Check for
Updates

Facilitating Function Application in Code Building Genetic

Programming
Thomas Helmuth Jayden Fedoroff
Hamilton College Hamilton College
Clinton, New York, USA Clinton, New York, USA
thelmuth@hamilton.edu jfedorof@hamilton.edu
Edward Pantridge Lee Spector
Spindle Health Ambherst College, UMass Amherst

Boston, Massachusetts, USA
eddie@spindlehealth.com

ABSTRACT

Code Building Genetic Programming (CBGP) is a method for gen-
eral inductive program synthesis that uses a genetic algorithm and
a formal type system to evolve linear genomes that are compiled
into type-safe programs in a host language. Prior work showed that
CBGP can evolve programs that use arbitrary abstractions from
existing codebases along with higher-order functions and poly-
morphism. In tests on benchmark problems, however, the problem
solving capabilities of CBGP have been mixed. One hypothesized
explanation for weak performance on some problems is that many
functions encountered during the compilation process are typically
not applied. Here we propose two modifications to the compilation
algorithm, both of which make it more likely that functions will be
applied when composing programs. The first modification changes
how frequently CBGP attempts to perform function application,
while the second allows the construction of function applications
to backtrack. While both modifications increase solution rates on
benchmark problems, the backtracking modification shows more
promise with a modest increase in computational cost and no addi-
tional configuration requirements. We argue that this modification
should be considered the new standard compilation algorithm for
CBGP systems.

CCS CONCEPTS

- Software and its engineering — Genetic programming.

KEYWORDS

automatic programming, genetic programming, inductive program
synthesis, function application

ACM Reference Format:
Thomas Helmuth, Jayden Fedoroff, Edward Pantridge, and Lee Spector. 2024.
Facilitating Function Application in Code Building Genetic Programming.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO ’24, July 14-18, 2024, Melbourne, VIC, Australia

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0494-9/24/07...$15.00
https://doi.org/10.1145/3638529.3654068

887

Ambherst, Massachusetts, USA
Ispector@ambherst.edu

In Genetic and Evolutionary Computation Conference (GECCO °24), July 14—
18, 2024, Melbourne, VIC, Australia. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3638529.3654068

1 INTRODUCTION

A variety of methods have been proposed for inductive program
synthesis, the task of automatically producing programs that meet
requirements given in the form of input/output examples. Among
those that show promise are several that employ evolutionary com-
putation processes in which random variation and selection operate
on populations of candidate solutions. Koza’s genetic programming
(GP) [15], in which populations of program parse trees are mutated
and recombined in a generation-based search algorithm, spawned
much of the early work in the field. More recently, the best perfor-
mance on standard program synthesis benchmark problems [25]
has been obtained using other methods such as grammar-guided
GP [9], linear GP [7], and stack-based GP [13].

Code Building Genetic Programming (CBGP) is an evolutionary
approach to program synthesis that was developed relatively re-
cently [20-22], and which has several features that are attractive
in principle. The CBGP approach uses linear genomes that can be
generated and varied using generic algorithms that are independent
of the syntax or semantics of the target programming language,
and yet the system always produces syntactically correct, type-safe
programs in that language. Furthermore, the programs produced
by CBGP can make use of arbitrary data types, data structures and
specifications from existing codebases, along with sophisticated
programming techniques that leverage higher-order functions and
polymorphism. All of this is enabled by a compilation process that
translates the linear genomes into type-safe computational graphs,
and thereafter into programs in the target language. A bonus of this
approach is that the compiled programs generally execute more
quickly than the interpreted program representations used in many
other genetic programming systems. This allows programs to be
evaluated faster, even over large training data sets. Because program
evaluation is often the most time-consuming step of the genetic
programming process, the compilation performed in CBGP can
speed up the overall genetic programming process considerably.

The first published work on CBGP described the general ideas
behind the approach and demonstrated its use on a variety of bench-
mark problems [22]. Subsequent work formalized CBGP using a

https://orcid.org/0000-0002-2330-6809
https://orcid.org/0009-0007-1356-2992
https://orcid.org/0000-0003-0535-5268
https://orcid.org/0000-0001-5299-4797
https://doi.org/10.1145/3638529.3654068
https://doi.org/10.1145/3638529.3654068
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3638529.3654068&domain=pdf&date_stamp=2024-07-14

GECCO ’24, July 14-18, 2024, Melbourne, VIC, Australia

functional programming language and a Hindley-Milner type sys-
tem, while also providing an analysis of the search performance
of CBGP in comparison to other GP-based program synthesis ap-
proaches [21]. More recent work has focused on the capability of
CBGP to produce programs that use generic data types in conjunc-
tion with higher order functions and functions with polymorphic
type signatures [20].

While many of the features that are uniquely provided by CBGP
make it a promising candidate for advancing the state of the art of
program synthesis, its performance on standard program synthesis
benchmarks has so far been mixed. For example, when CBGP was
run 100 times on each of 14 problems from the PSB1 program
synthesis benchmark suite [13] it performed excellently on seven of
the problems and reasonably well on two others. However, it found
zero solutions for the remaining five, all of which were solved at
least some of the time by at least one of the competing methods [21].

Subsequent analysis of data produced during CBGP runs revealed
that a great deal of the program structure produced during the com-
pilation process is typically not actually used in the final programs
produced as output from the compiler. As described below, many
times a genome will produce many small abstract syntax trees
(ASTs) without combining them into larger trees through function
application. These function applications, which produce the core
of any program written in a functional programming language,
are required to build more complex programs. Since CBGP only
conducts function application when an explicit application gene ap-
pears in the genome, and since this application is limited in which
functions and arguments it can select, function application does not
occur successfully as often as may be beneficial. After noticing this
behavior, we hypothesized that this lack of function application
was part of the explanation for CBGP’s weak performance on some
problems.

In order to investigate this hypothesis we developed and tested
two modifications to the CBGP compilation algorithm. Both of
these modifications, which are independent of each other and can
be used either separately or together, make it more likely that func-
tion ASTs will be successfully applied to argument ASTs to create
larger ASTs. The first modification explores different “function
application triggers,” which determine when and how a function
application happens during compilation. We implement and test
multiple novel application triggers intended to decrease the number
of function ASTs that are ignored due to scarcity of the dedicated
function-application gene. The second modification, “application
backtracking,” allows for backtracking in the process by which the
compiler makes decisions regarding the functions and arguments
used in each attempt to apply a function. This makes it more likely
that a compatible set of function and argument choices will be
found, resulting in the successful composition of a function appli-
cation AST.

To summarize, the research questions we will address in this
paper are as follows:

RQ1. Function application triggers: Can changing how and
when function application is triggered during compilation
improve CBGP’s problem solving performance?

888

Thomas Helmuth, Jayden Fedoroff, Edward Pantridge, and Lee Spector

RQ2. Backtracking: Can we improve performance by allowing
the function application algorithm to backtrack after select-
ing functions and arguments?

RQ3. Combination: Do function application triggers and back-
tracking work together?

We conduct experiments on a suite of polymorphic benchmark
problems, and find that both modifications increase solution rates.
That said, the combination does not improve over simply using
backtracking, leading to the conclusion that backtracking should
be used without introducing new hyperparameters to tune.

In the remainder of this paper we first provide a more complete
description of the process by which function applications are built
into programs during CBGP compilation. Following this, we de-
scribe our proposed modifications to this process, the methods
and experimental design by which we tested the modifications,
and the results of our experiments. We conclude with a discussion
of the results and related work, our recommendations regarding
compilation in future CBGP systems, and suggestions for further
research.

2 FUNCTION APPLICATION COMPILATION

CBGP uses an indirect encoding of programs that are compiled
from a genome data structure into an executable phenotype in
the form of an abstract syntax tree (AST). A genome is a variable
length linear sequence of AST nodes and compilation directive
genes. The compilation process composes these nodes into a tree
structure to form a syntactically valid and type safe AST in some
host language. The runtime of the host language is then able to
further compile, or interpret, the AST into machine code during
program execution. The full CBGP compilation algorithm for a
lambda calculus based host language (in particular, a strongly typed
functional language that supports parametric polymorphism) is
described in [21] and briefly reiterated in this section. We give
a detailed explanation of the previously published compilation
process for function applications because the main contribution of
this work is a modification to this procedure.

The compilation algorithm uses two ordered data structures:
the genome sequence, and a stack-like data structure for holding
ASTs. Initially the AST stack is empty. During each iteration of the
algorithm, a subsequent gene in the genome is processed. If the
kind of gene is an AST “leaf” node it is pushed to the top of the AST
stack. Leaf nodes are either literals (which include function literals)
or variables, both of which must have a known data type. Compila-
tion directive genes trigger some method of AST composition by
searching for ASTs on the stack and combining them into a larger
AST which is pushed to the top of the stack. The three compilation
directive genes that compose ASTs are:

e APP - Application - Calling a function AST on argument ASTs.

e ABS - Abstraction - Creating a lambda (anonymous) function
AST.

e LET - Let Binding - Defining a new local variable bound to an
AST.

Once all genes in the genome have been processed, the AST stack
will hold zero or more type safe ASTs. The top-most AST with a type
matching the target program’s specified output type is returned
as the corresponding phenotype, or “program”. If the AST stack is

Facilitating Function Application in Code Building Genetic Programming

1: procedure App(ASTs) > Given an AST stack.
2 functionASTs < [a € ASTs | TypE(a) is a function]

3 if functionASTs is empty then

4 return NOOP

5: end if

6 functionAST « top AST of functionASTs

7 ASTs.remove(functionAST)

8 argASTs « []

9 typeVars «— {} > Mapping from type var to type.

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

for all t € ArRGTYPES(functionAST) do
t' « t.substitute(typeVars)
unused «— [a € ASTs | a ¢ argASTs]
safe « [a € unused | TypE(a) isa t’]
if safe is empty then
return NOOP
end if
arg « top AST of safe
argASTs.append(arg)
newBindings « UNIFY(t’, Type(arg))
typeVars.addAll(newBindings)
end for
22: ASTs.removeAll(argASTs)
23: ASTs.push(Apply(functionAST, argASTs))
24: end procedure

Figure 1: The previously published procedure for compiling a
function application gene in a CBGP system. The conditions
that return NOOP revert the AST stack to its state prior to
compiling the apply gene and no function application AST
is created.

empty or does not have an AST of the correct type, the genome has
no corresponding phenotype, and is typically considered ineligible
for evaluation and selection.

This work is solely concerned with the process for composing
function applications. Figure 1 provides pseudocode for the original
compilation process of a function application gene. At a high level,
function application finds the first function AST on the stack, then
finds the first AST(s) that have the correct types for the function’s
parameters, creating a new AST composed of the function AST
and argument ASTs as children to a function application AST node.
This algorithm was introduced in [21] and is used in all CBGP
implementations that leverage a functional type system prior to
this work [20]. Other CBGP implementations not based on lambda
calculus, such as [22] and [5], use a slightly different procedure for
compiling function applications, but all known implementations
only consider the top-most function AST and perform repeated
searches through the AST stack for valid arguments. Crucially,
all known implementations immediately NOOP if any argument
cannot be satisfied. A NOOP does not modify the AST stack and
does not create any new composite ASTs.

Figures 2a and 2b depict an example function application com-
pilation on a given AST stack. The first function AST, + of type
(Int,Int) — Int, is chosen as the function to invoke. Subsequent
passes through the AST stack find 2 Int type ASTs to serve as
the arguments. Notice that if a subsequent function application is

889

GECCO ’24, July 14-18, 2024, Melbourne, VIC, Australia

triggered on the stack in Figure 2b it will result in a NOOP under
the original CBGP semantics. This is because the chosen function
AST will be < of type Va.(a, @) — Boolean. The arguments to this
function initially have free type variables, thus an AST of any type
is considered valid and the AST on top of the stack will be chosen.
In this case, the first argument AST will have type Int which substi-
tutes all instances of « in the remaining argument types with Int.
There are no other ASTs on the stack with type Int and therefore
the function application compilation must NOOP because it cannot
satisfy the second argument of the < function. This is true even
though the reverse or inc functions would be able to be successfully
applied, since the algorithm is locked into the first function that it
finds.

3 MODIFICATIONS

In this section, we provide the motivation behind improving the
compilation of function applications. We then describe the mod-
ifications to CBGP that form the basis of our proposal for a new
canonical CBGP compilation algorithm.

Functional CBGP has a known bias towards synthesizing smaller
programs. It has been hypothesized that this bias contributes to
CBGP’s inability to find solutions to some problems [21]. Simi-
larly, it has been observed that the number of unique data types
for the synthesized ASTs is large. A previous empirical study of
CBGP showed the median number of unique data types seen across
an evolutionary run ranged from 668 to 15,941 depending on the
problem. Many of the more complex types are function types from
ASTs that could be invoked if valid arguments were provided [20].
Encouraging these ASTs to be composed could be important for
synthesizing larger, more sophisticated, programs.

3.1 Function Application Triggers

Before this work, CBGP only triggers the function application pro-
cess in Figure 1 when an explicit APP gene is encountered while
compiling the genome. Otherwise, no functions are applied. We
hypothesize that this design likely results in smaller compiled pro-
grams, since many functions will not be applied unless the preva-
lence of APP genes is very high; in previous studies, they appear in
genomes 15-20% of the time [20, 21]. We call this method explicit
function application.

In order to increase the rate at which function application is trig-
gered, we experiment with a variety of methods that change when
this happens. Implicit function application triggers the function ap-
plication process after every single time that an AST is pushed onto
the AST stack, even ASTs that were just created through function
application. We expect that implicit function application will in-
crease the rate of successful function applications, building larger
ASTs. However, we also expect that it will be too extreme, since
there are functions that it would be better to not apply. Specifically,
CBGP contains many higher-order functions that take a function
as one or more of their arguments. With implicit function applica-
tion, there may be few or no function ASTs to use as arguments
when applying higher-order functions; a function would only not
be applied if it is attempted to be applied, but is unable to find the
correct arguments.

GECCO ’24, July 14-18, 2024, Melbourne, VIC, Australia

+ (Int,Int) — Int
1 Int
"AZ" String
2 Int
< Va.(a, @) — Boolean
"b" String
reverse String — String
inc Int — Int
AST Type

(a) The state of the AST stack prior to processing an APP gene.

APP
/ .\. . Boolean
reverse "AZ
APP
VRN Int
+ 1 2
< VYa.(a, @) — Boolean
"b" String
inc Int — Int
AST Type

(c) The AST stack after processing an APP gene using function back-
tracking on the stack from Figure 2b.

Thomas Helmuth, Jayden Fedoroff, Edward Pantridge, and Lee Spector

APP
VRN Int
+ 1 2
"AZ" String
< VYa.(a, @) — Boolean
"b" String
reverse String — String
inc Int — Int
AST Type

(b) The AST stack after processing an APP gene using the procedure
from Figure 1 on the stack from Figure 2a.

APP
/” ! "\" . Boolean
< "AZ""b
APP
VRN Int
+ 1 2
reverse String — String
inc Int — Int
AST Type

(d) The AST stack after processing an APP gene using argument back-
tracking on the stack from Figure 2b.

Figure 2: Example AST stacks before (a) and after compiling a function application gene using original compilation semantics (b)

and the proposed backtracking modifications (c and d).

In order to allow evolution to more finely tune when function
applications trigger during compilation while still encouraging
more of them than occur with explicit application, we designed
two new methods. The first, implicit with skips, adds skip genes to
implicit application. When compilation encounters a skip gene, the
next gene in the genome will not trigger function application. Skip
genes make up 10% of randomly generated genes. Implicit with
skips does include APP genes in genomes to apply functions that
otherwise are not applied, but at a much lower rate (2.5%) than
with explicit application (20%).

Second, gene-annotated application associates with each gene in
the genome a flag telling whether or not function application should
be triggered after compiling that gene. In this way, the triggering
of application is tied to specific genes instead of being a separate
gene, as with explicit application. The application flag of each gene
is set when the gene is created, either at genome initialization
or mutation. The application rate determines how frequently the
flag will be set to trigger application when each gene is created;
for example, an application rate of 0.75 means that 75% of genes
will have their flag set to trigger application. In theory, a custom
mutation operator could be used to randomly toggle some of the
application flags on a genome; however we did not explore such a
method for this work.

890

3.2 Backtracking

In the context of this paper, backtracking refers to a modification
to the function application compilation semantics from Figure 1
such that the NOOP outcome is delayed until all possible func-
tion ASTs and argument sets are considered, which allows more
function applications to complete successfully. There are 2 ways
which backtracking can occur: function backtracking and argument
backtracking.

Function backtracking occurs when there are no argument sets
on the AST stack which satisfy the function. In this case, our pro-
posed modification is to consider the next function on the AST
stack (searching in top-to-bottom order) and reattempt to find valid
argument ASTs. Since different functions take different argument
types, another function may be able to be applied after an attempt at
applying the first fails. This processes is repeated until a composite
AST can be constructed using one of the functions or all function
type ASTs have been attempted, resulting in a NOOP. Type variable
substitutions that were bound while attempting to find arguments
for the previous function are not used to find arguments to the
subsequent function.

For example, consider the state of the AST stack in Figure 2b.
Without backtracking, function application in this state will fail and
result in NOOP, as discussed in Section 2. With function backtrack-
ing, after the < fails to find arguments, the function application will
backtrack to look for another function. At this point it will find the

Facilitating Function Application in Code Building Genetic Programming

Hyperparameter Value

Population Size 1000

Max Generations 300

Parent Selection Lexicase Selection [14]
Variation UMAD [11]

Mutation Rate 0.1

Initial Genome Sizes [50, 250]

Number of Training Cases 200

Number of Unseen Test Cases 2000

Runs per Problem 100

Table 1: The evolutionary hyperparameters used for the
CBGP runs presented in this work, and the previously pub-
lished baseline results from [20].

reverse function, and will look for a String argument for it, finding
"AZ". Thus a new function application of reverse to "AZ" will be
pushed onto the AST stack. The resulting state of the AST stack is
given by 2c.

Argument backtracking occurs when a chosen argument AST
binds a type variable in such a way that makes it impossible to find
valid ASTs for one or more remaining arguments. In this case, we
revert all argument ASTs chosen after the most recent type variable
was bound and continue compilation with the state of the AST stack
reverted to the point where the type variable was initially bound.
From this point, we only allow the type variable to be bound to
types to which it has not previously been bound in a backtracked
fashion. This allows for all potential argument sets to be considered
without an exhaustive search through all combinations of ASTs on
the stack.

Again, we can consider the example AST stack given in Figure 2b.
Still, the first function that application finds is <; however, some-
thing different happens when trying to apply <. After considering
the Int AST on the top of the stack and not finding another Int-
typed AST, instead of failing or backtracking to the next function,
argument backtracking will revert the assignment of the type vari-
able « := Int, and keep searching for a different type assignment.
It will then bind « := String when attempting to use "AZ" as an
argument, and will be able to find a second String argument in "b",
thus completing a function application of < to "AZ" and "b". The
resulting state of the AST stack is given by 2d.

Figure 3 provides pseudocode for a complete CBGP function
application compilation algorithm with backtracking. Although this
algorithm has a higher time complexity compared to the original
CBGP compilation algorithm, we have not observed a dramatic
cost increase in practice. This is because argument backtracking
only occurs on the order of the number of type variables which is
always between [0,3] both in the function set used by our CBGP
system and most “real world” code. Also, the architecture of CBGP
only requires compilation to be performed once per genome, the
cost of which is almost always dominated by running the compiled
program on every training case.

891

GECCO ’24, July 14-18, 2024, Melbourne, VIC, Australia

1: procedure App(ASTs) > Given an AST stack.
2 functionASTs < [a € ASTs | Type(a) is a function]
3 for all functionAST « functionASTs do
4 ASTs" « [a € ASTs | a # functionAST]
5 types < ARGTYPES(functionAST)
6 argASTs «— FINDAsTS(ASTSs’, types, {})
7 if argASTs # BACKTRACK then
8 ASTs.remove(functionAST)
9 ASTs.removeAll(argASTs)
ASTs.push(Apply(functionAST, argASTs))
11: return STOP
end if
end for
return NOOP
. end procedure

17: function FINDASTS(ASTs, types, typeVars)
t « FIrstT(types).substitute(typeVars)
safe « [a € ASTs | TypE(a) is a t]
attempted — {}
for all arg € safe do
if Type(arg) ¢ attempted then
newBindings < UNIrY(t’, Type(arg))
ASTs" « [a € ASTs | a # arg]
types’ « DROPFIRST (types)
if types’ is empty then
return [arg]
end if
typeVars' « typeVars.addAll(newBindings)
restOfArgs < FINDASTS(ASTS’, types’,
typeVars’)
if restOfArgs = BACKTRACK then
App(attempted, Type(arg))
else
return Concat([arg], restOf Args)
end if
end if
end for
return BACKTRACK
40: end function

> A list containing just arg

Figure 3

4 EXPERIMENTAL DESIGN & METHODS

We present an empirical study into the problem solving perfor-
mance of our modifications using a suite of benchmark problems
for which CBGP has previous published results using the original
compilation semantics from Figure 1. We perform our study using
identical search methods to these previous CBGP results: a gen-
eration genetic algorithm with the same selection methods and
genetic operators, only varying when and how function application
happens. This section will provide an overview of our benchmark
problems and the search algorithm used in our experiments.

The benchmark problems selected for this study are the 17 prob-
lems designed to assess a program synthesis system’s capability
of finding solution programs that require the use of parametric

GECCO ’24, July 14-18, 2024, Melbourne, VIC, Australia

Thomas Helmuth, Jayden Fedoroff, Edward Pantridge, and Lee Spector

Gene-Annotated
Problem Explicit Implicit Skips 0.25 0.375 0.5 0.625 0.75
area-of-rectangle 59 88 78 68 83 78 82 83
centimeters-to-meters 92 97 98 97 97 98 99 98
count-true 100 100 100 100 100 100 100 100
filter-bounds 13 6 35 23 34 31 23 20
first-index-of-true 100 100 100 100 100 100 100 99
get-vals-of-key 12 33 25 10 21 30 39 37
max-applied-fn 24 24 51 43 45 42 39 32
min-key 31 67 32 37 40 49 53 62
set-cartesian-product 0 0 0 0 0 0 0 0
set-symmetric-difference 50 83 62 18 37 50 58 62
sets-with-element 4 0 3 0 0 1 0 0
simple-encryption 96 99 100 97 99 98 100 100
sum-2-vals 94 98 95 90 9% 99 99 96
sum-2-vals-polymorphic 100 100 99 100 95 99 100 100
sum-2D 100 90 100 99 100 98 96 98
sum-vector-vals 16 5 13 21 24 21 26 16
time-sheet 2 10 3 3 3 5 9 6
Count sig better: - 5 4 1 3 5 5 3
Count sig worse: - 1 0 1 0 0 0 0

Table 2: The number of successes out of 100 GP runs. All results are compared to “Explicit”, which was the CBGP default before
this work; results that are significantly better are in bold, and results that are significantly worse are underlined and italicized.
The “Explicit” and “Implicit” columns are for explicit and implicit function application. “Skips” is implicit function application
with skip genes. We give five different sets of “Gene-Annotated” runs, with the column headers giving the application rates. The
rows “Count sig better” and “Count sig worse” give the count of how many problems each method is significantly better/worse

than Explicit respectively.

polymorphism and nested data types, hereby referred to as the
parametrically polymorphic program synthesis benchmark (P3SB)
suite [20]. We are not aware of any published results that use these
problems with program synthesis methods besides CBGP (though
there is nothing about the problems that is specific to CBGP), thus
we do not make any claims to the relative performance of CBGP to
other methods. Instead, we present evidence of an improvement
over the original specification of CBGP.

The P3SB suite was selected because CBGP is known to have
more variation of solution rates across individual problems com-
pared to its performance on other genetic programming bench-
marks. Studies using the PSB1 benchmark suite [13] showed that
CBGP solves some problems 100% of the time, and others it never
solves, with very few problems somewhere in between. [21] This
makes statistical measurements of the changes to solution rates
from our modifications difficult.

Each P3SB problem is an inductive program synthesis task, where
the target program must be synthesized from training cases of
program inputs and target outputs. We provide the CBGP system
with 200 randomly generated training cases to evaluate individuals
during evolution. Synthesized programs which pass all training
cases, ending the evolutionary run, are evaluated on an additional
2000 randomly generated test cases to assess if the program is
a generalizing solution. We compare the number of generalized
solutions between sets of runs; statistical significance is determined
using a chi-square test with a 0.05 significance level. The error

892

functions used to evaluate programs are based on the output data
type of the synthesized program, and are the same as those used
in [20].

The CBGP implementation used here compiles genomes into
native Clojure code.! Table 1 presents the hyperparameters used
in our experimental runs. The function and literal sets (aka, the
genetic source [12]) used to sample genes for mutation and the
initial population vary by problem according to which data types
are relevant. Prior research into CBGP on the P3SB problems [20]
presented specific inclusion criteria for functions and literals which
this work adheres to for the sake of comparison.

5 RESULTS

We present results of experiments for function application triggers
and backtracking below. Unless stated otherwise, we use one or the
other, not both.

5.1 Function Application Triggers

We present results for our function application triggers experiments
in Table 2. All methods for increasing the number of function appli-
cations produced significantly better results on some problems, and
were rarely significantly worse. The methods with most significant
increases in success rate are implicit, implicit with skip genes, and
gene-annotated with moderate application rates.

Uhttps://github.com/erp12/cbgp-lite

https://github.com/erp12/cbgp-lite

Facilitating Function Application in Code Building Genetic Programming

Problem | None F F&A F&A+GA
area-of-rectangle 59 67 73 62
centimeters-to-meters 92 98 99 95
count-true 100 100 100 100
filter-bounds 13 10 26 28
first-index-of-true 100 100 100 100
get-vals-of-key 12 48 62 90
max-applied-fn 24 35 52 33
min-key 31 64 81 86
set-cartesian-product 0 0 0 0
set-symmetric-diff 50 91 89 87
sets-with-element 4 3 7 5
simple-encryption 96 100 100 100
sum-2-vals 94 98 99 97
sum-2-vals-poly 100 100 100 100
sum-2D 100 97 95 97
sum-vector-vals 16 55 71 43
time-sheet 2 9 14 15
Count sig better: ‘ - 4 8 6

Table 3: The number of successes out of 100 GP runs. All
results are compared to “None”; results that are significantly
better are in bold; no results were significantly worse. “None”
uses CBGP without backtracking. “F” uses function back-
tracking, and “F&A” uses function and argument backtrack-
ing. “F&A + GA” uses function and argument backtracking,
as well as gene-annotated function application triggering
with a rate of 0.625. The row “Count sig better” gives the
count of how many problems each method is significantly
better than “None”.

When considering the five rates we tested for gene-annotated
function application, we found that at either extreme (0.25 or 0.75
application rate), performance decreased compared to using rates
closer to 0.5. In particular, having too few or too many genes that
conduct function application degrades performance. Interestingly,
a rate of 0.75 performed worse than implicit function application,
which could be thought of as a 1.0 application rate.

5.2 Application Backtracking

Table 3 presents the results of three different settings of application
backtracking with the original compilation algorithm, which per-
forms no backtracking. The first three columns use explicit function
application triggers, and the fourth uses gene-annotated applica-
tion triggering at a rate of 0.625. Doing just function backtracking
gave significantly better results on 4 problems, while using function
and argument backtracking was significantly better on 8 problems.
Finally, the combined use of function and argument backtracking
with gene-annotated application triggering gave significantly better
results on 6 problems.

6 DISCUSSION

All of our function application trigger methods, which increase
how often function application happens, improved performance

893

GECCO ’24, July 14-18, 2024, Melbourne, VIC, Australia

across our benchmark problems. These results address RQ1: in-
creasing function application is beneficial to CBGP’s performance.
While the particular method for increasing does have some effect
on performance, all methods improve performance, meaning the
previously-used explicit application likely does not provide a suffi-
cient amount of function application to compile useful programs.

Of the methods we considered, implicit, implicit with skip genes,
and gene-annotated with moderate application rates all improve
significantly on 4 to 5 problems. While any of these may be a
reasonable choice, implicit is significantly worse on one problem,
and skips is not significantly better on as many problems as gene-
annotated. We therefore recommend using gene-annotated function
application, with a moderate application rate of 0.5 or 0.625.

In answer to RQ2, when considering backtracking methods,
performing both function and argument backtracking is the clear
winner compared to just doing function backtracking or doing
neither. All of these methods use explicit function application, so
they will not perform function application as frequently as the
application trigger methods. Still, backtracking likely performs
many more successful function applications, since the applications
that are attempted are more likely to find functions and arguments
that can be applied. Argument backtracking seems to have a real
impact beyond function backtracking, producing the best results of
any treatment in our experiments.

One important note is that function backtracking can lead to
successful function applications using AST stacks that would oth-
erwise never be able to successfully apply a function, no matter
how many function application procedures were carried out. In
particular, if a function or argument is buried on the stack under
another function or argument, function application will never be
able to find and apply it. Thus backtracking can produce qualita-
tively different compilations, where function application triggers
can only change how often function application happens.

We had hoped that a combination of a function application trig-
ger method and backtracking would gain the benefits of both, pro-
ducing better results. Unfortunately, combining one of the best
application trigger methods (gene-annotated at a rate of 0.625)
with function and argument backtracking produced slightly worse
results than by simply using backtracking. This gives an initial
answer to RQ3: adding application triggers to backtracking does
not improve performance over backtracking alone.

Perhaps backtracking by itself is sufficient to produce a reason-
able number of successful function applications, and performing
more function applications is overkill. On the other hand, this com-
bination gave the second best results of our experiments, and it
would be more useful on problems requiring even larger solution
programs. Additionally, an application trigger that produces fewer
applications (such as gene-annotated with a lower rate) may be
more beneficial when backtracking makes more of the function ap-
plications successful. Additional work is needed here to distinguish
further.

In summary, all methods to encourage more successful function
applications produced improvements. While function application
triggers helped on some problems, backtracking of both functions
and arguments was the most successful.

GECCO ’24, July 14-18, 2024, Melbourne, VIC, Australia

7 RELATED WORK

At the time of writing, techniques for general program synthesis
using large language models (LLMs) are receiving a lot of attention
based on impressive results and widespread use in real world appli-
cations [1, 3, 6, 23]. Some of these methods have been compared
with or combined with GP [17, 18, 24]. Some practitioners may feel
that non-LLM methods for program synthesis, such as genetic pro-
gramming, are simply not contemporary enough to warrant further
research; however there are important distinctions that highlight
the respective benefits. LLMs and genetic programming typically
use different program specifications. Genetic programming sys-
tems, such as CGBP, are usually inductive and leverage a sample
of input-output training cases, while LLMs are provided a natural
language “prompt” describing the target program. Another cru-
cial distinction is cost. Training a LLM capable of general program
synthesis requires a large, curated, corpus of code and a training
procedure that is many orders of magnitude more expensive than a
single genetic programming run. In contrast, genetic programming
requires relatively few training samples, yet is more expensive than
applying a pre-trained LLM to a new synthesis task. Therefore, the
most efficient method will depend on the availability of an LLM
pre-trained with suitable knowledge for the problem domain.

Other recent genetic programming methods have been moti-
vated by some of the same issues (production of type-safe code,
use of polymorphism) as CBGP. HOTGP (8], based on strongly-
typed GP [19], produces code that can use higher-order functions
and parametric polymorphism. Garrow compares evolved solution
programs in Python and Haskell (which are closer to CBGP’s pro-
grams), and finds that the Haskell solutions tend to be more likely
to generalize to unseen data [10].

The concept of backtracking is borrowed from the fields of con-
straint satisfaction [2, 16] and logic programming [4]. Generally,
our function and argument backtracking algorithm is searching
for a function and its arguments that meet the constraints of type
unification, backtracking when we discover that the constraints
cannot be met. In logic programming languages such as Prolog,
backtracking is used to repeatedly find unifications that instantiate
variables in an attempt to satisfy a query. These unifications with
values is very similar to our unifications with types, resulting in a
very similar backtracking algorithm.

8 CONCLUSION

In this paper we propose a change to the canonical compilation
procedure for Code Building Genetic Programming with the goal
of facilitating the synthesis of more sophisticated ASTs through the
use of function application. This proposal is supported by empirical
results on a suite of benchmark problems that show all of our
proposed changes have a net positive impact on the solution rates of
CBGP. However, the modification of adding backtracking stood out
as having the highest solution rates, needing the least configuration,
and allowing the CBGP compilation process to synthesize more
function applications beyond what is possible with an increase in
number of attempted function applications without backtracking.

Although this research has presented a clear improvement to the
problem solving capabilities of CBGP, additional study is required
to determine how this modified system compares to other genetic

894

Thomas Helmuth, Jayden Fedoroff, Edward Pantridge, and Lee Spector

programming and program synthesis methods. Furthermore, a more
causal study into how changes to the CBGP compilation algorithm
impact the size and shape of synthesized programs would likely
yield insights that would inform additional improvements to CBGP,
particularly on more difficult benchmarks.

ACKNOWLEDGMENTS

We thank Kien Tran, Anthony Hevia, and other members of the
PUSH lab for discussions that improved this work. This material is
based upon work supported by the National Science Foundation
under Grant No. 2117377. Any opinions, findings, and conclusions
or recommendations expressed in this publication are those of the
authors and do not necessarily reflect the views of the National
Science Foundation.

REFERENCES

[1] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk
Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le,
and Charles Sutton. 2021. Program Synthesis with Large Language Models.
arXiv:2108.07732 [cs.PL]

Sally C Brailsford, Chris N Potts, and Barbara M Smith. 1999. Constraint satis-
faction problems: Algorithms and applications. European journal of operational
research 119, 3 (1999), 557-581.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shan-
tanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei,
Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large
Language Models Trained on Code. arXiv:2107.03374 [cs.LG]

William F Clocksin and Christopher S Mellish. 2003. Programming in PROLOG.
Springer Science & Business Media, Berlin.

Li Ding, Edward Pantridge, and Lee Spector. 2023. Probabilistic Lexicase Selection.
In Proceedings of the Genetic and Evolutionary Computation Conference (Lisbon,
Portugal) (GECCO °23). Association for Computing Machinery, New York, NY,
USA, 1073-1081. https://doi.org/10.1145/3583131.3590375

Zhiyu Fan, Xiang Gao, Martin Mirchev, Abhik Roychoudhury, and Shin Hwei
Tan. 2023. Automated Repair of Programs from Large Language Models. In
2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE).
1469-1481. https://doi.org/10.1109/ICSE48619.2023.00128

Austin J. Ferguson, Jose Guadalupe Hernandez, Daniel Junghans, Alexander
Lalejini, Emily Dolson, and Charles Ofria. 2019. Characterizing the effects of
random subsampling and dilution on Lexicase selection. In Genetic Programming
Theory and Practice XVII, Wolfgang Banzhaf, Erik Goodman, Leigh Sheneman,
Leonardo Trujillo, and Bill Worzel (Eds.). Springer, East Lansing, MI, USA, 1-23.
https://doi.org/doi:10.1007/978-3-030-39958-0_1

Matheus Campos Fernandes, Fabricio Olivetti de Franca, and Emilio Francesquini.
2023. HOTGP-Higher-Order Typed Genetic Programming. arXiv preprint
arXiv:2304.03200 (2023).

Stefan Forstenlechner, David Fagan, Miguel Nicolau, and Michael O’Neill. 2018.
Towards effective semantic operators for program synthesis in genetic program-
ming. In Proceedings of the Genetic and Evolutionary Computation Conference
(Kyoto, Japan) (GECCO ’18). Association for Computing Machinery, New York,
NY, USA, 1119-1126. https://doi.org/10.1145/3205455.3205592

Fraser Garrow, Michael A. Lones, and Robert Stewart. 2022. Why functional
program synthesis matters (in the realm of genetic programming). In Proceedings
of the Genetic and Evolutionary Computation Conference Companion (Boston,
Massachusetts) (GECCO °22). Association for Computing Machinery, New York,
NY, USA, 1844-1853. https://doi.org/10.1145/3520304.3534045

Thomas Helmuth, Nicholas Freitag McPhee, and Lee Spector. 2018. Program
Synthesis Using Uniform Mutation by Addition and Deletion. In Proceedings of
the Genetic and Evolutionary Computation Conference (Kyoto, Japan) (GECCO ’18).
ACM, New York, NY, USA, 1127-1134. https://doi.org/10.1145/3205455.3205603
Thomas Helmuth, Edward Pantridge, Grace Woolson, and Lee Spector. 2020.
Genetic Source Sensitivity and Transfer Learning in Genetic Programming. In

5

—
)

https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2107.03374
https://doi.org/10.1145/3583131.3590375
https://doi.org/10.1109/ICSE48619.2023.00128
https://doi.org/doi:10.1007/978-3-030-39958-0_1
https://doi.org/10.1145/3205455.3205592
https://doi.org/10.1145/3520304.3534045
https://doi.org/10.1145/3205455.3205603

Facilitating Function Application in Code Building Genetic Programming

[13]

[14]

[15]
[16]

[17

(18]

[19]

[20]

Artificial Life Conference Proceedings. MIT Press, 303-311. https://doi.org/10.
1162/isal_a_00326

Thomas Helmuth and Lee Spector. 2015. General Program Synthesis Benchmark
Suite. In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary
Computation (Madrid, Spain) (GECCO ’15). Association for Computing Machinery,
New York, NY, USA, 1039-1046. https://doi.org/10.1145/2739480.2754769
Thomas Helmuth, Lee Spector, and James Matheson. 2015. Solving Uncompromis-
ing Problems with Lexicase Selection. IEEE Transactions on Evolutionary Compu-
tation 19, 5 (Oct. 2015), 630-643. https://doi.org/doi:10.1109/TEVC.2014.2362729
John R. Koza. 1992. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, MA, USA.

Vipin Kumar. 1992. Algorithms for constraint-satisfaction problems: A survey.
Al magazine 13, 1 (1992), 32-32.

Joel Lehman, Jonathan Gordon, Shawn Jain, Kamal Ndousse, Cathy Yeh, and
Kenneth O. Stanley. 2024. Evolution Through Large Models. Springer Nature
Singapore, Singapore, 331-366. https://doi.org/10.1007/978-981-99-3814-8_11
Vadim Liventsev, Anastasiia Grishina, Aki Hirm4, and Leon Moonen. 2023. Fully
Autonomous Programming with Large Language Models. In Proceedings of the
Genetic and Evolutionary Computation Conference (Lisbon, Portugal) (GECCO
’23). Association for Computing Machinery, New York, NY, USA, 1146-1155.
https://doi.org/10.1145/3583131.3590481

David J. Montana. 1995. Strongly Typed Genetic Programming. Evo-
lutionary Computation 3, 2 (06 1995), 199-230. https://doi.org/
10.1162/evc0.1995.3.2.199 arXiv:https://direct.mit.edu/evco/article-
pdf/3/2/199/1492842/evc0.1995.3.2.199.pdf

Edward Pantridge and Thomas Helmuth. 2023. Solving Novel Program Syn-
thesis Problems with Genetic Programming using Parametric Polymorphism.

895

[21

[24

[25

GECCO ’24, July 14-18, 2024, Melbourne, VIC, Australia

In Proceedings of the Genetic and Evolutionary Computation Conference (Lisbon,
Portugal) (GECCO °23). Association for Computing Machinery, New York, NY,
USA, 1175-1183. https://doi.org/10.1145/3583131.3590502

Edward Pantridge, Thomas Helmuth, and Lee Spector. 2022. Functional Code
Building Genetic Programming. In Proceedings of the Genetic and Evolutionary
Computation Conference (Boston, Massachusetts) (GECCO ’22). Association for
Computing Machinery, New York, NY, USA, 1000-1008. https://doi.org/10.1145/
3512290.3528866

Edward Pantridge and Lee Spector. 2020. Code Building Genetic Programming. In
Proceedings of the 2020 Genetic and Evolutionary Computation Conference (Cancun,
Mexico) (GECCO °20). Association for Computing Machinery, New York, NY,
USA, 994-1002. https://doi.org/10.1145/3377930.3390239

Kia Rahmani, Mohammad Raza, Sumit Gulwani, Vu Le, Daniel Morris, Arjun
Radhakrishna, Gustavo Soares, and Ashish Tiwari. 2021. Multi-modal program
inference: a marriage of pre-trained language models and component-based
synthesis. Proceedings of the ACM on Programming Languages 5, OOPSLA (2021),
1-29.

Dominik Sobania, Martin Briesch, and Franz Rothlauf. 2022. Choose Your
Programming Copilot: A Comparison of the Program Synthesis Performance
of Github Copilot and Genetic Programming. In Proceedings of the Genetic
and Evolutionary Computation Conference (Boston, Massachusetts) (GECCO
"22). Association for Computing Machinery, New York, NY, USA, 1019-1027.
https://doi.org/10.1145/3512290.3528700

Dominik Sobania, Dirk Schweim, and Franz Rothlauf. 2023. A Comprehensive
Survey on Program Synthesis With Evolutionary Algorithms. IEEE Transactions
on Evolutionary Computation 27, 1 (2023), 82-97. https://doi.org/10.1109/TEVC.
2022.3162324

https://doi.org/10.1162/isal_a_00326
https://doi.org/10.1162/isal_a_00326
https://doi.org/10.1145/2739480.2754769
https://doi.org/doi:10.1109/TEVC.2014.2362729
https://doi.org/10.1007/978-981-99-3814-8_11
https://doi.org/10.1145/3583131.3590481
https://doi.org/10.1162/evco.1995.3.2.199
https://doi.org/10.1162/evco.1995.3.2.199
https://arxiv.org/abs/https://direct.mit.edu/evco/article-pdf/3/2/199/1492842/evco.1995.3.2.199.pdf
https://arxiv.org/abs/https://direct.mit.edu/evco/article-pdf/3/2/199/1492842/evco.1995.3.2.199.pdf
https://doi.org/10.1145/3583131.3590502
https://doi.org/10.1145/3512290.3528866
https://doi.org/10.1145/3512290.3528866
https://doi.org/10.1145/3377930.3390239
https://doi.org/10.1145/3512290.3528700
https://doi.org/10.1109/TEVC.2022.3162324
https://doi.org/10.1109/TEVC.2022.3162324

	Abstract
	1 Introduction
	2 Function Application Compilation
	3 Modifications
	3.1 Function Application Triggers
	3.2 Backtracking

	4 Experimental Design & Methods
	5 Results
	5.1 Function Application Triggers
	5.2 Application Backtracking

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

