefit of working on a weighted space by establishing
operator-norm bounds for finite element and graph-based discretizations of Mat\'ern-type priors and
deconvolution forward models. For linear-Gaussian inverse problems, we develop a general theory
for characterizing the error in the approximation to the posterior. We also embed the computational
framework into ensemble Kalman methods and maximum a posteriori (MAP) estimators for nonlin-
ear inverse problems. Our operator-norm bounds for prior discretizations guarantee the scalability
and accuracy of these algorithms under mesh refinement.
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1. Introduction. Bayesian inverse problems on infinite-dimensional Hilbert spaces arise
in numerous applications, including medical imaging, seismology, climate science, reservoir
modeling, and mechanical engineering [6, 10, 12, 15, 30]. In these and other applications, it is
important to reconstruct function input parameters of partial differential equations (PDEs)
based on noisy measurement of the PDE solution. This paper analyzes a framework for nu-
merically solving infinite-dimensional Bayesian inverse problems, where the discretization is
carried out in a weighted inner product space. The framework, along with a compelling demon-
stration of its computational benefits, was introduced in [10] for solving PDE-constrained
Bayesian inverse problems using finite element discretizations. We develop a rigorous analy-
sis that explains the advantage of working on a weighted space. Our theory accommodates
not only finite element discretizations but also graph-based methods from machine learning.
For linear-Gaussian inverse problems, we bound the error in the approximation to the poste-
rior. More broadly, we embed the discretization framework into ensemble Kalman methods
and maximum a posteriori (MAP) estimators for nonlinear inverse problems and study the
accuracy and scalability of these algorithms under mesh refinement.
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A COMPUTATIONAL FRAMEWORK FOR INVERSE PROBLEMS 31

An overarching theme of this paper is that, by suitably choosing the weighted inner prod-
uct, one can ensure accurate approximation of the infinite-dimensional Hilbert inner product
as the discretization mesh is refined. Following this unifying principle, we analyze the finite
element discretizations considered in [10] together with graph-based discretizations. Finite
elements are predominant in scientific computing solutions of PDE-constrained inverse prob-
lems (see, e.g., [6, 10, 33]), whereas graph-based methods have been used, for instance, to solve
inverse problems on manifolds [27, 28, 32] and in machine learning applications in semisuper-
vised learning [4, 25]. For both types of discretization, we obtain operator-norm bounds for
important classes of prior and forward models. Specifically, we will use Mat\'ern-type Gaussian
priors and deconvolution forward models as guiding examples.

Mat\'ern priors play a central role in Bayesian inverse problems [49], spatial statistics [53],
and machine learning [47]. Efficient algorithms for sampling Mat\'ern priors within the com-
putational framework of [10] have recently been investigated in [2]. Here, we obtain new
operator-norm bounds for both finite element and graph-based discretizations. The former
relies on classical theory, while the latter extends recent results from [51]. Deconvolution
forward models arise in image deblurring and heat inversion, among other important appli-
cations. Since the seminal paper by Franklin that introduced the formulation of Bayesian
inversion in function space [21], heat inversion has been widely adopted as a tractable testbed
for theoretical and methodological developments; see, e.g., [25, 23, 27, 55]. Here, we derive
operator-norm bounds for both finite element and graph-based discretizations.

For linear-Gaussian inverse problems, operator-norm error bounds for prior and forward
model discretizations translate into error bounds in the approximation of the posterior. We
formalize this claim under a general assumption, which we verify for our guiding examples
of Mat\'ern priors and deconvolution. Additionally, we apply the computational framework
in [10] to algorithms for nonlinear inverse problems beyond the Markov chain Monte Carlo
method for posterior sampling considered in [46]. Specifically, we investigate (i) ensemble
Kalman methods [14, 31], where we show, building on [26], that the effective dimension which
determines the required sample size remains bounded along mesh refinements; and (ii) MAP
estimation [19, 33], where we show, building on [3], the convergence of MAP estimators
under mesh refinement to the MAP estimator of the infinite-dimensional inverse problem.
These results complement the vast literature on function-space sampling algorithms (see e.g.,
[1, 16, 23, 45]) and demonstrate that ensemble Kalman methods and MAP estimation can
be scalable and accurate under mesh refinement. We exemplify the new theory for MAP
estimation in the nonlinear inverse problem of recovering the initial condition of the Navier--
Stokes equations from pointwise observations of the velocity field [18, 17, 43].

The well-posedness of the posterior measure under perturbations is one of the hallmarks
of the Bayesian formulation of inverse problems [39, 40, 50, 55]. For a fixed prior measure,
the error in the posterior measure caused by discretization of the forward model can be
bounded in Hellinger distance [18] and Kullback--Leibler divergence [41]. Posterior stability
under perturbations to the prior measure, in addition to perturbations to the likelihood,
have been recently investigated using Wasserstein distance [52] and more general integral
probability metrics [22]. These results hold even when the prior and the perturbation are
mutually singular, as is the case for a discretization of the prior measure. In the linear-
Gaussian setting, the Wasserstein distance bounds in [52] yield a stability theory similar
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32 DANIEL SANZ-ALONSO AND NATHAN WANIOREK

to ours; however, bounding the Wasserstein distance between the prior measures requires
trace bounds on the covariance operators, whereas our results only necessitate operator-norm
bounds.

1.1. Outline and main contributions.

\bullet Section 2 reviews the formulation of a Bayesian inverse problem in a Hilbert space
and presents our general discretization framework. We introduce the heat inversion
problem with Mat\'ern Gaussian process prior as a model guiding example, and then
illustrate how finite element and graph-based methods can be interpreted within our
discretization framework.

\bullet Section 3 presents a novel analysis of the error incurred in our discretization framework
for linear-Gaussian Bayesian inverse problems. Theorems 3.3 and 3.4 quantify the
errors in the discretized posterior mean and covariance operators to their continuum
counterparts, up to universal constants. We then verify the assumptions of this general
theory for the finite element and graph-based discretizations of the heat inversion
problem and thus derive error bounds for these popular discretization schemes.

\bullet Section 4 formulates the ensemble Kalman update within our general discretization
framework. The results in this section give nonasymptotic bounds on the ensemble
estimation of the posterior mean and covariance in terms of a notion of effective dimen-
sion based on spectral decay of the prior covariance operator. We then show that the
effective dimension of the discretized prior covariance can be controlled by the effective
dimension of the continuum covariance, which is necessarily finite. Consequently, the
ensemble approximation will not deteriorate under mesh refinement.

\bullet Section 5 considers posterior measures resulting from nonlinear Bayesian inverse prob-
lems and their MAP estimators. We show that with a suitable discretization of the
forward model, the MAP estimators of the computationally tractable discretized pos-
terior measures converge to the MAP estimators of the continuum posterior. Finally,
we apply the theory to the inverse problem of recovering the initial condition of the
Navier--Stokes equations from pointwise observations.

\bullet Section 6 closes the paper with conclusions and directions for future work.

1.2. Notation. \scrS d
+ denotes the set of d\times d symmetric positive-semidefinite matrices, and

\scrS d
++ denotes the set of d\times d symmetric positive-definite matrices. Similarly, \scrS \scrH 

+ denotes the
set of symmetric positive-semidefinite trace-class operators from a Hilbert space \scrH to itself,
and \scrS \scrH 

++ denotes the set of symmetric positive-definite trace-class operators from \scrH to itself.
Given two normed spaces (X,\| \cdot \| X) and (Y,\| \cdot \| Y ), and a linear mapping A : X \rightarrow Y , we
denote the operator norm of A as \| A\| op := sup\| x\| X=1 \| Ax\| Y . B(X,Y ) denotes the space of
all bounded linear operators from X to Y . Given two positive sequences \{ an\} and \{ bn\} , the
relation an \lesssim bn denotes that an \leq cbn for some constant c > 0. 1B denotes the indicator of
the set B. Given a matrix A\in \scrS d

++, we denote the weighted inner product as \langle \vec{}u,\vec{}v\rangle A := \vec{}uTA\vec{}v,

and the corresponding weighted norm is denoted as \| \vec{}u\| A :=
\surd 
\vec{}uTA\vec{}u. Finally, \| \cdot \| 2 denotes

the usual Euclidean norm on \BbbR 
d.

2. Problem setting and computational framework. This section contains necessary back-
ground. Subsection 2.1 overviews the formulation of Bayesian inverse problems in Hilbert
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A COMPUTATIONAL FRAMEWORK FOR INVERSE PROBLEMS 33

space. Subsection 2.2 describes the computational framework analyzed in this paper. Finally,
subsection 2.3 shows how finite element and graph-based methods for inverse problems in
function space can be viewed as particular instances of the general framework.

2.1. Inverse problem in Hilbert space. Let\scrH be an infinite-dimensional separable Hilbert
space with inner product \langle \cdot , \cdot \rangle \scrH . Consider the inverse problem of recovering an unknown u\in \scrH 
from data y \in \BbbR 

dy related by

y=\scrF u+ \eta , \eta \sim \scrN (0,\Gamma ),(2.1)

where \scrF : \scrH \rightarrow \BbbR 
dy is a linear and bounded forward model, and \eta represents Gaussian

observation noise with known covariance matrix \Gamma \in Sdy

++. Nonlinear forward models will be
considered in section 5. The observation model (2.1) implies a Gaussian likelihood function

\pi \mathrm{l}\mathrm{i}\mathrm{k}\mathrm{e}(y| u)\propto exp

\biggl( 
 - 1

2
\| y - \scrF u\| 2\Gamma  - 1

\biggr) 
.(2.2)

We adopt a Bayesian approach [33, 50, 57] and let \mu 0 =\scrN (m0,\scrC 0) be a Gaussian prior measure
on \scrH , where \scrC 0 :\scrH \rightarrow \scrH is a trace-class covariance operator defined by the requirement that

\langle v,\scrC 0w\rangle \scrH =\BbbE 
u\sim \mu 0

\Bigl[ 
\langle v, (u - m0)\rangle \scrH \langle (u - m0),w\rangle \scrH 

\Bigr] 
\forall v,w \in \scrH ,(2.3)

and m0 \in \scrH is assumed to belong to the Cameron--Martin space E = Im(\scrC 1/2
0 ) \subset \scrH . The

Bayesian solution to the inverse problem is the conditional law of u given y, which is called the
posterior probability measure \mu \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}. Application of Bayes' rule in infinite dimensions [55] char-
acterizes the posterior as a change of measure with respect to the prior, with Radon--Nikodym
derivative given by the likelihood,

d\mu \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}
d\mu 0

(u) =
1

Z
\pi \mathrm{l}\mathrm{i}\mathrm{k}\mathrm{e}(y| u),(2.4)

where Z =
\int 
\pi \mathrm{l}\mathrm{i}\mathrm{k}\mathrm{e}(y| u)d\mu 0 is a normalizing constant. Since the prior is Gaussian, and the

forward model is linear and bounded, the posterior is also Gaussian, \mu \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t} =\scrN (m\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t},\scrC \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}),
where

m\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t} =m0 + \scrC 0\scrF \ast (\scrF \scrC 0\scrF \ast +\Gamma ) - 1(y - \scrF m0),(2.5)

\scrC \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t} = \scrC 0  - \scrC 0\scrF \ast (\scrF \scrC 0\scrF \ast +\Gamma ) - 1\scrF \scrC 0.(2.6)

Here, \scrF \ast denotes the adjoint of \scrF , which is the unique map from \BbbR 
dy to \scrH that satisfies

\langle \scrF u, y\rangle = \langle u,\scrF \ast y\rangle \scrH \forall u\in \scrH , y \in \BbbR 
dy .

In subsection 2.2, we will review the computational framework in [10] to approximate the
posterior. The idea is to replace the inverse problem (2.1) on the infinite-dimensional Hilbert
space \scrH with an inverse problem on a finite-dimensional weighted inner product space. Under
general conditions on the discretization of the forward model and prior measure, the posterior
mean and covariance of the finite- and infinite-dimensional inverse problems are close together;
this claim will be formalized and rigorously established in section 3.
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34 DANIEL SANZ-ALONSO AND NATHAN WANIOREK

2.2. Computational framework. This subsection gives an overview of the computational
framework presented in [10]. Let \{ \phi 1, \phi 2, . . . , \phi n\} be a basis for an n-dimensional space \scrV \subset \scrH .
For u =

\sum n
i=1 ui\phi i \in \scrV , we denote by \vec{}u = (u1, . . . , un)

T the vector of coefficients of u in this
basis. We will endow the space of coefficients with a weighted inner product that is naturally
inherited from the inner product in \scrH . Specifically, for any u, v \in \scrV , we have

\langle u, v\rangle \scrH = \vec{}uTM\vec{}v= \langle \vec{}u,\vec{}v\rangle M ,
where the matrix M = (Mij)

n
i,j=1 is given by

Mij = \langle \phi i, \phi j\rangle \scrH , i, j \in \{ 1, . . . , n\} .
This observation motivates us to introduce the inner product space \BbbR 

n
M defined by vector

space \BbbR 
n and inner product \langle \cdot , \cdot \rangle M . We remark that for both the finite elements and graph-

based discretizations introduced in subsections 2.3.1 and 2.3.2, the corresponding basis \{ \phi i\} 
will not be orthonormal; consequently, M \not = I and \BbbR 

n
M will not agree with the standard

Euclidean inner product space. We now aim to replace the inverse problem (2.1) with an
inverse problem on the weighted space \BbbR 

n
M .

To begin, we define a discretization map P : \scrH \rightarrow \BbbR 
n
M that assigns to u \in \scrH the vector

\vec{}u \star \in \BbbR 
n
M satisfying

(2.7) Pu= \vec{}u \star = (u \star 1, . . . , u
 \star 
n)

T = arg min
u1,...,un

1

2

\bigm\| \bigm\| \bigm\| u - 
n\sum 

i=1

ui\phi i

\bigm\| \bigm\| \bigm\| 
\scrH 
.

In practice, this discretization can be computed by solving the linear system M\vec{}u \star =\vec{}b, where
bi = \langle u,\phi i\rangle \scrH . Conversely, our theoretical analysis will rely on an extension map P \ast : \BbbR n

M \rightarrow 
\scrV \subset \scrH that assigns to a vector \vec{}u\in \BbbR 

n
M the element P \ast u\in \scrV defined by

(2.8) P \ast \vec{}u=

n\sum 

i=1

ui\phi i.

One can verify that \langle Pu,\vec{}v\rangle M = \langle u,P \ast \vec{}v\rangle \scrH , so that P \ast is the adjoint of P, as our notation
suggests. Similarly, one can verify that the map P \ast P :\scrH \rightarrow \scrV \subset \scrH is the orthogonal projection
onto \scrV , so that PP \ast :\BbbR n

M \rightarrow \BbbR 
n
M is the identity map.

We are ready to introduce the inverse problem on the weighted inner product space \BbbR 
n
M .

In analogy with (2.1), we seek to recover \vec{}u\in \BbbR 
n
M from data y related by

(2.9) y= F\vec{}u+ \eta , \eta \sim \scrN (0,\Gamma ),

where F : \BbbR n
M \rightarrow \BbbR 

dy is a discretized forward model, identified with a matrix F \in \BbbR 
dy\times n.

(Here and henceforth we will abuse notation and identify linear maps and matrices without
further notice.) The map F should approximate \scrF in the sense that \| \scrF  - FP\| op is small;
we refer the reader to subsections 3.2.2 and 3.3.2 for examples arising from discretization of
PDE-constrained forward models in function space. In analogy with (2.2), the likelihood of
observed data y given a coefficient vector \vec{}u\in \BbbR 

n
M is given by

\pi \mathrm{l}\mathrm{i}\mathrm{k}\mathrm{e}(y| \vec{}u)\propto exp

\biggl( 
 - 1

2
\| y - F\vec{}u\| 2\Gamma  - 1

\biggr) 
.
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A COMPUTATIONAL FRAMEWORK FOR INVERSE PROBLEMS 35

Following the analogy with subsection 2.1, we choose a Gaussian prior \mu n0 =\scrN (\vec{}m0,C0) on the
space \BbbR 

n
M , with Lebesgue density

\pi 0(\vec{}u)\propto exp

\biggl( 
 - 1

2
\langle \vec{}u - \vec{}m0,C

 - 1
0 (\vec{}u - \vec{}m0)\rangle M

\biggr) 
.(2.10)

For the prior mean, we take \vec{}m0 = Pm0; for the prior covariance, we may take an invertible
operator C0 :\BbbR 

n
M \rightarrow \BbbR 

n
M that well approximates \scrC 0, in the sense that \| \scrC 0 - P \ast C0P\| op is small;

we refer the reader to subsections 3.2.1 and 3.3.1 for examples arising from discretization
of Mat\'ern-type Gaussian processes. Similar to (2.3), the prior covariance C0 satisfies, by
definition, that

\langle \vec{}v,C0 \vec{}w\rangle M =\BbbE 
\vec{}u\sim \mu n

0

\Bigl[ 
\langle \vec{}v, (\vec{}u - \vec{}m)\rangle M \langle (\vec{}u - \vec{}m), \vec{}w\rangle M

\Bigr] 
\forall \vec{}v, \vec{}w \in \BbbR 

n
M .

While we view \mu n0 as a Gaussian measure on \BbbR 
n
M , it is helpful to note that, as a multivariate

Gaussian distribution on \BbbR 
n equipped with the standard inner product, we have that \mu n0 =

\scrN ( \vec{}m0,C
E
0 ), with covariance CE

0 =C0M
 - 1.

Applying Bayes' rule as in (2.4), we can express the posterior as a change of measure with
respect to the prior:

\mu n\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}
\mu n0

=
1

Zh
\pi \mathrm{l}\mathrm{i}\mathrm{k}\mathrm{e}(y| \vec{}u).(2.11)

Since the space \BbbR 
n
M is finite-dimensional, we recover the standard Bayes' formula for the

posterior distribution with Lebesgue density given by

\pi n\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}(\vec{}u| y)\propto exp

\biggl( 
 - 1

2
\| y - F\vec{}u\| 2\Gamma  - 1  - 1

2
\langle \vec{}u - \vec{}m0,C

 - 1
0 (\vec{}u - \vec{}m0)\rangle M

\biggr) 
.(2.12)

As in the infinite-dimensional setting, the posterior \mu n\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t} =\scrN (\vec{}m\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t},C\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}) is Gaussian with
an analogous expressions for its mean \vec{}m\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t} and covariance C\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}. A note of caution is that
in the weighted space \BbbR 

n
M , a careful distinction must be made between the adjoint and the

matrix transpose. We present a detailed discussion of this distinction in Appendix A. In
particular, if the forward model is given by matrix F \in \BbbR 

dy\times n, then the adjoint map is given
by F \natural =M - 1F T \in \BbbR 

n\times dy . Thus,

\vec{}m\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t} = \vec{}m0 +C0F
\natural (FC0F

\natural +\Gamma ) - 1(y - F \vec{}m0),(2.13)

C\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t} =C0  - C0F
\natural (FC0F

\natural +\Gamma ) - 1FC0.(2.14)

One can also view the posterior as a Gaussian measure in the standard Euclidean space,
in which case the covariance operator is given by CE

\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t} = C\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}M
 - 1. For completeness, we

include the expressions for the posterior mean and covariance in Euclidean space written in
terms of the Euclidean prior covariance as

\vec{}m\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t} = \vec{}m0 +CE
0 F

T (FCE
0 F

T +\Gamma ) - 1(y - F \vec{}m0),(2.15)

CE
\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t} =CE

0  - CE
0 F

T (FCE
0 F

T +\Gamma ) - 1FCE
0 .(2.16)
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36 DANIEL SANZ-ALONSO AND NATHAN WANIOREK

Table 1

Roadmap of the discretizations analyzed in this paper as particular examples of the general computational

framework introduced in subsection 2.2.

Domain Basis Discretization Error bounds

\scrD Lagrange finite elements subsection 2.3.1 subsection 3.2
\scrM Random geometric graphs subsection 2.3.2 subsection 3.3

Notice that both pairs of equations (2.13)--(2.14) and (2.15)--(2.16) are analogous to their
infinite-dimensional counterparts in (2.5)--(2.6). However, our theory and examples in the
next subsection will demonstrate the advantage of working on the weighted inner product
space. Specifically, we will show that finite element and graph discretizations of important
classes of prior covariance and the forward model give discretized quantities F \natural and C0 that
well approximate in operator norm their infinite-dimensional counterparts \scrF \ast and \scrC 0; the
same would not be true for the Euclidean analogues F T and CE

0 .

2.3. Inverse problems in function space. As particular instances of the computational
framework reviewed in the previous subsection, here we consider discretizations of inverse
problems in function space using finite elements and graphs. To illustrate the ideas, we focus
on inverse problems with Mat\'ern-type priors and deconvolution forward models, introduced
in Examples 2.1 and 2.2 below. We let \scrH = L2(\Omega ) be the Hilbert space of square integrable
functions on \Omega with the usual inner product \langle \cdot , \cdot \rangle L2(\Omega ). For finite element discretizations, we

take \Omega =\scrD to be a sufficiently regular domain \scrD \subset \BbbR 
d, while for graph discretizations we take

\Omega = \scrM to be a d-dimensional smooth, connected, compact Riemannian manifold embedded
in \BbbR 

D. These choices of domain \Omega reflect popular settings for finite element and graph-based
discretizations in Bayesian inverse problems.

We next introduce our examples of prior and forward models, followed by a discussion of
their finite element and graph discretizations, both of which will be analyzed in a unified way
in section 3.

Example 2.1 (Mat\'ern-type prior). We will consider Gaussian priors \mu 0 =\scrN (m0,\scrC 0) with
Mat\'ern covariance operator \scrC 0 and mean m0 in the Cameron--Martin space Im(\scrC 1/2

0 ). Specif-
ically, for positive integer \alpha , we define \scrC 0 =\scrA  - \alpha , where \scrA  - 1 : L2(\Omega )\rightarrow H2(\Omega ) is the solution
operator for the following elliptic PDE in weak form:

\int 

\Omega 
\Theta \nabla u \cdot \nabla p+

\int 

\Omega 
bup=

\int 

\Omega 
fp \forall p\in H1(\Omega ).(2.17)

That is, for f \in L2(\Omega ), \scrA  - 1f = u, where u solves (2.17). Here and below, integrals are with
respect to the Lebesgue measure if \Omega = \scrD and with respect to the Riemannian volume form
if \Omega =\scrM . In the case \Omega =\scrD , we assume for concreteness Dirichlet boundary conditions and
take \scrH 1(\Omega ) \equiv H1

0 (\scrD ). In the case \Omega = \scrM , we take \scrH 1(\Omega ) \equiv H1(\scrM ). We emphasize that we
view \scrA  - 1 as a map from the right-hand side of the elliptic PDE to the solution. To ensure
that a solution to the PDE exists, is unique, and is sufficiently regular, the coefficients \Theta and
b must be positive and sufficiently smooth; precise assumptions will be given in our theorem
statements. Choosing these coefficients to be spatially varying allows one to encode additional
prior information about the unknown, such as anisotropic correlations. The parameter \alpha in
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A COMPUTATIONAL FRAMEWORK FOR INVERSE PROBLEMS 37

the covariance \scrC 0 =\scrA  - \alpha controls the regularity of prior draws. For simplicity, we restrict our
attention to positive integer-valued \alpha , but extensions to fractional values are possible [2, 7].
If the domain \Omega is sufficiently regular, \alpha is chosen to be large enough, and \Theta , b are positive
and sufficiently smooth, then the covariance operator \scrC 0 is trace-class on L2(\Omega ) [55].

Example 2.2 (deconvolution forward model). Consider the heat equation
\Biggl\{ 
vt(x, t) =\Delta v(x, t), x\in \Omega , t > 0,

v(x,0) = u(x), x\in \Omega .
(2.18)

In the case \Omega = \scrD , we supplement (2.18) with Dirichlet boundary conditions v(x, t) = 0, x \in 
\partial \scrD . We let \scrG : L2(\Omega )\rightarrow L2(\Omega ) map an input function u \in L2(\Omega ) to the solution to (2.18) at
time t= 1. It is well known that the heat equation admits a variational characterization, which
will lend itself more naturally to the numerical approximations introduced in subsections 2.3.1
and 2.3.2. We consider a linear observation model given by local averages of the solution over
a Euclidean ball of radius \delta > 0, which approximate pointwise observations:

\scrO v=
\Bigl[ 
v\delta (x1), . . . , v

\delta (xdy
)
\Bigr] T
, v\delta (xi) :=

\int 

B\delta (xi)\cap \Omega 
v(x,1).(2.19)

We then write our forward model as

\scrF :=\scrO \circ \scrG .(2.20)

The utility of considering the local average observation map is that it is a bounded linear map
from L2(\Omega ) to \BbbR 

dy , whereas pointwise observations are only bounded from subspaces of L2(\Omega )
with enough regularity to guarantee almost everywhere continuity. While the forward map
given by the heat equation is sufficiently smoothing to guarantee the solution is continuous,
the graph-based approximations to the forward map that we will consider may only converge
in L2(\Omega ). In those cases, it will be more convenient to consider the local average observations,
as in [25].

2.3.1. Finite element discretizations. The use of finite elements within the computa-
tional framework reviewed in subsection 2.2 was proposed and numerically investigated in [10].
Here, the domain \Omega is an open, bounded, and sufficiently regular subset \scrD \subset \BbbR 

d.We let \scrV be a
finite element discretization space with basis functions denoted by \{ \phi j\} nj=1. For concreteness,
we restrict our attention to linear Lagrange polynomial basis vectors. These basis functions
correspond to nodal points \{ xj\} nj=1 \in \BbbR 

d such that \phi i(xj) = \delta ij for i, j \in \{ 1, . . . , n\} . The domain
\scrD is partitioned by a mesh into elements e1, e2, . . . with hi := diameter(ei) and h := maxhi.
Two canonical families of Lagrange elements include d-simplexes and d-hypercubes. A d-
simplex is the region e\subset \BbbR 

d determined by d+ 1 distinct points (for d= 1 this is an interval,
and for d = 2 is a triangle). A d-hypercube is a product of d intervals on the real line,
e = [a1, b1] \times \cdot \cdot \cdot \times [ad, bd] \subset \BbbR 

d. As the mesh is refined (that is, as we take h \rightarrow 0), the
dimension of \scrV grows. To emphasize that we are considering a family of subspaces indexed
by the mesh width parameter h, we adopt the notation \scrV = \scrV h, as is typical in the finite
element literature. The theory we will present in subsection 3.2 holds for uniform (and, more
generally, quasi-uniform) mesh refinements.

Example 2.3 (finite element approximation of Mat\'ern covariance). For an operator \scrB :
L2(\scrD ) \rightarrow L2(\scrD ), one can consider the action of this operator restricted to the subspace \scrV h,
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38 DANIEL SANZ-ALONSO AND NATHAN WANIOREK

given by \scrB h = P \ast P\scrB P \ast P : \scrV h \rightarrow \scrV h, which is a finite-dimensional linear map. The matrix
representation B of this operator must satisfy

\int 

\scrD 
\phi i\scrB \phi j dx= \langle \vec{}ei,B\vec{}ej\rangle M ,

where \vec{}ei is the coordinate vector that corresponds to \phi i. This implies that B :\BbbR n
M \rightarrow \BbbR 

n
M can

be written explicitly as

B =M - 1K,(2.21)

where

Kij =

\int 

\scrD 
\phi i\scrB \phi j dx, i, j \in \{ 1, . . . , n\} .(2.22)

In particular, when representing the differential operator \scrA defined in (2.17), we get that K
is given by the stiffness matrix with entries

Kij =

\int 

\scrD 
\Theta (x)\nabla \phi i(x) \cdot \nabla \phi j(x) + b(x)\phi i(x)\phi j(x)dx, i, j \in \{ 1, . . . , n\} .(2.23)

One can verify that both A=M - 1K and A - 1 =K - 1M are self-adjoint in the weighted inner
product space. Recall that the coefficients of the Galerkin approximation to the elliptic PDE
(2.17) are given by solving the linear system

K\vec{}u=\vec{}b,

where bi =
\int 
\scrD f\phi i dx for 1 \leq i \leq n, see [44]. Since we have that \vec{}b = M \vec{}f (where \vec{}f = Pf),

we see that A - 1 \vec{}f =K - 1M \vec{}f is precisely the Galerkin approximation to \scrA  - 1f . We will show
in subsection 3.2.1 that the matrix C0 : \BbbR n

M \rightarrow \BbbR 
n
M given by C0 = A - \alpha = (K - 1M)\alpha well

approximates the continuum Mat\'ern covariance operator \scrC 0.
Example 2.4 (finite element approximation of heat forward model). The variational for-

mulation of the heat equation (2.18) naturally leads to a semidiscrete Galerkin approximation

vh(x, t) =

n\sum 

i=1

Ai(t)\phi i(x),(2.24)

which is required to satisfy that, for all \phi \in \scrV h,
\int 

\scrD 

\partial vh
\partial t

\phi (x)dx+

\int 

\scrD 
\nabla vh \cdot \nabla \phi (x)dx= 0, t\in (0,1],(2.25)

\int 

\scrD 
vh(x,0)\phi (x)dx=

\int 

D
u(x)\phi (x)dx, t= 0.(2.26)

This leads to a system of differential equations for the time-dependent coefficients Ai(t),

n\sum 

j=1

Mij
\partial 

\partial t
Aj(t) +KijA

j(t) = 0, i= 1, . . . , n,(2.27)
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A COMPUTATIONAL FRAMEWORK FOR INVERSE PROBLEMS 39

n\sum 

j=1

MijA
j(0) = gi, i= 1, . . . , n,(2.28)

where Mij = \langle \phi i, \phi j\rangle L2(\scrD ), Kij = \langle \phi i, - \Delta \phi j\rangle L2(\scrD ), and gi = \langle u,\phi i\rangle L2(\scrD ). Note that \vec{}A(t) =\bigl( 
A1(t), . . . ,An(t)

\bigr) T \in \BbbR 
n
M . Given the eigenpairs of K and M , this system of differential equa-

tions can be solved analytically. However, computing the eigenpairs may be prohibitively
expensive in practice, so the solution is often approximated by a time-discretization of the
semidiscrete problem. One such classical time discretization of (2.25) is the Crank--Nicolson
method: find vkh \in Vh, for k= 0, . . . ,1/\Delta t such that, for every \phi \in \scrV h,

\int 

\scrD 

vkh(x) - vk - 1
h (x)

\Delta t
\phi (x)dx+

\int 

\scrD 
\nabla 
\Biggl( 
vkh(x) + vk - 1

h (x)

2

\Biggr) 
\cdot \nabla \phi (x)dx= 0, k= 1, . . . ,1/\Delta t,

(2.29)

\int 

\scrD 
v0h(x)\phi (x)dx=

\int 

\scrD 
u(x)\phi (x)dx.

(2.30)

This leads to a system of linear equations analogous to (2.27) for the coefficients Aj
k \approx Aj(k\Delta t)

for k= 0, . . . ,1/\Delta t - 1:

M +K\Delta t

2
\vec{}Ak+1 =

M  - K\Delta t

2
\vec{}Ak, k= 1, . . . ,1/\Delta t - 1,

M \vec{}A0 = \vec{}g, k= 0.

The second equation is simply the requirement that \vec{}A0 be given by the orthogonal projection
onto \scrV h as \vec{}A0 = Pu. We write the mapping from the coefficients of the initial condition to
the coefficients of the solution at t= 1 as G :\BbbR n

M \rightarrow \BbbR 
n
M , where

G=

\Biggl( \biggl( 
M +K\Delta t

2

\biggr)  - 1\biggl( M  - K\Delta t

2

\biggr) \Biggr) 1

\Delta t

.(2.31)

We denote by O : \BbbR n
M \rightarrow \BbbR 

dy the map from coefficients to observations. Our discretized
forward model F :\BbbR n

M \rightarrow \BbbR 
dy is then given by

F :=OG.(2.32)

We remark that the observation map \scrO applied to the numerical solution to the heat equation
is an integral of a piecewise linear function. Such an integral can be computed exactly via
quadrature methods, which are typically tractable in low dimensions (e.g., d= 1,2,3). Since
finite element methods are seldom implemented in higher dimensions in practice, we make the
simplifying assumption that the observation map can be evaluated exactly for functions in \scrV h.

2.3.2. Graph-based discretizations. We will now see how the graph-based discretizations
considered in [25] fit into the above framework. Here we let \Omega =\scrM be a d-dimensional smooth,
connected, compact, Riemannian manifold embedded in \BbbR 

D. We assume further that \scrM has
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40 DANIEL SANZ-ALONSO AND NATHAN WANIOREK

bounded sectional curvature and Riemannian metric inherited from \BbbR 
D. Without loss of

generality, we let \scrM be normalized such that vol(\scrM ) = 1. We assume we have access to a
point cloud \scrM n = \{ x1, . . . , xn\} \subset \scrM of n samples from the uniform distribution \gamma on \scrM .
We let \gamma n = 1

n

\sum n
i=1 \delta xi

denote the empirical measure of \scrM n. We will show that this setting
naturally fits into our computational framework with basis vectors of the form \phi i(x) = 1Ui

(x),
where the sets \{ Ui\} ni=1 \subset \scrM form a partition of \scrM . We recall the following result from [24].

Proposition 2.5 (existence of transport maps). There is a constant c such that, with prob-
ability one, there exists a sequence of transport maps Tn : \scrM \rightarrow \scrM n such that \gamma n = Tn\sharp \gamma 
and

lim
n\rightarrow \infty 

sup
n1/d supx\in \scrM d\scrM (x,Tn(x))

(logn)cd
\leq c,(2.33)

where cd = 3/4 if d= 2 and cd = 1/d otherwise.

In the above, \gamma n = Tn\sharp \gamma indicates that \gamma (T - 1
n (U)) = \gamma n(U) for all measurable U , and d\scrM 

denotes the geodesic distance. We denote the preimage of each singleton as Ui = T - 1
n (\{ xi\} ).

The sets Ui form a partition of \scrM , and by the measure preserving property of Tn all have
mass \gamma (Ui) = 1/n. It follows from Proposition 2.5 that we have Ui \subset B\scrM (xi, \varepsilon n), where

\varepsilon n := sup
x\in \scrM 

d\scrM (x,Tn(x))\lesssim 
(logn)cd

n1/d
.

These sets will be used to define our basis functions \phi i(x) = 1Ui
(x), which correspond to locally

constant interpolations of functions in L2(\scrM ).We can then interpret vectors of function values
on the point cloud \scrM n as coefficient vectors in \BbbR 

n
M , where the corresponding mass matrix is

M = 1
nIn.

Example 2.6 (graph approximation of Mat\'ern covariance). In the manifold setting, we
opt to approximate the elliptic differential operator via the graph Laplacian. We define a
symmetric weight matrix W \in \BbbR 

n\times n that has entries Wij \geq 0 corresponding to closeness
between points in \scrM n by

Wij =
2(d+ 2)

n\nu dh
d+2
n

1\{ \| xi - xj\| 2<hn\} .(2.34)

Here \nu d denotes the volume of the d-dimensional unit ball, and hn denotes the graph con-
nectivity. Defining the degree matrix D = diag(d1, . . . , dn), where di =

\sum n
j=1Wij , we give

the unnormalized graph Laplacian by \Delta un
n = D  - W. This operator can be shown to con-

verge pointwise and spectrally to  - \Delta (the Laplace--Beltrami operator) in the manifold setting
[5, 11]. This construction can also be generalized to elliptic operators with spatially varying
coefficients. To do so, we define a nonstationary weight matrix \~W with entries

\~Wij =Wij

\sqrt{} 
\Theta (xi)\Theta (xj) =

2(d+ 2)

n\nu dh
d+2
n

1\{ \| xi - xj\| 2<hn\} 

\sqrt{} 
\Theta (xi)\Theta (xj) .(2.35)

We then define \Delta \Theta 
n = \~D  - \~W where \~Dii =

\sum n
j=1

\~Wij . Denoting Bn = diag(b(x1), . . . , b(xn)),
we approximate the differential operator \scrA as the matrix A :\BbbR n

M \rightarrow \BbbR 
n
M given by

A=\Delta \Theta 
n +Bn.(2.36)
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Both A and A - 1 are symmetric and self-adjoint in the weighted inner product space. The
matrix C0 : \BbbR 

n
M \rightarrow \BbbR 

n
M given by C0 = A - \alpha will be shown to well approximate the continuum

Mat\'ern covariance operator \scrC 0 in subsection 3.3.1.

Example 2.7 (graph approximation of heat forward model). For our graph-based approx-
imation of the heat forward model, we consider the differential equation

\Biggl\{ 
\partial vn

\partial t = - \Delta un
n vn, t > 0,

vn(0) = un.
(2.37)

We let Gn : \BbbR n
M \rightarrow \BbbR 

n
M map un \in \BbbR 

n
M to the solution vn(1) of (2.37). Given the eigenpairs

of the graph Laplacian, denoted \{ (\lambda (i)n , \psi 
(i)
n \} ni=1, we can explicitly write the solution to this

ordinary differential equation (ODE):

Gn(un) =

n\sum 

i=1

exp
\Bigl( 
 - \lambda (i)n

\Bigr) 
\langle un, \psi (i)

n \rangle M\psi (i)
n .(2.38)

The computations presented above for both the prior covariance discretization and the heat
forward model do not require the explicit computation of the sets Ui that partition \scrM and
define our basis vectors. In order to exactly compute the observation map defined in (2.19),
we would need to know precisely the sets Ui. To circumvent this challenge, we instead consider
a surrogate observation map \scrO n :\BbbR n

M \rightarrow \BbbR 
dy that only requires knowledge of the point cloud

\scrM n,

\scrO nvn =
\Bigl[ 
\=v\delta n,1, . . . , \=v

\delta 
n,1

\Bigr] T
, \=v\delta n,j :=

1

n

\sum 

k:xk\in B\delta (xj)\cap \scrM n

[vn(1)]k,(2.39)

for 1 \leq j \leq dy, where [vn(1)]k denotes the kth entry of the vector vn. For the purposes of
our analysis, it will be necessary to make the assumption on the boundary of \scrB \delta (xk) \cap \scrM .
In particular, we assume that length (\partial (\scrB \delta (xk)\cap \scrM )) = C\delta ,j for 1 \leq j \leq dy, where C\delta ,j is a
constant that depends on \scrM , \delta , and the observation point xj .

Our discretized forward model F :\BbbR n
M \rightarrow \BbbR 

dy is then given by

F :=\scrO nGn.(2.40)

3. Error analysis. This section analyzes the computational framework introduced in sec-
tion 2. We start in subsection 3.1 by establishing error bounds on the infinite-dimensional
posterior mean and covariance based on a general assumption. Next, we verify this assump-
tion in the function space setting of subsection 2.3, studying finite element discretizations
(subsection 3.2) and graph-based methods (subsection 3.3).

3.1. Error analysis: General computational framework. The main results of this subsec-
tion, Theorems 3.3 and 3.4, quantify the errors in the mean and covariance approximations

\varepsilon m = \| m\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}  - P \ast \vec{}m\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}\| \scrH ,(3.1)

\varepsilon C = \| \scrC \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}  - P \ast C\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}P\| op,(3.2)
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42 DANIEL SANZ-ALONSO AND NATHAN WANIOREK

where we recall that P : \scrH \rightarrow \BbbR 
n
M is the discretization map defined in (2.7) and P \ast : \BbbR n

M \rightarrow 
\scrV \subset \scrH is the extension map defined in (2.8). Our bounds on \varepsilon m and \varepsilon C will rely on a general
assumption on (i) the closeness of the covariance operator \scrC 0 :\scrH \rightarrow \scrH and its discrete approx-
imation C0 : \BbbR n

M \rightarrow \BbbR 
n
M , encoded in an assumption on the operator norm \| \scrC 0  - P \ast C0P\| op;

(ii) the closeness of the forward model \scrF : \scrH \rightarrow \BbbR 
dy and its approximation F : \BbbR n

M \rightarrow \BbbR 
dy ,

encoded in an assumption on the operator norm \| \scrF  - FP\| op; and (iii) the closeness of the
finite-dimensional space \scrV and the infinite-dimensional space \scrH , encoded in an assumption
that the orthogonal projection operator P \ast P :\scrH \rightarrow \scrV is close to the identity.

Assumption 3.1. The following hold:
(i) (Error in approximation of prior covariance.) There is a constant r1 \in \BbbR and a function

\psi 1 :\BbbN \rightarrow \BbbR with limn\rightarrow \infty \psi 1(n) = 0 such that \| \scrC 0  - P \ast C0P\| op \leq r1\psi 1(n).
(ii) (Error in approximation of forward model.) There is a constant r2 \in \BbbR and a function

\psi 2 :\BbbN \rightarrow \BbbR with limn\rightarrow \infty \psi 2(n) = 0 such that \| \scrF  - FP\| op \leq r2\psi 2(n).
(iii) (Error in orthogonal projection.) There is a Hilbert space \scrH \prime continuously embedded

in \scrH , a constant r3 \in \BbbR , and a function \psi 3 :\BbbN \rightarrow \BbbR with limn\rightarrow \infty \psi 3(n) = 0 such that,
for every u\in \scrH \prime , \| (I  - P \ast P )u\| \scrH \leq r3\psi 3(n)\| u\| \scrH \prime .

In subsections 3.2 and 3.3, we will verify Assumption 3.1 for the important examples of
finite element and graph discretization spaces, Mat\'ern-type prior covariance operators, and
deconvolution forward models. In these examples, we will take the space \scrH \prime in Assump-
tion 3.1(iii) to be an appropriate Sobolev space contained in the Cameron--Martin space

Im(\scrC 1/2
0 ).
To establish upper bounds on the mean and covariance approximation errors (3.1) and

(3.2), we will first prove a lemma similar to the lemmas in [26] and [36]. Following the approach
in these papers, we introduce the Kalman gain operator

K : S+ \times B(\scrH ,\BbbR dy)\rightarrow B(\BbbR dy ,\scrH ), K (\scrC ,\scrF ) = \scrC \scrF \ast (\scrF \scrC \scrF \ast +\Gamma ) - 1.(3.3)

Unlike [26, 36], we view the Kalman gain operator as a function of not just the covariance but
of both the forward map and the covariance. The following lemma shows that the Kalman
gain operator is pointwise continuous.

Lemma 3.2 (continuity of Kalman gain update). Let K be the Kalman gain operator defined

in (3.3). Let \scrC 1,\scrC 2 \in S+, let \scrF 1,\scrF 2 \in B(\scrH ,\BbbR dy), and let \Gamma \in Sdy

++. The following holds:

\| K (\scrC 1,\scrF 1) - K (\scrC 2,\scrF 2)\| op \leq c1\| \scrC 1  - \scrC 2\| op + c2\| \scrF 1  - \scrF 2\| op,(3.4)

where

c1 = \| \Gamma  - 1\| op\| \scrF 2\| op + \| \Gamma  - 1\| 2op\| \scrC 1\| op\| \scrF 1\| op\| \scrF 2\| 2op,
c2 = \| \Gamma  - 1\| op\| \scrC 1\| op + \| \Gamma  - 1\| 2op\| \scrC 1\| 2op\| \scrF 1\| 2op + \| \Gamma  - 1\| op\| \scrC 1\| 2op\| \scrF 1\| op\| \scrF 2\| op.

(3.5)

Proof. Applying Lemma A.8 from [26] (which was stated for matrices but also holds in
our infinite-dimensional setting), we get that

\| K (\scrF 1,\scrC 1) - K (\scrF 2,\scrC 2)\| op \leq \| \Gamma  - 1\| op\| \scrC 1\scrF \ast 
1  - \scrC 2\scrF \ast 

2\| op
+ \| \Gamma  - 1\| 2op\| \scrC 1\scrF \ast 

1\| op\| \scrF 1\scrC 1\scrF \ast 
1  - \scrF 2\scrC 2\scrF \ast 

2\| op.
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A COMPUTATIONAL FRAMEWORK FOR INVERSE PROBLEMS 43

We can then bound each of these terms with the triangle inequality as follows:

\| \scrC 1\scrF \ast 
1  - \scrC 2\scrF \ast 

2\| op = \| \scrC 1\scrF \ast 
1  - \scrC 1\scrF \ast 

2 + \scrC 1\scrF \ast 
2  - \scrC 2\scrF \ast 

2\| op
\leq \| \scrC 1\| op\| \scrF 1  - \scrF 2\| op + \| \scrF 2\| op\| \scrC 1  - \scrC 2\| op

and

\| \scrF 1\scrC 1\scrF \ast 
1  - \scrF 2\scrC 2\scrF \ast 

2\| op = \| \scrF 1\scrC 1\scrF \ast 
1  - \scrF 2\scrC 1\scrF \ast 

1 +\scrF 2\scrC 1\scrF \ast 
1  - \scrF 2\scrC 2\scrF \ast 

2\| op
\leq \| \scrC 1\scrF \ast 

1\| op\| \scrF 1  - \scrF 2\| op + \| \scrF 2\| op\| \scrC 1\scrF \ast 
1  - \scrC 2\scrF \ast 

2\| op.
Combining these three displayed inequalities gives the desired result.

Theorem 3.3 (mean approximation error). Consider the error \varepsilon m in (3.1) between the true
posterior mean in (2.5) and its finite-dimensional posterior approximation in (2.13). Then,
under Assumption 3.1 it holds that

\varepsilon m \leq r\prime 1\psi 1(n) + r\prime 2\psi 2(n) + r\prime 3\psi 3(n),(3.6)

where

r\prime 1 = 2c1r1\| y - \scrF m0\| 2,
r\prime 2 = 2c2r2\| y - \scrF m0\| 2 + r2\| m0\| \scrH \| K (\scrC 0,\scrF )\| op,
r\prime 3 = r3\| m0\| \scrH \prime ,

and c1, c2 are defined as in (3.5).

Proof. By the definition of \varepsilon m in (3.1) and an application of the triangle inequality,

\varepsilon m \leq \| m0  - P \ast \vec{}m0\| \scrH + \| K (\scrC 0,\scrF ) - K (P \ast C0P,FP )\| op\| y - F \vec{}m0\| 2
+ \| K (\scrC 0,\scrF )\| op\| \scrF m0  - F \vec{}m0\| 2.

(3.7)

We next bound each of the terms on the right-hand side. By Assumption 3.1(iii) and the fact
that \vec{}m0 = Pm0, we have that

\| m0  - P \ast \vec{}m0\| \scrH = \| m0  - P \ast Pm0\| \scrH \leq r3\| m0\| \scrH \prime \psi 3(n).(3.8)

By Lemma 3.2 and Assumption 3.1(i) and (ii), we have that

\| K (\scrC 0,\scrF ) - K (P \ast C0P,FP )\| op \leq c1\| \scrC 0  - P \ast C0P\| op + c2\| \scrF  - FP\| op
\leq c1r1\psi 1(n) + c2r2\psi 2(n).

(3.9)

By Assumption 3.1(ii) and (iii) we have that

\| y - F \vec{}m0\| \leq \| y - \scrF m0\| + \| \scrF \| op\| m0  - Pm0\| \scrH + \| \scrF  - FP\| op\| m0\| \scrH 
\leq \| y - \scrF m0\| + \| \scrF \| op\| m0\| \scrH \prime r3\psi 3(n) + \| m0\| \scrH r2\psi 2(n).

This implies that for n sufficiently large, it holds that

\| y - F \vec{}m0\| 2 \leq 2\| y - \scrF m0\| 2.(3.10)

Finally, by Assumption 3.1(ii) we have that

\| \scrF m0  - F \vec{}m0\| 2 \leq \| \scrF  - FP\| op\| m0\| \scrH \leq r2\| m0\| \scrH \psi 2(n).(3.11)

Plugging the bounds (3.8), (3.9), (3.10), and (3.11) into inequality (3.7) gives the desired
result.
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44 DANIEL SANZ-ALONSO AND NATHAN WANIOREK

Theorem 3.4 (covariance approximation error). Consider the error \varepsilon C in (3.2) between the
true posterior covariance operator in (2.6) and its finite-dimensional posterior approximation
in (2.14). Then, under Assumption 3.1 it holds that

\varepsilon C \leq r\prime 1\psi 1(n) + r\prime 2\psi 2(n),(3.12)

where

r\prime 1 = r1 + 2c1r1\| \scrF \| op\| \scrC 0\| op + 2r1\| \scrF \| op\| K (\scrC 0,\scrF )\| op,
r\prime 2 = 2c2r2\| \scrF \scrC 0\| op + r2\| \scrC 0\| op\| K (\scrC 0,\scrF )\| op,

and c1, c2 are defined as in (3.5).

Proof. By the definition of \varepsilon C in (3.2) and an application of the triangle inequality,

\varepsilon C \leq \| \scrC 0  - P \ast C0P\| op + \| K (\scrC 0,\scrF ) - K (P \ast C0P,FP )\| op\| FC0P\| op
+ \| K (\scrC 0,\scrF )\| op\| \scrF \scrC 0  - FC0P\| op.

(3.13)

By Assumption 3.1(i) we have that

\| \scrC 0  - PC0P\| op \leq r1\psi 1(n).(3.14)

As in the previous proof, applying Lemma 3.2 and using Assumption 3.1(i) and (ii) gives

\| K (\scrC 0,\scrF ) - K (P \ast C0P,FP )\| op \leq c1r1\psi 1(n) + c2r2\psi 2(n).(3.15)

The triangle inequality along with Assumption 3.1(i) and (ii) yield the bound

\| \scrF \scrC 0  - FC0P\| op \leq \| FP\| op\| \scrC 0  - P \ast C0P\| op + \| \scrF  - FP\| op\| \scrC 0\| op
\leq r1\| FP\| op\psi 1(n) + r2\| \scrC 0\| op\psi 2(n).

(3.16)

Assumption 3.1(i) and (ii) guarantee that, for sufficiently large n,

\| FP\| op \leq 2\| \scrF \| op and \| FC0P\| op \leq 2\| \scrF \| op\| \scrC 0\| op.(3.17)

Plugging in the bounds (3.14), (3.15), (3.16), and (3.17) into (3.13) gives the desired
result.

3.2. Error analysis: Finite element discretizations. The following result applies Theo-
rems 3.3 and 3.4 to quantify the errors in the finite element approximations to the posterior
mean and covariance operators in the setting considered in subsection 2.3.1.

Theorem 3.5 (finite element posterior mean and covariance approximation). Consider the
discretization proposed in subsection 2.3.1 with a finite element space \scrV h of linear Lagrange
basis vectors and time discretization step of \Delta t. Assume the prior mean function is chosen to
be in the Sobolev space Hs(\scrD ). Let \Theta (x) \in C1( \=\scrD ), let b(x) \in L\infty (\scrD ), and assume that both
functions are (almost surely) bounded below by positive constants. The errors in the mean and
covariance approximations are bounded by

\| m\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}(x) - P \ast \vec{}m\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}\| L2(\scrD ) \lesssim h\mathrm{m}\mathrm{i}\mathrm{n}\{ 2,s\} +\Delta t2,

\| \scrC \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}  - P \ast C0P\| op \lesssim h2 +\Delta t2.
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This result follows from Theorems 3.3 and 3.4 upon verifying that Assumption 3.1 holds
for the finite element discretizations of our model Bayesian inverse problem. Verifying these
assumptions will be the focus of the following three subsections. In so doing, we will view
the \psi i in Assumption 3.1 as functions of the mesh width h, noting that this quantity de-
termines the dimension n of the discretization space. For simplicity, we have restricted our
discussion to linear Lagrange basis vectors. As our general theory suggests, higher degree
polynomials could be used in the finite element approximations to yield faster convergence
rates.

3.2.1. Finite element approximation of Mat\'ern-type prior covariance. Here we show
that the finite element approximation to the covariance operator given in subsection 2.3.1
satisfies Assumption 3.1(i).

Theorem 3.6 (operator-norm error for finite element prior covariance approximation). Let \scrC 0 :
L2(\scrD )\rightarrow L2(\scrD ) be the prior covariance operator defined in section 2, and let A - \alpha :\BbbR n

M \rightarrow \BbbR 
n
M

be the finite-dimensional approximation defined in subsection 2.3.1 corresponding to a finite
element space \scrV h with piecewise linear basis functions. Let \Theta (x) \in C1( \=\scrD ), let b(x) \in L\infty (\scrD ),
and assume that both functions are (almost surely) bounded below by positive constants. Then,
there exists a constant c independent of h such that

\| \scrC 0  - P \ast A - \alpha P\| op \leq ch2.(3.18)

The proof can be found in Appendix B. This shows that the finite-dimensional prior
approximation proposed in subsection 2.3.1 satisfies Assumption 3.1(i) with \psi 1(h) = h2.

3.2.2. Finite element approximation of heat forward model. We now show that the
discretized finite element forward map given in (2.32) satisfies Assumption 3.1(ii).

Theorem 3.7 (operator-norm error for finite element forward map approximation). Let \scrF :
L2(\scrD ) \rightarrow \BbbR 

dy be the forward model defined in (2.20), and let F : \BbbR n
M \rightarrow \BbbR 

dy be the finite-
dimensional approximation defined in (2.32) corresponding to a finite element space \scrV h con-
sisting of linear Lagrange basis vectors and a time-discretization step of \Delta t. Then, there exist
constants c1 and c2 independent of h and \Delta t such that

\| \scrF  - FP\| op \leq c1h
2 + c2\Delta t

2.(3.19)

The proof is given in Appendix B. We see that Assumption 3.1(ii) holds for the Crank--
Nicolson discretization with \psi 2(h) = h2 +\Delta t2.

3.2.3. Finite element orthogonal projection. We first verify that the orthogonal projec-
tion of the prior mean function onto the finite element subspace \scrV h converges as in Assump-
tion 3.1(iii) as the mesh is refined. We let m0(x) \in Hs(\scrD ). Since we require that the mean

function lies in the Cameron--Martin space E = Im(\scrC 1/2
0 ), we must have that s \geq \alpha . We

assume that \scrV h consists of piecewise linear basis functions. Since s \geq \alpha > d/2, the Sobolev
embedding theorem guarantees that functions in Hs(\scrD ) are continuous. Consequently, the
prior mean function can be well approximated by piecewise linear interpolants and, in turn,
by its orthogonal projection onto \scrV h. Assuming that the finite element space \scrV h is given by a
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46 DANIEL SANZ-ALONSO AND NATHAN WANIOREK

quasi-uniform mesh refinement of \scrD with linear Lagrange basis functions, [44, Theorem 6.8]
guarantees that, for any m0 \in Hs(\scrD ), there exists an element U \in \scrV h such that

\| m0  - U\| L2(\scrD ) \leq ch\mathrm{m}\mathrm{i}\mathrm{n}\{ 2,s\} \| m0\| Hs(\scrD ).

Since the orthogonal projection is defined to minimize the L2(\scrD ) error over all functions in
\scrV h, we have that, for any m0 \in Hs(\scrD ),

\| m0  - P \ast Pm0\| L2(\scrD ) \leq \| m0  - U\| L2(\scrD ) \leq ch\mathrm{m}\mathrm{i}\mathrm{n}\{ 2,s\} \| m0\| Hs(\scrD ).(3.20)

We see that Assumption 3.1(iii) holds for the finite element discretization with \psi 3(h) =
h\mathrm{m}\mathrm{i}\mathrm{n}\{ 2,s\} and \scrH \prime =Hs(\scrD ).

We have now verified that Assumption 3.1 holds for the finite element discretization,
proving Theorem 3.5.

3.3. Error analysis: Graph-based approximations. The following result applies Theo-
rems 3.3 and 3.4 to quantify the error in the graph-based approximations to the posterior
mean and covariance operator in the setting considered in subsection 2.3.2.

Theorem 3.8 (graph-based posterior mean and covariance approximation). Consider the dis-
cretization proposed in subsection 2.3.2. Assume we are in a realization in which the con-
clusion of Proposition 2.5 holds and we have that \alpha > (5d+ 1)/4. Let b(x) be Lipschitz, let
\Theta (x) \in C1(\scrM ), and suppose that both are bounded below by positive constants. Then, if we

take the scaling hn \asymp 
\sqrt{} 

(\mathrm{l}\mathrm{o}\mathrm{g}n)cd

n1/d , the errors in the posterior mean and covariance approxima-
tions are bounded by

\| m\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}(x) - P \ast \vec{}m\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}\| L2(\scrM ) \lesssim (logn)
cd
4 n - 

1

4d ,

\| \scrC \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}  - P \ast C\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}P\| op \lesssim (logn)
cd
4 n - 

1

4d ,

where cd = 3/4 if d= 2 and cd = 1/d otherwise.

This result follows from Theorems 3.3 and 3.4 upon verifying that the graph-based dis-
cretization satisfies Assumption 3.1 for our model problem. Verifying these assumptions will
be the focus of the following subsections. In all that follows, we assume we are in a realization
where the conclusion of Proposition 2.5 holds.

3.3.1. Graph-based approximation of Mat\'ern-type prior covariance. The following theo-
rem shows that the covariance operator constructed in section 2.3.2 satisfies Assumption 3.1(ii).
The proof can be found in Appendix C.

Theorem 3.9 (operator-norm error for graph-based prior covariance approximation). Let b(x)
be Lipschitz, \Theta (x) \in C1(\scrM ), and suppose that both are bounded below by positive constants.

Let \alpha > (5d+ 1)/4, and take hn \asymp 
\sqrt{} 

(\mathrm{l}\mathrm{o}\mathrm{g}n)cd

n1/d . Then,

\| \scrC 0  - P \ast (\Delta \Theta 
n +Bn)

 - \alpha P\| op \lesssim (logn)
cd
4 n - 

1

4d ,

where cd = 3/4 if d= 2 and cd = 1/d otherwise.
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Remark 3.10. The proof of Theorem 3.9 in Appendix C follows that of Theorem D.1 in [51].
However, since we are working with the covariance operator (as opposed to the square root of
the covariance operator as is the case when sampling the Mat\'ern fields), we get convergence
rates for \alpha > (5d+ 1)/4 as opposed to \alpha > (5d+ 1)/2. The rates of convergence are still the
same, since the error is still dominated by the error in approximating the eigenfunctions.

We have shown that the graph-based finite-dimensional approximation to the prior co-
variance proposed in subsection 2.3.2 satisfies Assumption 3.1(i) with \psi 1(n) = (logn)

cd
4 n - 

1

4d ,
where cd = 3/4 if d= 2 and cd = 1/d otherwise.

3.3.2. Graph-based approximation of heat forward model. We show that the graph-
based approximation of the heat forward model, together with the surrogate observation
operator, satisfies Assumption 3.1(iii). The proof can be found in Appendix C.

Theorem 3.11 (operator-norm error for graph-based forward map approximation). Let F =

\scrO nGn be the forward model defined in subsection 2.3.2. Take hn \asymp 
\sqrt{} 

(\mathrm{l}\mathrm{o}\mathrm{g}n)cd

n1/d . Then,

\| \scrF  - P \ast FP\| op \lesssim (logn)
cd
4 n - 

1

4d .(3.21)

We have shown that the graph-based finite-dimensional approximation to the forward
model proposed in subsection 2.3.2 satisfies Assumption 3.1(ii) with \psi 2(n) = (logn)

cd
4 n - 

1

4d ,
where cd = 3/4 if d= 2 and cd = 1/d otherwise.

3.3.3. Graph-based orthogonal projection. Finally, we verify that the orthogonal pro-
jection of the prior mean function onto the subspace \scrV = span\{ 1Ui

(x)\} ni=1 converges as
in Assumption 3.1(iii). Since the mean function must lie in the Cameron--Martin space

E = Im(\scrC 1/2
0 ), we necessarily have that m0(x) \in H1(\scrM ). The following result from [24,

Lemma 12] quantifies the convergence rate of the projected mean function.

Lemma 3.12 (Lemma 12 in [24]). There exists a constant c\scrM independent of n such that,
for every m0 \in H1(\scrM ), we have

\| m0  - P \ast Pm0\| L2(\scrM ) \leq c\scrM \varepsilon n\| m0\| H1(\scrM ) \lesssim 
(logn)cd

n1/d
\| m0\| H1(\scrM ).(3.22)

We see that Assumption 3.1(iii) holds for the graph-based discretization with \psi 3(n) =
(\mathrm{l}\mathrm{o}\mathrm{g}n)cd

n1/d and \scrH \prime =H1(\scrM ). For large n, this term will be dominated by \psi 1(n) and \psi 2(n).
We have now verified that Assumption 3.1 holds for the graph-based discretization, prov-

ing Theorem 3.8.

4. Sample size requirements for ensemble Kalman updates. In this section, we formu-
late the ensemble Kalman update in weighted inner product space and show that the effective
dimension of the discretized problem is controlled by the effective dimension of the continuum
problem, which is finite.

4.1. Ensemble approximation to finite-dimensional posterior. To implement an ensem-
ble Kalman approximation to the finite-dimensional Gaussian posterior given by (2.12), we
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48 DANIEL SANZ-ALONSO AND NATHAN WANIOREK

need to draw samples from the Gaussian prior distribution, \scrN (\vec{}m0,C0) given by (2.10). To do
so, we draw \xi (j) \sim \scrN (0, I) and compute samples

u(j) = \vec{}m0 +L\xi (j), u(j) \sim \scrN (\vec{}m0,C0),(4.1)

for 1 \leq j \leq J , where L is a linear map from \BbbR 
n \rightarrow \BbbR 

n
M such that C0 = LL\sharp = LLTM. Recall

that given samples u(1), . . . , u(J) \sim \scrN (0,\scrC ) from a Gaussian measure in a Hilbert space \scrH , the
sample covariance operator is defined as the operator \widehat \scrC :\scrH \rightarrow \scrH ,

\widehat \scrC u := 1

J  - 1

J\sum 

j=1

\langle u(j), u\rangle \scrH u(j), u\in \scrH .

As such, the sample covariance operator on \BbbR 
n
M is given by

\widehat C0 =
1

J  - 1

J\sum 

j=1

(u(j)  - \widehat m0)(u
(j)  - \widehat m0)

TM,

where \widehat m0 = 1
J

\sum J
j=1 u

(j) is the sample mean. The perturbed observation ensemble Kalman
update transforms each sample from the prior ensemble via

v(j) = u(j) + \widehat C0F
\natural 
\Bigl( 
F \widehat C0F

\natural +\Gamma 
\Bigr)  - 1 \Bigl( 

y - Fu(j) + \eta (j)
\Bigr) 
, \eta (j)

\mathrm{i}.\mathrm{i}.\mathrm{d}.\sim \scrN (0,\Gamma ).(4.2)

We then output the sample mean and covariance of the transformed ensemble, given by

\widehat m\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t} =
1

J

J\sum 

j=1

v(j) and \widehat C\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t} =
1

J  - 1

J\sum 

J=1

(v(j)  - \widehat m\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t})(v
(j)  - \widehat m\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t})

TM.(4.3)

4.2. Ensemble Kalman approximation: Error analysis. We now want to derive nonasymp-
totic expectation bounds for the error in the ensemble approximation to the infinite-dimensional
posterior. We consider the errors

\widehat \varepsilon m =\BbbE \| m\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}  - P \ast \widehat m\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}\| \scrH ,(4.4)

\^\varepsilon C =\BbbE \| \scrC \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}  - P \ast \^C\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}P\| op.(4.5)

Controlling these errors will amount to controlling the error between the ensemble approxima-
tions and the finite-dimensional approximations using the theory from [26] and then applying
our results from section 3. Since the dimension of the discretized covariance matrices increases
as the mesh is refined, we will require bounds that do not have an explicit dependence on the
dimension. To do so, we define the effective dimension of a mapping C0 :\BbbR 

n
M \rightarrow \BbbR 

n
M to be

rM (C0) :=
Tr(C0)

\| C0\| op
,(4.6)

where \| \cdot \| op is the operator norm from \BbbR 
n
M to \BbbR 

n
M . When the eigenvalues of C0 decay rapidly,

the effective dimension rM (C0) is a better measure of dimension than the nominal state
dimension n [60]. We will show in subsection 4.3 that for the finite element discretization,
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the effective dimension of the discretized operator is controlled by the effective dimension
of the continuum operator, defined to be r(\scrC 0) = \mathrm{T}\mathrm{r}(\scrC 0)

\| \scrC 0\| op
, where \| \cdot \| op denotes the operator

norm from \scrH to \scrH . Since the prior covariance operator must be chosen to be bounded and
trace-class, this quantity is necessarily finite. As such, the error bounds that we now derive
for the ensemble approximation will not degenerate as the mesh is refined, despite the state
dimension increasing arbitrarily.

Theorem 4.1 (mean ensemble approximation error). Let \widehat \varepsilon m be the expected error between the
infinite-dimensional posterior mean and the ensemble posterior mean with an ensemble of size
J , as defined in (4.4). Assume that the finite-dimensional approximations satisfy Assumption
3.1; that for n sufficiently large, rM (C0)\leq cr(\scrC 0) for some constant c independent of n; and
that J \geq rM (C0). Then, it holds that

\widehat \varepsilon m \leq r\prime 1\psi 1(n) + r\prime 2\psi 2(n) + r\prime 3\psi 3(n) + r\prime 4
1\surd 
J
,(4.7)

where the constants r\prime i are independent of n and J.

Proof. By the triangle inequality, we decompose the expected error as

\BbbE \| m\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}(x) - P \ast \widehat m\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}(x)\| L2(\scrD ) \leq \BbbE \| m\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}(x) - P \ast \vec{}m\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}(x)\| L2 +\BbbE \| \widehat m\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}  - \vec{}m\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}\| M .

The first term on the right-hand side is deterministic and is bounded by Theorem 3.3:

\BbbE \| m\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}(x) - P \ast \vec{}m\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}(x)\| L2 = \| m\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}(x) - P \ast \vec{}m\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}(x)\| L2 \lesssim r\prime 1\psi 1(n) + r\prime 2\psi 2(n) + r\prime 3\psi 3(n).

For the second term on the right-hand side, we recall [26, Theorem 3.3], which guarantees the
following:

\BbbE \| \widehat m\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}  - \vec{}m\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}\| M \lesssim c\prime n

\sqrt{} 
rM (C0)

J
+ c\prime \prime n

\sqrt{} 
r2(\Gamma )

J
,(4.8)

where c\prime n = (\| C0\| 1/2op \vee \| C0\| 2op)
\bigl( 
\| F\| op \vee \| F\| 4op

\bigr) \bigl( 
\| \Gamma  - 1\| op \vee \| \Gamma  - 1\| 2op

\bigr) 
(1\vee \| y - F \vec{}m0\| 2), and

c\prime \prime n = \| F\| op\| \Gamma  - 1\| op\| \Gamma \| 1/2op \| C0\| op. The quantity r2(\Gamma ) is the effective dimension of \Gamma in the
usual Euclidean inner product space. The quantities c\prime n and c\prime \prime n depend on n; however, under
Assumption 3.1 each of the discretized operators appearing in the constants can be made
arbitrarily close to their continuum counterparts when n is sufficiently large. In particular,
we can take n to be large enough such that the following two bounds hold:

c\prime n \leq c\prime = 2
\Bigl( 
\| \scrC 0\| 1/2op \vee \| \scrC 0\| 2op

\Bigr) \bigl( 
\| \scrF \| op \vee \| \scrF \| 4op

\bigr) \bigl( 
\| \Gamma  - 1\| op \vee \| \Gamma  - 1\| 2op

\bigr) 
(1\vee \| y - \scrF m0\| 2) ,

c\prime \prime n \leq c\prime \prime = 2\| \scrF \| op\| \Gamma  - 1\| op\| \Gamma \| 1/2op \| \scrC 0\| op.

From these bounds combined with our assumption that rM (C0) \leq cr(\scrC 0), we take r\prime 4 =\surd 
cc\prime 
\sqrt{} 
r(\scrC 0) + c\prime \prime 

\sqrt{} 
r(\Gamma ), and the result follows.
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50 DANIEL SANZ-ALONSO AND NATHAN WANIOREK

Theorem 4.2 (covariance ensemble approximation error). Let \widehat \varepsilon C be the expected error be-
tween the infinite-dimensional posterior covariance and the ensemble posterior covariance with
an ensemble of size J , as defined in (4.4). Assume that the finite-dimensional approximations
satisfy Assumption 3.1; that for n sufficiently large, rM (C0) \leq cr(\scrC 0) for some constant c
independent of n; and that J \geq rM (C0). Then, it holds that

\widehat \varepsilon C \leq r\prime 1\psi 1(n) + r\prime 2\psi 2(n) + r\prime 3
1\surd 
J
,(4.9)

where the constants r\prime i are independent of the discretization dimension n and the ensemble
size J.

Proof. The proof proceeds similarly to that of Theorem 4.1. We decompose the error as

\BbbE \| \scrC \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}  - P \ast \widehat C\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}P\| op \leq \BbbE \| \scrC \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}  - P \ast C\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}P\| op +\BbbE \| C\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}  - \widehat C\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}\| op.(4.10)

The first term on the right-hand side is deterministic and is controlled by Theorem 3.4:

\BbbE \| \scrC \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}  - P \ast C\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}P\| op = \| \scrC \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}  - P \ast C\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}P\| op \lesssim r\prime 1\psi 1(n) + r\prime 2\psi 2(n).

For the second term, we use [26, Theorem 3.5], which guarantees that

\BbbE \| \widehat C\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}  - C\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}\| op \lesssim c\prime n

\sqrt{} 
rM (C0)

J
+ c\prime \prime n

\Biggl( \sqrt{} 
rM (C0)

J
\vee 
\sqrt{} 
r2(\Gamma )

J

\Biggr) 
,(4.11)

where

c\prime n =
\bigl( 
\| C0\| op \vee \| C0\| 3op

\bigr) \bigl( 
\| F\| 2op \vee \| F\| 4op

\bigr) \bigl( 
\| \Gamma  - 1\| op \vee \| \Gamma  - 1\| 2op

\bigr) 
,

c\prime \prime n =
\bigl( 
\| F\| op \vee \| F\| 3op

\bigr) \bigl( 
\Gamma  - 1\| \vee \| \Gamma  - 1\| 2

\bigr) 
(\| C0\| op \vee \| \Gamma \| op)

\bigl( 
\| C0\| op \vee \| C0\| 2

\bigr) 
.

Again, the quantities c\prime n and c\prime \prime n depend on n; however, under Assumption 3.1 each of the dis-
cretized operators appearing in the constants can be made arbitrarily close to their continuum
counterparts when n is sufficiently large. In particular, we take n to be large enough such
that the following two bounds hold:

c\prime n \leq c\prime = 2
\bigl( 
\| \scrC 0\| op \vee \| \scrC 0\| 3op

\bigr) \bigl( 
\| \scrF \| 2op \vee \| \scrF \| 4op

\bigr) \bigl( 
\| \Gamma  - 1\| op \vee \| \Gamma  - 1\| 2op

\bigr) 
,

c\prime \prime n \leq c\prime \prime = 2
\bigl( 
\| \scrF \| op \vee \| \scrF \| 3op

\bigr) \bigl( 
\Gamma  - 1\| \vee \| \Gamma  - 1\| 2

\bigr) 
(\| \scrC 0\| op \vee \| \Gamma \| op)

\bigl( 
\| \scrC 0\| op \vee \| \scrC 0\| 2

\bigr) 
.

With these bounds and our assumption that rM (C0) \leq cr(\scrC 0), we take r3 =
\surd 
cc\prime 
\sqrt{} 
r(\scrC 0) +

c\prime \prime (
\surd 
c
\sqrt{} 
r(\scrC 0)\vee r2(\Gamma )), and we are done.

The results in [26] also prove high probability bounds for the error in the posterior means
and covariances, which are stronger than the expectation bounds used here. High probability
bounds can be just as easily obtained within our computational framework, but we elect to
present the expectation bounds for simplicity of exposition.
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A COMPUTATIONAL FRAMEWORK FOR INVERSE PROBLEMS 51

4.3. Effective dimension of prior covariance. The results in the previous subsection relied
on the assumption that the effective dimension of the discretized covariance operator in the
weighted inner product space is bounded above independently of the discretization level for
sufficiently large n. We will now show that this assumption does indeed hold for the finite
element covariance discretization given in subsection 2.3.1. To get an upper bound for 4.6,
we need an upper bound for Tr(C0) and a lower bound for \| C0\| M . The following result uses
classical eigenvalue approximation results and our operator-norm convergence result to derive
such a bound.

Theorem 4.3 (effective dimension upper bound). Let the assumptions of Theorem 3.6 hold.
Then, for h sufficiently small, there exists a constant \tau independent of h such that

rM (C0)\leq 
Tr(\scrC 0)

\| \scrC 0\| op  - \tau h2
.(4.12)

Consequently, for any constant c > 1, taking h\leq 
\sqrt{} 
\tau (1 - 1

c )\| \scrC 0\| op guarantees that

rM (C0)\leq cr(\scrC 0).(4.13)

Proof. By Theorem 3.6 we have that

\| \scrC 0  - P \ast C0P\| op \leq \tau h2

for some constant \tau independent of h. Applying the reverse triangle inequality to this inequal-
ity gives us that

\| P \ast C0P\| op \geq \| \scrC 0\| op  - \tau h2.

Then, using the fact that the \BbbR 
n
M matrix operator norm coincides with the L2(\scrD ) operator

norm of any mapping in the weighted inner product space, we get that

\| C0\| op \geq \| \scrC 0\| op  - \tau h2.(4.14)

To upper bound the trace of C0 we proceed to bound the eigenvalues of C0. Recall that

C0 = A - \alpha . We let \{ \lambda (i)h \} ni=1 denote the eigenvalues of A, and let \{ \lambda (i)\} \infty i=1 denote the eigen-
values of the continuum differential operator \scrA , both in ascending order. To characterize
these eigenvalues, we can use classical finite element eigenvalue estimates. In particular, we
refer the reader to [54, Theorem 6.1], which proves that the eigenvalues of the finite element
approximation overestimate the eigenvalues of the continuum differential operator. That is,

for each i= 1, . . . , n we have that \lambda (i) \leq \lambda 
(i)
h . It then follows that

Tr(C0) =

n\sum 

i=1

(\lambda 
(i)
h ) - \alpha \leq 

n\sum 

i=1

(\lambda (i)) - \alpha \leq 
\infty \sum 

i=1

(\lambda (i)) - \alpha =Tr(\scrC 0).(4.15)

Combining (4.14) and (4.15) gives (4.12), completing the proof.

Remark 4.4. In the graph-based approximation setting, one must work slightly harder
to derive such an upper bound on the effective dimension, as the eigenvalues of the graph
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52 DANIEL SANZ-ALONSO AND NATHAN WANIOREK

Laplacian are not guaranteed to overestimate the eigenvalues of the Laplace--Beltrami opera-
tor. Further, the eigenvalue estimates in Proposition C.1 only hold for eigenvalues that satisfy
hn

\surd 
\lambda (k) \ll 1, which typically only holds up to some k < n. As such, it may be most natural

to consider a truncated prior covariance that retains only the portion of the spectrum that
provably approximates the continuum operator, as is done in [23].

5. Convergence of MAP estimators under mesh refinement. For many inverse problems
of interest, the forward model is not linear. In this section, we will see how our computational
framework and analysis can be leveraged to guarantee the convergence of the discretized max-
imum a posteriori (MAP) estimators to their continuum counterparts in nonlinear Bayesian
inverse problems as the mesh is refined. In particular, our framework very naturally fits into
the theory developed in [3], from which we will show \Gamma -convergence of the relevant Onsager--
Machlup (OM) functions and consequently convergence of the MAP estimators (up to subse-
quences). Under reasonable conditions on the nonlinear forward model (see Assumption 2.7
in [55]), the posterior can still be characterized as a change of measure with respect to the
prior as in (2.4),

d\mu \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}
d\mu 0

(u) =
1

Z
exp

\biggl( 
 - 1

2
\| y - \scrF (u)\| 2\Gamma  - 1

\biggr) 
,(5.1)

where Z =
\int 
\scrH exp ( - \Phi (u))d\mu 0(u). For a general \scrF , this posterior measure will no longer be

Gaussian. As such, it is difficult to fully characterize the posterior measure. One particularly
useful point summary of the posterior measure is a MAP estimator. In infinite dimensions, the
notion of a MAP estimator was introduced in [19] as the maximizer of a small ball probability.
The theory of MAP estimation in function spaces has been further refined in [3, 34, 35, 37, 38].
For u \in \scrH , we let B\delta (u)\subset \scrH be the open ball centered at u with radius \delta . A MAP estimator
(or strong mode) for \mu \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t} is any point u\mathrm{M}\mathrm{A}\mathrm{P} \in \scrH satisfying

lim
\delta \rightarrow 0

\mu \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}
\bigl( 
B\delta (u\mathrm{M}\mathrm{A}\mathrm{P})

\bigr) 

M\delta 
= 1, M\delta = sup

u\in \scrH 
\mu \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}(B

\delta (u)).(5.2)

It is shown in [37] that the MAP estimators of (5.1) with a Gaussian prior \mu 0 =\scrN (m0,\scrC 0) in
a separable Hilbert space are precisely characterized by the minimizers of the OM functional
I\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t} :\scrH \rightarrow \BbbR given by

I\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}(u) =

\Biggl\{ 
\Phi (u) + I0(u) if u - m0 \in Im(\scrC 1/2

0 ),

+\infty otherwise,
(5.3)

where

\Phi (u) =
1

2
\| y - \scrF (u)\| 2\Gamma  - 1 and I0(u) =

1

2
\| \scrC  - 1/2

0 (u - m0)\| 2\scrH .

In more general settings, the minimizers of (5.3) may not coincide with MAP estimators de-
fined as in (5.2), and a weaker notion of MAP estimator is required [29]. The optimization
problem of minimizing (5.3) is in general difficult, if not impossible, to solve analytically. The
computational framework put forth in subsection 2.2 provides a tractable finite-dimensional
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A COMPUTATIONAL FRAMEWORK FOR INVERSE PROBLEMS 53

optimization problem that provably approximates the infinite-dimensional problem. The dis-
cretized posterior measure in (2.11) gives the following OM functional:

I
(n)
\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}(u) =

\Biggl\{ 
\Phi (n)(u) + I

(n)
0 (u) if u - m\in Im((P \ast C0P )

1/2),

+\infty otherwise,
(5.4)

where

\Phi (n)(u) =
1

2
\| y - F (Pu)\| 2\Gamma  - 1 and I

(n)
0 =

1

2
\| (P \ast C0P )

\dagger /2(u - m0)\| 2\scrH .

Here F : \BbbR n
M \rightarrow \BbbR 

k is a discretized approximation to \scrF , and the operator (P \ast C0P )
\dagger /2 =\sum n

i=1(\lambda 
(i)
n ) - \alpha /2P \ast \psi 

(i)
n \otimes P \ast \psi 

(i)
n is the Moore--Penrose pseudoinverse of (P \ast C0P )

1/2.We remark
that u - m \in Im((P \ast C0P )

1/2) if and only if u,m \in \scrV , so we can equivalently write (5.4) as

I
(n)
\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t} :\BbbR 

n
M \rightarrow \BbbR , with

I
(n)
\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}(\vec{}u) =

1

2
\| y - F (\vec{}u)\| 2\Gamma  - 1 +

1

2
\| C - 1/2

0 (\vec{}u - \vec{}m0)\| 2M ,(5.5)

which can be minimized by methods from the breadth of literature on finite-dimensional
optimization problems. To apply the results in [3], we first review some preliminary definitions
and results regarding \Gamma -convergence.

Definition 5.1. Let I, In : \scrH \rightarrow \BbbR . We say that In \Gamma -converges to I, or \Gamma -limn\rightarrow \infty In = I,
if, for every u\in \scrH , the following two conditions hold:

(a) (\Gamma -lim inf Inequality.) For every sequence \{ un\} \infty n=1 converging to u in \scrH ,

I(u)\leq lim inf
n\rightarrow \infty 

In(un).(5.6)

(b) (\Gamma -lim sup Inequality.) There exists a sequence \{ un\} \infty n=1 converging to u such that

I(u)\geq limsup
n\rightarrow \infty 

In(un).(5.7)

Definition 5.2. A sequence of functionals \{ In\} \infty n=1 is equicoercive if, for all t \in \BbbR , there
exists a compact subset Kt \subseteq \scrH such that, for all n, I - 1

n ([ - \infty , t])\subseteq Kt.

Definition 5.3. Let I, In :\scrH \rightarrow \BbbR . We say that In converges continuously to I if, for every
u \in \scrH and every neighborhood V of I(u) in \BbbR , there exist N \in \BbbN and a neighborhood U of u
such that n\geq N and u\prime \in U imply that In(u

\prime )\in V.
Continuous convergence is a stronger notion of convergence than pointwise convergence

and \Gamma -convergence, but it is implied by uniform convergence of In to I in the case when I is
continuous [42]. The following classical result can be found, for instance, in [8].

Proposition 5.4. Let In, I :\scrH \rightarrow \BbbR with \Gamma -limn\rightarrow \infty In = I, and let \{ In\} \infty n=1 be equicoercive.
Then,

min
\scrH 

I = lim
n\rightarrow \infty 

inf
\scrH 
In,(5.8)
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54 DANIEL SANZ-ALONSO AND NATHAN WANIOREK

and if \{ un\} \infty n=1 is a precompact sequence such that limn\rightarrow \infty In(un) =min\scrH I, then every limit
of a convergent subsequence of \{ un\} \infty n=1 is a minimizer of I. In particular, if each In has a
minimizer un, then any convergent subsequence of these minimizers is a minimizer of I.

Essentially, this proposition states that \Gamma -convergence is the correct notion of convergence
of functionals to guarantee that their minimizers also converge. We now use our results from
subsection 3.2 and the results in [3] to prove convergence of the finite element discretized MAP
estimators as the mesh is refined.

Theorem 5.5 (convergence of MAP estimators). Let the covariance operator \scrC 0 : \scrH \rightarrow \scrH 
and its discrete approximation C0 :\BbbR 

n
M \rightarrow \BbbR 

n
M satisfy Assumption 3.1, and let the orthogonal

projection operator P satisfy Assumption 3.1. Assume additionally that the approximate for-
ward model is such that \Phi (n) converges to \Phi continuously as n\rightarrow \infty . Then, the corresponding

sequence \{ I(n)post\} \infty n=1 of OM functionals given in (5.5) satisfies that

\Gamma - lim
n\rightarrow \infty 

I
(n)
post = Ipost,(5.9)

and the cluster points as n \rightarrow \infty of the MAP estimators of the posteriors \mu npost are MAP
estimators of the continuum posterior \mu post.

Proof. Assumption 3.1(i) and (iii) imply that, as n \rightarrow \infty , P \ast C0P converges to \scrC 0 in
operator norm, and P \ast Pm0 converges to m0 in \scrH . Therefore, we can apply Theorem 5.5

in [3] to conclude that I0 = \Gamma - limn\rightarrow \infty I
(n)
0 and that the sequence \{ I(n)0 \} \infty n=1 is equicoercive.

Then, under the assumption that \Phi (n) \rightarrow \Phi continuously as n \rightarrow \infty , applying Theorem 6.1

in [3] gives us that \Gamma - limn\rightarrow \infty I
(n)
\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t} = I\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}, and the sequence \{ I(n)\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}\} \infty n=1 is also equicoercive

since \Phi (n) \geq 0 in our setting. Thus, by Proposition 5.4 we conclude that if un is a minimizer

of I
(n)
\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}, n\geq 1, then any convergent subsequence of \{ un\} \infty n=1 converges to a minimizer of I\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}.

Since the minimizers of the OM functionals I
(n)
\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t} and I\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t} coincide with the MAP estimators

of \mu 
(n)
\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t} and \mu \mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}, respectively, we have hence shown that any convergent subsequence of

MAP estimators of the discretized posterior converges to a MAP estimator of the continuum
posterior.

We have demonstrated how Assumption 3.1(i) and (iii) can be verified for finite ele-
ment and graph-based discretizations. For nonlinear forward maps, verifying the continu-
ous convergence of the discretized potential may not be straightforward. Lemma B.9 in [3]
shows that if the approximate forward map is of the form \scrF (P \ast P \cdot ), then the corresponding
potentials converge continuously. The following example illustrates an important problem
where the approximate forward model is not of this form; nonetheless, we will show in The-
orem 5.7 that continuous convergence---as well as Assumption 3.1(i) and (iii)---can still be
verified.

Example 5.6 (Eulerian data assimilation for the Navier--Stokes equations). Eulerian data
assimilation is concerned with learning the initial condition of a dynamical system from point-
wise observations of the state at fixed spatial locations. This example briefly reviews Eulerian
data assimilation for the Navier--Stokes equations, an important model problem in numerical
weather forecasting. We refer the reader to [18, 17] for a more detailed discussion.
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As described in [48, 59], the Navier--Stokes equations on the two-dimensional torus \scrD =
\BbbT 
2 = [0,1]2 can be written as an infinite-dimensional dynamical system

dv

dt
= \nu Av+B(v, v) = f, v(0) = u,(5.10)

on the Hilbert space

\scrH =

\biggl\{ 
v \in L2

\mathrm{p}\mathrm{e}\mathrm{r} (\scrD ) :

\int 

\scrD 
v dx= 0,\nabla \cdot v= 0

\biggr\} 
(5.11)

equipped with the standard L2(\scrD ) inner product. The Stokes operator A in (5.10) is self-
adjoint, positive, and densely defined on\scrH and has a complete set of eigenpairs, \{ (\lambda (i), \psi (i))\} \infty i=1,
with increasingly sorted eigenvalues. The energy-conserving quadratic nonlinearity B(v, v)
arises from projection under the Leray operator [58]. For u\in \scrH and f sufficiently regular [18,
48], there exists a unique solution to (5.10) such that v \in L\infty (0, T ;\scrH 1+s)\subset L\infty (0, T ;L\infty (\scrD )).

We wish to determine the initial condition u from noisy observations of the velocity field
v at time t > 0 and fixed spatial locations x1, . . . , xK \in \scrD , given by

yk = v(xk, t) + \eta k, k= 1, . . . ,K,(5.12)

where \eta \sim \scrN (0,\Gamma ). This Eulerian data assimilation task can be formulated as an inverse
problem with nonlinear forward map

\scrF (u) =
\bigl( 
v(x1, t)

T , . . . , v(xK , t)
T
\bigr) T \in \BbbR 

dy ,(5.13)

where dy = 2K. We consider a Gaussian prior measure \mu 0 \sim \scrN (m0,\scrC 0), where \scrC 0 = A - \alpha with
\alpha > 1 and m0 \in \scrH \alpha (\scrD ). Here, powers of A are defined spectrally. The posterior measure can
then be characterized as in (5.1).

We discretize the inverse problem on the space spanned by the first n eigenfunctions
\{ \psi (i)\} ni=1 of the Stokes operator. Note that since the eigenfunctions are orthonormal, the
weighted inner product described in subsection 2.2 coincides with the usual Euclidean in-
ner product. The discretized prior covariance operator C0 : \BbbR 

n \rightarrow \BbbR 
n is then given by

C0 = diag
\bigl( 
(\lambda (1)) - \alpha , . . . , (\lambda (n)) - \alpha 

\bigr) 
. The discretized forward map is given by a Galerkin ap-

proximation to the PDE solution, defined via the projection P : \scrH \rightarrow \BbbR 
n given in (2.7). We

denote by vN the solution to the (finite-dimensional) ODE

dvN

dt
+ \nu AvN + PB(vN , vN ) = Pf, vN (0) = Pu.(5.14)

We then define

F (u) =
\bigl( 
vN (x1, t), . . . , v

N (xdy
, t)
\bigr) T
.(5.15)

Given these approximations, we have a discretized OM functional exactly in the form of (5.5).

For the Eulerian data assimilation problem summarized in Example 5.6 and further de-
tailed in [18], we can verify the assumptions of Theorem 5.5 to obtain the following result.
The proof can be found in Appendix D.
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Theorem 5.7 (MAP estimation for Eulerian data assimilation). Let f \in L2(0, T ;\scrH s) with
s > 0, and consider the Eulerian data assimilation problem summarized in Example 5.6.

Then, as n\rightarrow \infty , the sequence \{ I(n)post\} \infty n=1 of discretized OM functionals satisfies that

\Gamma - lim
n\rightarrow \infty 

I
(n)
\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t} = I\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t},(5.16)

and the cluster points of the MAP estimators of the posteriors \mu npost are MAP estimators of
the continuum posterior \mu post.

6. Conclusion and future directions. This paper analyzed a computational framework for
solving infinite-dimensional Bayesian inverse problems. Working on a weighted inner product
space, we have studied finite element and graph-based discretizations in a unified framework,
using Mat\'ern-type priors and deconvolution forward models as guiding examples. We have
established error guarantees for linear inverse problems and analyzed ensemble Kalman al-
gorithms and MAP estimators applicable in nonlinear inverse problems. In future work, our
analysis may be extended to other types of discretizations, priors, and forward models. The
generality of our presentation will facilitate the integration of numerical analysis for PDEs to
obtain similar error guarantees for other priors and forward models. Additionally, our general
approach for obtaining error bounds for discretizations of covariance operators and forward
maps will also facilitate the analysis under mesh refinement of other algorithms for nonlinear
inverse problems.

Appendix A. Adjoints in weighted space. Let X and Y be two Hilbert spaces. Recall
that [56], given A\in B(X,Y ), the adjoint of A is the unique map A\ast \in B(Y,X) such that

\langle Ax,y\rangle Y = \langle x,A\ast y\rangle X \forall x\in X,\forall y \in Y.(A.1)

In \BbbR 
n equipped with the usual Euclidean inner product, the adjoint of a matrix coincides

with the matrix transpose. However, for linear maps to and from the weighted inner product
space \BbbR 

n
M , the structure of the adjoint specified by (A.1) no longer coincides with the matrix

transpose. For the case where A\in B(\BbbR n
M ,\BbbR 

n
M ), we have that A\ast must satisfy

\vec{}uTATM\vec{}v= \langle A\vec{}u,\vec{}v\rangle M = \langle \vec{}u,A\ast \vec{}v\rangle M = \vec{}uTMA\ast \vec{}v \forall \vec{}u,\vec{}v \in \BbbR 
n
M ,

from which it follows that A\ast =M - 1ATM. Similarly, for F \in B(\BbbR n
M ,\BbbR 

dy), F \natural must satisfy

\vec{}uTF T y= \langle F\vec{}u, y\rangle = \langle \vec{}u,F \natural y\rangle M = \vec{}uTMF \natural y \forall \vec{}u\in \BbbR 
n
M , \forall y \in \BbbR 

dy ,

from which it follows that F \natural =M - 1F T .

Appendix B. Proofs of subsection 3.2. This appendix contains the proofs of Theo-
rems 3.6 and 3.7 in subsection 3.2. The proofs rely on classical finite element method conver-
gence results from [44].

Proof of Theorem 3.6. We let f \in L2(\scrD ) with \| f\| L2(\scrD ) \not = 0. We proceed by induction on
\alpha . For \alpha = 1 we have that

\| \scrA  - 1f  - P \ast A - 1Pf\| L2(\scrD ) \leq ch2\| \scrA  - 1f\| H2(\scrD ) \leq ch2\| \scrA  - 1\| op\| f\| L2(\scrD )
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by [9, Theorem 14.3.3] and boundedness of the PDE solution operator from L2(\scrD ) to H2(\scrD )
(see [20, Chapter 6.3]). Dividing both sides by \| f\| L2(\scrD ), we have that

\| \scrA  - 1  - P \ast A - 1P\| op \leq ch2

for a constant c independent of h, completing the base case. Now, we assume that for some
integer \alpha \geq 1, we have that

\| \scrA  - \alpha  - P \ast A - \alpha P\| op \leq ch2.

We then consider the quantity \| \scrA  - (\alpha +1)f - P \ast A - \alpha  - 1Pf\| L2(\scrD ). Then, by the triangle inequal-
ity, we have that

\| \scrA  - \alpha  - 1f  - P \ast (K - 1M)\alpha +1Pf\| L2(\scrD ) \leq \| \scrA  - \alpha (\scrA  - 1  - P \ast A - 1P )f\| L2(\scrD )

+ \| (\scrA  - \alpha  - P \ast A - \alpha P )P \ast A - 1Pf\| L2(\scrD ).

The first of these terms can be controlled using the boundedness of \scrA  - 1 as in the proof of the
base case,

\| \scrA  - \alpha (\scrA  - 1  - P \ast A - 1P )f\| L2(\scrD ) \leq \| \scrA  - 1\| \alpha op\| \scrA  - 1f  - P \ast A - 1Pf\| L2(\scrD ) \leq c\| \scrA  - 1\| \alpha oph2\| f\| L2(\scrD ),

and the second follows from the submultiplicativity of the operator norm and the inductive
hypothesis,

\| (\scrA  - \alpha  - P \ast A - \alpha P )P \ast A - 1Pf\| L2(\scrD ) \leq \| \scrA  - \alpha  - P \ast A - \alpha P\| op\| P \ast A - 1Pf\| L2(\scrD )

\leq c\| \scrA  - 1\| oph2\| f\| L2(\scrD ).

We conclude that

\| \scrA  - \alpha  - 1  - P \ast A - \alpha P\| op \lesssim h2,

completing the proof.

Proof of Theorem 3.7. Let u\in L2(\scrD ) with \| u\| L2(\scrD ) \not = 0. We denote v= \scrG u and vh =GPu.
We then have that

\| \scrF u - FPu\| 2 \leq \| \scrO \| op\| v - vh\| L2(\scrD ) \leq \| \scrO \| op
\bigl( 
c1h

2\| v\| H2(\scrD ) + c2\Delta t
2\| Pu\| L2(\scrD )

\bigr) 
,

where the first inequality uses the fact that \scrO is a bounded linear operator from L2(\scrD ),
and the second uses [44, Theorem 9.6], which is a classical finite element error result for the
Crank--Nicolson method. Then, since \scrG : L2(\scrD )\rightarrow H2(\scrD ) is bounded and \| P\| op = 1, we get
that

\| \scrF u - FPu\| 2 \leq c1\| \scrO \| op\| \scrG \| oph2\| u\| L2(\scrD ) + c2\| \scrO \| op\Delta t2\| u\| L2(\scrD ).

Dividing both sides by \| u\| L2(\scrD ) gives the desired result.
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Appendix C. Proofs of subsection 3.3. This appendix contains the proofs of Theo-
rems 3.9 and 3.11 in subsection 3.3. The proofs rely on existing spectral convergence results

from [51]. We denote by \{ (\lambda (i)n , \psi 
(i)
n )\} ni=1 and \{ (\lambda (i), \psi (i))\} \infty i=1 the eigenpairs of the matrix A

defined in (2.36) and the operator \scrA defined in (2.17), with the eigenvalues in ascending order.
We recall the spectral convergence results derived in [51].

Proposition C.1. Suppose k= kn is such that hn
\surd 
\lambda (k) \ll 1 for large n. Then,

| \lambda (k)n  - \lambda (k)| 
\lambda (k)

\leq c

\biggl( 
\varepsilon n
hn

+ hn
\sqrt{} 
\lambda (k)

\biggr) 
,(C.1)

where c is a constant depending on \scrM , \Theta , and b.

Proposition C.2. Let \lambda be an eigenvalue of \scrA with multiplicity \ell . Suppose that hn
\surd 
\lambda (kn) \ll 1

and \varepsilon n \ll hn for n large. Let \psi 
(kn)
n , . . . , \psi 

(kn+\ell  - 1)
n be orthonormal eigenvectors of A as-

sociated with eigenvalues \lambda 
(kn)
n , . . . , \lambda 

(kn+\ell  - 1)
n . Then, there exist orthonormal eigenfunctions

\psi (kn), . . . , \psi (kn+\ell  - 1) of \scrA so that, for j = kn, . . . , kn + \ell  - 1,

\| P \ast \psi (j)
n  - \psi (j)\| L2(\scrM ) \leq cj3/2

\biggl( 
\varepsilon n
hn

+ hn
\sqrt{} 
\lambda (j)
\biggr) 1/2

,(C.2)

where c is a constant depending on \scrM , \Theta , and b.

Proof of Theorem 3.9. Let f \in L2(\scrM ). Note that kn was chosen such that we can apply
(C.2) and (C.1) to quantify the errors in the eigenvalues and eigenvectors up to i = kn. We
denote

u= \scrC 0f =\scrA  - \alpha f =

\infty \sum 

i=1

(\lambda (i)) - \alpha \langle f,\psi (i)\rangle L2(\scrM )\psi 
(i),

un = P \ast (\Delta \Theta 
n +Bn)

 - \alpha Pf =

n\sum 

i=1

(\lambda (i)n ) - \alpha \langle Pf,\psi (i)
n \rangle MP \ast \psi (i)

n .

We remark that \langle Pf,\psi (i)
n \rangle M = \langle f,P \ast \psi 

(i)
n \rangle L2(\scrM ), so we can also write

un =

n\sum 

i=1

(\lambda (i)n ) - \alpha \langle f,P \ast \psi (i)
n \rangle L2(\scrM )P

\ast \psi (i)
n .

We want to bound \| u - un\| L2(\scrM ). To do so, we introduce four intermediate quantities

ukn
n =

kn\sum 

i=1

(\lambda (i)n ) - \alpha \langle f,P \ast \psi (i)
n \rangle L2(\scrM )P

\ast \psi (i)
n ,

\~ukn
n =

kn\sum 

i=1

(\lambda (i)) - \alpha \langle f,P \ast \psi (i)
n \rangle L2(\scrM )P

\ast \psi (i)
n ,

\~ukn =

kn\sum 

i=1

(\lambda (i)) - \alpha \langle f,P \ast \psi (i)
n \rangle L2(\scrM )\psi 

(i),
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ukn =

kn\sum 

i=1

(\lambda (i)) - \alpha \langle f,\psi (i)\rangle L2(\scrM )\psi 
(i).

We will bound the difference between each pair of consecutive functions. By Weyl's law [13,
Theorem 72], we have that

\| u - ukn\| L2(\scrM ) \leq 
\Biggl( 

\infty \sum 

i=kn+1

(\lambda (i)) - 2\alpha 

\Biggr) 1

2

\lesssim 

\Biggl( 
\infty \sum 

i=kn+1

i - 
4\alpha 

d

\Biggr) 1

2

\lesssim 

\biggl( \int \infty 

kn

x - 
4\alpha 

d

\biggr) 1

2

\lesssim k
1

2
 - 2\alpha 

d
n .(C.3)

By (C.1) and Weyl's law, we have that \lambda 
(kn)
n \gtrsim \lambda (kn) \gtrsim k

2

d
n , from which we get

\| un  - ukn
n \| L2(\scrM ) =

\Biggl( 
n\sum 

i=kn+1

(\lambda (i)n ) - 2\alpha | \langle f,P \ast \psi (i)
n \rangle L2(\scrM )| 2

\Biggr) 1

2

\leq (\lambda (kn)
n ) - \alpha \lesssim k

 - 2\alpha 

d
n .(C.4)

Next, we note that since \lambda 
(i)
n and \lambda (i) are bounded from below by minx\in \scrM b(x)> 0, and x - \alpha 

is continuously differentiable away from zero, the mean value theorem guarantees that

\bigm| \bigm| \bigm| (\lambda (i)n ) - \alpha  - (\lambda (i)) - \alpha 
\bigm| \bigm| \bigm| \leq \alpha | \xi |  - \alpha  - 1

\bigm| \bigm| \bigm| \lambda (i)n  - \lambda (i)
\bigm| \bigm| \bigm| 

for some \xi between \lambda 
(i)
n and \lambda (i). This inequality, combined with Proposition C.1, implies that

\bigm| \bigm| \bigm| (\lambda (i)n ) - \alpha  - (\lambda (i)) - \alpha 
\bigm| \bigm| \bigm| \leq \alpha 

\Bigl( 
\lambda (i)n \wedge \lambda (i)

\Bigr)  - \alpha  - 1 \bigm| \bigm| \bigm| \lambda (i)n  - \lambda (i)
\bigm| \bigm| \bigm| \lesssim (\lambda (i)) - \alpha 

\biggl( 
\varepsilon n
hn

+ hn
\sqrt{} 
\lambda (i)
\biggr) 

for i= 1, . . . , kn. Using this fact, we get that

\| ukn
n  - \~ukn

n \| L2(\scrM ) \leq 
\Biggl( 

kn\sum 

i=1

\Bigl[ 
(\lambda (i)n ) - \alpha  - (\lambda (i)) - \alpha 

\Bigr] 2
\Biggr) 1

2

\lesssim 

\Biggl( 
kn\sum 

i=1

(\lambda (i)) - 2\alpha 

\biggl( 
\varepsilon n
hn

+ hn
\sqrt{} 
\lambda (i)
\biggr) 2
\Biggr) 1

2

\lesssim 

\biggl( 
\varepsilon n
hn

+ hn

\biggr) \Biggl( kn\sum 

i=1

(\lambda (i)) - 2\alpha +1

\Biggr) 1

2

\lesssim 

\biggl( 
\varepsilon n
hn

+ hn

\biggr) 
,

(C.5)

where the last step follows if \alpha > d
4+

1
2 . This is implied by the requirement that \alpha > (5d+1)/4.

Next, we use (C.2) to deduce that

\| \~ukn  - \~ukn
n \| L2(\scrM ) \lesssim 

kn\sum 

i=1

(\lambda (i)) - \alpha \| \psi (i)  - P \ast \psi (i)
n \| L2(\scrM ) \lesssim 

kn\sum 

i=1

(\lambda (i)) - \alpha i
3

2

\sqrt{} 
\varepsilon n
hn

+ hn
\sqrt{} 
\lambda (i)

\lesssim 

\sqrt{} 
\varepsilon n
hn

+ hn

kn\sum 

i=1

i
3

2 (\lambda (i)) - \alpha + 1

4 \lesssim 

\sqrt{} 
\varepsilon n
hn

+ hn

kn\sum 

i=1

i
3

2
 - 2\alpha 

d
+ 1

2d \lesssim 

\sqrt{} 
\varepsilon n
hn

+ hn,

(C.6)
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where the last step follows if \alpha > 5
4d+

1
4 . Finally, we use the Cauchy--Schwarz inequality to

get that

\| ukn  - \~ukn\| L2(\scrM ) =

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

kn\sum 

i=1

\langle f,\psi (i)  - P \ast \psi (i)
n \rangle L2(\scrM )(\lambda 

(i)) - \alpha \psi (i)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L2(\scrM )

\lesssim 

kn\sum 

i=1

(\lambda (i)) - \alpha \| \psi (i)  - P \ast \psi (i)
n \| L2(\scrM ) \lesssim 

\sqrt{} 
\varepsilon n
hn

+ hn ,

(C.7)

where the last step follows by the same argument as for the previous expression if \alpha > 5
4d+

1
4 .

Combining (C.3), (C.4), (C.5), (C.6), and (C.7) and taking kn \asymp n
2d+1

4\alpha , we see that the error
is dominated by

\| \scrC 0  - P \ast (\Delta \Theta 
n +Bn)

 - \alpha P\| op \lesssim k
1

2
 - 2\alpha 

d
n +

\sqrt{} 
\varepsilon n
hn

+ hn \lesssim (logn)
cd
4 n - 

1

4d ,

as desired.

Proof of Theorem 3.11. Let u\in L2(\scrM ) with \| u\| L2(\scrM ) \not = 0. We write

v= \scrG u=
\infty \sum 

i=1

exp
\Bigl( 
 - \lambda (i)

\Bigr) 
\langle u,\psi (i)\rangle L2(\scrM )\psi 

(i),(C.8)

vn =Gn(un) =

n\sum 

i=1

exp
\Bigl( 
 - \lambda (i)n

\Bigr) 
\langle Pu,\psi (i)

n \rangle L2(\scrM )P
\ast \psi (i)

n .(C.9)

We then consider the quantity

\| \scrF u - FPu\| 2 = \| \scrO v - \scrO nvn\| 2 \leq \| \scrO \| op\| v - vn\| L2(\scrD ) + \| \scrO vn\scrO nvn\| L2(\scrM ).(C.10)

We first want to bound \| v  - vn\| L2(\scrM ). To do so, we introduce the following intermediate
quantities:

vkn
n =

kn\sum 

i=1

exp
\Bigl( 
 - \lambda (i)n

\Bigr) 
\langle u,P \ast \psi (i)

n \rangle L2(\scrM )P
\ast \psi (i)

n ,

\~vkn
n =

kn\sum 

i=1

exp
\Bigl( 
 - \lambda (i)

\Bigr) 
\langle u,P \ast \psi (i)

n \rangle L2(\scrM )P
\ast \psi (i)

n ,

\~vkn =

kn\sum 

i=1

exp
\Bigl( 
 - \lambda (i)

\Bigr) 
\langle u,P \ast \psi (i)

n \rangle L2(\scrM )\psi 
(i),

vkn =

kn\sum 

i=1

exp
\Bigl( 
 - \lambda (i)

\Bigr) 
\langle u,\psi (i)\rangle L2(\scrM )\psi 

(i).

We proceed to bound the difference between each pair of consecutive functions, as in the proof
of Theorem 3.9. By Weyl's law, we have that

\| v - vkn\| L2(\scrM ) \leq 
\Biggl( 

\infty \sum 

i=kn+1

exp
\Bigl( 
 - \lambda (i)

\Bigr) \Biggr) 1

2

\lesssim 

\Biggl( 
\infty \sum 

i=kn+1

exp
\Bigl( 
 - i 2

d

\Bigr) \Biggr) 1

2

\lesssim 

\biggl( \int \infty 

kn

exp
\Bigl( 
 - x 2

d

\Bigr) 
dx

\biggr) 1

2

.
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This integral does not have a nice closed form solution. However, for any fixed \alpha > 0, it holds
that exp( - x2/d)<x - 4\alpha /d for x large enough. Assuming that n is large enough such that this
inequality holds for x= kn, we then have the bound

\| v - vkn\| L2(\scrM ) \leq 
\biggl( \int \infty 

kn

x - 4\alpha /d dx

\biggr) 1

2

\lesssim k
1

2
 - 2\alpha 

d
n .(C.11)

While this bound is not necessarily sharp, the operator-norm error will still be dominated by
the error in approximating the eigenfunctions, so the final bound will still be the same. By

(C.1) and Weyl's law, we have that \lambda 
(kn)
n \gtrsim \lambda (kn) \gtrsim k

2

d
n , from which we get

\| vn  - vkn
n \| L2(\scrM ) =

\Biggl( 
n\sum 

i=kn+1

exp
\Bigl( 
 - \lambda (i)n

\Bigr) 
| \langle u,P \ast \psi (i)

n \rangle L2(\scrM )| 2
\Biggr) 1

2

\leq exp

\biggl( 
 - 1

2
\lambda (kn)
n

\biggr) 
\lesssim exp

\biggl( 
 - 1

2
k

2

d
n

\biggr) 
.

(C.12)

Next, we note that since e - x is continuously differentiable, for each i= 1, . . . , kn, we have that

\bigm| \bigm| \bigm| exp( - \lambda (i)n ) - exp( - \lambda (i))
\bigm| \bigm| \bigm| \lesssim exp

\Bigl( 
 - (\lambda (i)n \wedge \lambda (i))

\Bigr) \bigm| \bigm| \bigm| \lambda (i)n  - \lambda (i)
\bigm| \bigm| \bigm| \lesssim exp( - \lambda (i))

\biggl( 
\varepsilon n
hn

+ hn
\sqrt{} 
\lambda (i)
\biggr) 
.

From this, we get that

\| vkn
n  - \~vkn

n \| L2(\scrM ) \leq 
\Biggl( 

kn\sum 

i=1

\bigm| \bigm| \bigm| exp
\Bigl( 
 - \lambda (i)n

\Bigr) 
 - exp

\Bigl( 
 - \lambda (i)

\Bigr) \bigm| \bigm| \bigm| 
\Biggr) 1

2

\lesssim 

\Biggl( 
exp

\Bigl( 
 - 2\lambda (i)

\Bigr) \biggl( \varepsilon n
hn

+ hn
\sqrt{} 
\lambda (i)
\biggr) 2
\Biggr) 1

2

\lesssim 

\biggl( 
\varepsilon n
hn

+ hn

\biggr) \Biggl( kn\sum 

i=1

\lambda (i)

exp
\bigl( 
2\lambda (i)

\bigr) 
\Biggr) 1

2

\lesssim 

\biggl( 
\varepsilon n
hn

+ hn

\biggr) 
.

(C.13)

Next, we use (C.2) to deduce that

\| \~vkn  - \~vkn
n \| L2(\scrM ) \lesssim 

kn\sum 

i=1

exp
\Bigl( 
 - \lambda (i)

\Bigr) 
\| \psi (i)  - P \ast \psi (i)

n \| L2(\scrM )

\lesssim 

kn\sum 

i=1

exp
\Bigl( 
 - \lambda (i)

\Bigr) 
i
3

2

\sqrt{} 
\varepsilon n
hn

+ hn
\sqrt{} 
\lambda (i)

\lesssim 

\sqrt{} 
\varepsilon n
hn

+ hn

kn\sum 

i=1

i
3

2 exp
\Bigl( 
 - \lambda (i)

\Bigr) 
(\lambda (i))

1

4

\lesssim 

\sqrt{} 
\varepsilon n
hn

+ hn

kn\sum 

i=1

i
3

2
+ 1

2d

exp
\bigl( 
i2/d
\bigr) \lesssim 

\sqrt{} 
\varepsilon n
hn

+ hn.

(C.14)
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Finally, we use the Cauchy--Schwarz inequality to get that

\| vkn  - \~vkn\| L2(\scrM ) =

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

kn\sum 

i=1

\langle u,\psi (i)  - P \ast \psi (i)
n \rangle L2(\scrM ) exp

\Bigl( 
 - \lambda (i)

\Bigr) 
\psi (i)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L2(\scrM )

\lesssim 

kn\sum 

i=1

exp
\Bigl( 
 - \lambda (i)

\Bigr) 
\| \psi (i)  - P \ast \psi (i)

n \| L2(\scrM ) \lesssim 

\sqrt{} 
\varepsilon n
hn

+ hn ,

(C.15)

where the last step follows by the same argument as for (C.14). Combining (C.11), (C.12),

(C.13), (C.14), and (C.15) and taking kn \asymp n
2d+1

4\alpha , we see that the error is dominated by

\| v - vn\| op \lesssim k
1

2
 - 2\alpha 

d
n +

\sqrt{} 
\varepsilon n
hn

+ hn \lesssim (logn)
cd
4 n - 

1

4d ,(C.16)

as desired. Taking the supremum of both sides over all \| u\| L2(\scrM ) = 1, we get that

\| \scrG  - P \ast GnP\| op \lesssim k
1

2
 - 2\alpha 

d
n +

\sqrt{} 
\varepsilon n
hn

+ hn \lesssim (logn)
cd
4 n - 

1

4d .(C.17)

Now we proceed to bound \| \scrO vn  - \scrO nvn\| 2. Recall that, for k= 1, . . . , dy, we have

[\scrO vn]k =
\int 

B\delta (xk)\cap \scrM 

n\sum 

i=1

vn(x)1Ui
(x)d\gamma = \langle vn,1B\delta (xk)\cap \scrM (x)\rangle L2(\scrM )

and

[\scrO nvn]k =
1

n

n\sum 

i=1

vn(xi)1B\delta (xk)(xi) = \langle Pvn,1B\delta (xk)\cap \scrM n
\rangle M ,

where 1B\delta (xk)\cap \scrM n
\in \BbbR 

n
M is the vector with ith entry 1 if xi \in B\delta (xk) for all xi \in Mn. Note

that here the points xi are in the point cloud \scrM n, whereas the xk are the points at which the
balls of radius \delta in the observation operator are centered. By our definition of P , it follows
that we can write

[\scrO nvn]k = \langle vn, P \ast 
1B\delta (xk)\cap \scrM n

(x)\rangle L2(\scrM ).

Consequently, we can apply the Cauchy--Schwarz inequality to get the bound

\| \scrO vn  - \scrO nvn\| 22 =
dy\sum 

k=1

\langle vn,1B\delta (xk)\cap \scrM (x) - P \ast 
1B\delta (xk)\cap \scrM n

(x)\rangle L2(\scrM )

\leq 
dy\sum 

k=1

\| vn\| 2L2(\scrM )\| 1B\delta (xk)\cap \scrM  - P \ast 
1B\delta (xk)\cap \scrM n

\| 2L2(\scrM ).

(C.18)

From (C.16), we have that

\| vn\| L2(\scrM ) \leq \| v\| L2(\scrM ) + c(logn)
cd
4 n - 

1

4d \leq \| \scrG \| op\| u\| L2(\scrM ) + c(logn)
cd
4 n - 

1

4d .
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Hence, for n large enough it holds that

\| vn\| L2(\scrM ) \leq 2\| \scrG \| op\| u\| L2(\scrM ).(C.19)

It then remains to bound \| 1B\delta (xk)\cap \scrM  - P \ast 
1B\delta (xk)\cap \scrM n

\| 2L2(\scrM ). To do so, we can write

P \ast 
1B\delta (xk)\cap \scrM n

(x) =

n\sum 

i=1

1Ui
(x)1B\delta (xk)(xi) =

n\sum 

i=1

1Ui
(x)1B\delta (xk) (Tn(x)) ,

since Tn(x) = xi for all x\in Ui. Since the sets Ui partition \scrM , we have that

P \ast 
1B\delta (xk)\cap \scrM n

(x) = 1B\delta (xk)\cap \scrM (Tn(x)) .

We then see that \| 1B\delta (xk)\cap \scrM  - P \ast 
1B\delta (xk)\cap \scrM n

\| 2L2(\scrM ) is exactly the measure of the set where

the indicator functions 1B\delta (xk)\cap \scrM (Tn(x)) and 1B\delta (xk)\cap \scrM (x) are not equal. Thus, we simply
need to bound the measure of the sets

Ek =
\Bigl\{ 
x\in \scrM : x\in B\delta (xk), Tn(x) /\in B\delta (xk)

\Bigr\} 
\cup 
\Bigl\{ 
x\in \scrM : x /\in B\delta (xk), Tn(x)\in B\delta (xk)

\Bigr\} 
.

We remark that for any x \in Ui \subset B\delta (xk), we also then have that Tn(x) \in Ui \subset B\delta (xk). For
Ui \subset B\delta (xk), we have Ui \subset EC

k . Similarly, for any x \in Ui \subset B\delta (xk)
C , we also have that

Tn(x) \in Ui, so x /\in B\delta (xk) and Tn(x) /\in B\delta (xk). Hence, for Ui \subset B\delta (xk)
C , we have Ui \subset EC

k .
Since any Ui that are entirely within B\delta (xk) and any Ui that are entirely outside of B\delta (xk)
are contained in the complement of Ek, and the sets Ui partition \scrM , we must have that Ek is
contained in the union of the sets Ui that have nontrivial intersection with both B\delta (xk) and
B\delta (xk)

C . That is, Ek is contained in the union of the sets Ui that intersect the boundary of
B\delta (xk)\cap \scrM ,

Ek \subset \~Ek =
\bigcup 

i:Ui\cap \partial (B\delta (xk)\cap \scrM )

Ui.

From Proposition 2.5, we have that supx\in \scrM d\scrM (x,Tn(x)) = \varepsilon n. That is, the geodesic distance
between any two points in a set Ui is at most 2\varepsilon n. This fact, combined with the assumption
that length (\partial (B\delta (xk)\cap \scrM )) =C\delta ,k, gives us that

\gamma 
\Bigl( 
\~Ek

\Bigr) 
\leq 2\varepsilon nlength (\partial (B\delta (xk)\cap \scrM )) = 2C\delta ,k\varepsilon n.(C.20)

The constant C\delta ,k depends on \delta , \scrM , and k but not n. This inequality, combined with (C.18)
and (C.19), gives us that

\| \scrO vn  - \scrO nvn\| 22 \leq 2dy\| \scrG \| opC\delta ,d\varepsilon n \lesssim dy
(logn)cd

n1/d
.(C.21)

Plugging (C.16) and (C.21) into (C.10) and taking the supremum of both sides over all
\| u\| L2(\scrM ) = 1 yields

\| \scrF  - FP\| op \lesssim (logn)
cd
4 n - 

1

4d +
\sqrt{} 
dy(logn)

cd
2 n - 

1

2d .(C.22)

In our setting, where the dimension of the observations is fixed, the error will be dominated
by the first of these two terms.
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Appendix D. Proof of Theorem 5.7.

Proof of Theorem 5.7. We want to verify the assumptions of Theorem 5.5 for the setting
of Eulerian data assimilation described in Example 5.6. First, we verify that the discretized
prior mean converges to the continuum prior mean in \scrH . Since m0 \in \scrH \alpha (\scrD ), we have from
equation (4.7) in [18] that

\| m0  - P \ast Pm0\| 2L2(\scrD ) \leq 
1

n2\alpha 
\| m0\| 2\scrH \alpha (\scrD ),

which verifies convergence of the discretized prior mean. Next, we verify operator norm
convergence of the discretized prior covariance. For any u\in \scrH with \| u\| L2(\scrD ) = 1,

\| \scrC 0u - P \ast C0Pu\| 2L2(\scrD ) =

\infty \sum 

i=n+1

(\lambda (i)) - 2\alpha \langle u,\psi (i)\rangle 2L2(\scrD ) \leq 
\infty \sum 

i=n+1

\Bigl( 
\lambda (i)
\Bigr)  - 2\alpha 

\lesssim 

\infty \sum 

i=n+1

i - 2\alpha \lesssim 
1

n2\alpha  - 1
.

Hence, we have that

\| \scrC 0  - P \ast C0P\| op \lesssim 
1

n\alpha  - 
1

2

,(D.1)

and since \alpha > 1, we have shown operator-norm convergence of the discretized prior covariance.
It remains to show that the discretized potential \Phi (n) converges continuously to \Phi as

n\rightarrow \infty . That is, we want to show that for every u \in \scrH and every \varepsilon > 0, there exist N \in \BbbN 

and \delta > 0 such that if n\geq N and u\prime \in B\delta (u), then
\bigm| \bigm| \Phi (n)(u\prime ) - \Phi (u)

\bigm| \bigm| < \varepsilon . Fix u\in \scrH and \varepsilon > 0.
From Lemma 3.2 in [17], we have that for any u,u\prime \in \scrH and f \in L2(0, T ;\scrH ), there exists a
constant L(\| u\| L2(\scrD ),\| u\prime \| L2(\scrD ), | f | 0, t0,\Gamma ) such that

\| \scrF (u) - \scrF (u\prime )\| \Gamma  - 1 \leq L\| u - u\prime \| L2(\scrD ),

provided that t > t0 > 0. We then see that

\Phi (u) - \Phi (u\prime ) =
1

2

\bigl( 
\| y - \scrF (u)\| \Gamma  - 1  - \| y - \scrF (u\prime )\| \Gamma  - 1

\bigr) \bigl( 
\| y - \scrF (u)\| \Gamma  - 1 + \| y - \scrF (u\prime )\| \Gamma  - 1

\bigr) 

\leq 1

2
\| \scrF (u) - \scrF (u\prime )\| \Gamma  - 1

\bigl( 
\| y - \scrF (u)\| \Gamma  - 1 + \| y - \scrF (u\prime )\| \Gamma  - 1

\bigr) 

\leq 1

2
\| \scrF (u) - \scrF (u\prime )\| \Gamma  - 1

\bigl( 
2\| y\| \Gamma  - 1 + \| \scrF (u)\| \Gamma  - 1 + \| \scrF (u\prime )\| \Gamma  - 1

\bigr) 

\leq 1

2
L\| u - u\prime \| L2(\scrD )

\bigl( 
2\| y\| \Gamma  - 1 + 2\| \scrF (u)\| \Gamma  - 1 +L\| u - u\prime \| L2(\scrD )

\bigr) 
.

Exactly the same argument can be carried out for \Phi (u\prime )  - \Phi (u) and yields the same upper
bound, from which we conclude that

\bigm| \bigm| \Phi (u) - \Phi (u\prime )
\bigm| \bigm| \leq 1

2
L\| u - u\prime \| L2(\scrD )

\bigl( 
2\| y\| \Gamma  - 1 + 2\| \scrF (u)\| \Gamma  - 1 +Lt0\| u - u\prime \| L2(\scrD )

\bigr) 
.(D.2)

From Lemma 4.2 in [18], we have that for the Galerkin approximation vN in (5.14) to the true
solution v in (5.10), there exists a constant \~L

\bigl( 
\| u\| L2(\scrD ), t0,\Gamma 

\bigr) 
such that, for any t > t0 > 0,

\| v(t) - vN (t)\| L\infty (\scrD ) \leq \~L(\| u\| L2(\scrD ))\psi (n),
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where \psi (n) \rightarrow 0 as n \rightarrow \infty , and \~L(\| u\| L2(\scrD )) is continuous and increasing in \| u\| L2(\scrD ). It
follows from this inequality that

\| \scrF (u\prime ) - F (u\prime )\| \Gamma  - 1 \leq \~L(\| u\prime \| L2(\scrD ))\psi (n)\leq \~L(\| u\| L2(\scrD ) + \delta )\psi (n).

Then, we observe that

\Phi (u\prime ) - \Phi (n)(u\prime ) =
1

2

\bigl( 
\| y - \scrF (u\prime )\| \Gamma  - 1  - \| y - F (u\prime )\| \Gamma  - 1

\bigr) \bigl( 
\| y - \scrF (u\prime )\| \Gamma  - 1 + \| y - F (u\prime )\| \Gamma  - 1

\bigr) 

\leq 1

2
\| \scrF (u\prime ) - F (u\prime )\| \Gamma  - 1

\bigl( 
\| y - \scrF (u\prime )\| \Gamma  - 1 + \| y - F (u\prime )\| \Gamma  - 1

\bigr) 

\leq 1

2
\| \scrF (u\prime ) - F (u\prime )\| \Gamma  - 1

\bigl( 
2\| y\| \Gamma  - 1 + \| \scrF (u\prime )\| \Gamma  - 1 + \| F (u\prime )\| \Gamma  - 1

\bigr) 

\leq 1

2
\~L(\| u\| L2(\scrD ) + \delta )\psi (n)

\Bigl( 
2\| y\| \Gamma  - 1 + 2\| \scrF (u)\| \Gamma  - 1 + \~L(\| u\| L2(\scrD ) + \delta )\psi (n)

\Bigr) 
.

Again, the same argument carried out for \Phi (n)(u\prime ) - \Phi (u\prime ) yields the same upper bound, and
we conclude that

\bigm| \bigm| \bigm| \Phi (u\prime ) - \Phi (n)(u\prime )
\bigm| \bigm| \bigm| \leq 1

2
\~L(\| u\| L2(\scrD ) + \delta )\psi (n)

\Bigl( 
2\| y\| \Gamma  - 1 + 2\| \scrF (u)\| \Gamma  - 1 + \~L(\| u\| L2(\scrD ) + \delta )\psi (n)

\Bigr) 
.

(D.3)

From (D.2) we see that we can pick \delta small enough such that | \Phi (u)  - \Phi (u\prime )| < \varepsilon 
2 for any

u\prime \in B\delta (u)\subset \scrH , and from (D.3) we can pick N large enough such that for any n\geq N, we have
| \Phi (u\prime ) - \Phi (n)(u\prime )| < \varepsilon 

2 for any u\prime \in B\delta (u) \subset \scrH . Consequently, there exist N and \delta such that
for any n\geq N and u\prime \in B\delta (u)\in \scrH ,

\bigm| \bigm| \bigm| \Phi (u) - \Phi (n)(u\prime )
\bigm| \bigm| \bigm| < \varepsilon ,(D.4)

proving continuous convergence of \Phi (n) to \Phi as n\rightarrow \infty . We can then apply Theorem 5.5 and
complete the proof.
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