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Abstract

Genetic programming systems often use large training sets
to evaluate the quality of candidate solutions for selection,
which is often computationally expensive. Down-sampling
training sets has long been used to decrease the computa-
tional cost of evaluation in a wide range of application do-
mains. More specifically, recent studies have shown that both
random and informed down-sampling can substantially im-
prove problem-solving success for GP systems that use the
lexicase parent selection algorithm. We test whether these
down-sampling techniques can also improve problem-solving
success in the context of three other commonly used selection
methods, fitness-proportionate, tournament, implicit fitness
sharing plus tournament selection, across six program synthe-
sis GP problems. We verified that down-sampling can signif-
icantly improve the problem-solving success for all three of
these other selection schemes, demonstrating its general effi-
cacy. We discern that the selection pressure imposed by the
selection scheme does not interact with the down-sampling
method. However, we find that informed down-sampling can
improve problem solving success significantly over random
down-sampling when the selection scheme has a mechanism
for diversity maintenance like lexicase or implicit fitness shar-
ing. Overall, our results suggest that down-sampling should
be considered more often when solving test-based problems,
regardless of the selection scheme in use.

Introduction
Genetic programming (GP) applies the principles of Dar-
winian evolution to automatically synthesize programs in-
stead of writing them by hand. GP systems are commonly
used in the context of artificial life for both applied problem-
solving (Cava et al., 2021) and studying general evolutionary
dynamics (Dolson and Ofria, 2021), as evolved programs
can express complex traits while still allowing researchers
to fully disentangle the genetic mechanisms implementing
those traits (Lenski et al., 2003; Lalejini et al., 2021). GP
systems often use large training sets to evaluate the qual-
ity of candidate solutions (individuals). These training sets
comprise examples of input and output pairs that describe
the correct behavior of a program for a given problem. Each
generation, individuals are evaluated on these pairs in order

to determine whether or not they exhibit this desired behav-
ior, such as returning the correct value for a program synthe-
sis or regression problem. A parent selection algorithm then
chooses the “best” individuals to contribute genetic material
to the next generation.

To thoroughly assess the quality of individuals in a pop-
ulation, most GP systems evaluate all individuals on every
input-output example in the training set. This process can
be computationally expensive when using large population
sizes on large training sets or when individual evaluations
are slow to compute. Reducing these computational costs
can increase the scale at which we apply GP, allowing us
to solve problems or conduct experiments that would other-
wise not be possible. Down-sampling has been shown to be
effective for reducing the per-generation cost of evaluating
programs when using lexicase selection (Hernandez et al.,
2019; Ferguson et al., 2019). Here, we show that these ben-
efits apply to other selection methods, including tournament
selection and fitness-proportionate selection.

Previous work demonstrated that using random down-
sampling in the context of lexicase selection can sub-
stantially improve problem-solving success when the per-
generation computational savings are reallocated to other
aspects of evolutionary search, such as running for more
generations (Hernandez et al., 2019; Ferguson et al., 2019;
Helmuth and Spector, 2021; Schweim et al., 2022; Geiger
et al., 2023). However, naively constructing random down-
samples has the drawback of leaving out potentially impor-
tant training cases or over-representing redundant training
cases, which can slow or even impede problem-solving suc-
cess (Hernandez et al., 2022b; Boldi et al., 2022; Helmuth
and Spector, 2021; Boldi et al., 2023b). Informed down-
sampling (IDS) (Boldi et al., 2024) addresses this drawback
by using runtime population statistics to construct down-
samples with distinct, more informative training cases. In-
formed down-sampling was found to significantly improve
success rates over random down-sampling for program syn-
thesis runs using the PushGP system (Spector et al., 2005).
In each of these previous studies, down-sampling is ap-
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plied in the context of standard lexicase selection alone. To
our knowledge, these down-sampling techniques have yet
to be rigorously evaluated in combination with other com-
monly used parent selection methods in GP, like tournament
or fitness-proportionate selection, or other diversity-focused
selection methods like implicit fitness sharing.

In this work, we expand on a previously published
short-form communication (Boldi et al., 2023a) to investi-
gate whether the benefits of random and informed down-
sampling extend beyond lexicase selection. By doing this,
we hope to motivate more artificial life practitioners to incor-
porate down-sampling into their evolutionary frameworks
with a variety of selection schemes. To do so, we compare
problem-solving success when using different combinations
of selection scheme and down-sampling method across six
program synthesis benchmark problems (Helmuth and Spec-
tor, 2015; Helmuth and Kelly, 2021). In addition, we test
whether the level of selection pressure imposed by a selec-
tion scheme or whether the presence of diversity mainte-
nance mechanisms influence the efficacy of random versus
informed down-sampling.

Selection

The process of selection is a fundamental feature of evo-
lutionary search. Parent selection algorithms steer evolving
populations through a search space by determining which in-
dividuals should contribute genetic material to the next gen-
eration. Many selection algorithms have been developed,
each targeting different problem domains and search space
topologies (e.g., (Holland, 1992; Brindle, 1980; Ross, 1999;
Spector, 2012; Helmuth et al., 2015)). In this subsection,
we overview the four selection strategies studied in this pa-
per: fitness-proportionate, tournament, implicit fitness shar-
ing and lexicase selection. The implementation details and
specific parameters of each of these strategies are then dis-
cussed in their respective subsection.

We acknowledge that there are many different selection
schemes that were not included in this study, including those
based on rankings (Blickle and Thiele, 1996), elitism, qual-
ity diversity (Mouret and Clune, 2015), or other techniques.
However, we believe that this set of selection schemes cap-
tures a significant portion of what GP practitioners use.

Fitness-Proportionate Selection

Fitness-proportionate selection (FPS) is one of the earli-
est proposed selection strategies in evolutionary computa-
tion (Holland, 1992). Fitness-proportionate selection as-
signs each parent a selection probability based on its ag-
gregate fitness relative to that of the other population mem-
bers. Although individuals with higher fitness have a higher
chance of being selected, those with lower fitness can still be

selected. The probability pi that an individual i is selected is

pi =
fi

NX

j=1

fj

where fi is the ith individual’s fitness, and N is the popula-
tion size. Since our genetic programming system evaluates
individuals with errors instead of fitness values, we compute
the fitness of the individual as 1

1+ei
where ei is the aggregate

error the individual achieved on the training set.
On its own, fitness-proportionate selection can impose

low selection pressure on a population relative to other com-
monly used selection algorithms, such as tournament selec-
tion (Blickle and Thiele, 1996; Zhong et al., 2005). Fitness-
proportionate selection is also simple to implement and
computationally efficient with a time complexity of O(N).
As such, fitness-proportionate selection is still commonly
used for evolutionary search (Dang et al., 2019; Arabas and
Opara, 2020), often as one component of more sophisticated
selection procedures (Yan et al., 2019).

Tournament Selection
Tournament selection requires there to be a comparison met-
ric between individuals. This can either be represented as a
total ordering (ranking) of the individuals, or an assignment
of a fitness value for each individual. To select a single in-
dividual with tournament selection, t individuals are chosen
from the population at random. Then, the individual with the
best fitness (or lowest error) “wins” the tournament and is se-
lected as a parent. Tournament size (t) controls the strength
of selection; larger tournament sizes impose stronger selec-
tion, and smaller tournament sizes impose weaker selection.
In this work, we use a variety of tournament sizes.

Tournament selection has been found to be more stable
(Butz et al., 2003) than fitness-proportionate selection, as it
is not affected by fitness scaling (Goldberg and Deb, 1991).
Tournament selection also has a time complexity of O(N),
which makes it attractive when using large population sizes
(Goldberg and Deb, 1991). Due to its simplicity and effi-
ciency, it is widely used as the standard selection strategy
for evolutionary computation (Fang and Li, 2010).

Implicit Fitness Sharing
Implicit fitness sharing (IFS) changes how errors are aggre-
gated to incorporate an estimate of the difficulty of a training
example (Smith et al., 1993; McKay, 2000). This technique
has been used as a diversity preservation method as individu-
als that solve hard or rare test cases have a higher fitness than
otherwise. IFS was later adapted to enable it to be used in
cases where errors are non binary (Krawiec and Nawrocki,
2013), which is the framework we use in this work. Implicit
fitness sharing is not a selection scheme on its own, but a fit-
ness augmentation scheme that can be applied before using
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a different selection scheme, such as tournament or fitness-
proportionate selection to make the selection.

The idea for implicit fitness sharing is that individual test
case error is weighted with respect to how the rest of the
population performs on that test case. Specifically, the cor-
rected fitness for each individual is given by the formula

FNBIFS(i) =
X

t2T

f(i, t)P
i02P f(i0, t)

Where T is the set of training cases, f(i, t) 2 [0, 1] is the
raw fitness of an individual i on training case t (higher is bet-
ter). We calculate this value from the errors of the individual
in the same manner as we did for fitness-proportionate Se-
lection. After this re-weighting scheme, the population is
selected from using tournament selection. In this work, we
use a tournament size of t = 30 for the IFS experiments, as
this tournament size was empirically determined to perform
the best from our plain tournament selection runs. When we
refer to IFS as a selection scheme, we are referring to IFS
with tournament selection with t = 30.

Lexicase Selection
Unlike fitness-proportionate and tournament selection, lexi-
case selection does not aggregate error values across train-
ing cases to choose parents. Instead, lexicase considers each
training case individually. To select a single parent, lexicase
selection first shuffles the set of training cases into a random
order, and all individuals in the population are included in a
pool eligible for selection. Each training case is then applied
in sequence (in the shuffled order) to filter down the pool of
eligible candidates. At each step, the next pool of eligible in-
dividuals is set to include only individuals with elite perfor-
mance on the current training case. This filtering continues
until one individual remains in the eligible pool to be se-
lected or until all training cases have been exhausted, where
one of the remaining eligible individuals is then selected at
random. Because each parent selection event uses a random
permutation of training cases, lexicase selection prioritizes
high performance on different sets of training cases across
parent selection events, improving its capacity for diversity
maintenance (Helmuth et al., 2016a; Dolson et al., 2018).

Lexicase selection was initially designed for multi-modal
test-based program synthesis problems (Spector, 2012; Hel-
muth et al., 2015) and has frequently been found to out-
perform other selection methods in this domain (Helmuth
and Kelly, 2022; Sobania et al., 2022). Lexicase selection
has also been shown to be effective in domains beyond GP,
including evolutionary robotics (Moore and Stanton, 2017;
Stanton and Moore, 2022), deep learning (Ding and Spec-
tor, 2021), genetic algorithms (Metevier et al., 2019), learn-
ing classifier systems (Aenugu and Spector, 2019) and even
in the directed evolution of microbes (Lalejini et al., 2022).
Lexicase selection’s success is often attributed to its capac-
ity to preserve diversity (Helmuth et al., 2016a; Dolson et al.,

2018) and maintain specialists (Helmuth et al., 2020). How-
ever, the worst case time complexity for lexicase selection
is O(N ⇤ C) where N is the population size, and C is the
number of training cases. In practice, this number is often
closer to O(N +C) when population diversity is high (Hel-
muth et al., 2022), and there are strategies that can be used
to reduce this even further (Ding et al., 2022; Lalejini et al.,
2023). Despite this larger time complexity, in practice, the
computational cost of genetic programming is more often
dominated by program evaluation instead of selection. In
this work, we focus on training set down-sampling, a strat-
egy that can be used to reduce how expensive the evaluation
step of evolutionary runs are by reducing the effective size
of the training set.

Down-sampling
In test-based program synthesis, candidate solutions are
evaluated on a set of training cases in order to assess qual-
ity or correctness. Down-sampling techniques reduce the
total number of training cases used for assessing candidate
solution quality, which in turn, reduces the total number
of program evaluations needed each generation. Down-
sampling has been studied in evolutionary computation as a
means to reduce computational loads (Langdon, 2011; Ross,
1999) and reduce overfitting (Gonçalves et al., 2012; Liu and
Khoshgoftaar, 2004; Goncalves and Silva, 2013).

Historical subset selection is one simple down-sampling
method that maintains a single static subset of the training
cases for an entire evolutionary run (Gathercole and Ross,
1994). In contrast, random subset selection (Gathercole and
Ross, 1994) randomly chooses to include or not include
each training case each generation, resulting in different
down-sample sizes from generation to generation. Stochas-
tic subset sampling (Nordin and Banzhaf, 1997; Lasarczyk
et al., 2004) chooses a new fixed-size down-sample each
generation. More sophisticated methods of down-sampling
have also been developed. Dynamic subset selection creates
down-samples that are biased toward including harder cases
and cases not seen for many generations (Gathercole and
Ross, 1994). Other work introduces a topology-based selec-
tion that takes problem structure into account by selecting
cases that individuals perform differently in a problem do-
main (Lasarczyk et al., 2004). Topology-based selection is
very similar to the later proposed informed down-sampling
(Boldi et al., 2024); although the latter has only been tested
on program synthesis problems, and the former only on sym-
bolic regression and classification. In this work, we com-
pare the performance of informed down-sampling to that of
a method similar to the earlier proposed stochastic subset
sampling, also known as random down-sampling (Hernan-
dez et al., 2019), and the standard non-down-sampled selec-
tion strategy.

Given the demonstrated value of down-sampling for evo-
lutionary search, it is important to understand how differ-
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ent down-sampling methods interact with different selection
algorithms to benefit (or hinder) problem-solving success.
Here, we focus on two down-sampling techniques that have
been demonstrated to be effective in combination with lexi-
case selection for GP: random down-sampling and informed
down-sampling, each described in detail below. We ask
whether the benefits of these down-sampling methods might
extend to other commonly used selection procedures in GP.

Random Down-sampling
Random down-sampling (in this context) constructs a ran-
dom fixed-size subset of the training set each generation.
This smaller subset of training cases is then used to eval-
uate the quality of the population for selection in the cur-
rent generation. By reducing the number of training cases
used to evaluate programs each generation, random down-
sampling reduces the per-generation computational costs of
population evaluation and parent selection. Previous work
demonstrated that reallocating these computational savings
to other aspects of evolutionary search can lead to substantial
improvements in problem-solving success in the context of
lexicase selection (Hernandez et al., 2019; Ferguson et al.,
2019; Helmuth and Spector, 2021; Schweim et al., 2022;
Geiger et al., 2023).

However, random down-sampling results in less thorough
program evaluations, which can lead to misleading assess-
ments of program quality. For example, a random down-
sample might omit important training cases (e.g., cases that
test input edge cases), as the down-sample is created ran-
domly with no consideration for the program behavior that
each training case might be assessing. Prior work ex-
plored the extent to which random down-sampling resulted
in discontinuities between training sets used to select suc-
cessive generations (Boldi et al., 2022). They found that
the commonality of synonymous training cases usually pre-
vented discontinuities; that is, most training sets contain
many training cases that measure the same behavior are thus
passed by the same groups of individuals. In these circum-
stances, down-samples are less likely to entirely omit an en-
tire class of training cases.

Informed Down-sampling
Informed down-sampling addresses random down-
sampling’s drawback of potentially omitting informative
training cases by minimizing the number of synonymous
training cases included in the down-sample (Boldi et al.,
2024). To estimate differences among training cases,
informed down-sampling fully evaluates a random subset
of the population on the complete set of training cases. If
an individual has 0 error on a training case, we refer to
this individual as “solving” that training case. To select an
individual, we evaluate them on a subset of the training
cases. Two training cases solved by the exact same subset of
the population are less informative than having two training

cases that are solved by very different sub-populations. This
is because if both cases are solved by the same set of the
population, they exert very similar selective pressure to if
there was only one of those cases. Following prior work,
we call these cases “synonymous” due to the fact that they
measure same behavior in the context of the current popu-
lation. With informed down-sampling, down-samples are
constructed to include cases as far from being synonymous
with each other as possible.

Algorithm 1 specifies the full informed down-sampling
procedure. We modified the algorithm from (Boldi et al.,
2024) to allow for an arbitrary selection scheme, S . To con-
struct a down-sample, we use a random subset of the popu-
lation to estimate the “distance” between all pairs of train-
ing cases. The distance between two training cases is the
Hamming distance between their “solve vectors”, which are
vectors of binary value that specify which individuals in the
population subset (or “parent sample”) solved the training
case. We specify the size of the population subset (and thus
the maximum distance between cases) using the ⇢ parame-
ter. With ⇢ = 0.01, we include 1% of the population in the
population subset used for calculating each training case’s
solve vector. We used ⇢ = 0.01 for all experiments in this
work. Next, a single training case is added to the down-
sample at random, and training cases are added in sequence
such that each additional training case is maximally far away
from the current down-sample through a process known as
farthest first traversal (Hochbaum and Shmoys, 1985).

Whilst what we outlined above is one specific specifica-
tion of informed (or non-random) down-sampling, there are
several other methods that can fall under this umbrella term.
We believe the above outlined informed down-sampling suf-
ficiently captures the main ideas from semantic aware down-
sampling. It does not use information regarding inputs and
outputs to form a down-sample. Instead, it uses popula-
tion statistics, which exist regardless of the problem being
solved, which makes it applicable in all problem domains
without problem specific augmentations needed. For this
reason, we think it is the most general approach to semantic
aware down-sampling and we include it as the representative
algorithm in this work.

Methods
In this work, we study random and informed down-sampling
in the context of four selection schemes commonly used
in GP: tournament selection, fitness-proportionate selection,
implicit fitness sharing and lexicase selection.

Our first series of experiments analyzes the performance
of each specific selection and down-sampling combination.
The second set of experiments focuses on determining how
varying the strength of selection pressure influences the effi-
cacy of down-sampling. For each of these experiments, we
compare problem-solving success on six program synthesis
problems as detailed in the following section.
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Algorithm 1 Informed Down-Sampling. Adapted from (Boldi et al., 2024).
Data:

P : population, cases: set of all training cases,
S : selection scheme, . S picks a new pop. given an old pop. and a set of cases
k : scheduled case distance computation parameter,
⇢ : parent sampling rate, . ⇢, k are parameters to reduce the distance computation cost
G : current generation counter,
D : case distance matrix. . all distances are initialized to be maximally far

Result: A list of selected parents
1: if G%k == 0 then
2: P̂  sample ⇢⇥|P| parents from P

3: evaluate P̂ on cases . parent sample, purely used for distance calculations
4: calculate D from solve vectors from solutions in P̂ on cases
5: end if
6: ds create down-sample using farthest first traversal . picks cases that are of high distance to each other in a greedy

fashion
7: P  select |P| new parents using S from P using ds as cases . selecting new population
8: return P

Program Synthesis Problems

The goal of program synthesis problems is to achieve zero
error on each of a set of training cases, where each train-
ing case encodes what the program should output given a
certain input. For this work, we chose six program syn-
thesis problems from the first and second program synthe-
sis benchmark suites (Helmuth and Spector, 2015; Helmuth
and Kelly, 2021, 2022). These problems have been ex-
plored in previous work on informed down-sampling (Boldi
et al., 2024) and are therefore a good basis for this in-
vestigation. We included problems where informed down-
sampling has been shown to improve problem-solving suc-
cess (Count Odds, Fizz Buzz and Scrabble Score), reduce
problem-solving success (Small or Large), and have no sig-
nificant effect on problem-solving success (Fuel Cost). We
also include a new problem that has not been investigated in
prior work on informed down-sampling (Middle Character).

The specific parameters used for our program synthesis
experiments can be found in Table 1. We performed 50
evolutionary runs for each program synthesis problem con-
figuration, each with a population size of 1000. Each of
these runs were performed at 5% down-sampling, meaning
r = 0.05. Since we have 200 training cases in the entire
training set, each individual is evaluated on 10 of the cases
every generation. We chose r = 0.05 based on previous
work (Boldi et al., 2024). The down-sampling strategy be-
ing used determines which cases are selected out of the 200
to make up the down-sample.

To make the comparisons fair, we ensure that all meth-
ods (regardless of down-sampling) use the same number of
program executions. We limited all runs to 60,000,000 pro-
gram executions, which is equivalent to running a full GP
run (with no down-sampling) for 300 generations.

Table 1: System parameters used for the program synthesis
runs. We seperate the parameters by general GP parameters
as well as parameters used specifically when down-sampling
is enabled (DS).

GP Parameter Value
runs per problem 50
population size 1000
initial training set size 200
testing set size 1000
maximum program executions 60,000,000
variation operator UMAD
DS Parameter Value
down-sample rate r 0.05
parent sample rate ⇢ 0.01
generational interval k 100

Experimental Design
We used the PushGP framework to conduct our experiments.
PushGP is a genetic programming framework for evolving
Push programs. The Push programming language uses a set
of typed memory stacks to allow programs to handle differ-
ent data types (e.g., strings, numbers, etc.) and includes a
Turing complete instruction set that supports basic compu-
tations as well as complex control flow, such as looping and
conditional execution (Spector, 2001; Spector and Robin-
son, 2002; Spector et al., 2005). For these experiments, we
use the same instruction sets as those used by Boldi et al.
(2024), and used the propeller1 implementation of PushGP.

For each configuration, we report the number of general-
izing runs, which is the number of runs that produce a pro-
gram that passes all test cases in the held out testing set.
Since we are not evaluating the individuals on the entire

1https://github.com/lspector/propeller
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Table 2: The effect that varying the selection schemes has on problem solving success when in conjunction with down-sampling.
We report the number of generalizing solutions out of 50 program synthesis runs achieved by PushGP on the test set. In bold
font are the down-sampling runs that perform significantly better than the respective runs with no down-sampling. Significant
differences (according to a pairwise Chi-Squared significance test) between informed and random down-sampling are denoted
by an asterisk (*).

Selection Scheme Fitness Prop. Tourn. (t = 30) IFS (t = 30) Lexicase

Down-sample Type No Rnd IDS No Rnd IDS No Rnd IDS No Rnd IDS

Count Odds 0 1 0 1 31 34 2 22 42* 11 10 49*

Fizz Buzz 0 5 5 0 4 7 0 2 4 5 32 45*

Fuel Cost 0 19 14 0 28 37 0 26 40* 22 40 41

Small or Large 0 0 0 11 37 41 13 18 47* 16 42 38

Middle Character 0 0 0 4 17 10 1 15 16 16 30 26

Pr
ob

le
m

Scrabble Score 0 0 0 0 1 0 0 0 0 1 0 2

training set when we down-sample, checking if an individ-
ual passes the entire training set happens when an individ-
ual passes all the cases in the down-sample. If an individual
passes the entire training set, the evolutionary run ends. This
individual is then evaluated on the held out testing set. If
this individual passes the testing set, the run is marked as a
generalizing run. If the individual passes the down-sample,
but not the entire training set, the evolutionary run contin-
ues. Contrary to previous work on down-sampling with lex-
icase selection (Hernandez et al., 2019; Helmuth and Spec-
tor, 2021; Boldi et al., 2024), the extra program executions
required to verify if an individual passes the entire training
set are added to our program execution tally used to limit
our runs.

Diversity preservation properties

A specific quality of selection schemes that could have an
effect when used in conjunction with down-sampling is the
diversity preservation qualities of the scheme.

Diversity maintenance is the capacity for a selection
method to select a behaviorally diverse population of indi-
viduals. Estimating the behavior of an individual (so that
you can maintain diversity) might be less accurate with the
addition of down-sampling as a system has access to less
information about the individual’s behavior.

We investigate whether the diversity maintenance prop-
erties of a selection scheme affects its compatibility with
down-sampling. To do this, we evaluate the problem-solving
performance of selection schemes that use a variety of di-
versity preservation qualities. Specifically, we compare two
selection schemes with no diversity preservation (FPS and
Tournament) and two that do (Lexicase and IFS).

Selection Pressure
We investigate how selection pressure interacts with down-
sampling by comparing problem-solving success of tourna-
ment selection at a range of tournament sizes.

Selection pressure is the standard that is required to be
met in order for an individual to be selected on average.
With a high selection pressure, an individual needs to be bet-
ter than more of its peers to have the same chance at selec-
tion. It is important to study whether the selection pressure
affects the efficacy of down-sampling. This is because if
the fitness evaluation is noisy due to an unbalanced sample,
high selective pressure might result in worse selections be-
ing made. In other words, being highly selective with respect
to an non-representative sample could result in selecting in-
dividuals that are globally suboptimal.

In order to vary the selection pressure, we vary the size of
the tournament. We test tournament sizes of t = 2, 5, 10, 30
in combination with the various types of down-sampling.

Results and Discussion
Table 2 shows problem-solving successes for the six pro-
gram synthesis problems studied at a variety of selection
scheme and down-sampling combinations. A run is con-
sidered to be successful if a perfect solution evolves (i.e.,
a program that solves all training and unseen testing cases).
Consistent with previous work with lexicase selection (Hel-
muth and Spector, 2021; Helmuth and Kelly, 2022; Her-
nandez et al., 2022b; Boldi et al., 2024), not all program
synthesis problems benefited from down-sampling. How-
ever, we found no instances where configurations without
down-sampling significantly outperformed configurations
with down-sampling enabled. In fact, when using lexicase
selection and tournament selection, problem-solving success
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Table 3: The effect that varying the selection pressure (tournament size) has on problem solving success when in conjunction
with down-sampling. We report the number of generalizing solutions (successes) out of 50 program synthesis runs achieved by
PushGP on the test set.

Tournament Size t = 2 t = 5 t = 10 t = 30

Down-sample Type No Rnd IDS No Rnd IDS No Rnd IDS No Rnd IDS

Count Odds 1 0 0 0 7 10 0 26 33 1 31 34

Fizz Buzz 0 0 0 0 0 0 0 0 1 0 4 7

Fuel Cost 0 0 0 0 14 11 1 28 25 0 28 37

Small or Large 0 2 2 7 4 21* 13 18 47* 11 37 41

Middle Character 0 1 1 0 0 3 1 13 10 4 17 10

Pr
ob

le
m

Scrabble Score 0 0 0 0 0 0 0 1 0 0 1 0

was significantly improved for all problems but one by at
least one of the down-sampling method. When using im-
plicit fitness sharing, down-sampling significantly improved
problem-solving success for all but two problems (Scrabble
Score and Fizz Buzz). Overall, fitness-proportionate selec-
tion benefited the least from the addition of down-sampling,
as problem-solving success was significantly better for only
one out of the six problems. We also found some examples
where fitness-proportionate and tournament selection failed
to find any solutions unless we used down-sampling.

We detected a significant difference in problem-solving
success between informed and random down-sampling in
five instances (across all problems and configurations). With
implicit fitness sharing, we found significant differences be-
tween informed down-sampling and random down-sampling
on the Count Odds, Fuel Cost and Small or Large prob-
lems. For lexicase selection, we found a significant differ-
ence on the Count Odds and Fizz Buzz problems. In each of
these instances, informed down-sampling outperformed ran-
dom down-sampling. We found no significant differences
between the two down-sampling techniques on any prob-
lems when using fitness-proportionate or Tournament selec-
tion with t = 30.

To better understand what might distinguish selection
schemes for which downsampling helps from those for
which it doesn’t, we consider the role that the overall selec-
tion pressure of a selection scheme might play. One might
expect, for example, that when using an informed down-
sample it would be beneficial to maintain high selection
pressure with respect to those well-chosen cases, whereas
high selection pressure could result in the loss of test cover-
age on the cases not in the down-sample when using random
down-sampling. To cast some light on this and related possi-
bilities, we conducted experiments using tournament selec-
tion, for which selection pressure is easily adjusted.

The results for a variety of different configurations of
tournament selection can be found in Table 3. We find
that varying the selection pressure imposed by tournament
selection does have a significant effect on problem solv-
ing success. Over these configurations, we find multiple
places where a down-sampling technique outperforms the
non downsampled version, yet we only find one problem
(Small or Large) where informed down-sampling outper-
forms random down-sampling significantly. For this reason,
it seems as though selective pressure does not significantly
affect the comparative performance between random and in-
formed down-sampling. Given this, we can be reasonably
certain that down-sampling will improve the performance of
their systems, regardless of the selection pressure enacted by
the selection scheme chosen.

Overall, our results indicate that down-sampling is often
beneficial or neutral for problem-solving success. We did
not find compelling evidence that down-sampling impeded
success in any of our experiments. Though, we do note
that others have found down-sampling to impede problem-
solving success when there are strong trade-offs between
training cases (e.g., low error on one excludes low error on
another) or when a training set lacks some redundancy (Her-
nandez et al., 2022b).

We found that informed down-sampling was most con-
sistently beneficial in the context of lexicase selection and
implicit fitness sharing, as problem-solving success was im-
proved by at least one down-sampling method across all
problems for both of these selection schemes. We hypoth-
esize that this is due to these schemes’ ability to maintain
diverse populations. Fitness-proportionate and tournament
selection are known to be susceptible to premature conver-
gence (Hornby, 2006; Hernandez et al., 2022c), while both
lexicase selection and implicit fitness sharing are capable
of maintaining both phenotypic and phylogenetic diversity
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(Dolson et al., 2018; Helmuth et al., 2016b; Shahbandegan
et al., 2022; Hernandez et al., 2022a). Given this, we hy-
pothesize that lexicase selection and implicit fitness sharing
benefit more from the increased number of generations af-
forded by down-sampling, and the presence of distinct and
diverse training cases afforded by the “informed-ness”, than
tournament or fitness-proportionate selection. This also re-
lates to the results of a different study, that showed that in-
formed down-sampling maintains higher test coverage from
successive selections than random down-sampling (Boldi
et al., 2023b). That is, if a population evolving under fitness-
proportionate and tournament selection has converged to a
local fitness optimum, that population may not benefit from
extra generations of evolution. In contrast, a more diverse
population evolving under lexicase selection or IFS may
benefit substantially from running for an increased number
of generations when they are evaluated on a diverse set of
training cases. Recent work also hints at the merit of in-
creasing a population size instead of increasing the number
of generations, potentially shrinking the gap between ran-
dom and informed down-sampling (Briesch et al., 2023).

Conclusion
In this work, we extended previous studies that evaluated the
efficacy of random and informed down-sampling in the con-
text of lexicase selection (Hernandez et al., 2019; Helmuth
and Spector, 2021; Boldi et al., 2024).

Here, we show that the problem-solving benefits of both
random and informed down-sampling generalize to other se-
lection schemes, including fitness-proportionate selection,
tournament selection and other diversity preserving selec-
tion schemes like implicit fitness sharing (IFS). This result
suggests that evolutionary computing practitioners should
experiment with different forms of down-sampling in com-
bination with their preferred selection methods, as it can
be used to improve problem-solving success by reallocating
per-generation computational savings to running a deeper
evolutionary search.

Previous studies have shown that the benefits of down-
sampling stem from reallocating the computational savings
to running an evolutionary search for more generations or
evaluating more individuals (Helmuth and Spector, 2021;
Hernandez et al., 2019; Ferguson et al., 2019). We hypoth-
esize that this explanation holds across each of the selection
schemes that we tested in this work. We did, however, find
that different selection schemes benefited more or less from
the addition of down-sampling: fitness-proportionate selec-
tion seemed to benefit the least, while lexicase, implicit fit-
ness sharing, and even tournament selection with t = 30
benefited from down-sampling on five of the six problems.

We also detected that some selection schemes bene-
fit more or less from the inclusion of informed down-
sampling. Specifically, we found that for both lexicase se-
lection and implicit fitness sharing multiple configurations

using informed down-sampling significantly improved prob-
lem solving success over random down-sampling by includ-
ing more unique and distinct cases in the down-samples. We
hypothesize that populations evolving under lexicase selec-
tion or IFS are more diverse and therefore benefit the most
from the extra generations of informative cases that are af-
forded by informed down-sampling.

To test the impact of selection pressure on down-
sampling, we adjusted the tournament size for tournament
selection and observed if it affected the performance of the
two down-sampling techniques. Changing the tournament
size did not consistently influence the relative performance
between the two techniques. This strengthens the hypothe-
sis that the improvement in problem-solving performance is
due to diversity preservation rather than selective pressure.

Our study was limited to a relatively small set of prob-
lems, a single GP system (PushGP), and just two down-
sampling techniques. Future work is needed to verify our
findings beyond this context. Indeed, many down-sampling
techniques have been developed for use in evolutionary
computing and machine learning. Just as there has been re-
cent progress in large-scale benchmarking for selection al-
gorithms (Cava et al., 2021; Orzechowski et al., 2018), we
argue that large-scale benchmarking efforts should be imple-
mented for different down-sampling methods. Such efforts
would help us to disentangle the circumstances where par-
ticular down-sampling methods are most appropriate. Fur-
thermore, we only studied varied selection pressure and di-
versity maintenance when used in conjunction with tourna-
ment selection. Future work should explore this in conjunc-
tion with fitness proportionate selection in order to verify the
generality of our conclusions. Additionally, a more unified
theory on the effects of down-sampling on test-based prob-
lems could help to tie together disparate results from dif-
ferent application domains in evolutionary computing. Fi-
nally, future investigations should explore dynamic down-
sampling; that is, can we use population statistics to auto-
matically choose and parameterize down-sampling during
an evolutionary search?
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