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Abstract
Genetic Programming (GP) often uses large training sets and requires all individuals
to be evaluated on all training cases during selection. Random down-sampled lexicase
selection evaluates individuals on only a random subset of the training cases, allow-
ing for more individuals to be explored with the same number of program executions.
However, sampling randomly can exclude important cases from the down-sample for
a number of generations, while cases that measure the same behavior (synonymous
cases) may be overused. In this work, we introduce Informed Down-Sampled Lexi-
case Selection. This method leverages population statistics to build down-samples that
contain more distinct and therefore informative training cases. Through an empirical
investigation across two different GP systems (PushGP and Grammar-Guided GP), we
find that informed down-sampling significantly outperforms random down-sampling
on a set of contemporary program synthesis benchmark problems. Through an anal-
ysis of the created down-samples, we find that important training cases are included
in the down-sample consistently across independent evolutionary runs and systems.
We hypothesize that this improvement can be attributed to the ability of Informed
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Down-Sampled Lexicase Selection to maintain more specialist individuals over the
course of evolution, while still benefiting from reduced per-evaluation costs.

Keywords
Genetic programming, lexicase selection, informed down-sampling.

1 Introduction

In evolutionary computation, we often use large sets of training data to evaluate the
quality of candidate solutions. For instance, most genetic programming (GP) systems
evaluate programs using input/output examples (training cases) that specify the ex-
pected behavior of a correct program. Many GP selection strategies aggregate each pro-
gram’s performance across all training cases to produce one fitness score that can be
used for selection. In contrast, lexicase selection (Spector, 2012; Helmuth et al., 2015)
avoids aggregation and considers each training case separately, which has been shown
to improve diversity maintenance (Helmuth et al., 2016; Dolson and Ofria, 2018) and
problem-solving success across a wide range of domains (Moore and Stanton, 2017;
Metevier et al., 2019; Aenugu and Spector, 2019; Ding and Spector, 2021; Lalejini et al.,
2022).

However, standard lexicase selection requires that we evaluate all individuals on
all training cases, which can be computationally expensive when evaluation is non-
trivial. To reduce lexicase selection’s computational cost, recent work introduced down-
sampled lexicase selection (Moore and Stanton, 2017; Hernandez et al., 2019; Ferguson
et al., 2020). In down-sampled lexicase selection, the training set is randomly down-
sampled, reducing the number of training case evaluations required to assess the qual-
ity of each candidate solution. This in turn reduces the cost of evaluating an entire set
of individuals, allowing us to reallocate computational resources to other aspects of an
evolutionary search (e.g., increasing search time or population size), which can substan-
tially improve problem-solving success (Helmuth and Spector, 2020, 2021; Hernandez
et al., 2019). However, a naive random down-sample can leave out potentially impor-
tant training cases, resulting in a loss of diversity (Ferguson et al., 2020; Helmuth et al.,
2020; Hernandez et al., 2022).

In order to put more computational effort towards evaluating individuals on im-
portant training cases, we propose informed down-sampling (IDS), which uses runtime
population statistics to build a down-sample that contains more distinct cases. Given
a set of solutions, two training cases are distinct from each other if the subsets of solu-
tions that solve each of the two test cases have little to no overlap. Two training cases
are synonymous if the opposite is true: there is substantial overlap between the subsets
of solutions that solve each case.1 Consequently, informed down-sampling favors the
distinct training cases over synonymous cases when building a down-sample to use for
selection. We expect these informed down-samples to better maintain unique individ-
uals, increasing overall population diversity while also putting more selection pressure
on individuals whose descendants are more likely to solve the problem. These unique
individuals are often viewed as the stepping-stones for evolution to use in finding a
perfect solution program (Helmuth et al., 2020).

1Synonymous cases can also be thought of as cases that have different inputs and outputs yet mea-
sure a very similar functionality such that there is a high correlation between individuals’ performance
on these cases.
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Informed Down-Sampled Lexicase Selection

To assess the performance of informed down-sampled lexicase selection, we com-
pare lexicase selection without down-sampling (standard lexicase) with random down-
sampling and with informed down-sampling across eight problems from the first and
second program synthesis benchmark suites (Helmuth and Spector, 2015; Helmuth
and Kelly, 2021). We conduct our experiments in two independent GP frameworks,
Grammar-Guided Genetic Programming (G3P) (Whigham et al., 1995; Forstenlechner
et al., 2016, 2017) and PushGP (Spector and Robinson, 2002; Spector et al., 2004).

We find that building a down-sample based on information we collect from the
population is a valuable way to improve the success rates of evolutionary runs at a
fixed computational cost. Furthermore, simply tracking which cases are distinct, and
ensuring they are placed in a down-sample, can significantly improve problem-solving
performance. Our results provide evidence that informed down-sampling improves the
success rate of search in the two GP systems used. By analyzing the composition of
down-samples, we also verify that informed down-sampling builds down-samples that
contain more informative test cases (e.g., edge cases) than random down-sampling.

2 Related Work

In most GP applications, parent selection uses the performance of candidate solutions
on a set of training cases to pick individuals that contribute genetic material to the next
generation. Most selection algorithms aggregate the scores on these training cases to get
a single score per candidate and then select the most fit candidates using tournament
selection (Brindle, 1980), implicit fitness sharing (Smith et al., 1993), fitness proportion-
ate selection (Holland, 1992), or another selection strategy. The fitness aggregation pro-
cedure for these methods often results in a loss of semantic information about which
training cases the individual performs well on (Krawiec et al., 2016), motivating the
development of selection strategies that consider each individual’s performance on all
training cases encountered (Vanneschi et al., 2014; Goings et al., 2012; Deb et al., 2002;
Horn et al., 1994).

In contrast, lexicase selection does not aggregate fitness or performance measures
(Spector, 2012). For each parent selection event, the lexicase selection procedure first
places all individuals in the population into a “parent pool” (i.e., the pool of individ-
uals eligible to be selected). To select a parent, lexicase selection shuffles the training
cases into a random ordering, and each training case is considered in sequence. For
each training case, the parent pool is filtered down to just the individuals that have the
best (or tie for the best) performance, removing all but the best candidates from further
consideration. If there is only one individual that remains in the pool during this filter-
ing process, this individual is selected. If the training cases are exhausted and there are
still individuals in the pool, one of these individuals is selected at random.

Meanwhile, many variants of lexicase selection have been proposed for use in dif-
ferent problems or domains, for example, epsilon lexicase selection (La Cava et al., 2016;
Moore and Stanton, 2017), batch lexicase selection (Aenugu and Spector, 2019; Sobania
and Rothlauf, 2022), gradient lexicase selection (Ding and Spector, 2021), lexicase se-
lection for GAs (Metevier et al., 2019), weighted shuffle lexicase selection (Troise and
Helmuth, 2017), and fast lexicase selection (Ding et al., 2022).

One of the most promising variants of lexicase selection is down-sampled lexicase
selection, which was first proposed for expensive evolutionary robotics runs by Moore
and Stanton (2017) and later formalized by Hernandez et al. (2019) for GP runs. So far,
down-sampled lexicase selection increased the success and generalization rates for a
variety of problems (Ferguson et al., 2020). Down-sampled lexicase selection works by
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R. Boldi et al.

randomly sampling once in each generation the training set to create a smaller set of
cases. These cases are then used to perform all selection events in the population for that
one generation. This limitation on the number of test cases reduces the computational
costs of evaluating the individuals, which is usually one of the most expensive oper-
ations in evolutionary runs. These savings could be used to perform computationally
cheaper GP runs, increase the population size, or run evolution for more generations.

Down-sampled lexicase selection has also been found to significantly outperform
regular lexicase selection in a variety of program synthesis benchmarks (Hernandez
et al., 2019; Ferguson et al., 2020; Helmuth and Spector, 2020, 2021; Helmuth and Abdel-
hady, 2020). However, creating a down-sample randomly can exclude important train-
ing cases from the current down-sample for a number of generations (Hernandez et al.,
2022), while synonymous cases may be overused. As a first attempt at changing the
composition of cases in the down-sample, Boldi et al. (2022) explored using a rolling
down-sample and a disjoint down-sample for lexicase selection runs. While the results
were neutral, if not negative, they highlighted the presence of synonymous cases in
practice and suggest that an attempt at mediating the time put into evaluating individ-
uals on these synonymous cases might improve search performance.

Other work has used coevolutionary methods to identify a smaller, representative
set of training cases that can be used to assess candidate solutions instead of using
the entire training set (Schmidt and Lipson, 2005, 2008; Šikulová and Sekanina, 2012).
Our proposed informed down-sampling method also results in a compressed training
set that is roughly as informative as the set of all available data but does not require
an additional coevolutionary process, making it more easily compatible with existing
GP systems. Another important example is the use of random down-sampling to im-
prove performance of AutoML runs that use GP to evolve machine learning pipelines
(Zogaj et al., 2021). This work, however, did not include any form of non-random down-
sampling such as informed down-sampling.

In the broader machine learning community, random down-sampling is used to
generate mini-batches for stochastic gradient descent (Ruder, 2017), and many forms of
non-random down-sampling are used to detect hard or informative parts of the train-
ing data (Loshchilov and Hutter, 2015; Paul et al., 2021; Chrysakis and Moens, 2020).
Many of these machine learning methods seek to identify a “coreset,” which is a small
summarization of the training data such that solving the task on a coreset can provably
yield a solution with tightly bounded error on the complete training set (Bachem et al.,
2017; Jubran et al., 2019). Indeed, many of these more systematic approaches to reducing
training set size have yet to be explored in the context of GP, especially in combination
with the lexicase parent selection method.

3 Informed Down-Sampling

Random down-sampling in lexicase selection, while effective in reducing computa-
tional costs, can inadvertently dilute the selection pressure by picking synonymous
cases, thereby concealing the true quality of candidate solutions. Worse still, impor-
tant cases might be overlooked due to stochasticity, leading to important genetic ma-
terial being lost to the population. Overcoming these shortcomings is of paramount
importance, especially considering the increasingly complex datasets and challenges
faced in GP applications. Informed down-sampling offers a promising solution. It intel-
ligently selects more diverse and representative training cases based on runtime statis-
tics, enhancing the ability of lexicase selection to accurately assess solution quality,
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Informed Down-Sampled Lexicase Selection

Figure 1: Example of the data structure that is used to determine distances between
cases. c1, . . . , 5 are cases, with their respective solve vectors S1, . . . , 5, and I1, . . . , 6 are in-
dividuals. The entry at Sj and Ii represents whether the ith individual solved the j th
training case or not. The binary solve vectors Sj can be read off as the respective row
for the j th case. The distance between two cases, D(cx, cy ), is the Hamming distance be-
tween their respective solve vectors (the rows for each case). For example, D(c1, c2) = 3
and D(c2, c3) = 4.

preserve useful genetic information, and ultimately yield more robust and higher-
quality solutions.

We suggest two methods of building an informed down-sample. First, we explore
the idealized effectiveness of informed down-sampling by presenting it with full in-
formation. This method requires evaluating the entire population on all training cases,
performing the same number of program executions per generation as normal lexicase
selection. Therefore, informed down-sampling with full information cannot capitalize
on the computational savings afforded by random down-sampling. However, the full
information approach provides useful intuition for building an informed down-sample,
allowing us to measure the problem-solving success of our sampling approach under
idealized conditions.

Next, we present an approach for creating an informed down-sample that reduces
the number of per-generation evaluations required for selection (relative to standard
lexicase selection). This second approach, referred to as the “sparse information” ap-
proach, estimates the distinctness of training cases based on a sample of individuals
from the parent population. Indeed, building an informed down-sample using sparse
information results in nearly the same per-generation evaluation savings as when using
random down-sampling.

3.1 Building an Informed Down-Sample with Full Information

In our informed down-sampling approach with full information, we create one down-
sample of training cases per generation. Then, to select a parent, we use candidate solu-
tion performances on only the sampled training cases. To construct an informed down-
sample with full information, we evaluate all members of the population on all training
cases. In this work, training cases are evaluated on a pass/fail basis. Next, we construct
the “solve vector” Sj for each training case cj , which is a vector of binary values that
specifies which individuals in the population have solved the training case cj .

Figure 1 provides an example set of binary solve vectors for a set of five training
cases and a population of six individuals. The columns in this matrix Ii describe the
performance of the ith individual on all cases. A value of 1 at (Ii, cj ) implies that the ith
individual solved the j th training case (error = 0), or Si

j = 1. The number of columns
corresponds to the population size.

We define the distance between two training cases D(cx, cy ) := Hamming(Sx, Sy )
where Hamming(·, ·) is the Hamming distance between two vectors. For binary vectors,
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R. Boldi et al.

the distance function is defined as: D(cx, cy ) =
∑p

i=1 |Si
x − Si

y |. Thus, two training cases
that are solved by the same set of individuals are deemed to have D(c1, c2) = 0 and
are called “synonymous cases.” For example, for the cases in Figure 1, c1 and c5 have
identical solve vectors, and therefore are synonymous (D(c1, c5) = 0).

We think of this distance function as indicating the joint information contained in
a pair of cases. Two cases that have exactly the same individuals solving them (i.e., are
synonymous) have little to no joint information because having both of the cases in
the sample would be about as informative as just having one of them. Two cases that
have a high distance from each other, due to being solved by different subsets of the
population, have high joint information as each case is responsible for informing the
system about the performance of one set of individuals. Having both of these cases, as
opposed to one alone, would be a more faithful approximation of using the full training
set.

We use an algorithm based on Farthest First Traversal (Hochbaum and Shmoys,
1985) to select a down-sample based on pairwise case distances. Our Farthest First
Traversal algorithm is shown in Algorithm 1. Starting with an empty down-sample and
a set of cases T , we first add a random case to the down-sample (line 4), and then it-
eratively add the cases that are maximally far from the closest case to it (lines 5–9). If
there are multiple cases with the same maximum minimum distance, ties are broken
randomly. The MinDisti value stores the distance from a given case, ci , to the closest
case to it in the down-sample. The T .popMaxMinDistCase() function removes and re-
turns the case in T that has the maximum value for MinDisti . Note here that it is often
the case that the minimum distances all go to zero at a point during the down-sample
formation. At this point, every case left over in the training set has a synonymous case
in the down-sample already. When this happens, the farthest-first procedure will au-
tomatically select cases at random from the training set to fill up the required down-
sample size. Figure 2 shows an example of performing informed down-sampling with
full information using the case solve vectors from Figure 1.

3.2 Building an Informed Down-Sample with Sparse Information

Down-sampled lexicase selection’s problem-solving benefits stem from the computa-
tional savings gained by not evaluating the entire population on the whole training

312 Evolutionary Computation Volume 32, Number 4
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Informed Down-Sampled Lexicase Selection

Figure 2: Example running procedure of informed down-sampling with full informa-
tion to pick a down-sample of size 3 (or r = 3

5 ). We have a tabular representation of the
distance function D generated by computing the Hamming distance between each pair
of cases’ solve vectors. Beginning with a randomly selected case c1, we sequentially add
the cases that are at the maximum distance to their closest case in the down-sample. The
first step is simply finding the case (c3) in the training set with the maximum distance to
c1. To select the next case, we need to find, for c2, c4, and c5, which of c1 and c3 is closest
to them, respectively, and then which of those cases is farthest away. In this example,
c2 was added, as it had a higher distance (3) to its closest case than did c4 or c5 (2 and
0, respectively). Notice that the cases that were left out, c4 and c5, are synonymous or
nearly synonymous with cases already in the down-sample: c2 and c1, respectively.

set every generation. For a fixed computational budget, down-sampling allows more
computational resources to be allocated to other aspects of evolutionary search, such
as running for more generations or increasing population size. As a result, a larger
portion of the search space can be explored (Helmuth and Spector, 2021). Informed
down-sampling with full information requires the evaluation of all individuals on all
training cases in order to construct the down-sample to use in selection. This entire pro-
cess is counterproductive, as we could have just used the initial population evaluation
to select individuals and circumvent the entire down-sampling process. The benefit of
down-sampling comes from its ability to use sparse information in the individual selec-
tion process. Since our aim is to improve on random down-sampling, we must reduce
the number of necessary program executions in order to calculate distances between
training cases, so that we can benefit from sparse evaluations in both our individual
selections and our down-sample creation.

We present two methods to decrease the number of evaluations required for the
pairwise distance calculation procedure. The first method, parent sampling, samples a
proportion ρ of the parents to evaluate the distances for every generation. These parent-
samples are evaluated on the entire training set. In our runs with a population size of
1,000, if we were to randomly sample 0.01 (or ρ = 0.01) of these parents to become the
parent sample, these 10 parents would be evaluated on all training cases. This results
in case solve vectors of length 10 that are used to calculate the distances between cases.
Distances between cases are determined purely based on these parent-sample evalu-
ations. We use the distance matrix generated from these parents to estimate the joint
informativeness.

The second method, scheduled case distance computation, involves recomputing the
distance matrix from the current population every k generations, as opposed to every
generation. This schedule reduces the amount of computation required for the evalua-
tion of case distances even further by not performing it every generation. While such
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R. Boldi et al.

a schedule does not update the distances between cases as often, we still re-sample the
down-sample based on these distances every generation. Due to the stochastic nature of
the down-sample selection process (specifically the random selection of the first case),
it is likely that the same down-sample will not be used to evaluate the population in
consecutive generations.

Both parent sampling and scheduled case distance computation allow us to se-
lect a down-sample using less information about individuals while losing only a small
amount of information about cases and their similarity. Algorithm 2 shows how a sin-
gle generation of parent selection events may be performed using informed down-
sampling with sparse information.

4 Experimental Methods

We conducted a series of experiments to study the efficacy of informed down-sampled
lexicase selection. We compared the performance of informed down-sampled, random
down-sampled, and standard lexicase selection on a series of program synthesis bench-
mark problems. We replicated all experiments in two independent GP systems to test
whether our findings are robust across different program representations: PushGP and
G3P.

4.1 Program Synthesis Benchmark Problems

Our experiments used eight program synthesis benchmark problems from the first and
second general program synthesis benchmark suites (Helmuth and Spector, 2015; Hel-
muth and Kelly, 2021): Count Odds, Find Pair, Fizz Buzz, Fuel Cost, Greatest Com-
mon Denominator (GCD), Grade, Scrabble Score, and Small or Large. These benchmark
suites include a variety of introductory programming problems that require the manip-
ulation of multiple data types with complex looping or conditional structures. These
benchmark problems are recent and widely accepted across a variety of GP papers
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Informed Down-Sampled Lexicase Selection

Helmuth and Kelly (2022). The eight problems that we chose to use are well-studied
and are commonly used to compare parent selection algorithms in a GP context (Soba-
nia, Schweim et al., 2022; Sobania, Briesch et al., 2022).

Each benchmark problem is defined by a set of input/output examples (referred
to as cases) that specify the desired behavior of a correct program. For each problem,
we split the input/output examples into a training set and a testing set. During evo-
lution, we assessed program quality using only the training set. We used the testing
set to measure how well a program generalized on examples unseen during evolution.
We consider each input/output example on a pass/fail basis; that is, a program passes
a training case if it produces the correct output when run with the associated input.
A program is a solution if it passes all of the training cases; it generalizes if it passes all
training and all testing cases. We refer to runs as “success” if they result in the pro-
duction of a generalizing solution. We used the same training and testing data sets
across both PushGP and G3P for each problem to ensure the data available is not biasing
performance.

We include the problem descriptions for each of the eight chosen benchmark prob-
lems in Appendix C, including their input and output types (Table 7). We selected
these particular problems to allow us to test informed down-sampling on a set of easy,
medium, and hard problems as established by published success rates using PushGP
and random down-sampled lexicase selection (Helmuth and Spector, 2021; Helmuth
and Kelly, 2022).

4.2 Genetic Programming Systems

PushGP is a system that evolves computer programs in the Push programming lan-
guage, a stack-based language specifically invented for use in genetic programming
(Spector and Robinson, 2002; Spector et al., 2004). Push literals are pushed onto one of a
set of datatype specific stacks while instructions are also stored on a stack during inter-
pretation. These instructions usually act on data from the stacks and leave their return
value on the stacks. Instructions take values from and return results to the appropri-
ately typed stack, including from and to the instruction stack, allowing for programs
to use multiple data types and complex conditional execution paradigms. In this work,
we used the propeller implementation of PushGP.

G3P uses a context-free grammar in Backus-Naur form to evolve individuals in a
desired programming language and supports the use of different data types and con-
trol structures (Whigham et al., 1995; Forstenlechner et al., 2016, 2017). To prevent the
generation of many invalid solutions during search, we use a tree-based representation
instead of the common genotype-phenotype mapping known from classical grammat-
ical evolution (Ryan et al., 1998; Sobania and Rothlauf, 2020). Our implementation of
G3P uses the PonyGE2 framework (Fenton et al., 2017). The code for both GP systems,
as well as lists of instructions and grammars used for our experimentation, can be found
in our web-based supplemental material (Boldi, Briesch, et al., 2023).

Using two independent GP system allows us to better establish whether our find-
ings are system-specific or more broadly applicable beyond a single GP representation.
PushGP and G3P have many fundamental representational differences that influence
how they drive populations through the search space. By replicating our experiments
with both PushGP and G3P, we are better able to evaluate whether any observed per-
formance differences among selection methods are representation-specific.

Table 1 shows the system-specific parameters for PushGP and G3P, along with the
general parameters that are used in both systems. The “runs per problem” parameter
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R. Boldi et al.

Table 1: General and system-specific evolution parameters.

General Parameter Value

runs per problem 100
population size 1,000
size of training set 200
size of test set 1,000
program execution limit 60 million
maximum number (base) of generations 300

PushGP Parameter Value

variation operator UMAD
UMAD rate 0.1
step limit 2,000
max initial plushy size 250

G3P Parameter Value

crossover operator subtree crossover
crossover probability 0.95
mutation operator subtree mutation
mutation steps 1
maximum tree depth 17
elite size 5
initialization position-independent grow
maximum initial tree depth 10

refers to the number of independent evolutionary runs that were conducted for each
problem and experimental configuration. The PushGP system uses the uniform muta-
tion by addition and deletion (UMAD) mutation operator (Helmuth et al., 2018). This
UMAD operator works with a 0.1 mutation rate. For G3P, we use subtree mutation and
crossover, with a crossover probability of 0.95. The initialization for G3P is position-
independent grow (Fagan et al., 2016). We use grammars based on those provided by
the PonyGE2 framework with small adjustments to make them better comparable to
the PushGP instructions. Across both systems and all runs, we use the same training
and testing data. While this might be questionable in terms of generalization to other
data splits, we believe that seeing how the systems fare when provided with the same
exact data is valuable. Additionally, this enables us to track which cases are used in a
down-sample regularly across all runs over the course of an evolutionary process (see
Section 5.3).

4.3 Evaluation and Generation Limits

In order to make a fair comparison between methods that perform different numbers
of program executions per generation, we use the recommendation of the PSB2 bench-
mark suite to limit each GP run to 60 million program executions (Helmuth and Kelly,
2021). Since program executions typically take up the majority of the computational
requirements of a GP run, this ensures runs receive similar amounts of computation re-
gardless of whether they use down-sampling. In standard runs using all training cases,
the 60 million executions are used by at most 300 generations of a population size of
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Informed Down-Sampled Lexicase Selection

Table 2: Different settings conducted in our experiments for standard lexicase selection
(Lex), random down-sampled lexicase selection (Rnd) and informed down-sampled
lexicase selection (IDS). The variable r denotes the down-sampling rate, ρ is the parent
sampling rate, k is the generational interval at which we update the distance matrix,
and Ĝ specifies the maximum number of generations.

Method Lex Rnd IDS Rnd IDS

r – 0.05 0.05 0.1 0.1
ρ – – 1 0.01 0.01 0.01 – 1 0.01 0.01 0.01
k – – 1 1 10 100 – 1 1 10 100
Ĝ 300 6,000 300 5,042 5,888 5,988 3,000 300 2,752 2,973 2,997

1,000 individuals evaluated on 200 cases. With random down-sampling, we increase
the maximum number of generations by the same factor as the down-sampling. For ex-
ample, if one-tenth of the training data is used in each sample, we can run evolution for
ten times the number of generations while keeping the number of individual program
executions constant.

More generally, if we let G be the maximum number of generations for a run using
all training cases, we allow our random down-sampling runs a limit of Ĝ generations
where Ĝ is given by

Ĝ = G

r
,

where r is the down-sample rate. For informed down-sampled lexicase selection, the
generational limit is calculated by

Ĝ = G

r + ρ(1−r )
k

,

where ρ is the parent sampling rate and k is the parameter for the scheduled case dis-
tance computation. The exact generational limits for each experimental configuration
are shown in Table 2.2 Although not considered in this work, there is a nominal cost to
the Hamming distance operation between cases; however, this operation is dominated
by the cost of performing the selection procedure, which is not considered in this work
nor in prior work. In fact, lexicase selection has a time complexity of O(n2c) (Helmuth
et al., 2022), where the Hamming distance operation has complexity O(c2n), where c

is the number of cases, and n is the number of individuals. When c is decreased due to
down-sampling, the lexicase selection procedure becomes cheaper, partially accounting
for the added cost of computing the Hamming distance.

4.4 Experimental Configurations

We explore 11 different lexicase selection configurations for each problem: standard
lexicase selection (Lex) and, at two different down-sampling rates, random down-
sampled lexicase selection (Rnd), IDS lexicase selection with full information, as well as
three sparse information configurations. To better match previous literature, all down-
sampling methods were performed with both r ∈ {0.05; 0.1}.

2As our implementations evaluate the fitness of individuals in the parent sample twice, we run the
IDS with sparse information runs for slightly (<40) fewer generations to compensate the additional
computational effort.
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R. Boldi et al.

Table 2 shows the configurations of the different runs performed in this work. These
runs, due to different generational computational costs, have different generational lim-
its, as explained in Section 4.3.

Full information down-sampling is simply using a parent sample rate of 1, which
means that the distances between the training cases are determined by the performance
of all parents on each test case. With this, the quality of the distance metric between
two cases is not limited by the parent sampling or generational gaps we are using to
reduce computational load. Full information down-sampling is included as a control
experiment to compare with using all cases for selection in standard lexicase selection.
Note that all treatments using full information down-sampling ran for the same number
of generations as standard lexicase selection because full information down-sampling
requires all parents to be evaluated on all training cases.

Finally, the six informed down-sampling methods we have chosen for this work in-
clude, for both the 0.05 and 0.1 down-sample rate (r), 0.01 parent sampling (ρ) rate with
a few different distance calculation scheduling (k) parameters. Through a set of prelimi-
nary experiments, the value of ρ = 0.01 for the parent sampling rate was determined to
be effective while not resulting in too many extra program executions.3 In conjunction,
these hyperparameters mean that every k generations, 10 parents are used to determine
the distances between all training cases, where k ∈ {1, 10, 100}.

5 Results and Discussion

5.1 Informed Down-Sampling Improves Problem-Solving Success

Tables 3 and 4 show the success rates for PushGP and G3P respectively on the chosen
program synthesis benchmark problems for different parameter configurations. We de-
fine success rate as the number of runs that result in a program that passes the complete
training set, as well as the entire unseen test set.

For random down-sampling and IDS, we measured solutions on only the down-
samples during the actual run. As such, we execute these runs to the maximum gener-
ational limit and then conduct a post hoc analysis to see if any solutions passed all of
the training cases. If so, this is the solution that we then evaluate on the unseen test set
to determine whether it generalizes or not.

Overall, at least one configuration of informed down-sampling resulted in the great-
est success rate for 6/8 problems solved by PushGP, with 3/8 of them being statis-
tically significant. With PushGP, random down-sampling significantly outperformed
informed down-sampling on one problem. For G3P, at least one configuration of in-
formed down-sampling produced the greatest success rate for 3/8 problems, with 1/8
being significant. Random down-sampling produced the greatest success rate on two
problems with G3P, though neither instance was statistically significant. While we did
not make direct comparisons with standard lexicase, we observed greater success rates
with both random and informed down-sampling than with standard lexicase.

Our data show that informed down-sampling by farthest first traversal can im-
prove problem-solving success beyond random down-sampling lexicase, which is the
current state of the art for program synthesis (Helmuth and Abdelhady, 2020). As is
often the case, however, the benefits of informed down-sampling varied by problem
and GP representation. With PushGP, informed down-sampling dramatically improved

3As we are trying to approach the computational savings of random down-sampled lexicase selec-
tion, the smaller the value of ρ, the better. We found that the relatively small value of ρ = 0.01 resulted
in sampling that was good enough to determine the joint case information.
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Informed Down-Sampled Lexicase Selection

Table 3: Number of generalizing solutions (successes) out of 100 runs achieved by
PushGP on the test set. For each benchmark problem, we highlight in bold the best suc-
cess rate at each of the down-sample sizes. Problem names in bold are those where an
informed down-sampling run outperformed random at both down-sample rates on that
problem. Problem names that are underlined are those where a random down-sampling
run outperformed an informed down-sampling run at both down-sample rates. Aster-
isks signify results that are significantly better than random down-sampling at the same
down-sample size. Standard lexicase selection was not included in our statistical analyses,
as IDS is presented to improve upon random down-sampling at a fixed down-sample
size. We performed significance analysis with a two-proportion z-test and Bonferroni-
Holm correction. Shown with * are those significant at the α = 0.1 level, ** the α = 0.05
level, and *** the α = 0.01 level.

Method Lex Rnd IDS Rnd IDS

r – 0.05 0.1
ρ – – 1 0.01 0.01 0.01 – 1 0.01 0.01 0.01
k – – 1 1 10 100 – 1 1 10 100

Count Odds 24 25 43*** 99*** 100*** 98*** 26 55*** 95*** 99*** 97***
Find Pair 5 27 9 32 32 36 15 7 19 19 21
Fizz Buzz 13 64 2 85*** 94*** 95*** 45 3 75 78* 81**
Fuel Cost 41 72 1 83 85 83 76 7 69 72 70
GCD 20 74 4 76 67 69 54 6 56 63 62
Grade 0 0 0 0 1 0 1 0 0 1 1
Scrabble Score 8 8 6 69*** 64*** 75*** 16 9 55*** 74*** 64***
Small or Large 34 93 37 69 69 69 69 39 60 66 54

problem-solving success rates for the Count Odds, Fizz Buzz, and Scrabble Score
problems, but decreased success on Small or Large. G3P less clearly benefited from
informed down-sampling, though we did observe minor, configuration-dependent
improvements in overall problem-solving success.

This is clear, as informed down-sampling at all configurations ensures that close to,
if not all, 100 runs successfully generalize to the test set held out. This and similar results
hint that while randomly down-sampled lexicase selection works well usually, there
are some problems where important cases might be dropped out, resulting in a similar
performance to standard lexicase selection despite the increased search generations.
Informed down-sampling has the ability to improve success rates both when random
down-sampling improves upon standard lexicase selection and when it does not.

Only one configuration of G3P resulted in a significant improvement on random
down-sampling at the same down-sample rate. For the Grade problem at the 0.05 down-
sample rate, we see significantly more successes when using IDS with ρ = 0.01 and k =
10. For this problem, using this informed down-sample configuration resulted in 57% of
the runs yielding a generalizing solution, where using random down-sampling resulted
in only 39% of the runs yielding a success. The fact that only a single configuration of
IDS resulted in a significant improvement suggests that the problem-solving benefits
of using IDS are representation- and problem-dependent, motivating future work to
continue improving IDS to achieve more universal improvements to problem-solving
success.
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R. Boldi et al.

Table 4: Number of generalizing solutions (successes) out of 100 runs achieved by
G3P on the test set. For all configurations studied, we report success rates based on
100 runs. For each benchmark problem, we highlight in bold the best success rate at
each of the down-sample sizes. Problem names in bold are those where an informed
down-sampling run outperformed random at both down-sample rates on that problem.
Problem names that are underlined are those where a random down-sampling run
outperformed an informed down-sampling run at both down-sample rates. Asterisks
signify results that are significantly better than random down-sampling at the same
down-sample size. Standard lexicase selection was not included in our statistical analyses,
as IDS is presented to improve upon random down-sampling at a fixed down-sample
size. We performed significance analysis with a two-proportion z-test and Bonferroni-
Holm correction. Shown with * are those significant at the α = 0.1 level, ** the α = 0.05
level, and *** the α = 0.01 level.

Method Lex Rnd IDS Rnd IDS

r – 0.05 0.1
ρ – – 1 0.01 0.01 0.01 – 1 0.01 0.01 0.01
k – – 1 1 10 100 – 1 1 10 100

Count Odds 65 66 45 53 62 63 67 58 60 58 72
Find Pair 0 0 0 1 0 0 1 0 0 1 0
Fizz Buzz 62 83 50 84 78 85 78 53 81 89 72
Fuel Cost 33 34 17 28 27 29 29 21 21 25 33
GCD 0 1 0 0 0 1 0 0 0 0 0
Grade 36 39 29 51 57* 44 44 37 46 51 48
Scrabble Score 6 10 1 11 10 10 14 0 6 3 3
Small or Large 41 52 49 54 63 63 59 52 57 55 63

We have a number of hypotheses explaining this improved performance. The first
of these is that the informed down-sampling procedure increases the number of special-
ists (individuals exceptional on a few cases, but having a high total error) that survive
over the course of evolutionary time. These individuals could be better maintained with
IDS, as the cases they are exceptional on are still placed in the down-samples through-
out evolution, preventing them from being lost, as could happen when randomly
down-sampling.

Another hypothesis for IDS’s improved performance is that it reduces the compu-
tation used to evaluate individuals on synonymous cases. When two cases are fully
synonymous, all individuals that solve one case solve the other as well. When using
lexicase selection, having both of these cases in the down-sample would result in little
difference in the probability of selecting each individual compared to having only one
case in the down-sample. After one of the two cases has been used to filter the pool
of candidate solutions, the other will have no filtering pressure because all remaining
individuals perform identically on the synonymous cases. Having a synonymous case
does increase the chance that one of the two cases appears earlier in the shuffled case
ordering, producing a minor (though perhaps undesired) change in selection proba-
bility. Synonymous (or near synonymous) cases additionally take spots in the down-
sample that cannot be allocated to other, more informative cases. When using IDS, we
ensure that the first few cases added to the down-sample measure relatively different
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Informed Down-Sampled Lexicase Selection

behaviors. This may allow IDS to select a larger variety of individuals than random
down-sampling, instead approximating the variety that could be selected by full lexi-
case selection.

Random down-sampling outperformed informed down-sampling (across both
down-sampling levels) on only one problem (Small or Large) for PushGP, and none for
G3P. For Small or Large with PushGP, we see that the worse performance with informed
down-sampling can be attributed to a lower generalization rate (and not worse perfor-
mance on the training sets). The generalization rates can be found in Appendix Table 5
for PushGP and Appendix Table 6 for G3P. Future work should explore the effect that
informed down-sampling has on generalization in more depth.

Appendix B shows the distributions of program size across the runs that were per-
formed for this work. Despite the larger generational limit, there does not appear to be
any significant bloating that occurs during our down-sampled runs when compared to
our lexicase selection runs, despite the 10x–20x larger generational limit. This provides
evidence that the method we used to ensure that all programs use similar computa-
tional resources is valid, as there are not drastic differences in program size (and thus
evaluation cost). Furthermore, we employ strict evaluation limits for our PushGP runs,
where programs are cut off after they reach the step limit of 200 steps. For G3P, we have
a strict looping limit of 1,000 iterations.

Although we introduce a variety of hyperparameters in this work, we found the
most consistent improvement was yielded by choosing r = 0.05, ρ = 0.01, k = 10. As
such, we recommend these hyperparameters as a starting point for future investigation.

5.2 Using Smaller Informed Down-Samples Tends to Improve Success Rates

In general, our IDS runs at a 0.05 down-sample rate have a higher success rate than
their equivalent counterparts at the 0.1 down-sample rate. This difference is likely due
to the fact that the runs at a 0.1 down-sample rate have a substantially lower genera-
tional limit, meaning that we are exploring a smaller portion of the space of possible
solution programs. With 200 training cases, our down-sample contains 10 and 20 cases
respectively for the 0.05 and 0.1 down-sample rates. A possible reason for the improved
performance at 0.05 is that a larger proportion of these cases are indeed our distinct, or
informative, cases. Note that once the Farthest First Traversal process selects a repre-
sentative case for every synonymous group in the down-sample, every remaining solu-
tion’s minimum distances to the current sample will be equal to 0, so the selections are
performed randomly to fill the rest of the cases. Since we are using the same problems,
with the same number of behavioral niches, the runs with 20 cases in the down-sample
will have more synonymous cases in the down-sample. As such, the larger sample sizes
do not necessarily result in substantially more informative samples of training cases
than smaller sample sizes. We will analyze the specific cases that compose the down-
samples in Section 5.3.

The exceptions to this trend are the full information down-sampling runs. For these
runs, the larger down-samples tend to perform better. This result is likely due to the fact
that the generational limit was set to 300 for both sampling levels (as they both evaluate
all individuals on all test cases), and so having a smaller down-sample size would not
change the number of evaluations. With more cases in the sample, the GP method can
take into account more information when performing selection, which could result in
more informed search. The magnitude of the differences for success rate across sample
size for the full IDS runs suggests that there are diminishing returns for including more
cases in the sample.
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5.3 Informed Down-Sampling Automatically Discovers Important Training
Cases

To gain a deeper insight into how IDS composes down-samples, we visualized the set
of training cases selected for informed down-samples over an evolutionary run.

Figures 3 and 4 show the composition of down-samples for every problem at every
generation using PushGP (Figure 3) and G3P (Figure 4) with down-sample rate r = 0.05.
We present results for a full information configuration (ρ = 1 and k = 1) as well as a
sparse information configuration (ρ = 0.01 and k = 10). We chose to analyze both a full
information and sparse information run in order to see whether our sparse information
configurations are finding the same training cases to be informative as if we had used
all parents to evaluate the distances between training cases.

The plots show how often certain training cases are included in the down-sample
at every generation, averaged over all active runs. Each row represents a case in the
training data, ordered by its position in the training set. The training sets used were
generated by first adding some human-expert defined edge cases, and filling the rest
with cases that were randomly generated by a function that already implements our
desired program (oracle function). For each figure, there is a single marker on the y-
axis that shows where exactly the expert-case cutoff for the training set was. Thus, the
rows above the marker in the visuals are representing cases that humans determined to
be important based on the problem definition.

Brighter colors imply that a case is included more often, darker colors imply a lower
number of inclusions.

For PushGP (Figure 3), we see that the configurations with sparse information often
include the same cases in the down-sample as the runs with full information. This result
means that by using a parent sampling rate of ρ = 0.01 and a case distance evaluation
schedule parameter of k = 10, we can significantly reduce the number of evaluations
needed to calculate distances between cases, while still maintaining a good approxima-
tion to the ground truth (full information, where we use all parents every generation
to calculate distances). However, the composition for our sparse information runs are
slightly more noisy than that for full information, suggesting that using parent sampling
could introduce some extra stochasticity to the down-sample creation process.

For all studied benchmark problems, we see that IDS has a strong bias toward spe-
cific training cases that are included substantially more often in the down-sample. These
selected training cases are mainly consistent with the human-defined edge cases that ex-
ist at the beginning of the training set. This result shows that informed down-sampling
is indeed often finding the same cases to be informative as those that a human expert
would, without any knowledge of the problem definition. However, with IDS, we can
draw further comparisons of informativeness within this expert-defined group of cases.
This can be seen as some cases are selected more often than others within the first several
cases.

We then look at the labels of the specific training cases that are found to be impor-
tant. We see that it makes sense to include these training cases more often than others
in the down-samples. Note that the labels of the specific training cases are not included
in the plots for simplicity, but can be queried based on their specific index in the data
sets provided in our code implementation.

For example, for the Small or Large problem, cases around the decision boundaries
as well as numbers between 0 and 1,000 are more often included. For the Grade prob-
lem, those edge cases with very close decision boundaries are included, while the ones
with faraway boundaries are not taken into account for the down-sample. For Fuel Cost,
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Informed Down-Sampled Lexicase Selection

Figure 3: Down-sample composition over generations for PushGP with 0.05 down-
sample rate for a full information (ρ = 1 and k = 1) and a sparse information config-
uration (ρ = 0.01 and k = 10).

nearly all of the human-defined edge cases are found to be important, while for the GCD
problem, the first two cases in particular make it into nearly every down-sample, while
the rest are selected less often.

For the Scrabble Score problem, we see that the first edge cases, which specify the
score for each letter, do not seem to be informative at all. This result is not surprising,
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Figure 3: Continued.

as this information is already available to PushGP through a vector with these scores
on the vector stack. However, the three edge cases after them with empty strings and
special characters as input are frequently included. For Count Odds, the edge cases de-
noting empty lists, or lists with zero or a single odd number were found to be impor-
tant, indicating that those contain all the important information to learn what are odd
and even numbers as well as how to handle a list. For Fizz Buzz, all edge cases seem
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Informed Down-Sampled Lexicase Selection

Figure 4: Down-sample composition over generations for G3P with 0.05 down-sample
rate for a full information (ρ = 1 and k = 1) and a sparse information configuration
(ρ = 0.01 and k = 10).

important, while for the Find Pair problem, only those edge cases with lists of length 3
are consistently included. Those lists of length 2 in the edge cases are represented in the
down-sample less often.

Lastly, we see that the composition of the down-sample stays rather stable dur-
ing the evolutionary run for the PushGP system, explaining why there is only a small
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Figure 4: Continued.

difference in our experiments between calculating the distances every k = 1 and k = 100
generations (see Table 3).

For G3P (Figure 4), we see similar results as with PushGP. However, for the prob-
lems that require iterative structures to be solved (Count Odds, Find Pair), we see that the
down-sample quickly dissolves into random noise instead of any form of structure. This
dynamic occurs despite the fact that the same edge cases as with PushGP are initially
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identified in the first few generations. This result is not surprising, as finding iterative
structures is known to be challenging for grammar-guided approaches, as such struc-
tures are difficult to build step-by-step guided by the performance on a set of training
cases (Sobania and Rothlauf, 2020; Sobania, Schweim, et al., 2022). Another difference
between the case compositions is that, while IDS with G3P tends to discover the same
cases as those found with PushGP, their use is less consistent, resulting in lines that
are more faint than those for PushGP. Both of these hypotheses could help explain the
relatively worse improvement that IDS yields for G3P than for PushGP.

However, for the problems that require conditionals, like Small or Large and Grade,
we see that the important cases are identified and used during evolution. This result is
also reflected in the success rates compared to random down-sampling (see Table 4).

Interestingly, IDS identifies many of the same cases as important for G3P as well as
PushGP. This result suggests that the structure of the problem itself determines which
cases are important rather than the considered representation. This dynamic makes IDS
potentially useful across many different systems and approaches.

Across both systems, we see that the important cases are determined and selected
very early in evolution, despite the relatively uninformative environment at the begin-
ning of evolution. At the beginning of the run, most cases are failed by all individuals,
making it hard to distinguish between informative and uninformative cases. An option
that could help address this issue would be to use raw fitness values to measure the
distance between test cases. However, using this system would require the definition of
a similarity function based on fitness values, which could introduce hyper-parameters
that detract from the simplicity of our approach.

6 Conclusion and Future Work

In this work, we demonstrated a novel approach to constructing down-samples us-
ing runtime population statistics. We found that changing the composition of down-
samples to include cases that are more “informative” helps improve problem-solving
success given a fixed computational budget. By replicating our experiments across mul-
tiple GP systems (PushGP and G3P), we found that the problem-solving benefits of
informed down-sampling vary by search space and by program representation, war-
ranting further study.

We hypothesize that a down-sample’s “informativeness” is linked to how distinct
its constituent cases are from one another. Cases solved by the same subset of the
population are likely testing for the same behavior, and thus need not be included in
the down-sample at the same time. We verified that our approach to informed down-
sampling selects distinct sets of important training cases (as defined by human experts).
Cases that test for different behaviors likely maintain different behavioral groups of in-
dividuals, which could promote and maintain higher levels of diversity in the popu-
lation. Indeed, static analyses of informed down-sampling have shown that it is bet-
ter capable of selecting specialists than random down-sampling (Boldi, Lalejini, et al.,
2023).

This work is a first exploration into more systematic approaches to building down-
samples for lexicase selection runs. As such, it opens many potential directions for fu-
ture research. Due to the modular nature of the informed down-sampling system, dif-
ferent methods could be used for either the pairwise information measurement or the
down-sample creation portions of the algorithm. An exploration into different down-
sampling levels and the effects levels have on the informational content of down-
samples is also a promising direction for future work. Additionally, IDS introduces new
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hyperparameters for the parent sampling rate and generational schedule. Future work
will explore methods for reducing the number of new hyperparameters by automati-
cally configuring them at runtime based on the problem and state of the GP search. Fi-
nally, even though there are reasons to believe that IDS and down-sampling in general
work well with lexicase selection, there is nothing that ties them to a particular selec-
tion method. We encourage future studies exploring the effects of IDS on other parent
selection methods such as tournament selection (e.g., Boldi, Bao, et al., 2023). Finally,
comparing the extent to which different down-sampling strategies blunt lexicase’s abil-
ity to maintain specialists could also yield important insights into why informed down-
sampling improves success rates as much as it does.
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A Generalization Rates

Table 5: Generalization rate for PushGP. These data indicate the proportion of the runs
that passed the training set that also passed the test set.

Method Lex Rnd IDS Rnd IDS

r – 0.05 0.1
ρ – – 1 0.01 0.01 0.01 – 1 0.01 0.01 0.01
k – – 1 1 10 100 – 1 1 10 100

Count Odds 1.00 0.96 0.98 0.99 1.00 0.99 0.96 1.00 0.98 0.99 0.99
Find Pair 1.00 0.82 0.82 0.73 0.74 0.80 0.50 0.88 0.79 0.68 0.75
Fizz Buzz 0.93 0.96 1.00 0.93 0.95 0.99 1.00 1.00 0.96 0.96 0.96
Fuel Cost 1.00 1.00 1.00 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00
GCD 0.91 0.93 1.00 0.93 0.83 0.87 0.82 0.75 0.80 0.89 0.87
Grade – – – – 1.00 – 1.00 – – 1.00 1.00
Scrabble Score 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00
Small or Large 0.71 0.95 0.80 0.78 0.74 0.71 0.81 0.77 0.69 0.73 0.64

Table 6: Generalization rate for G3P. These data indicate the proportion of the runs that
passed the training set that also passed the test set.

Method Lex Rnd IDS Rnd IDS

r – 0.05 0.1
ρ – – 1 0.01 0.01 0.01 – 1 0.01 0.01 0.01
k – – 1 1 10 100 – 1 1 10 100

Count Odds 0.94 0.96 0.96 0.88 1.00 0.96 1.00 0.92 0.95 0.91 0.95
Find Pair – – – 1.00 – – 1.00 – – 1.00 –
Fizz Buzz 0.79 0.87 0.85 0.84 0.78 0.85 0.83 0.82 0.82 0.89 0.73
Fuel Cost 1.00 0.97 1.00 0.97 0.96 1.00 1.00 0.96 0.96 1.00 1.00
GCD – 0.17 – – – 0.25 – – – – –
Grade 0.42 0.45 0.50 0.53 0.59 0.45 0.47 0.54 0.47 0.54 0.49
Scrabble Score 1.00 1.00 1.00 1.00 0.92 0.83 1.00 – 0.86 1.00 0.60
Small or Large 0.47 0.57 0.65 0.56 0.64 0.66 0.68 0.59 0.60 0.579 0.65

B Average Program Size

Figure 5 displays the distribution of the average genome length of all synthesized
PushGP programs. This is reported across all runs for each problem and configuration
combination. Similarly, figure 6 displays the distribution of the average number of tree
nodes of a generation of programs synthesized by G3P.
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Figure 5: Average genome length for the PushGP programs.
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Figure 6: Average number of tree nodes for the G3P programs.
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Table 7: Program synthesis benchmark problems selected from the first and second gen-
eral program synthesis benchmark suite, along with their respective input and output
types and multiplicities.

Problem Suite Input Type Output Type

Count Odds PSB1 Vector of Integer Integer
Find Pair PSB2 Vector of Integer Two Integers
Fizz Buzz PSB2 Integer String
Fuel Cost PSB2 Vector of Integer Integer
GCD PSB2 Two Integers Integer
Grade PSB1 Five Integers String
Scrabble Score PSB1 String Integer
Small or Large PSB1 Integer String

C Problem Descriptions

These problem descriptions were modified from Helmuth and Spector (2015) and Hel-
muth and Kelly (2021). The modifications are indicated with an underline.

• Count Odds—Given a vector of integers, return the number of integers that are
odd, without use of a specific even or odd instruction (but allowing instruc-
tions such as mod and quotient).

• Find Pair—Given a vector of integers, return the two elements that sum to a
target integer.

• Fizz Buzz—Given an integer x, return “Fizz” if x is divisible by 3, “Buzz” if x

is divisible by 5, “FizzBuzz” if x is divisible by 3 and 5, and a string version of
x if none of the above hold.

• Fuel Cost—Given a vector of positive integers, divide each by 3, round the
result down to the nearest integer, and subtract 2. Return the sum of all of the
new integers in the vector.

• GCD—Given two integers, return the largest integer that divides each of the
integers evenly.

• Grade—Given 5 integers, the first four represent the lower numeric thresholds
for achieving an A, B, C, and D, and will be distinct and in descending or-
der. The fifth represents the student’s numeric grade. The program must print
one of A, B, C, D, or F as the achieved grade depending on the thresholds and
the numeric grade.

• Scrabble Score—Given a string of visible ASCII characters, return the Scrabble
score for that string. Each letter has a corresponding value according to normal
Scrabble rules, and non-letter characters are worth zero.

• Small or Large—Given an integer n, print “small” if n < 1,000 and “large” if
n ≥ 2,000 (and nothing if 1,000 ≤ n < 2,000).
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Figure 7: Instructions used for the Fizz Buzz problem with PushGP.

D Example of a Push Instruction Set and G3P Grammar

Below is an example grammar (G3P) and instruction set (PushGP) used for the Fizz
Buzz problem with both systems to illustrate their relative equivalency. A full list can
be found in our web supplement (Boldi, Briesch, et al., 2023).
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Figure 8: Grammar used for the Fizz Buzz problem with G3P.
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