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A B S T R A C T 

Cosmic rays (CRs) with energies � TeV comprise a significant component of the interstellar medium (ISM). Major uncertainties 

in CR behaviour on observable scales (much larger than CR gyroradii) stem from how magnetic fluctuations scatter CRs in 

pitch angle. Traditional first-principles models, which assume these magnetic fluctuations are weak and uniformly scatter CRs 

in a homogeneous ISM, struggle to reproduce basic observables such as the dependence of CR residence times and scattering 

rates on rigidity. We therefore explore a new category of ‘patchy’ CR scattering models, wherein CRs are pre-dominantly 

scattered by intermittent strong scattering structures with small volume-filling factors. These models produce the observed 

rigidity dependence with a simple size distribution constraint, such that larger scattering structures are rarer but can scatter a 

wider range of CR energies. To reproduce the empirically inferred CR scattering rates, the mean free path between scattering 

structures must be � mfp ∼ 10 pc at GeV energies. We derive constraints on the sizes, internal properties, mass/volume-filling 

factors, and the number density any such structures would need to be both physically and observationally consistent. We consider 

a range of candidate structures, both large scale (e.g. H II regions) and small scale (e.g. intermittent turbulent structures, perhaps 

even associated with radio plasma scattering) and show that while many macroscopic candidates can be immediately ruled out 

as the primary CR scattering sites, many smaller structures remain viable and merit further theoretical study. We discuss future 

observational constraints that could test these models. 
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1  I N T RO D U C T I O N  

Low-energy ( ∼ MeV–TeV) CRs contain most of the CR energy and 

pressure (e.g. Cummings et al. 2016b ) and as such impact astro- 

chemistry, ISM plasma physics, and galaxy evolution on all scales, 

from protoplanetary discs (e.g. Turner & Drake 2009 ; P ado vani 

et al. 2018 ), to molecular clouds (e.g. Herbst & Klemperer 1973 ; 

Goldsmith & Langer 1978 ; P ado vani, Galli & Glassgold 2009 ) and 

the diffuse ISM (e.g. Heintz, Bustard & Zweibel 2020 ; Simpson et al. 

2023 ), to far-reaching galactic outflows (e.g. Ipavich 1975 ; Hopkins 

et al. 2021a ; Quataert, Jiang & Thompson 2022a ) that shape the 

circumg alactic and interg alactic medium (CGM/IGM; e.g. Guo & Oh 

2008 ; Butsky & Quinn 2018 ; Ji et al. 2020 ). CRs in this energy range 

are also crucial probes of fundamental high-energy astrophysics, 

astroparticle physics, and ISM plasma physics on scales that cannot 

be observationally resolved (Zweibel 2013 , 2017a ; Amato & Blasi 

2018 ; Mollerach & Roulet 2018 ; Gabici et al. 2019 ; Kachelrieß & 

Semikoz 2019 ). Despite their importance, low-energy CRs remain 

poorly understood. 

� E-mail: ibutsky@caltech.edu 

† NASA Hubble Fellow. 

The vast majority of the literature studying low-energy CR 

propagation and dynamics has focused on simple, phenomenological 

prescriptions for the ef fecti ve CR transport rates within the ISM, 

typically parametrized with an ef fecti ve dif fusion coef ficient κeff , or 

streaming speed v st, eff . Using a variety of methods, classic studies 

constrained these coefficients by comparing detailed models of CR 

propagation in a Galactic background to observed CR spectra in the 

Solar system (including many CR species and a range of CR energies, 

ratios of primary-to-secondary CRs, radioactive and isotopic abun- 

dances, as well as the CR anisotropy on the sky), and/or to diffuse γ - 

ray observations (Strong & Moskalenko 2001 ; Blasi & Amato 2012 ; 

Vladimirov et al. 2012 ; Gaggero et al. 2015 ; Guo, Tian & Jin 2016 ; 

J ́ohannesson et al. 2016 ; Korsmeier & Cuoco 2016 ; Cummings et al. 

2016a ; Evoli et al. 2017 ). The ‘ef fecti ve’ coef ficients inferred by such 

studies represent, by definition, some weighted average in the ISM 

between CR sources [e.g. supernova remnants (SNRs) in the Milky 

Way] and the Solar system. Together, the existing observations still 

only constrain the CR scattering physics in ISM conditions broadly 

similar to the Solar neighbourhood. Since phenomenological models 

do not explain how such scattering rates actually arise or break many 

of the degeneracies between CR propagation models, it is by no 

means clear how to extrapolate their findings to distinct environments 
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(e.g. the Galactic centre, CGM, or IGM), galaxy types (e.g. dwarf, 

starburst, or high-redshift), or CR acceleration cites (e.g. AGN and 

quasars). Moreo v er, different choices for such extrapolation can 

lead to orders-of-magnitude different results in predicted galaxy 

properties (see references abo v e and Butsky et al. 2020 ; Hopkins 

et al. 2021b ; Butsky et al. 2023 ). 

In order to predict how CRs propagate on macro scales in 

different galactic environments, we first need to understand CR 

physics on micro scales. The gyroradii, r gyro , of low-energy CRs 

are extremely small compared to the ‘macroscopic’ scales of the 

ISM/CGM (e.g. r gyro ∼ 0 . 1 au, for CRs at the ∼ GeV peak of the 

spectrum in the diffuse ISM). This means that CRs cannot simply 

escape their acceleration sites around supernovae at bulk speeds v cr 

= βcr c , but instead travel along magnetic field lines on gyro orbits 

with a characteristic gyro frequency � ∼ v cr / r gyro , and pitch angle 

μ ≡ ˆ v cr · ˆ b relative to the magnetic field direction ˆ b ≡ B / | B | . When 

CRs encounter magnetic field fluctuations, δB , they are scattered in 

pitch angle, producing some ef fecti ve pitch-angle scattering rate, 

νeff . When av eraged o v er large spatial and temporal scales, νeff 

leads to bulk CR transport that can be parametrized by some 

ef fecti ve dif fusion coef ficient κeff ∼ v 2 cr /νeff and/or streaming speed 

v st, eff ∼ κeff |∇P cr | /P cr . As we summarize in Section 2 , traditional 

scattering models typically assume that the magnetic fluctuations 

that scatter CRs are weak ( | δB | / | B | � 1) and uniformly distributed 

throughout the volume-filling ISM, but differ from each other in their 

proposed origin of the magnetic fluctuations. 

Constraining CR scattering theories is extremely difficult since it 

is simply not possible to directly resolve the rele v ant gyroresonant 

scales in either ISM observations or in numerical simulations that 

also include macroscale ISM processes. Even idealized particle-in- 

cell type simulations of CR scattering in an ISM ‘patch’ that is only 

modestly larger than the CR gyroradii (so obviously unable to span 

the full dynamic range of conditions) have only just become possible 

in the last few years (Bai et al. 2019 ; Holcomb & Spitko vsk y 2019 ; 

Bambic, Bai & Ostriker 2021 ; Plotnikov, Ostriker & Bai 2021 ; Bai 

2022 ; Ji & Hopkins 2022 ; Ji, Squire & Hopkins 2022 ). Because 

of these challenges, existing CR scattering models remain wildly 

uncertain, even in the ‘typical’ ISM. For example, when applied 

in galaxy simulations, state-of-the-art scattering models that are 

calibrated to reproduce existing observations predict CR scattering 

rates that differ by as much as ten orders of magnitude (at ∼ GeV 

energies) in the ISM and predict qualitatively different scalings with 

properties like magnetic field strength and turbulence (Hopkins et al. 

2021c ). Additionally, multiple recent studies have pointed out that 

existing scattering models struggle to even qualitatively capture the 

correct dependence of CR scattering rate on rigidity at sub-TeV 

energies (Kempski & Quataert 2022 ; Hopkins et al. 2022b ). 

In this paper, we are therefore moti v ated to propose a no v el picture 

for CR scattering, which may resolve some of these challenges. In 

Section 2 , we summarize some of the central challenges facing 

‘conventional’ models in the recent literature. In Section 3 , we 

present a new theoretical framework for ‘patchy’ CR scattering, 

which is qualitatively distinct from traditional, continuous scattering 

models and derive a number of criteria any such model must obey to 

reproduce observations. We discuss a variety of candidate scattering 

structures, both macroscopic and small scale in Section 4 . We show 

which candidate scattering structures can be immediately ruled out 

and discuss the potential connections to intermittent structures in 

turbulence. In Section 5 , we discuss the observational implications 

for these model categories. We summarize and conclude our results 

in Section 6 . 

2  T H E  PROBLEM  WITH  SIMPLE,  

H O M O G E N E O U S  T H E O R I E S  O F  COSM IC -RAY  

SCATTERING  

Empirical constraints on CR propagation in the Galaxy typically infer 

an ef fecti ve dif fusi vity of the form D xx ∼ κeff = D 0 βcr ( R cr /R cr, 0 ) 
δs , 

equi v alent to an angle-averaged CR pitch-angle scattering rate, 

〈 ̄ν〉 eff ∼ ν̄0 βcr R 
−δs 
GV , (1) 

where βcr = v cr / c is the CR velocity, R GV is the CR rigidity 

in GV, and typical values of the fit parameters correspond to 

ν̄0 ∼ 10 −9 s −1 , and 0 . 5 � δs � 0 . 7 (e.g. De La Torre Luque et al. 

2021 , and references in Section 1 ). This is roughly equi v alent to 

an isotropic diffusion coefficient κeff ∼ 10 29 cm 
2 s −1 , or effective 

streaming velocity v st, eff ∼ 300 km s −1 , assuming a gradient scale 

length of 1 kpc. The ef fecti ve CR scattering rate translates into a 

characteristic mean free (or deflection) time, t mfp ∼ 1 / 〈 ̄ν〉 eff , or mean 

free (or deflection) path, � mfp ∼ v cr / 〈 ̄ν〉 eff ∼ ( c / ̄ν0 ) R 
δs 
GV , between 

O(1) deflections in μ. 

Regardless of the details, an extremely robust observational result 

is δs > 0: the CR residence times and scattering rates (which scale ∝ 

〈 ̄ν〉 eff ∝ R 
−δs 
GV ) must decrease with increasing CR rigidity at energies 

∼ GeV-TeV, in order to reproduce any of the observed trends, e.g. 

secondary-to-primary or radioactive isotopic species ratios. 

Historical theories of CR scattering (heuristically illustrated in 

Fig. 1 ) generally assume that the observed CR pitch-angle scattering 

is the cumulative result of a large number of uncorrelated, small 

perturbations to μ generated by encounters with a very large number 

of independent, small magnetic field fluctuations, δB . These theories 

also assume that the magnetic field fluctuations occur throughout 

an ISM that is statistically homo g eneous on spatial scales from the 

gyro scale up to, or larger than, the CR deflection length. This is 

a questionable starting assumption considering the CR deflection 

length � mfp ∼ 10 pc R 
δs 
GV (as large as hundreds of pc for ∼ TeV CRs) 

is larger than the size scales of much ISM structure. Nonetheless, 

inte grating o v er an ensemble of perturbations, this leads to the 

classic predicted scattering rate 〈 ̄ν〉 eff ∼ (v cr /λ) | δB ( λ) | 2 / | B | 2 (e.g. 

V ̈olk 1973 ), where | δB ( λ) | � | B | represents some typical (e.g. 

root-mean-square) fluctuation amplitude with wavelength λ. 1 This 

applies equally well to both ‘self-confinement’ theories (in which 

δB is sourced at λ ∼ r gyro by CR streaming instabilities; Kulsrud & 

Pearce 1969 ; Wentzel 1969 ; Skilling 1975 ) and ‘extrinsic turbulence’ 

theories (in which δB is sourced by a turbulent cascade from vastly- 

larger ISM driving scales; Jokipii 1966 ; V ̈olk 1973 ). 

Ho we v er, as discussed e xtensiv ely in Hopkins et al. ( 2022b ) and 

Kempski & Quataert ( 2022 ), the most commonly invoked self- 

confinement and extrinsic turbulence theories based on the abo v e 

assumptions do not reproduce the locally observed CR spectra at 

sub-TeV energies. F or e xample, putting in typical ISM values for the 

rele v ant parameters gi ves orders-of-magnitude dif ferent normaliza- 

tion ( ̄ν0 ) from that observed (a point already made in Chandran 2000a ; 

Yan & Lazarian 2002 ; Chan et al. 2019 ; Fornieri et al. 2021 ; Hopkins 

et al. 2021c ). Ho we ver, e ven allo wing for arbitrary re-normalization, 

the CR spectra predicted by traditional CR scattering models will 

not have the correct shape if one assumes typical scaling parameters 

(also noted in Yan & Lazarian 2004 ; Fornieri et al. 2021 ). Most 

1 λ is often taken to be the gyroresonant wavelength λ ∼ r gyro since that will 

usually dominate if there is an undamped spectrum of fluctuations, but it 

can also represent scattering by larger -wa velength modes ( λ � r gyro ) via e.g. 

transit-time damping (see e.g. Malyshkin & Kulsrud 2002 ; Yan & Lazarian 

2002 ). 
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Figure 1. Cartoon illustrating the difference between traditional models of sub-TeV CR pitch-angle scattering in the ISM (Section 2 ; top) and the ‘patchy’ 

models proposed here (Section 3 ; bottom). Low-energy CRs are accelerated at some sites (e.g. supernovae) and confined to gyro orbits with small radii, r gyro , 

and some pitch angle, μ, along magnetic field lines, B , through the ISM, until they are observed. ‘Traditional’ models (Section 2 ) assume CR pitch angles 

are scattered constantly by ubiquitous (volume-filling factor ∼1) small-amplitude ( | δB | � | B | ) magnetic fluctuations (with wavelength λ here) uniformly 

distributed though a medium that is homogeneous up to scales of the CR deflection length � mfp ∼ 10 pc R 
δs 
GV , giving rise to some ef fecti ve mean scattering rate 

〈 ̄νeff 〉 shown. Reproducing the observed dependence of CR scattering rates and residence times on rigidity therefore requires a specific ratio of median/typical 

volume-filling magnetic fluctuations of different scales λ. The ‘patchy’ model (Section 3 ; bottom) assumes that CR scattering is dominated by strong scattering 

in intermittent ‘patches’ or structures (grey ovals), which have a small volume-filling factor (with size � S , and number density n s ). Larger patches, which have an 

ef fecti vely larger ‘CR scattering optical depth’ and scatter both low- and high-energy CRs, are rarer than smaller patches, which only scatter low-energy CRs. 

An appropriate distribution of smaller and larger patches can therefore produce the observed dependence of CR scattering on rigidity. 

importantly, these models predict δs ≤ 0, i.e. longer CR residence 

times for higher-energy CRs (opposite the observed behaviour). 

The problem with assuming CR scattering is ‘continuous’, is that 

the only way to reproduce the observed dependence 〈 ̄ν〉 eff ∝ R 
−δs 
GV is 

to invoke some connection between the dominant wavelength of 

scattering modes and R GV (for example, assuming gyroresonant 

scattering λ ∼ r gyro ∝ R GV ), and a specific power-law spectrum 

of fluctuations δB ( λ). 2 But in self-confinement theory, the only 

stable steady-state solution is one where all CRs either stream at 

approximately the MHD Alfv ́en speed, or free-stream (unconfined) 

at c , in either case, clearly independent of rigidity ( δs = 0). Any 

solutions out of equilibrium ‘collapse’ to these states on a very 

rapid time-scale ( � Myr) – an issue that has been noted going back 

at least to Skilling ( 1971 ). In extrinsic turbulence models, it is 

common to make the phenomenological comparison to Kolmogorov 

2 F or e xample, if λ ∝ R 
αλ
GV and | δB ( λ) | ∝ λαB , we require αλ(1 − 2 αB ) ≈ δ. 

or ‘Kraichnan’-type spectra δB ( λ) ∝ λ1/4 − 1/3 , which appear at first to 

give reasonable estimates for δs . The problem is that this assumes the 

turbulence is both undamped and isotropic down to scales at least as 

small as the gyroresonant wavelength, which cannot be true for sub- 

TeV CRs, where the gyro scales are much smaller than the Alfv ́en and 

Kolmogorov/damping/dissipation scales of the turbulence. In that 

regime, turbulence is highly anisotropic, and the parallel structure 

necessary for efficient CR scattering are suppressed (Goldreich & 

Sridhar 1995 ). 3 The prediction is then that scattering is necessarily 

dominated by larger-scale modes, λ � r gyro , which are independent 

of r gyro , so δs ≤ 0, a point also noted in Chandran ( 2000a ) and Fornieri 

et al. ( 2021 ). 

3 In the more careful discussions in e.g. Hopkins et al. ( 2022b ) and Kempski 

& Quataert ( 2022 ), the distinction between parallel and perpendicular 

wavenumbers is made more explicitly, and this plays a crucial role in the 

challenges to traditional extrinsic turbulence theories. We refer to those 

studies for more detail. 
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There might be solutions to these problems involving, for example, 

alternative, volume-filling sources of the modes δB that differ 

from standard self-confinement or extrinsic turbulence theories (see 

Hopkins et al. 2022b for discussion). But thus far, there does not 

appear to be an example of such a model that has actually been 

shown to reproduce the observed CR spectra. 

3  A N  ALTERNATIVE:  ‘ PATC H Y ’  SCATTERING  

BY  MESO-SCALE  STRUCTURES  

Here, we consider a more radical alternative: patchy scattering, in 

which CR scattering rates are high in discrete ‘scattering structures’ 

and low in-between such structures (illustrated in Fig. 1 ). 

More formally, we drop the assumption of the ‘classic’ models 

in Section 2 that the fluctuations, δB , from which CRs scatter are 

homogeneous and uniformly volume filling. In this case, the ef fecti ve 

scattering rate, 〈 ̄ν〉 eff , inferred from various observational constraints 

should not be thought of as a uniform, volume-filling rate, but as an 

average rate of encountering scattering structures. Equi v alently, the 

observ ationally inferred ef fecti ve deflection length, � mfp , would no 

longer represent the length o v er which a sufficient number of small 

deflections are continuously accrued to change μ by O(1), but rather 

would represent the mean free path between scattering ‘patches’, 

� mfp ∼ v cr / 〈 ̄ν〉 eff ∼ 10 pc R 
δs 
GV , (2) 

Importantly, we will show that this reinterpretation frees us from 

being forced to assume there is a unique one-to-one correspondence 

between the measured rigidity dependence, δs , and the shape of 

the power spectrum of magnetic fluctuations on gyro scales, as in 

Section 2 . In the following sections, we discuss the basic constraints 

that a plausible scattering structure would need to meet. 

3.1 Geometry and general constraints 

First, consider the basic geometric properties of candidate scattering 

structures. It is helpful to think of structures in terms of their ef fecti ve 

dimensionality, D, equal to the number of dimensions along which 

the system has a highly elongated axis ratio. Using this definition, 

D = 2 describes sheet or pancake structures with two long axes 

( � L ) and one short axis ( � S ), D = 1 describes filamentary (or tube- 

like) structures with one long axis and two short axes, and D = 0 

describes spherical (or ‘point-like’) structures with all axis lengths of 

order � S . The cross-sectional area of the structure, across a random 

set of viewing angles, is dominated by the two larger dimensions, 

A s ∼ � D 
L � 

2 −D 
S , while the relative depth of the structure (as seen by 

e.g. CRs traversing it) is dominated by the short-axis distance, � S . 

From these definitions, the volume of a scattering structure scales as 

V s ∼ A s � S . 

3.1.1 Size and internal scattering constraints 

The first, most basic, size constraint is that in order to scatter a CR 

with some rigidity R GV , the structure must be larger than that CR’s 

gyroradius, 

� S � r gyro ∼ 0 . 1 au R GV /B μG , (3) 

where B μG is the magnetic field in microGauss. 

Additionally, we assume that there is a local CR pitch-angle 

scattering rate, νs , inside the scattering structures. It is important 

to distinguish the CR scattering rate within the structures from 

the ISM-averaged ef fecti ve scattering rate, 〈 ̄ν〉 eff , as by definition 

νs � 〈 ̄ν〉 eff . Therefore, the depth of a scattering structure must be 

large enough so that the scattering time within it ( ∼1/ νs ) is shorter 

than the unscattered CR crossing time of that structure ( ∼� S /v cr ). 

In other words, the structure must be large enough so that CRs are 

reliably scattered as they traverse it, 

� S � v cr /νs . (4) 

Another way of saying this is that the scattering ‘optical depth’ to 

CRs of some rigidity R GV , τs ∼ νs � S / v cr � 1, must exceed unity in 

order for CRs of that R GV to be strongly scattered. 

On the other hand, the structure cannot be so large that CRs are 

ef fecti vely trapped inside of it for much longer than their inferred 

total residence times in the ISM. Assuming there is a large scattering 

rate inside the structure, the time CRs spend inside of the scattering 

structure, t s , is set by the ef fecti ve dif fusi vity, κs ≈ v 2 cr /νs , gi ving 


t s ∼ � 2 S /κs ∼ ( � S / v cr ) 
2 νs . (5) 

By definition, if this were longer than the ISM-averaged deflection 

time ∼� mfp /v cr , then this would dominate the total residence time 

and exceed the limits above, violating the basic assumptions of our 

framework. Therefore, we require 
 t s < � mfp /v cr , or 

� 2 S < v cr � mfp /νs . (6) 

It is only possible to satisfy both equation ( 4 ) and equation ( 6 ) if 

the depth of the scattering structure is significantly smaller than the 

mean free path between scattering structures 

� S � � mfp . (7) 

But this is of course implicit in a ‘patchy’ scenario. 

3.1.2 Number densities, surface densities, and mass or 

volume-filling factors 

The mean free path between patches that can scatter CRs of a given 

rigidity R GV is set by the cross-sectional area of the structures as 

well as their relative abundance or ‘number density’ n s , as � mfp ∼

1/( n s A s ). Given the observationally constrained mean free path for 

CRs of that rigidity, the scattering structures therefore must have a 

v olume-a veraged ISM number density of 

n s ∼ 1 / ( � mfp A s ) ∼ 1 / ( � mfp � 
D 
L � 

2 −D 
S ) . (8) 

Next, consider the typical surface density (or column density; � s ) 

of a structure, viewed from a random angle, � s ∼ M s / A s , in terms of 

the mass of the structure ( M s ) and its cross-sectional area ( A s ). Using 

the relations abo v e, � s ∼ M s /A s ∼ ρ̄s � mfp , where ρ̄s ∼ M s n s is the 

v olume-a veraged mass density of the scattering structures within 

the ISM as a whole. Assuming that the total mass contained in the 

scattering structures is some fraction, f M , of the ISM (with some 

v olume-a veraged ISM density ρISM ≈ m H n ISM ), we can rewrite the 

expression for the surface density as 

� s ∼ f M ρISM � mfp ∼ 5 f M × 10 −5 g cm 
−2 R 

δs 
GV , (9) 

where ρISM = m H n ISM is the v olume-a veraged ISM density, m H is 

the mass of a hydrogen atom, and n ISM ≈ 1 cm 
−3 . Assuming that f M 

< 1, we can place an upper limit on the surface density of scattering 

structures, 

f M ∼ � s / ( ρISM � mfp ) ∼ ( ρs /ρISM )( � S /� mfp ) < 1 , (10) 

where ρs = M s / V s is the internal density of a scattering struc- 

ture, i.e. � s < 5 × 10 −5 g cm 
−2 R 

δs 
GV or column density < 3 ×

10 19 cm 
−2 R 

δs 
GV . 
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Similarly, the volume-filling fraction of the scattering structures, 

f V , would be 

f V ∼ V s n s ∼ � S /� mfp < 1 , (11) 

� mfp ∼ � S /f V . (12) 

These abo v e quantities ( n s , � s , f M , f V ) depend on CR rigidity 

either explicitly, or implicitly, through � mfp ∝ R 
δs 
GV . This tells us the 

bulk properties of the scattering patches that scatter lower-energy 

CRs ( ∼MeV; e.g. their number densities, column densities, mass 

and volume-filling factors) will differ from the bulk properties of 

the patches that scatter higher-energy CRs ( ∼TeV). Of course, the 

sizes of the structures ( � S , � L ) that scatter CRs of different R GV may 

also be distinct, as we might naturally expect from the constraints in 

Section 3.1 . 

3.2 Sufficiently weak scattering between structures 

A key requirement of the patchy scattering model is that CR 

scattering not be dominated by scattering in the medium between 

patches. This means that the diffuse/volume-filling ISM cannot have 

substantial CR scattering from either extrinsic turbulence or from the 

CR streaming instability (SI). F or the e xtrinsic turbulence case, this 

is easy to satisfy, as the more detailed calculations in Section 2 argue 

that the theoretically fa v oured extrinsic scattering rates in the warm 

ISM for sub-TeV CRs are orders of magnitude smaller than the mean 

observed 〈 ̄ν〉 eff . Ho we ver, one must still a v oid runaway growth of the 

CR SI between patches, which would self-confine CRs to mo v e no 

faster than the Alfv ́en speed, o v erconfining them especially at higher 

energies (Hopkins et al. 2022c ). 

There are a few ways in which the o v erconfinement problem could 

be a v oided. F or e xample, at energies � GeV, the SI growth rate is 

proportional to the number density of CRs and so drops rapidly. Thus, 

for higher energy CRs, the constraint is not so severe, and it may be 

possible that CRs just around ∼1 GeV are self-confined while other 

physics take o v er between 1 and 1000 GeV (though this may require 

some fine-tuning; see Kempski & Quataert 2022 ). Additionally, some 

recent MHD-PIC simulations have argued that SI growth rates may 

be slower than expected from simple quasi-linear expressions (Bai 

et al. 2019 ; Holcomb & Spitko vsk y 2019 ). 

Alternatively, we can use the weak scattering requirement to place 

some constraints on the properties of the volume-filling ISM. In 

steady state, with some large-scale background CR gradient, there 

would be some net flux of CRs moving away from the galactic 

centre, leading to the growth of SI on some time-scales. The patchy 

scattering model can still hold, so long as the scattering rate due to 

the saturated SI in the medium between scattering patches is less 

than the observationally inferred effective CR scattering rate, νSI < 

νeff . This is equi v alent to requiring that the ef fecti ve dif fusi vity due 

to the SI be larger than the empirically constrained average diffusion 

coefficient, 

κSI ∼
� damp ( e B c r gyro / v A ) 

|∇e cr | 
> κeff ≈ 10 29 cm 

2 s −1 , (13) 

where � damp is the ef fecti ve damping rate of gyroresonant Alfv ́en 

waves, e B ≡ | B | 2 / 8 π is the magnetic energy density, v A is the Alfv ́en 

speed, and e cr is the CR energy density (equation 7 of Hopkins et al. 

2021c ). Following the assumptions in Hopkins et al. 2021c , we can 

turn the abo v e equation into a rough, order-of-magnitude lower limit 

on the required damping rate to sufficiently suppress the CRSI in the 

volume-filling ISM, � damp � 10 −9 s −1 , a rate on the higher end of that 

obtained via simple estimates in the ionized ISM, though potentially 

reasonable (e.g. Farmer & Goldreich 2004 ; Zweibel 2017b ; Squire 

et al. 2021 ). 

3.3 Key r equir ements to r epr oduce obser v ational scalings and 

differ ences fr om the homogeneous models 

Provided a potential scattering structure meets all the above criteria, 

the key point is that by having discrete structures that are not volume 

filling, we no longer need to impose a specific scattering rate νs , or 

a specific distribution of magnetic field fluctuations δB ( λ) inside the 

structure in order to produce the observed dependence of λmfp or 

〈 ̄ν〉 eff on CR rigidity (Section 2 ). Essentially, we have replaced the 

requirement that the observed scaling 〈 ̄ν〉 eff ∝ R 
−δ
GV reflects a specific 

power-law scaling of δB ( λ) ∝ λαB , with a different requirement: that 

the number of scattering structures that can scatter CRs of a given 

rigidity depends in a specific power-law fashion on that rigidity. 

How plausible is this? First, we consider a simplified scenario in 

which scattering structures all have some internal scattering rate νs , 

and vary from each other only in size. In this case, the scattering 

patches would have a wide range of sizes � S , spanning a range 

from the smallest to largest gyroradii of the GeV-to-TeV CRs of 

interest ( ∼ 0 . 1 − 100 au for microGauss fields). Per Section 3.1 , 

the patches that are able to scatter CRs of a given rigidity will 

have � S > � S, min ∼ r gyro ∝ R GV . Our number density constraint then 

becomes: n s ( > � S ) ∝ � 
D−2 −δs 
S � −D 

L . Realistically, the scattering rate 

within the proposed structures will likely have some dependence on 

CR rigidity in addition to the size of the structure νs ∝ � 
−αS 
S R 

−αR 
GV . 

Combined with the requirement that structures can scatter CRs 

( � S > v cr / νs ) and the other scalings from Section 3.1 to 3.1.2 , 

this gives a more generalized constraint on the number density, 

n s ( > � S ) ∝ � 
−2 −δs (1 −αS ) /αR + D 
S � −D 

L . 

In either case, for quasi-3D structures ( D = 0) or � L ∝ � S , rea- 

sonable values for αS ≈ 1, αR ≈ 0.5, and 0.3 � δs � 0.7, we 

obtain n s ( > � S ) ∝ � 
−αn 
S with 2 � αn � 3, which is broadly similar 

to the distribution of sizes of many classes of objects in the ISM, 

including molecular clouds and H II regions, H I filaments, star 

clusters, stellar wind termination shocks/bubbles/magnetospheres 

(Guszejnov, Hopkins & Grudi ́c 2018 ). For sheet-like structures 

( D = 2), the scaling is quite similar to the distribution of shock 

widths seen in supersonic, isothermal turbulence (Squire & Hopkins 

2017 ; Mocz & Burkhart 2019 ). As advertised, the scaling does not 

depend sensitively or in the same manner as we discussed in Section 2 

on how νs (or implicitly δB ) depends on wavelength λ. 

Thus while it has pro v en (surprisingly!) challenging to theo- 

retically construct a power spectrum of magnetic fluctuations that 

satisfies the observational requirements from Section 2 , it appears, at 

least in principle, straightforward to conceive of models with a size 

distribution of ‘patches’ that satisfy the rele v ant requirements (i.e. 

will produce the same observables) without violating any obvious 

constraints. 

4  EXA MPLE  C A N D I DAT E  ST RUCT URE S  O R  

PHY SICA L  MECHA NISM S  

We now consider some different physical mechanisms and/or candi- 

date ‘scattering structures’. 

4.1 Quasi-static/coherent and ‘macroscopic’ ISM structures 

One possibility is that the ‘patches’ of interest could be associated 

with some known population of quasi-static or coherent ISM struc- 

tures that are already known to perturb the magnetic field structure 



4250 I. S. Butsky et al. 

MNRAS 528, 4245–4254 (2024) 

Figure 2. Constraints on the size, � S , and volume number density in the 

ISM, n s , of possible patchy scattering structures (Section 4.1 ). The blue/green 

shaded regions with solid boundaries (labelled) show the contours that would 

produce roughly the correct mean free paths for MeV, GeV, and TeV CRs, 

obeying all the other constraints in Section 3 , for quasi-3D ( D = 0) structures. 

The slope of the blue/green regions is set by fixing the CR mean free path, 

� mfp ∼ 1 / ( n s � 
2 
S ), and the maximum allowed size is set by � S > � mfp . An 

ideal candidate scattering structure, which could explain CR scattering in 

the ∼ MeV-TeV range, would intercept all of these. The warmer-coloured 

shaded regions with dotted boundaries (labelled) show the approximate 

location of various known large-scale structures in the ISM including stellar 

magnetospheres, H II regions, molecular clouds (GMCs), PNe, SNRs, and 

galactic spiral arms (arms). None of these appear viable: they might scatter 

CRs, but their abundance is too low to account for most observed CR 

scattering in the ISM. 

on some scale � S . In e v aluating whether such a population is viable 

as the dominant source of CR scattering, it is helpful to place them 

on a sort of modified ‘Hillas plot’ for CR pitch-angle scattering in 

the ISM, which we show in Fig. 2 . There, we plot n s ( > � S ) versus 

� S , for quasi-3D objects ( D = 0, which reasonably describes all the 

systems we consider in the plot), and show the allowed regions 

that produce the observed mean free paths, combining all of the 

constraints from Sections 3.1 to 3.1.2 4 for CR protons with energies 

of ∼ MeV , GeV , and TeV . We also place some rough estimates of 

the range of number densities and sizes of various ‘macroscopic’ 

scattering candidates, including molecular clouds (GMCs), stellar 

magnetospheres, planetary nebulae (PNe), SNRs, HII regions, and 

Galactic spiral arms (rough estimates of number versus size here 

compiled from Blitz & Rosolowsky 2005 ; Tielens 2005 ; Draine 2011 ; 

Walder, F olini & Me ynet 2012 ; Anderson et al. 2014 ; Armentrout 

2018 ). 

An ideal candidate scattering structure would, in this plot, intersect 

not just one but all three of the allowed CR ‘bands’ without 

o v erpredicting the scattering rate for any energy range. Instead, all 

of the plotted candidates appear clearly ruled out as the dominant 

source of CR scattering: at a given � S , n s is orders of magnitude 

too low. In other words, the mean free path between structures 

4 We take the estimated constraints on � mfp specifically from Hopkins et al. 

( 2022a ), though as discussed therein it makes very little difference if we adopt 

other recent studies’ results (compare e.g. De La Torre Luque et al. 2021 ; 

Korsmeier & Cuoco 2022 ), especially given the enormous dynamic range in 

Fig. 2 . We also assume a diffuse field of a few μG to estimate r gyro , but again 

changing this by even an order of magnitude does not change our conclusions 

here. 

Figure 3. Similar to Fig. 2 , we constrain the minor axis, � S , and volume- 

filling factor, f V , required of the patchy scattering model (Sections 4.2 –4.4 ; 

this plot is also valid for any dimensionality of structures, D = 0 , 1 , 2). We 

compare the observationally and physically allowed regions, and provide an 

example (black shaded region) of a hypothetical model for a distribution 

of scattering patches, with size � S ∼ r gyro and f V ∼ � S /� mfp ∼ � 
1 / 2 
S , which 

would satisfy all of the observational constraints without o v erpredicting the 

CR scattering rate or violating any obvious physical or observational limits. 

This could arise from intermittent structures in turbulence (Section 4.3 ), 

where a very small volume-filling factor or volumetric probability P V ∼

10 −7 − 10 −5 of structures with size-scale ∼� S ∼ au featuring O(1) magnetic 

field fluctuations would be sufficient to explain the observed CR scattering. 

Interestingly (Section 4.2 ), the size scales here are very similar to those 

inferred for small-scale ISM structures responsible for radio-wave plasma 

scattering, and the volume-filling factors f V might be consistent as well, but 

orders-of-magnitude uncertainties in the observ ed f V prev ent us from reliably 

placing specific examples on this plot (likewise for some proposed physical 

mechanisms in Section 4.4 ). 

is too large, or, alternatively, the maximum ISM-mean scattering 

rate, 〈 ̄ν〉 eff ∼ v cr /� mfp ∼ v cr n s A s ∼ v cr n s � 
2 
s , is much smaller than 

required to account for the observed CR scattering. So while these 

structures can scatter CRs (we know, in fact, the Heliosphere does 

so), they cannot produce most of the observed scattering. For this 

reason structures that have similar sizes but are even rarer in the 

ISM (e.g. Bok globules, pulsar wind nebulae, globular cluster cores, 

colliding wind binaries) are also immediately ruled out. 

Thus while it is concei v able that such a ‘macroscopic’ ISM 

population might exist, we are unable to identify an obvious can- 

didate. Furthermore, the probability that macroscopic structures act 

as the primary source of CR scattering is reduced due to the fact 

that macroscopic structures are pre-dominantly found within the 

galactic disc. Such a disc-centric distribution of scattering candidates 

contrasts with the inferred CR confinement several kiloparsecs 

outside of the galactic disc. 

4.2 ‘Small’-scale ISM structure 

An alternative possibility is that the proposed scattering patches could 

be associated with some small-scale ISM stuctures or magnetic field 

features. 

While Fig. 2 focused on relatively large-scale structures, in Fig. 3 , 

we repeat the same e x ercise, but focus on the smaller end of the 

size range of � S (though note the axis ranges do o v erlap). F or 

small-scale structures, especially where the ef fecti ve dimensionality 

may not be known, we find it useful to focus on the volume-filling 
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factor f V ∼ n s V s ∼ n s A s � S ∼ � S /� mfp (Section 3.1.2 ), rather than 

n s specifically. This also lets us compress the vertical dynamic range 

of the plot and factor out the dependence on D, so this plot is 

valid for sheet-like or filamentary structures, not just quasi-spherical 

structures. 

In this plot, we also show a hypothetical model that would explain 

the required rigidity dependence of CR scattering and reproduce 

solar-system observables fairly naturally, assuming � S ∼ r gyro and 

then calculating n s ( > � S ) such that � mfp scales with r gyro and therefore 

R GV as observed (as in Section 3.3 ). Since f V ∼ � S / � mfp , we can 

rearrange to obtain f V ∼ 10 −7 B 
−δs 
μG ( ̄ν0 / 10 −9 s −1 ) ( � S / 0 . 2 au ) 1 −δs ∼

3 × 10 −7 � 
1 / 2 
S, au B 

−1 / 2 
μG . 

It is noteworthy that the required volume-filling factors rang- 

ing from f V ∼ 10 −7 –10 −5 for structures with sizes ranging from 

∼ 0 . 01 − 100 au (or ∼ a few × 10 −7 around ∼ 1 au) are intriguingly 

similar to some estimates of the volume-filling factor of so-called 

‘tiny-scale atomic structures’ (TSAS; Heiles 1997 ; Stanimirovi ́c et al. 

2003 ; McEvoy et al. 2015 ; Stanimirovi ́c & Zweibel 2018 ) in the 

ISM as well as the volume-filling factor estimated in some models 

of ISM plasma structures causing ‘extreme scattering events’ (ESEs; 

Romani, Blandford & Cordes 1987 ; Cordes & Lazio 2001 ; Bannister 

et al. 2016 ; Jow, Pen & Baker 2023 ). Ho we ver, we caution that the 

ESE filling factor is largely unconstrained and model-dependent 

(Stanimirovi ́c & Zweibel 2018 ). While the sizes ( � S ) of TSAS 

structures are broadly agreed to lie in the range plotted in Fig. 3 , 

some other observational estimates of their volume-filling factor are 

as high as ∼10 −2 , much larger than what is needed to explain CR 

scattering (see e.g. Brogan et al. 2005 ). 

Note these are categories of ISM structures classified by their 

effects on radio waves: physical explanations for such structures 

range widely, but often invoke intermittent turbulent structures, 

which we discuss below. 

4.3 Connection to intermittency 

A natural category of candidates for the scattering structures 

suggested by Fig. 3 is intermittent turbulent structure (Zhdankin, 

Boldyrev & Uzdensky 2016 ; Mallet & Schekochihin 2017 ; Dong 

et al. 2018 ). Recent test-particle simulations of CRs in intermittent 

magnetic fields suggest that magnetic structure may enhance CR 

dif fusion, e ven for a fixed magnetic field power spectrum (Shukurov 

et al. 2017 ; Seta et al. 2018 ). The anomalous CR diffusion due to 

magnetic field intermittency has qualitatively similar behaviour to 

the more general approach of modelling CR diffusion in Fokker–

Plank-like equations with non-Markovian statistics (e.g. Wilk & 

Włodarczyk 1999 ; Snodin et al. 2016 ; Zimbardo & Perri 2020 ). 

Below, we place constraints on magnetic intermittency in the context 

of the patchy CR scattering model. 

Recall, in the traditional model, we had 〈 ̄ν〉 eff ∼

(v cr /λ) | δB ( λ) | 2 / | B | 2 , with the assumption that scattering was 

dominated by ubiquitous (volume-filling factor f V ∼ 1) but weak 

( | δB | � | B | ) fluctuations, which must obey specific conditions 

on their power spectra at scales � 100 au in order to reproduce 

the observed dependence of CR residence time on rigidity. In the 

patchy model here, we have 〈 ̄ν〉 eff ∼ v cr /� mfp ∼ (v cr /� S ) f V (using 

f V ∼ � S / � mfp from Section 3.1.2 ). So, per Fig. 3 , we instead assume 

that CR scattering is dominated by regions with strong magnetic 

fluctuations (‘patches’) but very low volume-filling factor ( f V � 1). 

F or e xample, if we were to assume gyroresonant λ ∼ � S ∼ r gyro , then 

in order to reproduce the observed 〈 ̄ν〉 eff ∝ R 
−δs 
GV , in the ‘traditional’ 

models we must have | δB ( λ) | 2 ∝ λ1 −δs , while in the patchy model, 

we replace this with the requirement f V ( � S ) ∝ � 
1 −δs 
S . While the 

latter does not (and indeed cannot, mathematically) reduce the 

number of observational requirements on the model, it does a v oid 

all of the mathematical and physical challenges to the ‘traditional’ 

models. Specifically, the intermittent scattering model remo v es the 

requirement that CR scattering theories produce spectra of the form 

| δB ( λ) | 2 ∝ λ1 −δs at sub-100 au scales in the ISM, as re vie wed in 

Hopkins et al. ( 2022b ) and Kempski & Quataert ( 2022 ). 

In Fig. 3 , we show an example of a hypothetical successful 

intermittent scattering model (black shaded region), assuming the 

size of scattering structures scales with the CR gyroradius, � S ∼ r gyro 

and δs ∼ 1/2. In order for a scattering patch with a size scale of O(1) 

gyroradius to reliably scatter CRs (have a ‘scattering optical depth’ of 

order unity) at that rigidity, this hypothetical model requires a mag- 

netic fluctuation amplitude O( | δB ( � S ) | / | B | ) ∼ 1. So, as heuristically 

demonstrated in Fig. 3 , a model that features intermittent structures 

with O( | δB ( � S ) | / | B | ) ∼ 1 on size scales � S ∼ 1–1000 au, with small 

volume-filling factor f V ∼ 10 −6 ( � S / 10 au ) 1 / 2 , would automatically 

give rise to the ‘desired’ (empirically-inferred) CR scattering rates at 

� GeV through � TeV energies. The exact scaling, of course, would 

also depend on the details of how the magnetic field strength scales 

with the size of scattering patches (e.g. Kempski et al. 2023 ; Lemoine 

2023 ). 

We can also reason about the pre v alence of intermittent turbulent 

structures in terms of the shape of the probability distribution func- 

tion (PDF) of magnetic fluctuations. Consider the volumetric PDF 

P V ( δB | � S ) of fluctuations | δB | with a given size scale/wavelength 

� S : to calculate the contribution of different fluctuations with the 

given � S to CR scattering we should integrate over this PDF. If the 

PDF is Gaussian/normal—i.e. completely non-intermittent – then the 

contribution to CR scattering will be dominated by the ‘weak’ ±1 σ

fluctuations in the core of the PDF, giving rise to the usual scattering 

rate ∝ 〈| δB | 2 〉 ∼ | δB | 2 median . But now, as is commonly parametrized 

for intermittent systems, consider a PDF with power-law tails 

in the rare-event (large- δB ) regime, dP V /d ln | δB | ∝ | δB | −αP (i.e. 

d P V /d δB ∝ | δB | −αP −1 ). The critical division between the ‘patchy’ 

and ‘traditional’ behaviours will then occur at αP = 2. If the PDF of 

the magnetic fluctuations that scatter CRs falls more steeply ( αP > 2), 

then the ‘core’ of the PDF dominates CR scattering and the behaviour 

will resemble the traditional model. If the PDF falls more slowly/is 

more shallow ( αP < 2), then the contributions to CR scattering will 

be instead dominated by the largest (non-linear, O(1)) fluctuations 

in the tails – our ‘patchy’ behaviour. 

4.4 Candidate mechanisms for intermittent, small-scale ISM 

structure 

Briefly, we note that both the empirically-observed small-scale 

scattering structures from Section 4.2 and the theoretical category 

of ‘intermittent’ structures from Section 4.3 could be related to 

a variety of distinct microphysical processes in the ISM. Each of 

these is, in a sense, a ‘candidate’ for the patchy scattering structures. 

This includes plasma sheets in MHD turbulence (Dong et al. 2022 ), 

turbulent boundary/mixing layers (Ji, Oh & Masterson 2019 ; Yang 

& Ji 2023 ), magnetic mirrors and traps (Chandran 2000b ; Bustard 

& Zweibel 2021 ; Lazarian & Xu 2021 ; Tharakkal et al. 2023 ), 

plasmoid instabilities (Fielding, Ripperda & Philippov 2023 ), weak 

shocks (Kadomtsev & Petviashvili 1973 ; Makwana & Yan 2020 ; 

Kempski & Quataert 2022 ), regions with strong dust-CR coupling 

(Squire et al. 2021 ; Ji, Squire & Hopkins 2022 ), and regions where 

self-confinement has ‘run away’ (e.g. in ‘staircase-like’ instabilities; 
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Huang & Davis 2022 ; Tsung, Oh & Jiang 2022 ; Quataert, Thompson 

& Jiang 2022b ), to name a few. 

CR scattering by rare (i.e. not volume-filling) regions of large field- 

line curvature, proposed recently by Lemoine ( 2023 ) and Kempski 

et al. ( 2023 ), is a promising microphysical origin of the patchy 

transport model. Small-scale bends of magnetic field lines may be 

a generic intermittent feature of MHD turbulence and exist even on 

scales much smaller than the turbulence injection scale. These bends 

are therefore plausible candidates for the ‘patches’ in our patchy 

transport model. The scattering rates derived in Lemoine ( 2023 ) 

and Kempski et al. ( 2023 ) depend on the volume-filling fractions of 

the large-curvature patches, broadly consistent with the calculations 

presented here. In particular, our result that � mfp ∼ � S / f V is somewhat 

similar to equation (3.1.) in Lemoine ( 2023 ). 

All of these scenarios appear viable in principle, but none has 

reached the level of theoretical development where we can plot 

an unambiguous prediction in Fig. 3 . Ho we ver, our hope is that 

in future studies modelling the structures predicted by such mech- 

anisms, Fig. 3 can pro v e a useful ‘figure of merit’ to test whether 

such mechanisms are (or are not) viable candidates for explaining 

observed CR scattering in the ISM. 

5  OBSERVATIONA L  TESTS  

A key property of the patchy CR scattering models discussed here is 

that they, by definition , produce the same observational constraints 

and phenomenologically derived CR properties (e.g. CR scattering 

rate 〈 ̄ν〉 eff , scattering/deflection mean free path � mfp , CR residence 

time, grammage, etc.) as ‘traditional’ continuous CR scattering 

models. So as long as the CR residence time (observationally inferred 

to be � Myr) is longer than the scattering time ∼ 1 / 〈 ̄ν〉 eff (which 

for the example observationally inferred values quoted in Section 3 

is ∼ 30 yr at ∼ 1 GeV), or equi v alently so long as the total ‘path 

length’ traveled along the trajectory of a given CR is larger than one 

mean-free path (equi v alent to saying that the grammage exceeds 

X > ρISM � mfp ∼ 10 −5 g cm 
−2 R 

−0 . 5 
GV , which is satisfied by several 

orders of magnitude), this ensures all of the predictions for e.g. CR 

spectra, primary-to-secondary or radioactive or isotopic ratios, etc., 

will be identical in a ‘patchy’ model and a ‘continuous/traditional’ 

model with the same 〈 ̄ν〉 eff . This means, for example, that while 

one might naively expect a ‘patchy’ model to produce a larger 

observable CR anisotropy, such a difference would only be present 

in the population at distances � � mfp � 10 pc from the initial CR 

sources, and the CRs will (by definition) converge to isotropic on 

a time-scale ∼ 1 / 〈 ̄ν〉 eff ∼ � mfp / v cr ∼ 30 yr. Since no SNR exists so 

close to Earth, we predict no difference in the anisotropy of local 

CRs. 

More detailed tests of e.g. higher-order statistics and correlations 

will, in general, require a specific model for the origin of the ‘patchy’ 

CR scattering (e.g. different specific physical scenarios discussed in 

Section 4 ). Ho we ver, we can propose some generic predictions that 

may concei v ably be testable with future instruments. 

Consider, for example, a scattering patch of depth � S with internal 

scattering rate νs , and a ‘CR scattering optical depth’ of τ s ∼ � s νs /v cr 

(Section 3.1 ). By definition, this patch can scatter, i.e. temporarily 

confine, CRs below some critical rigidity R s , enhancing their density 

relative to the ambient medium by a factor ∼τ s (just like with 

multiply scattered photons). This would, in principle, enhance the 

γ -ray emission at some energies from the patch. Ho we ver, that 

effect alone would be strictly degenerate with local variations in 

the source density, variations in the volume-filling scattering rate in 

the ‘traditional’ models, and variations in the background nucleon 

number density of the ISM. But since, by definition, CRs with 

rigidities R � R s are not confined by the patch, their relative 

density is not enhanced. Therefore, the patches would exhibit a γ -ray 

spectrum that is more biased to emission from R < R s compared to 

the ambient medium. Not only would such variation exist, but the 

change in spectral shape would also be correlated with the sizes and 

number densities of the scattering structures as we have discussed 

abo v e (because we require a spectrum of patches that scatter CRs of 

different energies with different relative rates). 

The challenge here is that measuring such an effect would 

require orders-of-magnitude superior resolution in γ -ray telescopes 

compared to current state-of-the art instruments like Fermi. Ideally, 

observing this effect would require the ability to resolve the γ -ray 

spectra at ∼0.1–100 GeV energies with spatial resolution ∼� S ∼ au 

(or at least �10 3 au) – i.e. angular resolution in the ISM (for typical 

spatial distances) reaching sub-arcsecond levels, whereas current 

instruments typically achieve few-degree resolution at these energies. 

Alternatively, one could look for a similar effect in radio syn- 

chrotron emission from CR electrons with similar energies, where 

the angular resolution of current instruments is much less limited. 

But even in this case, the desired angular resolution is still a 

challenge, and far beyond the scope of current single-dish surv e ys, 

requiring interferometry with � km baselines. More problematically, 

the synchrotron spectral slope at these energies is also strongly 

influenced by the relative strength of inverse Compton and syn- 

chrotron losses, which would be at least partially degenerate with 

the desired measurement. Still, despite these challenges, there may 

already be hints of the relative/patchy CR enhancement described 

abo v e in existing observations, perhaps related to inferences of an 

excess of low-energy ionizing CRs in GMCs (e.g. Indriolo, Fields 

& McCall 2009 ; Indriolo & McCall 2012 ; Yang, de O ̃ na Wilhelmi 

& Aharonian 2014 ; Indriolo et al. 2015 ; Baghmanyan et al. 2020 ), 

or to the observed ‘point-source-like’ excess of ∼1 GeV (aka ‘soft’ 

according to the arguments abo v e) γ -ray emission from the Galactic 

centre (Hooper & Goodenough 2011 ; Cholis et al. 2015 ; Bartels, 

Krishnamurthy & Weniger 2016 ; Lee et al. 2016 ; Ackermann et al. 

2017 ; Hooper et al. 2017 ). 

Another possible set of tests would be to look for the variations 

caused by discreteness noise in the ‘number of scattering structures’ 

on scales comparable to � mfp around specific CR sources. We caution 

that the point of interest here is not the emission from the acceleration 

region or CR source itself (e.g. not emission from SNRs or PWNe), 

but the secondary emission from the ISM on ∼pc scales around such 

a source. Here one must be careful to estimate out to which radii the 

CR background ‘seen by’ the ISM would be dominated by the local 

source, v ersus the collectiv e Galactic background. Moreo v er, one 

has the same resolution challenges as noted abo v e, since the most 

obvious tests would require resolving inhomogeneity on a spatial 

scale of order ∼� S . 

6  SUMMARY  

In light of the theoretical challenges facing ‘traditional’ CR scat- 

tering theories, which assume low-energy ( ∼ MeV-TeV) CRs are 

scattered by a uniform, volume-filling population of weak mag- 

netic field fluctuations, we propose a no v el cate gory of ‘patchy’ 

CR scattering models, in which CRs are scattered by inhomoge- 

neous/intermittent/punctuated structures with small volume-filling 

factors. We derive a number of constraints any such structures 

must obey (e.g. their sizes, internal CR scattering rates/magnetic 

field fluctuations, number densities, mass and volume-filling factors) 

in order to be both internally self-consistent and to reproduce 
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existing observational constraints. We show that fundamentally, in 

this category of models, we can reproduce the observed dependence 

between CR scattering and rigidity ( 〈 ̄ν〉 eff ∼ R 
−δs 
GV ) by imposing a size 

distribution of scattering structures: larger ‘patches’ (with greater 

optical depth to higher-energy CRs) are rarer but scatter a wider 

range of CR energies, while smaller ‘patches’ are more abundant but 

only scatter lower-energy CRs. 

We consider a variety of observational and physical candidates 

for such structures. We show that many ‘macroscopic’ quasi-static 

ISM structures (e.g. GMCs, SNRs, PNe, stellar magnetospheres, 

HII regions, PWNe) cannot be the dominant scattering regions 

since the mean-free path between them, as seen by CRs, is too 

large. Ho we ver we sho w that small-scale or intermittent structures 

in the ISM, with size scales as small as � au and volume-filling 

factors as small as ∼10 −7 , could plausibly explain the observed 

CR scattering rates from ∼ MeV-TeV energies, while a v oiding any 

obvious theoretical or observational objections. These may even be 

related to other small-scale ISM structures inferred from radio-wave 

scattering observ ations. Ho we ver, as of yet, there is no single obvious 

physical mechanism that is clearly predicted to produce the desired 

scattering rates. We propose a ‘figure of merit’, akin to a ‘Hillas plot’ 

for CR pitch-angle scattering in the ISM, with which to compare any 

such future models. 

We discuss some direct observational tests of this model category, 

though we conclude that, for now, the required resolution remains 

far beyond current capabilities. 
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