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Abstract

Stellar feedback influences the star formation rate (SFR) and the interstellar medium of galaxies in ways that are
difficult to quantify numerically, because feedback is an essential ingredient of realistic simulations. To overcome
this, we conduct a feedback-halting experiment starting with a Milky Way—mass galaxy in the second-generation
Feedback In Realistic Environments (FIRE-2) simulation framework. By terminating feedback, and comparing to a
simulation in which feedback is maintained, we monitor how the runs diverge. We find that without feedback, the
interstellar turbulent velocities decay. There is a marked increase of dense material, while the SFR increases by
over an order of magnitude. Importantly, this SFR boost is a factor of ~15-20 larger than is accounted for by the
increased freefall rate caused by higher densities. This implies that feedback moderates the star formation
efficiency per freefall time more directly than simply through the density distribution. To probe changes at the scale
of giant molecular clouds (GMCs), we identify GMCs using density and virial parameter thresholds, tracking
clouds as the galaxy evolves. Halting feedback stimulates rapid changes, including a proliferation of new bound
clouds, a decrease of turbulent support in loosely bound clouds, an overall increase in cloud densities, and a surge
of internal star formation. Computing the cloud-integrated SFR using several theories of turbulence regulation, we
show that these theories underpredict the surge in SFR by at least a factor of 3. We conclude that galactic star
formation is essentially feedback regulated on scales that include GMCs, and that stellar feedback affects GMCs in
multiple ways.

Unified Astronomy Thesaurus concepts: Star formation (1569); Interstellar medium (847); Stellar feedback (1602);

Giant molecular clouds (653)

1. Introduction

The energetic and kinematic feedback from young stars
impacts the evolution and interstellar properties of galaxies by
cycling matter from dense to diffuse or from cold to hotter
phases. Feedback—which encompasses supernovae (SNe),
massive-star winds, radiation pressure, photoionization, proto-
stellar winds, among other effects—has been implicated in
clearing the environments of OB associations, in stirring and
destroying giant molecular clouds (GMCs) and their substruc-
tures, in expelling matter that would otherwise collapse into
stars or star clusters, in driving the motions that limit
gravitational instability within galactic disks, and in launching
matter into the circumgalactic medium. Despite general
consensus on these points, important questions remain to be
settled.

One of these concerns the role of stellar feedback in the star
formation rate (SFR), for which we focus on two classes of
theory. Feedback-regulated theories (as in Thompson et al.
2005; Ostriker & Shetty 2011) hold that stars form as quickly
as needed in order for their feedback to support a gaseous
environment against its own weight, or to maintain the (mostly
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turbulent) kinetic energy required to stave off gravitational
instability. Turbulence-regulated theories (Klessen et al. 2000;
Krumholz & McKee 2005; Hennebelle & Chabrier 2011;
Padoan & Nordlund 2011) relate star formation to the rate at
which turbulent, self-gravitating clouds produce regions of
localized collapse. A common feature of these theories is that
€, the SFR normalized by the freefall rate (see, e.g.,
Equation (2)), depends (to varying degrees) on the Mach
numbers and virial ratios of the regions within which stars form
—that is, GMCs and dense molecular clumps within them.
Critically, stellar feedback is not explicitly accounted for within
these turbulence-regulated models.

It is important to note here that some turbulence-regulated
theories address the dynamics of gravitational collapse. For
example, Guszejnov & Hopkins (2015) and Guszejnov et al.
(2016) use an excursion-set approach (Bond et al. 1991;
Hopkins 2012, 2013a) to follow the hierarchy of collapsing
subregions within GMCs. There is another class of theory,
presented initially in Zamora-Avilés et al. (2012) and Zamora-
Avilés & Vizquez-Semadeni (2014), and consolidated in
Viazquez-Semadeni et al. (2019). These authors posit a global
hierarchical collapse scenario where molecular clouds are
undergoing constant pressureless collapse rather than being
near-equilibrium structures. They propose scaling relations
between the SFR and the mass of clouds derived while taking
into account mass inflow and ionization from massive stars.
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Feedback-regulated and turbulence-regulated models are not
mutually exclusive: after all, feedback drives turbulence, as do
shear, collapse, and accretion (e.g., Forbes et al. 2023). To
clarify, our working definition of a turbulence-regulated model
is one in which the SFR is predicted by a few dimensionless
parameters of turbulence and is not directly related to the
driving mechanism of the turbulence or feedback in any other
way. These theories attempt to capture all the effects of stellar
feedback, and other physical processes through changes in
these dimensionless parameters. In feedback-regulated models,
by contrast, the SFR is determined by the interplay between the
strength of feedback and environmental parameters like the
weight of the interstellar medium (ISM; see, e.g., Kim et al.
2011, 2013; Ostriker & Kim 2022; Sun et al. 2023).

Both feedback-regulated and turbulence-regulated models enjoy
considerable observational support. Feedback regulation explains
many properties of disk galaxies, including the Kennicutt—Schmidt
relation (Thompson et al. 2005; Ostriker & Shetty 2011), in which
the SFR per unit area is a power law of the gas mass per unit area.
Turbulence regulation is consistent with the low and reasonably
constant values of e inferred within individual GMCs (Pokhrel
et al. 2021) and in regions of star cluster formation (Krumholz &
Tan 2007). Feedback-regulated models can also predict low values
of e if a small fraction of the ISM is in gravitationally bound
structures (Ostriker & Kim 2022). Turbulence regulation can
explain the galactic star formation relations if the galactic SFR is
just the sum of the small contribution per GMC. On the other hand,
in some cases, turbulence-regulated models can be in contention
with observations. Observed values of e are around 1% (with a
scatter of ~0.3—1 dex). However, the multifreefall versions of the
turbulence-regulated models (Federrath & Klessen 2012), which
are extensions to the original theories, can predict values of
ex~ 100% or greater in certain situations (highly compressive
turbulence with high Mach numbers, M > 10 — 20).

Additionally, significant variations in e in the Galactic
center (Kruijssen et al. 2014), within nearby galaxies (Sun et al.
2023), and on GMC (Lee et al. 2016; Ochsendorf et al. 2017)
and sub-GMC (Wells et al. 2022) scales all suggest that
turbulence regulation should be examined carefully. From a
theoretical perspective, too, the importance of stellar feedback
even in the formation of individual stars (Matzner &
McKee 2000; Federrath 2015) questions the notion of a clean
separation between the scales of turbulence and feedback
regulation. One goal of this work, therefore, is to conduct an
experiment within which feedback and turbulence regulation
can be carefully disentangled.

Another open question, related to what controls the SFR,
involves how strongly stellar feedback affects the properties and
populations of GMCs. The consequences of stellar feedback
processes are expected, at least in theory, to destroy, erode, and stir
up the clouds and their contents (Whitworth 1979; Williams &
McKee 1997; Matzner 2002; Murray 2011; Geen et al. 2016;
Howard et al. 2017; Kim et al. 2018; Benincasa et al. 2020; Menon
et al. 2023). Modern support for the strength of these feedback
effects is found in the scale-dependent decorrelation between dense
gas tracers such as CO and star formation tracers such as Ho or
freefree radio emission (Schruba et al. 2010; Kruijssen &
Longmore 2014; Kruijssen et al. 2018; Chevance et al. 2020;
Mcleod et al. 2021; Semenov et al. 2021; Kim et al. 2022).
However, some simulation studies conclude that feedback is too
weak to affect GMCs in this way (Tasker 2011; Dobbs 2015;
Tasker et al. 2015). If so, this would imply that stellar feedback can
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only influence GMCs through its impact on the diffuse medium in
which they form (presumably via SN explosions). However, these
authors did not account for photoionization, stellar winds, or
radiation pressure, all of which are expected to be important for
GMC destruction (Krumholz & Matzner 2009; Fall et al. 2010;
Murray et al. 2010; Hopkins et al. 2012; Chevance et al. 2019).
Therefore, a second goal for our work is to provide a clear
quantitative reevaluation of the effectiveness of stellar feedback on
GMCs, within a realistic galactic context.

Somewhat ironically, the fact that stellar feedback is central
to galactic evolution poses an obstacle when one wants to
quantify its effects in a realistic simulation, simply because
feedback is needed to make a simulation realistic. This makes it
difficult to compare its ability to erode GMCs to those of tidal
gravity and cloud collisions, for instance, or to evaluate its
effect on ¢ in a galaxy like the Milky Way.

To overcome this problem we conduct controlled feedback-
halting experiments using the second-generation Feedback In
Realistic Environments (FIRE-2; Hopkins et al. 2018) simulations,
also used, for instance, by Benincasa et al. (2020). Over cosmic
time (up to z=0) our galaxy experiences multiple realistic
feedback effects: photoionization, photoelectric heating, stellar
winds, radiation pressure, and time-resolved SN explosions
(protostellar outflows are not included). At time # =0 our galaxy
experiences two hypothetical futures: one in which feedback is
maintained, and another in which it is cut off (see Figure 1 for a
schematic). (In fact we run multiple scenarios, testing subsets of
feedback phenomena, but we focus primarily on the all-or-none
distinction in this paper.) We then examine how the two scenarios
diverge over the subsequent 50 Myr, paying special attention to the
influence of feedback on the properties of GMCs and the rate of
star formation within them. Using identical initial conditions makes
our comparisons relatively insensitive to the randomness intro-
duced by stochastic events; and because the shared initial state
reflects a sophisticated array of feedback effects acting over cosmic
time, it is as realistic as we can hope to achieve in the current state
of the art.

For our analysis we will inspect the overall distribution of
interstellar properties within the galaxy, as well as the properties of
GMCs that we identify and track. Because we focus on galactic
scales, our resolution is poor compared to high-resolution
simulations of individual GMCs. On the other hand, we have
the advantage of thousands of GMCs in our cloud samples with
varying initial configurations and galactic environments, which
allows us to compare their evolution statistically with self-
consistent initial conditions. Among other comparisons, we study
the impact of stellar feedback on the star formation laws obeyed by
these GMCs and on the distribution of star formation efficiency
(SFE) defined on the cloud scale.

We detail our simulations, cloud identification and tracking
methods in Section 2. In Section 3 we discuss the impact of
halting feedback on the interstellar properties of the galaxy, the
global SFR, and the characteristics of GMCs. In Section 4 we
make a detailed comparison to several turbulence-regulated
theories of the SFR. We discuss our results in the context of
previous work, and provide caveats, in Section 5. We distill our
conclusions in Section 6.

2. Simulations and Methods

We use a Milky Way-like galaxy (“m12i”) from the FIRE-2
suite of simulations (Wetzel et al. 2016; Hopkins et al. 2018).
These evolve primordial perturbations using the MUSIC code
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Figure 1. A schematic describing our numerical experiment setup. We use a FIRE-2 galaxy evolved from cosmological initial conditions and create two branches in
its evolution: one where we keep stellar feedback active and the other where we turn it off. This allows us to isolate the effect of feedback on the galaxy.

(Hahn & Abel 2011) up to redshift z=100. Using these initial
conditions, the simulation is evolved up to z=0 in a large
cosmological box using the meshless finite mass hydrodynamics
code GIZMO (Hopkins 2015) at low resolution. These simulations
are then rerun at higher resolution in a subregion around the galaxy
under study. To track the physics of the ISM, they include
metallicity-dependent heating and cooling across a temperature
range of 10-10'" K in addition to explicitly modeling stellar
feedback in the form of OB/AGB star winds, radiation pressure,
photoionization, photoelectric heating, and mechanical feedback
from Type Ia and Type II SNe. Star formation (the conversion
of fluid elements into star particles) occurs when gas cells satisfy
all of the following criteria: they are (a) Jeans unstable, (b)
self-gravitating, with a virial parameter less than unity, (c)
self-shielding or molecular (as assessed using the Krumholz &
Gnedin 2011 prescription), and (d) sufficiently dense (n > ng; =
1000 cm ). We refer the reader to Appendices C, D, and E in
Hopkins et al. (2018) for more details on the star formation and
stellar feedback methods used in this work.

We use a snapshot of the galaxy at z=0, which we define as
t=0, and create two primary branches in its evolution, one in
which we keep the original physics and one in which we turn off
all stellar feedback. We then evolve these two simulations up to
t =50 Myr (recording a snapshot every 1 Myr) and compare them
to isolate the impact of feedback on the evolution of the GMCs. At
z7=0, the scale height of the galaxy increases with galactocentric
radius from ~0.4 to 1.5 kpc (Gurvich et al. 2020). Its virial radius
is Ryiy =275 kpc and the virial mass is My, = 1.2 x 10"2M,.
The total mass of the galaxy within a vertical extent /.. = 400 pc
and radial extent R%al =25 kpc is 3.7 x 10" M, of which gas
comprises 0.9 x 10" M_. The finest mass resolution for gas
elements is ~7000 M.,

To define and detect the GMCs within the galaxy we use
CloudPhinder, a method based on the SUBFIND algorithm
(Springel et al. 2001), which was originally used to identify the
largest self-gravitating bound structures that are present in the
simulation (Guszejnov et al. 2020). CloudPhinder uses two
input parameters to identify these structures: (i) nmin, the
density cutoff and (ii) alpha_crit, the minimum value of
the virial parameter:

R 2(Exin + Ethermal)
Qyip = ———— (M
IEgraVI

in which Eyjn, Eperma, and Egp,, are the bulk kinetic energy (i.e.,
turbulent and rotational energies, in the center-of-mass frame),

thermal energy, and self-gravitational potential energy of the cloud
gas, respectively. Starting at each density peak and examining
successively lower density regions, the algorithm groups fluid
elements into a cloud one at a time, accepting each one if the
resulting group satisfies the density and virial parameter thresholds;
see Appendix A of Guszejnov et al. (2020) for more details. We
limit our analysis to clouds composed of at least 32 fluid elements
(this is based on the particle kernel size), setting a lower-mass limit
of 10°*> M_,. Typical massive GMCs in our simulations consist of
a few hundred fluid elements.

We consider three different input parameter combinations, each
of which defines its own cloud population: (i) “nl0v2”
(nmin=10 em > and alpha_crit=2), (i) “nl0v5,” and
(iii) “n10v10,” all defined similarly. We also add the suffix “nofb”
to specify the outcome of the run in which feedback is shut off.
Because of the proliferation of options, we choose “n10v5” (with
and without feedback) to define our default cloud population.

In general, lower values of nmin, or higher values of
alpha_crit, cause more matter to be included within a
cloud (sometimes combining separate clouds into one). There-
fore each cloud defined in n10v2 is embedded within a cloud
defined in any of the other combinations.

In Figure 2, we show the distribution of gas surface density
for the feedback-on (left panels) and feedback-off (right panels)
simulations after 50 Myr of divergent evolution. The lack of
SN feedback leads to a lack of bubbles in the galaxy without
feedback, especially in the center of the galaxy. In the bottom
panels we overlay the GMCs identified using different input
parameters to CloudPhinder, with the size of the circles
denoting their effective radius R.¢ (see Table 1 for definitions
of R.s and the other quantities). Raising alpha_crit (or
lowering nmin) results in fewer, larger clouds.

Once we have a catalog of GMCs for each snapshot, we link
them across time using our own algorithm, CloudTracker’
(Khullar 2024). CloudTracker tracks the particles in our
GMCs using the identities of individual fluid elements. Starting
from ¢ = 0 and sorting clouds in descending order by mass, we
identify descendants of the original cloud population. If cloud
X has more than one child, we choose the child with the most
mass donated from the parent. If this child is already a
descendant of a more massive parent Y, we choose the heir
next in line as the descendant of cloud X. If two clouds undergo
a merger, we consider the less massive cloud to be dead.
Because most of our analysis does not require us to track

7 htps: //github.com/shivankhullar/CloudTracker
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Figure 2. Gas column density in the control (left panels) and feedback-halting simulation (right panels) after 50 Myr of divergent evolution. On the lower panel,
circles display molecular clouds identified with various selection criteria. Blue, green, and black circles denote n10v2, n10v5, and n10v10 clouds (naming indicates
n_min, alpha_crit), respectively. Each cloud is represented by a circle corresponding to its effective radius.

clouds, we reserve the term “tracked cloud” for a GMC we
track using CloudTracker; a “cloud” or “GMC” simply
means an object identified by CloudPhinder.

3. Results

We begin by examining the overall impact of halting
feedback on the galaxy’s ISM and SFR, starting with the
distribution of matter in the phase space of density and
temperature.

In Figure 3 we display mass-weighted 2D histograms of (7,
T) and 1D density probability density functions (PDFs), as well
as their differences, for a snapshot of the entire galactic disk
(galactocentric radius R < 25 kpc, altitude from the midplane
|z| < 0.4 kpc) at £ =50 Myr.

Examining the 2D histograms, we observe an accumulation
of especially dense, cold matter in the no-feedback case—
leading to an increase at both the low- and high-density ends of
the distribution (negative regions on the top-right panel of
Figure 3). We interpret the increase of low-density matter as the
filling in of voids created by feedback prior to =0, and the
increase of cold, dense matter as gravitational collapse that is
unopposed by stellar feedback. Dense photoionized gas is
absent since there are no more HII regions in the simulation
without feedback. Note the appearance of gas above our star
formation density threshold (n > n), which can exist because
of the other requirements for star formation.

In each column of Figure 3 the bottom panel is the density
PDF. In this representation, we see that the run with feedback
displays a reasonably lognormal (LN) density PDF. Halting
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Table 1
Definitions of the Cloud Properties Used in This Work

Symbol Name Calculated as
Mas o0 Total gas mass in clouds
Mgas Instantaneous cloud mass
Ress Instantaneous effective radius V5/3(0r — 1em) )y
Aproj Area of the projected (face-on
galaxy view) cloud’s convex hull
Rgal Instantaneous galactocentric
radius
oM, Protostellar mass of the cloud
within R (0, = 1 Myr)
My o1 Total stellar mass of tracked
cloud over its lifetime
[— Instantaneous (multi) free- ((32Gp/3m) /20,
fall time
SFR SFR M./t
SFR Total SFR in all clouds
€sr SFE per freefall time SFR X ¢, mut/Mgas
SFE SFE M./ (Mgas + M)
SFE im(t) Integrated SFE M*, lﬂl(t)/(MgﬂS + M*, lm(t))
oy Velocity dispersion (%(v — Vem )2>M2
T Temperature (Tm
Cs Thermal sound speed (kg T/(/Lm,,))l,\j2
M Mach number oy/cs
Qyir Virial parameter 2(E‘kin + Elhermul)/Egruv

Note. The subscripts i and “cm” used above denote gas particles in the cloud
and the cloud’s center of mass, respectively. Here (---),, indicates a mass-
weighted average within the cloud (and across the cloud population if
accompanied by another subscript) and (---)ougs denotes the average of a
quantity across the cloud population. For tracked clouds (see text for
definition), we use (---), to denote the temporal mean of a quantity from
column (1).

feedback leads to a broadening of this PDF, with what appears
to be a power-law tail extending to high densities (corresp-
onding to the excess of cold, dense matter seen in the top
panels) and a shifting of the rest of the PDF to lower densities.
The broadening at the high-density end is expected and seen in
idealized simulations of collapse and star formation on smaller
scales (see, e.g., Kritsuk et al. 2011; Federrath & Klessen 2013;
Khullar et al. 2021). Because the gas mass is almost identical
between the two branches of evolution, the two histograms
have nearly equal areas; therefore the difference histograms
(right panels) average almost precisely to 0. Our results here
corroborate earlier findings by Hopkins et al. (2011).

We compare the specific kinetic energy of the galaxies with
and without feedback by calculating the velocity dispersions in
~0.5 x 0.4 x 0.4 kpc sized chunks at different galactocentric
radii (R,,) in Figure 4. We see that halting feedback suppresses
the velocity dispersion of the ISM. The difference is greatest
where most of the star formation occurs, 1-5 kpc from the
galactic center, and very little beyond 15 kpc, where few stars
form. We can also infer that the contribution from stellar
feedback dominates the turbulent energy budget within ~15 kpc.
Turbulence is driven by feedback wherever the ratio of specific
kinetic energy is greater than 2 in Figure 4. This comes from the
following observation: if 03 T+ O'%,all else = a%ﬂ ol then
U\%, fo > 0—3,311 else’ if J\%, total/o—g, total — fo = 2. This represents a
conservative lower limit because the increased importance of
gravity will add to the total velocity dispersion in the galaxy
without feedback.
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Figure 4 suggests that stellar feedback is the major
contributor to the turbulent energy budget in the inner parts
of the galaxy. This corroborates earlier findings by Green et al.
(2010), who find a correlation between the star formation and
velocity dispersions of a sample of galaxies in the nearby
Universe. Perhaps not surprisingly, our results are also
consistent with the findings of Orr et al. (2020) and previous
work using the FIRE simulations (see, e.g., Hopkins et al.
2013; Hayward & Hopkins 2017).

Other processes, such as shear, accretion, inflow, etc.,
dominate the turbulent energy budget at the outskirts of the
galaxy. This is consistent with the conclusions of Forbes et al.
(2023), who find accretion through the disk to be an important
contributor to turbulence at large galactic radii.

3.1. Impact on the Galactic Star Formation Rate and Efficiency

One particularly dramatic outcome of halting feedback is a
rapid increase in SFR, relative to the control simulation,
amounting to a factor of 23.2 by =50 Myr. Importantly, this
surge far exceeds the increase of the mass-averaged freefall rate
(te "y implied by the change in the density PDF; this rate
increases only by a factor of 1.23. That is, the SFE per freefall
time:

My

—_— ()
(ty WM

€ff =

(where M, is the SFR within the region of interest, M is its
gaseous mass, and f= 37/ 32Gp)l/ 2 is the local freefall time),
which itself increases by a factor of 23.2/1.23 = 18.8, relative to
the control simulation, when we terminate feedback. These
numbers change according to the region over which e is
evaluated, as is visible in Figure 5, but the effect persists. If we
restrict our attention to just the cold gas (7' < 100 K) we find that
€gr increases by a factor of 14; for dense gas (ng > 100 cm ) the
increase is a factor of 10.5, and it is also a factor of 10.4 for gas
that is both cold and dense.

Some turbulence-regulated star formation theories, such as
Krumholz & McKee (2005), predict that e should be a slowly
varying function of other dimensionless parameters, such as the
turbulent Mach number and virial parameter of the region
under consideration. In Section 4 we will examine the degree to
which the change in e is compatible with these theories.

Note, also, how rapidly star formation reacts to the absence
of feedback: e appears to change within the first megayear
after feedback is halted and saturates at its new, higher value
after about 15 Myr. The speed of this transition strongly
implies that feedback is crucial in limiting star formation within
individual GMCs, in addition to any effect it may be having on
the stability of the galactic disk or on the creation of
new GMCs.

These results suggest that halting stellar feedback should
have a marked impact on the internal dynamics and SFRs
within individual GMCs. For this reason we turn now to
examining the GMC population.

3.2. Impact on Giant Molecular Clouds

In Table 2 we summarize important statistics of the cloud
populations identified with various threshold parameters and
for both the control and feedback-halting runs. These define the
sample for our cloud-level study of feedback effects. We first
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consider the evolution of the cloud population as a whole,
before turning to the effect of feedback on individual clouds
tracked by CloudTracker.

In Figure 6 we show the evolution of a number of properties
of the GMC population, including the total mass and SFR
within our various subpopulations (and in the galaxy as a
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Figure 5. SFE per freefall time e, computed for the entire gaseous ISM (solid
line), and also for cold (dashed line), dense (dotted line), and dense and cold
(dashed—dotted line) subcomponents. The no-feedback run displays a rapid
surge in €g by about 1 order of magnitude, relative to the control simulation,
regardless of which portion of the gas we consider.

whole) with and without feedback. We concentrate on cloud
samples with the same density threshold (nmin =10 cm™)
but various limiting virial parameters (alpha_crit =2, 5,
and 10).

The effect of halting feedback within individual GMCs is
very similar to what we saw for the galaxy as a whole: while



THE ASTROPHYSICAL JOURNAL, 973:40 (14pp), 2024 September 20

Table 2
Statistics on the Giant Molecular Cloud Populations in Our Study after = 10
Myr (with Feedback: Top Three Rows; without Feedback: Bottom
Three Rows)

Untracked Clouds Tracked Clouds

Name

Mean % SF Total % SF
nl0v2 127 19.7% 1824 42.8%
nl0Ov5 379 21.6% 3606 31.8%
nl0v10 479 20.1% 3787 25.7%
nl10v2 nofb 450 60.1% 4538 65.1%
nl0v5 nofb 618 60.3% 5073 58.0%
n10v10 nofb 632 60.4% 4804 56.5%

Note. Column (1): the input parameter combination for CloudPhinder (see
Section 2). Column (2): the mean number of clouds identified per snapshot.
Column (3): the mean percentage of star-forming (SF) clouds per snapshot.
Column (4): the total number of tracked clouds (starting from r = 10 Myr, see
Section 2 for the distinction). Column (5): the percentage of tracked clouds that
form stars in their lifetime. The majority of GMCs do not form stars in their
lifetime when feedback is on. Even without feedback, the percentage of star-
forming GMCs is about ~60%. With feedback, on average, only ~20% of
clouds are star forming at any given time.

the mass-averaged freefall rate does rise, the SFR rises much
more; SO € increases by at least an order of magnitude.
Comparing the feedback-halting run to the control simulation,
we identify these additional trends.

1. Halting feedback does not alter the galactic gas mass
greatly compared to the control simulation (Figure 6, top-
middle panel).

2. All our cloud categories (n10v2, n10v5, and nl10v10)
gain mass when feedback is halted, by a similar amount
(nearly 10° M., Figure 6, top center panel). This is most
significant for the bound clouds (n10v2), which comprise
less than 108 M., at t=0. These trends are mirrored by
the growth in cloud numbers (middle-left panel),
however, the number of clouds still remains high long
after turning off feedback.

3. The surge in SFR stimulated by halting feedback
(Figure 6, top-right panel) is most significant for the
bound clouds, but they display a surge in e (bottom-left
panel) comparable to the other cloud populations. It is
worth noting that although our subgrid prescription for
star formation converts 100% of the gas into stars on a
local freefall time, i.e., €x~ 1, even on marginally
resolved cloud scales the SFE is orders of magnitude
smaller, e~ 0.01. Naturally, this implies that GMCs be
resolved with at least 100 cells.

4. With feedback, the total SFR within less-bound clouds is
significantly higher than within bound clouds (top-right
panel), due to their higher overall mass, and the fact that
star formation occurs in bound pockets but these may not
always satisfy the minimum particle number restriction
we impose during cloud identification. When feedback is
halted, the SFR surge in bound clouds makes up most of
the difference—implying that they become the sites of
star formation within less-bound clouds.

5. Our least-bound clouds (n10v10) show a pronounced
drop in virial parameter when feedback is halted, which is
less pronounced in the intermediate population (n10vS5)
and almost absent in bound (n10v2) clouds (middle-
center panel). At the same time, the mean velocity
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dispersion drops in the unbound clouds, but rises in the
most-bound clouds (bottom-center panel). The freefall
times of all cloud populations decline relative to the
control simulation (middle-right panel); most signifi-
cantly for the unbound clouds.

Although interpreting these trends is complicated by the
appearance of density and virial parameter thresholds in our
cloud definitions, we infer that when feedback stops, (1)
high-a;, clouds lose turbulence, presumably both because of a
loss in internal forcing and because of the declining velocity
dispersion in the diffuse ISM; and (2) collapse proceeds on all
scales, increasing the number and velocity dispersion of the
most-bound regions (but not their virial parameters, thanks to a
selection effect from our cloud definition). We also note that
the Mach numbers of our clouds tend to increase, on average,
in the absence of feedback, due to the drop in the average
sound speed (bottom-right panel). Although not explicitly
shown in this paper, many of the trends in our (time-averaged)
GMC properties agree qualitatively with the differences found
in the feedback and no-feedback galaxy-scale simulations of
Hopkins et al. (2012).

3.2.1. Insights from Tracking Clouds

The appearance of additional clouds in our feedback-halting
experiment complicates our view of the effect of feedback on
GMC:s. For this reason we use CloudTracker, described in
Section 2, to follow individual clouds. Here we only follow
clouds present in the first snapshot (¢ =0). (We note that our
algorithm differs from that used by Benincasa et al. 2020, but
we forego a careful comparison with that work because we are
not examining the detailed life histories of GMCs.)

Figure 7 shows how our tracked clouds evolve, focusing
specifically on three ranges of initial mass (i.e., mass at r = 0)
within the nl0v5 population. Even more than before, it is
important here to focus on the difference between the feedback-
halting and control simulations, because defining the parent
population #=0 causes the population to evolve even in the
control simulation. We note the following.

1. ¢ varies within these clouds much like it does in the
galaxy as a whole (lower-middle panel), with a burst of
star formation of about an order of magnitude that is
roughly independent of the initial mass.

2. While the stellar-to-gas mass fraction (SFE.) grows
roughly linearly in the control simulation, as one would
expect for a constant cloud SFR, our feedback-halting
experiment shows a period of SFE <%, indicative
(McKee & Tan 2003; Lee et al. 2015) of uncontrolled
collapse and accretion (lower right panel). This trend
saturates at about 15 Myr, when the stellar mass fraction
is of order 30%.

3. Stellar feedback is responsible for destroying low- and
intermediate-mass clouds. The line widths indicate the
number of descendents of the original cloud population
still surviving at a given time. We discuss this in more
detail below.

4. The tracked clouds’ virial parameters drop significantly,
relative to the control simulation, when we halt feedback
—although the difference is less clear for the lowest
initial cloud masses (top-middle panel).
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Figure 6. Evolution of cloud properties for all clouds identified within the galaxy. Solid lines correspond to the clouds with a virial parameter cutoff value of 2, 5, and
10 (see Section 3 for our naming convention). The dashed lines indicate the corresponding quantities from the simulation without feedback. All quantities are averaged
over the entire cloud population at a given time. The black lines show the total gas mass and the total SFR in the galaxy with (solid) and without (dashed) feedback.
The bottom-center and bottom-right panels show the gas mass and SFR in three different mass bins for the n10v5 clouds. The different shades correspond to the
different mass bins and light shades belong to the clouds without feedback. The thickness of these lines indicate the total number of clouds present at any given time in
the galaxies. Stellar feedback keeps the cloud masses and SFRs in check, maintaining the number of clouds, their virial parameters, and freefall times. It also regulates
the SFE per freefall time at around ~1% overall. Note that the last two panels indicate an increase in the Mach number, primarily due to a drop in the average sound

speed.

5. The tracked clouds’ freefall times also drop precipitously,
relative to the control population, when feedback ends
(lower-left panel).

These points, taken together, suggest that stellar feedback is
an important regulator of the internal states of individual
GMCs, and does not only act through its effect on the overall
population of clouds. Whether this is due primarily to
momentum injection and turbulent forcing within the clouds
themselves, as envisioned by McKee (1989), Matzner (2002),
Krumholz et al. (2006), among others, or whether it reflects a

change in accretion (e.g., Klessen & Hennebelle 2010;
Viazquez-Semadeni et al. 2010; Goldbaum et al. 2011)—or
another form of external driving— remains to be determined.

We summarize some statistics on the effects of feedback on
cloud lifetimes in Table 3. The table lists the number of
descendants of the original cloud population still surviving at a
later time. The different initial cloud mass bins correspond to
same intervals as Figure 7. We adopt a loose definition for
identifying cloud descendants as discussed in Section 2. As a
result, a significant population of high-mass clouds exists in our
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Figure 7. We follow the evolution of different cloud properties (see Table 1 for definitions) in three different initial mass bins for the n10v5 clouds present at the start
of our feedback-halting experiment. The blue lines represent clouds with feedback, whereas the orange lines represent clouds without feedback. The quantities are
averaged over the entire population at a given time. The thickness of the lines indicates the number of clouds averaged over, or the number of clouds still “alive” from
t = 0 Myr. Therefore, thin portions of the lines contain more variations since they are averaged over fewer surviving clouds. Stellar feedback greatly impacts the
evolution of the freefall time, SFE per freefall time, and total SFE. Feedback is also responsible for destroying low- and intermediate-mass clouds. Thus, although
feedback seems to impact the virial parameter and velocity dispersion of surviving clouds minimally, survivor bias means that clouds that do not survive until late
times had their virial parameters and velocity dispersions affected by feedback. The cloud properties are stable after ~15 Myr.

Table 3
Summary Statistics for the Number of Surviving Clouds in Different Initial Mass Bins

With Feedback Without Feedback

Time

Total Low Mass Intermediate Mass High Mass Total Low Mass Intermediate Mass High Mass
0 360 171 125 64 360 171 125 64
10 103 (28.6%) 20 (11.6%) 42 (33.6%) 41 (64.1%) 203 (56.3%) 53 (31.0%) 89 (71.2%) 61 (95.3%)
20 47 (13.0%) 7 (4.1%) 13 (10.4%) 27 (42.2%) 160 (44.4%) 34 (19.8%) 69 (55.2%) 57 (89.1%)
30 33 (9.1%) 2 (1.2%) 9 (7.2%) 22 (34.4%) 130 (36.1%) 26 (15.2%) 53 (42.4%) 51 (79.7%)
40 28 (7.8%) 1 (0.6%) 7 (5.6%) 20 (31.2%) 95 (26.4%) 11 (6.4%) 41 (32.8%) 43 (67.2%)
50 19 (5.3%) 1 (0.6%) 3 (2.4%) 15 (23.4%) 72 (20.0%) 8 (4.7%) 30 (24.0%) 34 (53.1%)

Note. Low mass: Miy;, < 10° M_; intermediate mass: 10° Mo < My <5 X 10° M_; and high mass: 5 X 10° M, < M. Column (1): time from the initial snapshot.
Column (2): total number of clouds surviving from the initial snapshot (in the simulation with feedback). Columns (3)—(5): number of clouds surviving from the initial
population in the low, intermediate, and high initial mass bins, respectively (in the simulation with feedback). Columns (6)—(9): corresponding quantities for the
simulation without feedback. Brackets denote percentages relative to the initial population. Feedback destroys low-mass clouds more efficiently than high-mass
clouds.

sample compared to Benincasa et al. (2020) who find typical
cloud lifetimes to be less than 20 Myr. Regardless, we find that
stellar feedback is majorly responsible for destroying low- and
intermediate-mass clouds. There are other mechanisms through
which clouds can be disrupted, but a detailed comparison
between the different mechanisms of cloud destruction is
beyond the scope of this study.

As a side note, we find that a significant fraction of our clouds
are not star forming and remain that way for their entire lifespans
(as seen in Table 2). This population is most pronounced at low
masses and is more prevalent (~80% versus 60%) within the
control simulation, relative to the feedback-halting run. We

speculate that these low-mass clouds are the result of turbulent
compressions caused by stellar feedback, and that the absence of
star formation is partly the consequence of our limited mass
resolution. These low-mass non-star-forming clouds can also be
part of a short-lived population which generally ends up merging
into larger clouds before they form any stars.

4. Comparison to Turbulence-regulated Star Formation
Rate Theory

Having identified GMCs, we are in a position to compare the
surge in star formation we observe within our cloud population
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Figure 8. Comparison between the population-averaged e within GMCs in our feedback-halting and control simulations, and the turbulence-regulated predictions of
the KM, PN, and HC models. The turbulence-regulated models differ both in terms of overall normalization and in their predictions for the difference in e between
the feedback and no-feedback cases. None of the turbulence-regulated models predict a change in e as large as we find in the simulation.

with predictions from the turbulence-regulated SFR theories of
Krumholz & McKee (2005), Padoan & Nordlund (2011), and
Hennebelle & Chabrier (2011) —which we refer to as KM, PN,
HC, respectively. We do this by constructing the SFR of each
GMC within one of these theories, calculating the net
theoretical SFR, and comparing against the net SFR within
our simulation. Essentially, these theories adopt an LN form for
the volumetric density probability distribution, so that the
quantity s = In p/p, (for reference density py, usually taken to
be the mean density) is normally distributed:

(s — 50)?

2In(1 + H2M?) ] )

p(s) o exp [—

where b is a parameter that depends on how turbulence is
driven, and lies in the range% < b < 1 (Federrath et al. 2010);
normalization sets sy and the coefficient of p(s). The SFE per
freefall time is then related to the portion of this PDF above a
certain critical density threshold:

€
€ff = —

& sa 1ii(P) Py

tr(Po) N D (s)ds,

“)

where the constants € and ¢, relate to the core-to-star formation
efficiency (Matzner & McKee 2000) and the timescale for star
formation, respectively, #;f(p) is the effective freefall time assumed
in the theory, and s, is defined below in Equations (5) to (7); the
remaining symbols carry their usual meanings.

The models differ in two ways: first, KM and PN adopt a
constant effective freefall time evaluated at the mean density and
critical density, s, respectively, whereas HC takes it to be the
local freefall time. That is, #£(p) = [£1: (Pg)s tir (Perit)» L (P)] in
[KM, PN, HC], respectively, where p. = po €XP Scrit- Second,
the critical density is different for each model but depends on the
virial parameter o and the Mach number M as:

2
%@amw], )

Scrit KM = hl[

Scrit, PN = In [0-067072avirM2]’ (6)
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and:

2
T _ _
SeritHC = In [—15 (ycufozvir/\/l*2 + ycullozvir) , @)

where ¢,, 0, and y., are parameters in the KM, PN, and HC
models, respectively. These parameters are calibrated using
simulations in Federrath & Klessen (2012), but we use the
values provided by the original authors in our analysis, i.e.,
¢.=1.12, §=0.35, and y.,=0.1. Our conclusions are not
altered if we choose the Federrath & Klessen (2012) values.
Note that the e values predicted from the KM and PN models
differ due to evaluating the freefall time differently even though
the form of the critical density is the same.

We determine theoretical predictions for eg for each cloud,
using its virial parameter and internal turbulent Mach number.
For the turbulence b parameter, we use again the values the
original authors chose, i.e., b =1, 0.5, and 0.5 for KM, PN, and
HC, respectively. We fix b for all clouds in our analysis to these
values. We test whether b changes significantly between our
two cloud populations, with and without feedback, by stacking
the density distribution of all clouds in each population and
estimating b from the width of the LN distribution generated
(Equation (3)). We find the difference in the two b parameters
to be close to 0. We note, however, that a more careful analysis
measuring the b parameter for each individual cloud could
result in a different conclusion.

We compare the population-averaged e within our
simulated clouds to these model predictions, for small and
large values of the b parameter, in Figure 8. First, we note that
the KM model best reproduces the SFR of the control
simulation, in which feedback remains operative—that is, its
default normalization is best in line with the numerical SFR as
determined by FIRE’s star formation prescriptions. However,
the three theoretical predictions respond differently to the
changes in the overall cloud properties: the HC model is more
sensitive than PN, which is more sensitive than KM. None of
the models predicts the magnitude of the SFR surge we
observe; the most sensitive model (HC) shows only a factor of
3 change in €y compared to a factor of 12 change in the
simulation.

In Figure 9, we show the predicted versus measured eg to
check how well the models do for individual clouds. The
scatter points show the time-averaged predicted and measured
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Figure 9. Comparison between eg within GMCs in our feedback-halting and control simulations, and the turbulence-regulated predictions of the KM, PN, and HC
models for individual tracked clouds (tracked ¢ = 10 Myr onwards). The blue circles and orange crosses indicate the mean eg for tracked clouds with and without
feedback, respectively. Non-star-forming clouds are indicated by the population at log, €frmeasurea = —3. The upward pointing triangles show the binned averages in
five different mass bins along with 1o error bars for all clouds. The downward pointing triangles only include clouds which have nonzero star formation. The HC
model comes the closest to predicting the right spread in eg, but it does so predominantly for the simulation without feedback. There is a trend for the simulated ez in
star-forming clouds to decrease with increasing mass, i.e., the smaller downward pointing triangles have larger simulated eg which the theories do not predict. This

trend vanishes if all clouds are considered.

e for tracked clouds (tracked r= 10 Myr onwards) in the
feedback (blue circles) and no-feedback (orange crosses) cases.
There is a significant spread in the measured eg (~0.5 dex)
which the KM and PN models are unable to reproduce. The
upward pointing triangles show the tracked star-forming cloud-
average e in five different (evenly spaced in log) mass bins.
Bigger triangles correspond to a higher-mass bin. Downward-
facing triangles are the same, but include non-star-forming
clouds as well while computing the average. There is a clear
trend of the measured e decreasing with increasing mass for
star-forming clouds with feedback. This trend vanishes if we
include non-star-forming clouds as well (most of which lie in
the lowest-mass bins).

At this stage, it is worth recapping the different assumptions
between the theories. The critical density in the KM model is
calculated as the density where the sonic scale is comparable to
the Jeans length or, in other words, equating the gravitational
potential energy of a Bonor—Ebert sphere to the energy in
turbulent motions. PN derive the critical density by equating
the mass of a Bonor-Ebert sphere to the mass of a uniform
sphere with a radius equal to the thickness of the postshock
layer. They obtain a similar scaling with «;, and M (in the
hydrodynamic limit) to the KM model, but determine that the
relevant timescale is the freefall time evaluated at the critical
density of the cloud, instead of the mean density (as in KM).
HC, by contrast, use a density dependent dynamical time and
incorporate spatial information about the overdensities of
various sizes in a cloud to calculate its SFR. For estimating
the critical density, these authors assume the Jeans length at the
critical density is equal to a fraction, y.,, of the cloud size. This
fraction is set by the largest fluctuations that can turn unstable
to gravitational collapse in the formalism of Hennebelle &
Chabrier (2008, 2009).

Our analysis also alludes to the fact that the correct timescale
for star formation matters. The dependence on the cloud
parameters (M in particular) increases as we account for the
relevant timescale in an increasingly sophisticated manner
(moving from KM to PN to HC). These theories assume a
steady-state scenario for star formation, or in other words, star
formation occurs on timescales that are longer compared to the

11

disruption of the cloud. Stellar feedback (especially early
feedback), operates on shorter timescales and thus alters the
evolution of the star-forming region.

Related to this, we also tested the multifreefall versions of
the KM, PN, and HC models described in HC and Federrath &
Klessen (2012). In the multifreefall versions of KM and PN, the
freefall time is not evaluated at a particular density, and the
dependence on density is preserved instead. Disregarding once
again the issue of overall normalization, we find that the cloud-
population-averaged predicted ey in the simulation without
feedback increases by 2 orders of magnitude, far exceeding the
single order of magnitude increase measured. The multifreefall
versions of the models are very sensitive to the M number. In
our simulation without feedback, the temperature of the clouds
is lower on average and as a result, M increases. Despite the
sensitive dependence on M, the multifreefall versions of the
models do not reduce the scatter in ¢x or match the
measurements better. In fact, the multifreefall KM and PN
models predict values of eg>>100% for the typical M
numbers found in our cloud populations.

5. Discussion

The primary conclusions of our experiment are, first, that
stellar feedback is critically important in limiting the rate of star
formation on galactic and molecular cloud scales; and second,
that simple theories for turbulence regulation fall short of
predicting the surge in SFR that accompanies a loss of
feedback. In fact, there is a second problem: the PN and HC
theories, which are more sensitive than KM to molecular cloud
properties and therefore come closer to matching the SFR
surge, tend to significantly overpredict the SFR in the presence
of feedback (see Figure 8) unless their normalization factors are
adjusted to enforce it.

Turbulence in the ISM can be driven by several different
sources, one of which is stellar feedback. Of course the fact that
turbulence regulates the rate of star formation is not in
question; there is really no other way to describe why the mean
SFR is so low. Indeed, the effective local SFR within the
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(e.g., Hopkins et al. 2018; Semenov et al. 2019) where pg,; is
the gas density, and the local conditions for star formation
discussed in Section 2 and Hopkins et al. (2018) are essentially
a metric of the degree of turbulence on that scale. In our runs
the local SFR prescription corresponds to egeen=1. (To
achieve this in practice, gas particles are individually converted
to stars in a probabilistic fashion with the equivalent mean local
cell-scale rate.) Despite being highly efficient where it operates,
when averaged over the scales of molecular clouds and larger,
this procedure gives ez ~ 1072 in Equation (2)—because of the
inhibitory effect of turbulence. Hopkins et al. (2011), Agertz
et al. (2013), and Hopkins (2013b) show that the Kennicutt—
Schmidt relation (Schmidt 1959; Kennicutt 1998) is recovered
on galactic scales, regardless of the specific value of eg cep
adopted in Equation (8), provided the feedback prescriptions
are accurate, suggesting that feedback is the underlying
mechanism in regulating star formation at these scales.

The relevant question here is whether turbulence regulation
can be disentangled from the influence of stellar feedback and
boiled down to a predictive theory for ¢y in terms of
dimensionless parameters, as in the KM, PN, and HC models.
If these cannot reproduce our results, might a more elaborate
model succeed? One possibility, as mentioned in Section 4,
would be to modify the driving parameter b to reflect the loss of
feedback. Note that € increases with b, all else being fixed—so
to match the SFR surge, b would need to be higher without
feedback than with it. It is not clear to us if this is realistic. We
note that Padoan et al. (2016) and Pan et al. (2019) find that
SNe can drive solenoidal modes (implying that b is
intermediate between 1/3 and 1). These authors calculate b
from the velocity field, rather than the acceleration field to
which the b parameter more closely relates to in simulations.
On the other hand, Dhawalikar et al. (2022) find that shock-
driven turbulence is strongly compressive (implying b~ 1). In
the latter case, there would be no room for b to increase when
feedback halts.

Alternatively, one might appeal to other types of theories for
star formation within self-gravitating turbulent clouds, such as
theories that describe the onset of collapse in ways that build
from the Bond et al. (1991) excursion-set formalism (Hop-
kins 2012; Guszejnov & Hopkins 2015, 2016; Guszejnov et al.
2016), or related theories for hierarchical collapse (e.g.,
Vazquez-Semadeni et al. 2019). One could also invoke theories
for the development of a power-law tail in the density PDF
(e.g., Kritsuk et al. 2011; Federrath 2013; Burkhart et al. 2017;
Burkhart 2018; Chen et al. 2018; Jaupart & Chabrier 2020;
Khullar et al. 2021), a feature observed within GMCs
(Schneider et al. 2013, 2015; Pokhrel et al. 2016; Schneider
et al. 2022). Or, one could consider theories for time-dependent
SFE, as in Lee et al. (2015), Murray & Chang (2015), and
Murray et al. (2017). The difficulty, however, is that none of
these provides an explicit prediction for e that can easily be
assessed in terms of local conditions such as dimensionless
cloud properties.

In Section 1, we argued for a distinction between feedback-
regulated and turbulence-regulated models. Such a separation is
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Figure 10. The cloud-population-averaged e values (Figure 8) for the
feedback (blue) and no-feedback (orange) cases, plotted as a function of
simulation resolution (minimum particle mass). The predictions from the KM
(squares), PN (triangles), and HC (diamonds) models are also plotted alongside
the measurements (circles). Error bars indicate the 1o temporal variation
around the mean e after the first 10 Myr. The difference between the feedback
and no-feedback cases increases with increasing resolution (decreasing
minimum mass), indicating that the effect is robust to resolution.

possible if there is a clear distinction between the (large) scales
on which feedback operates, and the (small) scales on which
turbulence regulates the rate of collapse. On the scales of entire
clouds or larger, a feedback-regulated model (e.g., Ostriker &
Shetty 2011; Grudi€ et al. 2018, 2019; Orr et al. 2019; Ostriker
& Kim 2022; on kiloparsec scales) may be more appropriate for
predicting SFEs. On the other hand, however, turbulence-
regulated models may not be appropriate to predict SFEs at
these scales. The central idea behind the turbulence-regulated
models is that SFE depends only on dimensionless parameters
describing the turbulent environment. Our results lead us to
question whether this is true, and whether it is actually possible
to separate the effects of feedback from those of turbulence—
considering that feedback, when present, appears to impact the
dynamics at all scales resolved within our simulation. In other
words, it may not be possible to prescribe the SFE purely in
terms of bulk turbulent properties, when feedback is operative.
Thus, the turbulence-regulated models need to be “feedback
aware.”

This work comes with one very important caveat: at our
resolution we have only ~140 fluid elements per 10° M, so a
distribution like Equation (3) cannot be fully resolved within
any individual cloud. On the other hand, the PDF is well
resolved for the cloud population as a whole. Considering that
we see a consistent surge in ey within individual clouds, the
entire cloud population, and the overall ISM, we do not expect
our conclusions to evaporate in future, better-resolved simula-
tions. We show results from a resolution study in Figure 10.
We perform a resolution study by repeating our experiment at
four different resolutions: 56,000 M, 40,000 M, 20,000 M,
and our fiducial 7000 M. The simulation at 56,000 M., was
run from z =100, in a similar manner as the 7000 M, run,
branching out into two different evolutionary paths with and
without feedback at z=0. However, the simulations at 20,000
and 40,000 M, resolution were run by using a snapshot from
the 7000 M. run ~240 Myr before z=0 and worsening
resolution by merging particles. Once these simulations reach
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z =0, we stop particle merging and continue onwards, creating
two evolutionary branches for each simulation once again.

Figure 10 shows that the gap between the cloud-population-
averaged e values in the feedback and no-feedback cases tends to
increase with increasing resolution (decreasing minimum mass).
This indicates that the discrepancy between the turbulence models
and the simulations increases with increasing resolution. We
acknowledge that our results for convergence depend on the
imprint that an initially higher-resolution galaxy leaves on e after
merging particles. However, we defer a more careful comparison
with higher-resolution simulations, such as those of Grudi¢ et al.
(2022), to future work.

We also note that our results are limited to Milky Way-like
galaxies, and may differ at high galactic column densities such
as those found at high redshift. The importance of stellar
feedback depends on the mean column density (see, e.g., Brucy
et al. 2020, 2023). While not explored in this work, we
acknowledge that turbulence-regulated theories may work
perfectly fine in these regimes without the need for any
improvements.

6. Summary and Conclusions

The fact that stellar feedback is critically important to galaxy
evolution makes its effect hard to quantify without ruining the
realism of a numerical simulation. To evade this problem, we
have conducted a controlled experiment in which we halt
feedback within a normal spiral galaxy, evolved from cosmolo-
gical initial conditions within the FIRE-2 simulation framework,
and compare to a control simulation that is exactly the same at
t =0 (after cosmic evolution) but in which feedback continues to
operate. Over the next 50 Myr the galaxy’s ISM reacts as one
might expect to the loss of feedback: interstellar turbulence
decays, holes from previous feedback start to fill in, and dense
regions undergo an accelerated collapse—along with a corresp-
onding surge of star formation. We infer that stellar feedback is
the dominant driver of turbulence at the ~0.5 kpc scale, within
~10 kpc of the galactic center.

A remarkable aspect of this SFR surge is that it far exceeds
what one would predict from the relative increase in the mass-
averaged rate of freefall, even if the comparison is restricted
only to dense and cold gas, or gas within clouds. In other
words, the SFE per freefall time, €, increases rapidly, by more
than an order of magnitude, when feedback ends. This
highlights the role stellar feedback plays in setting eg (Suin
et al. 2024).

Motivated by how quickly e increases—it shows a
significant change after 3—4 Myr and saturates by 15 Myr—
we examine the properties of molecular clouds identified using
CloudPhinder with various virial parameter thresholds. We
see that feedback affects the populations and characteristics of
less and more tightly bound clouds differently, but all clouds
undergo a strong and rapid shift in their internal properties. We
find that the surge in e seen at the galactic level exists within
GMC:s as well. This is not simply the consequence of a changing
cloud population, as we demonstrate by tracking individual
clouds (using our own algorithm, CloudTracker).

We compare the e within simulated GMCs against the
predictions of several theories for turbulence-regulated star
formation. None of these reproduces the magnitude of the surge
in eg that accompanies the end of feedback. For example, the
KM, HC, and PN models predict an increase by a factor of 2-3,
but measured values from the simulations indicate an increase
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by more than an order of magnitude. Although our resolution
of individual clouds is relatively poor, the surge in eg exists
after averaging all clouds, and is just as clear for our most
massive clouds, and for the galaxy as a whole.

Our experiment reveals that, apart from its role as a regulator
of star formation, stellar feedback affects almost all aspects of
the population and internal states of GMCs. A galaxy that loses
feedback quickly sprouts a population of new clouds,
especially bound GMCs with low virial parameters, and its
unbound clouds show a marked drop in their internal
turbulence. GMCs become denser overall, although neither
this nor the increase in their number is enough to explain the
star formation surge. Stellar feedback also destroys low- and
intermediate-mass clouds, but we find that it is not the
dominant mechanism in our cloud sample. We suspect this has
to do with how we classify mergers between unequal mass
clouds as the death of the lower-mass cloud. Taken together,
these points imply that stellar feedback is an essential
ingredient of cloud formation and destruction, and of the
forces that regulate star formation within clouds.

While our results remain to be verified with better-resolved
simulations, they strongly suggest that the turbulence-regulated
star formation theories that we assess in Section 4 are lacking
something important. Stellar feedback is one obvious missing
ingredient—indeed, it is the essential ingredient of feedback-
regulated star formation theories. We argue that on scales of
entire clouds or larger, “feedback-aware” models such as those
of Kim et al. (2011), Ostriker & Shetty (2011), Orr et al.
(2019), and Ostriker & Kim (2022) may be more applicable for
predicting SFEs. There are ways to overcome the issues in
turbulence-regulated models, by incorporating time depend-
ence (e.g., Guszejnov & Hopkins 2015, 2016; Guszejnov et al.
2016; Jaupart & Chabrier 2020; etc.) or a more accurate
functional form of the density PDF (Burkhart et al. 2017;
Burkhart 2018; Burkhart & Mocz 2019) for example. Further
development will be required to permit a clear comparison with
simulations such as ours.
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