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Abstract

The properties of globular clusters (GCs) contain valuable information of their host galaxies and dark-matter halos.
In the remarkable example of ultra-diffuse galaxy, NGC5846-UDG1, the GC population exhibits strong radial
mass segregation, indicative of dynamical-friction-driven orbital decay, which opens the possibility of using
imaging data alone to constrain the dark-matter content of the galaxy. To explore this possibility, we develop a
semianalytical model of GC evolution, which starts from the initial mass, structural, and spatial distributions of the
GC progenitors, and follows the effects of dynamical friction, tidal evolution, and two-body relaxation. Using
Markov Chain Monte Carlo, we forward-model the GCs in a UDG1-like potential to match the observed GC
statistics, and to constrain the profile of the host halo and the origin of the GCs. We find that, with the assumptions
of zero mass segregation when the star clusters were born, UDG1 is relatively dark-matter-poor compared to what
is expected from stellar-to-halo–mass relations, and its halo concentration is lower than the cosmological average,
irrespective of having a cuspy or a cored profile. Its GC population has an initial spatial distribution more extended
than the smooth stellar distribution. We discuss the results in the context of scaling laws of galaxy–halo
connections, and warn against naively using the GC-abundance–halo–mass relation to infer the halo mass of ultra-
diffuse galaxies. Our model is generally applicable to GC-rich dwarf galaxies, and is publicly available.

Unified Astronomy Thesaurus concepts: Galaxy dark matter halos (1880); Globular star clusters (656); Dynamical
friction (422); Dwarf galaxies (416); Low surface brightness galaxies (940)

1. Introduction

Ultra-diffuse galaxies (UDGs) triggered a frenzy of studies
in recent years in the contexts of both understanding the
formation of extreme galaxies and testing cosmology (see, e.g.,
the review by Sales et al. 2020, and the references therein).
Numerical and semianalytical simulations suggest that UDGs
can form via supernovae-driven gas outflows, which transform
their hosting dark-matter (DM) halos from cuspy to cored
together with puffing up their stellar distribution (e.g., Di
Cintio et al. 2017; Chan 2019; Jiang et al. 2019), while some
UDGs can also populate halos of high specific angular
momentum (e.g., Amorisco & Loeb 2016; Rong et al. 2017;
Benavides et al. 2023). The formation of UDGs is also
suggested to be facilitated in dense environments, via tidal
heating (Carleton et al. 2019; Jiang et al. 2019; Liao et al.
2019) and passive stellar-population dimming (Tremmel et al.
2020). Despite all these theoretical efforts, there are still several
aspects of UDGs that remain intriguing. Notably, UDGs on
average have more globular clusters (GCs) than normal
galaxies of similar stellar mass (van Dokkum et al.
2016, 2017; Lim et al. 2018; Forbes et al. 2020). There exists
an empirical relation between GC abundance and DM halo
mass, valid over almost 5 dex of virial mass for normal galaxies
(Spitler & Forbes 2009; Hudson et al. 2014; Harris et al.
2015, 2017; Burkert & Forbes 2020). If this relation holds for

UDGs, then a higher-than-average GC abundance implies that
the host DM halo is overly massive for the stellar mass. In
contrast, some UDGs seem to be DM deficient, based on their
GC or gas kinematics (van Dokkum et al. 2018; Danieli et al.
2019; van Dokkum et al. 2019; Guo et al. 2020), which poses a
challenge to the standard picture where galaxy formation takes
place in DM halos that dominate the mass budget. Hence, to
understand the GC populations of UDGs takes center stage in
understanding UDG formation in a cosmological context.
Notably, the abundance, the spatial distribution, and the
kinematics of GCs all contain information of the DM
distribution of their hosting UDG.
The galaxy NGC5846-UDG1 (UDG1 hereafter) serves as a

remarkable example (Forbes et al. 2019, 2021; Müller et al.
2020; Danieli et al. 2022; Bar et al. 2022). On the one hand, it
hosts a surprisingly large population of GCs (of ∼50 within
two stellar effective radii) for its stellar mass of ∼108Me. This
translates to an overly massive DM halo of ∼1011Me assuming
the Harris et al. (2017) relation (Forbes et al. 2021). On the
other hand, the GC population of UDG1 shows a strong radial
mass segregation (Bar et al. 2022), with more massive GCs
lying closer to the center of the galaxy. The mass segregation
can be most naturally interpreted as a manifestation of orbital
decay caused by dynamical friction (DF), because the strength
of DF scales strongly with the perturber mass. And if DF
causes the mass segregation, the halo mass should be much
lower, because the timescale of orbital decay depends on the
perturber-to-host mass ratio (m/M), such that it is shorter than
the dynamical timescale of the host galaxy only if m/M 1/
100 (e.g., Boylan-Kolchin et al. 2008). That is, for a GC of
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mass m∼ 106Me, the host halo cannot be orders of magnitudes
more massive than the stellar component (∼108Me) in order to
have sufficient orbital decay and mass segregation. Admittedly,
this mass-ratio argument was originally made for satellite
galaxies entering the host at orbital energies comparable to that
of a circular orbit at the virial radius, so the GCs near the host
center and thus with much lower orbital energy in principle
allow for smaller mass ratios (and therefore larger host halo
masses). This, however, requires more detailed modeling that
considers the locations of the GCs at birth and the density
profile of the host. The strikingly different halo–mass estimates
based on the aforementioned two perspectives highlight the
importance of such models.

In this work, we first present a semianalytical model of GC
evolution in a composite host potential consisting of stellar and
DM distributions. While generally applicable to any dwarf
galaxy that exhibits a radial trend of its GC properties, here,
this model is applied to UDG1 as a proof of concept, showing
that the observed mass segregation, together with the other
information of the GCs available in the imaging data, can be
used to constrain the DM halo. As a major improvement over
previous studies, which also attribute the GC mass segregation
to DF (Bar et al. 2022; Modak et al. 2023), a more physical
model of the evolution of star clusters under the influence of
tidal interactions with the host galaxy and the internal two-body
relaxation is considered. Tidal interactions and two-body
relaxation drive mass loss and structural changes of the GCs,
thus affecting the orbital evolution and the spatial distribution
in a subtle but important way, as we will discuss below. When
combined with parameter inference tools, this model enables
using imaging data alone, without costly kinematics observa-
tions, to statistically constrain the DM distribution of the host
galaxy. Additionally, the extreme limit of GC mass segregation
is the complete orbital decay of massive GCs to the galaxy

center, which is a viable way of forming dense nuclear star
clusters (NSCs) as observed in nucleated low-surface-bright-
ness galaxies (Greco et al. 2018; Lim et al. 2018; Sánchez-
Janssen et al. 2019; Iodice et al. 2020; Marleau et al. 2021).
Our method is therefore also potentially useful in this context.
This work is organized as follows. In Section 2, we introduce

our model of GC evolution, and present the workflow of
forward-modeling the GC population and inferring the host
DM profile. For readers who wish to skip the technical details,
Figure 1 presents a schematic flowchart that summarizes all the
components of our framework, and serves as a self-contained
starting place before reading the result sections. In Section 3,
we use the observed GC statistics of UDG1 to constrain the
model parameters, including the DM halo mass and concentra-
tion, as well as the characteristic spatial scale of the initial
distribution of the GCs, which may shed light upon the origin
of the GCs. In Section 4, we compare the model predictions
and kinematics observations, discuss the key distinction
between a cuspy halo profile versus a cored profile regarding
star–cluster statistics, compare our model to simplistic models
that ignore the physics of GC mass and structural evolution,
and also comment on potential future developments of this
methodology. We draw our conclusions in Section 5.
Throughout, we define the virial radius of the hosting DM

halo as the radius within which the average density is Δ= 200
times the critical density for closure, and adopt a flat
cosmology with the present-day matter density Ωm= 0.3,
baryonic density Ωb= 0.0465, dark energy density ΩΛ= 0.7, a
power spectrum normalization σ8= 0.8, a power-law spectral
index of ns= 1, and a Hubble parameter of h= 0.7. We use r,
R, and l to indicate the 3D galactocentric radius, the projected
galactocentric radius, and star–cluster-centric radius, respec-
tively; and denote the mass of a star cluster and that of the host
galaxy by m and M, respectively.

Figure 1. Model workflow. The SatGen (Jiang et al. 2021) semianalytical framework for galaxy evolution provides the backbone of this model. The star–cluster-
specific prescriptions are summarized here and detailed in Section 2.
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2. Methodology

In this section, we first introduce a dynamical model that
describes the evolution of GCs in a composite host potential
consisting of DM and stars. This model considers the orbital
evolution of GCs under the influence of DF, allowing for the
dependence of the strength of DF on the local density profile of
the host potential following the recipe of Petts et al. (2015).
The GCs evolve in mass and structure in response to the
internal two-body relaxation and the varying tidal effects along
the orbits. We then lay out the model assumptions, including
the initial star–cluster mass function, the initial structure of
young star clusters, the initial spatial distribution of the star
clusters, and the assumptions about the host potential. With
these assumptions, the model self-consistently evolves a
population of GCs, predicting their evolved masses, sizes,
and spatial distribution, which are then compared to those of
the observed GC population. Finally, we combine the model
with a Markov Chain Monte Carlo (MCMC) inference tool, to
derive constraints on the DM halo of the target galaxy. The
workflow of our model is summarized in Figure 1. Our model
is publicly available.6

2.1. Orbit Evolution

To follow the orbit of a GC, we solve the equation of
motion,

ar , 1DF= -F +̈ ( )

where r is the position vector, Φ is the gravitational potential,

and aDF is the acceleration due to DF, given by Chandrasekhar

(1943)

a r
V

G m F V
V

4 ln . 2
i

i i i
i

i

DF
2

3åp r= - L <( ) ( ) ( )

Here, the summation is over different components of the host
potential (i=DM, stars), m is the mass of the GC, ln iL is the
Coulomb logarithm, Vi is the relative velocity of the GC with
respect to component i, and F(<Vi) is the fraction of particles that
contribute to DF, which, under the assumption of a Maxwellian

distribution, is given by F V X X eerf 2i i i
Xi

2

p< = - -( ) ( ) ( ) ,

where X V 2i i is= ( ), with σi as the 1D velocity dispersion of
component i at position r.

In the idealized Chandrasekhar picture of DF, the perturber
travels across an infinite homogeneous isotropic medium, and
Λ is defined as b bmax min, with bmax and bmin as the maximum
and minimum impact parameters, respectively. For the
perturbers orbiting a galaxy, which is not a uniform medium,
the Chandrasekhar DF treatment is used as an approximation,
where bmax is of the order of the characteristic size of the host
system, and bmin is the larger of the impact parameter for a 90°
deflection and the size of the perturber (Binney & Tre-
maine 2008). In semianalytical models of satellite–galaxy
evolution, it is a common practice to simply assume

M mln lnL ~ ( ), where M/m is the mass ratio of the host
and the satellite, as the virial radius of a gravitationally bound
structure scales with the virial mass (see, e.g., Gan et al. 2010,
and the references therein). Even constant Coulomb logarithms
of ln 3L ~ are widely adopted, as major and minor mergers
(M/m 10) contribute to the bulk of the surviving satellite
galaxies. Hence, for the purpose of studying satellite galaxies,

where typically the focus is not on the orbital evolution of
individual perturbers but on the overall satellite statistics, the
simplistic forms of Coulomb logarithm such as

M mln lnL ~ ( ) and ∼3 are reasonable (Green et al. 2021).
However, for our purpose, here, i.e., to use the GC mass
segregation to constrain the dynamical mass distribution, the
details of individual orbits are important, and thus, the
simplistic Coulomb logarithms for satellite galaxies may be
problematic. For example, M mln lnL ~ ( ) would be very high
for GCs, and the orbital decay would be unrealistically strong.
Hence, following the more detailed treatment of Petts et al.

(2015), we choose bmax to be

b r
r

r
rmin , 3max

⎧⎨⎩
⎫⎬⎭g

=( )
( )

( )

where r rdln dlng rº -( ) is the local logarithmic density

slope of the host potential, and choose bmin as

b l
Gm

V
max , , 4min 1 2 2

= { } ( )

where l1/2 is the half-mass–radius of the GC.7 As such, bmax is

a length scale over which the density is approximately constant

(Just et al. 2011). To deal with the cases of b bmax min~ , which

can happen when a GC approaches the center of the host, we

use the original Chandrasekhar result for the Coulomb

logarithm 0.5 ln 12L +( ) in place of the lnL in Equation (2).

These choices empirically account for the core-stalling effect

(Goerdt et al. 2006; Read et al. 2006; Inoue 2009; Kaur &

Sridhar 2018), the phenomenon that the DF acceleration

decreases, and the orbital decay stalls when the perturber

approaches a flat density core—because in the density core, γ

(r)∼ 0, b b rmax min~ ~ and ln 1 02L + ~( ) .
Figure 2 compares the orbital evolution for different

prescriptions of the Coulomb logarithm as well as for different
GC mass evolution models, in a Navarro–Frenk–White (NFW)

host halo and in a Burkert halo, respectively. Focusing on the
comparison of the blue and black lines in either host profile, we
can see that the simplistic Coulomb logarithm of M mln( )

yields significantly stronger orbital decay than the more
accurate Petts et al. (2015) treatment, which has been well
calibrated against numerical simulations.
We also note that, in two previous studies that are highly

relevant, Bar et al. (2022), Modak et al. (2023), the Coulomb
logarithms were chosen to be simplified variants of what we
use here. The key difference is that their models do not follow
the size evolution of the GCs, so their bmin are effectively
∼Gm/V2, which is usually a factor of a few smaller than l1/2,
making the Coulomb logarithm larger and DF stronger than the
full treatment, in the NFW case as illustrated in the upper panel
of Figure 2. In the Burkert case, Bar et al. (2022) model core
stalling by setting Coulomb logarithm as zero when GCs get
within 0.3 times the half-mass–radius of the galaxy. We will
elaborate on the comparisons of our model with these models
in Section 4.4.

6
https://github.com/JiangFangzhou/GCevo

7
In practice, we do not distinguish the half-mass–radius from the effective

radius (i.e., 2D half-light radius), which is provided by the observational data
for the GCs in UDG1 and the size–mass relation of young star clusters (Brown
& Gnedin 2021, as will be discussed in Section 2.3).
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2.2. A Unified Model of Mass–Size Evolution

GCs are compact objects that are more resilient to the
environmental processes than more diffuse substructures of a
galaxy such as DM substructures and gas clouds. This is
largely why, in several previous studies of GC mass
segregation, the mass evolution of the GCs was treated
simplistically, and the structural evolution of the GCs was
completely ignored (Dutta Chowdhury et al. 2019; Bar et al.
2022; Modak et al. 2023). However, when dealing with the
long-term evolution over the age of the clusters (∼10 Gyr), the
tidal interactions between the GCs and the host galaxy,
especially near the center of the host, can result in nontrivial
mass and structural change. In the meantime, GCs are
internally collisional, and thus lose mass and expand due to
the evaporation of stars. This is relevant even in low-density
environments. The combination of the external tidal effects and

the internal two-body relaxation may result in nonlinear mass
loss and structural change, which, in turn, affects the orbital
evolution, since the DF acceleration depends on the mass and
structure of the perturber, as discussed in Section 2.1.
Additionally, the imaging data of the GCs in nearby low-
surface-brightness galaxies can be high-resolution enough to
provide information about the internal structure of the GCs
(van Dokkum et al. 2018). This potentially also contains
valuable information of the dynamics besides the mere mass
and spatial distribution. For all these reasons, we model the
mass–size evolution of the GCs.
Our model of GC mass–size evolution adopts a similar

formalism as that of Gieles & Renaud (2016, hereafter GR16)
but is different in two important aspects. First, GR16 focused
on the evolution of newly born star clusters younger than
100Myr in the vicinity of their birth places, and therefore, the
dominant tidal effect is the repeated impulsive encounters with
giant molecular clouds in the clumpy interstellar medium
surrounding the clusters. Here, we trace the long-term
evolution of star clusters over cosmological timescales, and
therefore, we focus more on the tidal interactions with the
background potential. Second, because of the short-term
nature, the GR16 model assumes that two-body relaxation
causes no mass loss, whereas, here, we cannot ignore the mass
loss from two-body relaxation over the age of the GCs. We
assume that star clusters follow the (Elson et al. 1987, hereafter
EFF) density profile with an outer density slope of −4, and the
shape is fixed across evolution such that the density-profile
evolution is manifested only by the mass and size evolution
laid out below.
We start by differentiating the binding energy E µ -

Gm5 3
1 2
1 3r of a GC, and express the derivative in terms of

the mass, m, and the average density within the half-mass–
radius, ρ1/2:

dE

E

dm

m

d5

3

1

3
. 5

1 2

1 2

r

r
= + ( )

Both tidal interactions and two-body relaxation contribute to
the energy increase dE and the mass-loss dm, so we distinguish
their contributions by denoting dE and dm in two terms with
subscripts “t” and “r,” respectively,

dE dE

E

dm dm

m

d5

3

1

3
. 6

t r t r 1 2

1 2

r

r
+

=
+

+ ( )

Following GR16, we introduce a parameter ft to relate the
mass loss to the tidal heating from the interactions with the host
potential:

dm

m
f
dE

E
. 7

t
t

t= ( )

Similarly, we define an fr parameter that relates mass loss to
the internal heating due to two-body relaxation:

dm

m
f
dE

E
. 8

r
r

r= ( )

The values of ft and fr can be estimated following analytical
arguments or empirical numerical results, as will be elaborated
shortly. It is easier to model the mass losses than to model the
energy changes, so we proceed by eliminating the energy terms
in Equation (6) using the definitions of ft and fr.

Figure 2. Illustration of the effects of different prescriptions of the Coulomb
logarithm in the Chandrasekhar DF formula on the orbit evolution of a star
cluster in a cuspy NFW host (upper) and in a cored Burkert host (lower),
respectively. The parameters of the host halos and star clusters are chosen to
better reveal the differences between different models, as indicated. The GCs
are released at t = 0 on almost circular orbits. The black line stands for the
result using our fiducial model of GC evolution (Section 2.2) and the Petts et al.
(2015) Coulomb logarithm (Section 2.1). The other lines represent the results
from varying certain aspect, using, e.g., the same fiducial Λ but with no mass
loss (red), the same Λ but with no mass loss and with the GC size boosted by
5x (green), the fiducial evolution model but with a Λ widely assumed for
satellite–galaxy evolution (blue). Note that, first, the GC mass–size evolution
affects orbital evolution via the DF treatment; second, the Petts et al. (2015)
Coulomb logarithm gives much weaker orbital decay than the simplistic

M mln ln ;L = third, the Bar et al. (2022) and Modak et al. (2023) recipes,
which are simplified versions of Petts et al. (2015) that ignore the GC size in
bmin, result in stronger DF than the full treatment.
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The mass loss from tidal stripping is computed as

dm

m

dt
, 9

t
t

dyn

ax
t

= - ( )

where ξt≡ [m−m(lt)]/m is the fraction of mass outside the

tidal radius, with m(lt) as the mass within the instantaneous

tidal radius, lt; τdyn is the dynamical time of the host potential at

the GC’s instantaneous location, given by

G r

3

16
, 10dynt

p
r

=
¯ ( )

( )

with rr̄ ( ) as the average density of the host system within
radius r; and α≈ 0.55 is an empirical coefficient, calibrated
with N-body simulations (Green et al. 2021). The tidal radius is
given by King (1962)

l r
m l M r

d M d r V V r2 ln ln
, 11t

t

t
2

circ
2

1 3⎡
⎣⎢

⎤
⎦⎥

=
- +

( ) ( )

( )
( )

where M(r) is the host mass within radius r, VV rt = ´∣ ˆ ∣ is the

instantaneous tangential velocity, and Vcirc(r) is the circular

velocity.
Similarly, the evaporation caused by two-body relaxation

can be expressed as

dm

m

dt
, 12

r
e

r

x
t

= - ( )

where ξe≡ [m−m(< vesc)]/m is the fraction of stars in the tail

of the velocity distribution that is larger than the escape

velocity, which, for an isolated relaxed GC and thus a

Maxwellian velocity distribution, is a constant ξe≈ 0.0074; and

τr is a relaxation timescale, given by Spitzer (1987), GR16

m

M M
0.142 Gyr

10 10 kpc
. 13r 4

1 2

11 3

1 2

⎜ ⎟⎜ ⎟⎛
⎝

⎞
⎠
⎛
⎝

⎞
⎠

t
r

»
-

-

( )
 

This is the timescale of refilling the high-speed tail of the
velocity distribution.

Combining Equations (6)–(12), we obtain a unified model
for GC structural evolution

d

f f
dt5

3
5

3
. 14

1 2

1 2 t

t

dyn r

e

r

⎜ ⎟ ⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥

r

r
a

x
t

x
t

= - + - ( )

The parameters on the right-hand side of Equation (14) all
have analytical estimates or empirical values based on
numerical simulations.

GR16 adopted ft= 3, and fr= 0 for the short-term evolution
of young star clusters in clumpy interstellar medium; here, we
estimate ft and fr in the context of the long-term evolution of
GCs in a gasless host. To estimate ft, we consider the limit of
negligible two-body relaxation, where the GC evolution can be
approximated by the tidal evolution of self-gravitating
collisionless systems, which has been extensively studied in
the context of DM subhalos (e.g., Peñarrubia et al. 2010;
Benson & Du 2022). Notably, Peñarrubia et al. (2010)
calibrated the tidal evolutionary tracks for DM subhalos using
N-body simulations in terms of the maximum-circular velocity
vmax and the corresponding radius lmax as functions of the
bound mass fraction x=m(t)/m(0), and the inner logarithmic
density slope s d d lln ln l 0r= - ∣ . Turning off two-body
relaxation by setting the second term of Equation (14) to zero,

i.e.,

d

f

dt
5

3
, 15

1 2

1 2 t
t

dyn

⎜ ⎟⎛
⎝

⎞
⎠

r

r
a x

t
= - ( )

we can therefore find ft by matching the structural evolution
according to Equation (15) in terms of vmax and lmax to the tidal
track of Penarrubia et al. (2010) for the case of s= 0, since
young star clusters are generally well described by the
EFF profile and have flat density cores (see Section 2.3). We
find that ft is of the order of unity and mildly decreases with the
bound mass fraction:

f x x m m0.77 , 0 . 16t
0.19= = ( ) ( )

To estimate fr, we follow Gieles et al. (2011) and the seminal
work of Hénon (1965) to express the energy change of an
isolated GC due to two-body relaxation as

dE

E

dt
, 17

r

r

z
t

= - ( )

where ζ≈ 0.0926, assuming equal stellar masses of 0.5Me and

a Coulomb logarithm of 10 within the star cluster.8 Comparing

Equations (8), (12), and (17), we obtain

f 0.08. 18r ex z= » ( )

In summary, for each timestep along the orbit, we evolve the
mass of a GC using Equations (9) and (12), and update the
structure of the GC using Equation (14), with the parameters
α= 0.55, fr= 0.08, and ft given by Equation (16). The initial
mass and structure of a GC is chosen according to the
assumptions that will be given in Section 2.3.
Figure 3 illustrates the behavior of GCs in the size–mass

plane over 10 Gyr according to this model. The GCs are
initialized with masses uniformly distributed in logarithmic
mass and with sizes according to the median observed size–
mass relation of young star clusters (Brown & Gnedin 2021, as
will be discussed in Section 2.3). Clearly, the evolution
depends on the initial mass. For the most massive GCs

Figure 3. Illustration of the mass–size evolution of star clusters over 10 Gyr
according to the model presented in Section 2.2. The star clusters are initialized
with masses uniform in mlog , sizes following the observed size–mass relation
of young star clusters (Brown & Gnedin 2021, blue dashed line), and circular
orbits of r = 5 kpc in a host potential consisting of an NFW halo with
Mh = 1012Me, and c = 10 and a UDG1-like stellar profile. The evolution is
mass-dependent, with massive clusters almost intact and low-mass clusters
expanding first and then quickly getting tidally truncated and disrupted.

8
For any realistic stellar-mass spectrum, the ζ parameter is larger, up to ∼0.5

as discussed in GR16.
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(m 106Me), the size and mass barely evolve. For inter-
mediately massive GCs (m≈ 105−6Me), the main effect is
expansion due to two-body relaxation, while the mass
evolution is marginal. Basically, within 10 Gyr, the expansion
barely makes their mass distribution extend to the tidal radius,
so there is almost no tidal truncation. For lower-mass clusters
(m 104.5Me), tidal truncation quickly takes effect as they
expand, so they start to lose mass quickly and even dissolve.
These mass-dependent behaviors work together to shape the
evolved GC mass function in qualitatively the correct direction
to that observed, peaking at m∼ 105Me. The evolved GC mass
distribution would be insensitive to the low-mass end of the
initial cluster mass function (ICMF). With low-mass GCs
stripped and dissolved, intermediate-mass GCs experiencing
weak DF, and massive GCs largely intact and thus always
experiencing the strongest DF, mass segregation would
naturally arise.

2.3. Model Assumptions and GC Initialization

We emphasize that the scenario that this study focuses on is
that the observed GC mass-segregation signal is driven by DF
and that the strength of it can be used to constrain the DM
distribution of the host galaxy. Hence, the assumptions are
chosen to keep the setup simple and to serve the purpose of
testing the constraining power of GC mass segregation on DM
halo properties. We assume that the ICMF follows a power law
with exponential truncations at both the high-mass and low-
mass ends (Trujillo-Gomez et al. 2019):

N

m
m

m

m

m

m

d

d
exp exp , 19

min

max

⎜ ⎟⎛⎝ ⎞⎠
⎛
⎝

⎞
⎠µ - -b ( )

where β=− 2 reflects hierarchical molecular cloud formation,

and mmin and mmax are the lower and upper characteristic

scales. We keep m M10min
5.5= , and m M10max

8=  fixed for

simplicity, after having verified that the results are not sensitive

to the detailed values as long as they allow for the existence of

GCs covering the mass range of ∼104.5–106Me.
9 This is partly

due to the mass-dependent evolution as shown in Figure 3, that

the low-mass clusters will dissolve in the end.
We describe the density profile of a star cluster by an

EFF functional form,

l
l a1

, 200

2 2
r

r
=

+ h
( )

( )
( )

where ρ0= Γ(η)m/[π3/2Γ(η− 1)a3] is the central density, with

Γ(x) as the gamma function, m as the mass of the cluster, −2η

as the outer logarithmic density slope, and a as a scale radius

linked to the half-mass–radius by

a l 2 1 . 211 2
1 22

2 3= -h-( ) ( )

We adopt η= 2 such that the outer density slope is −4,
motivated by observations of the light profile of young star
clusters (Ryon et al. 2015), and assume that the slope is fixed
across the evolution such that the density-profile evolution is
manifested only by the mass and size evolution as in

Section 2.2. More analytical properties of the EFF profile are
presented in Appendix B.
With the initial mass drawn from the ICMF, we determine

the initial size by sampling from a log-normal distribution
based on the observed size–mass relation for young star
clusters in the Legacy Extragalactic UV Survey (Brown &
Gnedin 2021): the median half-mass–radius is given by

l
m

M
2.55 kpc
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, 221 2 4

0.24

⎜ ⎟⎛
⎝

⎞
⎠

= ( )


and the 1σ scatter at fixed mass is approximately 0.25 dex.
We assume that the GC progenitors were all born 10 Gyr ago

(Müller et al. 2020; Bar et al. 2022) and that they were
isotropically distributed following a Hernquist (1990) profile,
r r r r1 0

3r µ +( ) [ ( ) ], with no mass segregation at birth. We
briefly explore the possibility of an initial mass segregation in
Appendix D. The initial spatial scale, r0, of the GC-progenitor
spatial distribution is a free parameter to be constrained. We
note that the GC–GC merger rate is only ∼0.03 Gyr−1 per GC
assuming ∼100 GCs in a dwarf halo of 1010Me, using the
merger criterion in Dutta Chowdhury et al. (2020). We have
also numerically verified, using the GC-merger prescription of
Modak et al. (2023), that, for such a dwarf halo, GC mergers
almost all occur at r 0.1 kpc. Hence, to facilitate the MCMC
inference, we practically ignore GC–GC encounters and
mergers when focusing on the radial mass-segregation signal
at r> 0.1 kpc. For the GCs that have lost most of their orbital
angular momenta and settle to r< 0.1 kpc before getting
dissolved, we treat them as merging to form an NSC (see
Section 4.2).
We treat the host system as a combination of a smooth

stellar-mass distribution and a DM halo, both of which remain
static during the GC evolution. For the stellar profile, to
facilitate orbit integration, we fit a density profile with simple
analytical expressions of the gravitational potential to the
observed stellar density profile (Bar et al. 2022), given by

r
x x1 1

23
0,

3
r

r
=

+ +
( )

( )( )
( )



where x= r/rs, and M r27 4 9 2 30, s
3r p p= +[ ( ) ]  , with

M
å
= 108.3Me, and rs= 2 kpc (see Appendix A.3 for more

details). For the DM halo, we consider representative

functional forms for cuspy and cored profiles, respecitvely—

namely, the NFW (Navarro et al. 1997) profile,

r
x x1

, 240

2
r

r
=

+
( )

( )
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where x= cr/rvir, and ρ0= c3Δρcrit/[3f (c)], with f x =( )

x x xln 1 1 ;+ - +( ) ( ) and the Burkert (1995) profile,

r
x x1 1

, 250

2
r

r
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+ +
( )

( )( )
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where x= cr/rvir, and M r g c c20 h vir
3 3r p= [ ( ) ], with g x =( )

x x x0.5 ln 1 ln 1 arctan2+ + + -( ) ( ) . It is not obvious

whether a core or a cusp is more advantageous for producing

the GC mass segregation: for a cored profile, GCs would pile

up where the density slope turns flat due to the core-stalling

effect, so that the massive GCs that sink to the core radius and

the lower-mass GCs that were initially at the core radius are

mixed; for a cuspy profile, DF could be so strong that massive

GCs sink completely to the center, but leaving the outer GCs

9
We emphasize that mmin should not be regarded as the minimum initial

mass: because of the functional form of Equation (19) and the power-law slope
of β = − 2, with m M10min

5.5= , the minimum initial star–cluster mass can
reach ∼104Me. Similarly, mmax is not the maximum GC mass.
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not very different in mass. It is therefore interesting to explore

which case produces mass segregation more easily and what

other differences they may cause.
We initialize the velocities of the star clusters by sampling

the velocity distribution function V r( ∣ ) of a statistically
steady-state system in absence of DF. Specifically, the ergodic
energy distribution function is calculated from the Eddington’s
inversion method (Binney & Tremaine 2008),

f
d

d

d d
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8

1
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where Ψ(r)=−Φ(r), with Φ and ρ as the gravitational

potential and density profile of the DM halo. Then, the

conditional distribution of velocities at each radius r is given by

V r V
f r V

r
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2
. 272

2

p
r

=
Y -

( ∣ )
( ( ) )

( )
( )

We draw the speeds from V r( ∣ ) and assign the directions of
the velocity vectors such that they are isotropic in space (e.g.,
as detailed in Jiang et al. 2021).

2.4. Parameter Inference

We use the affine invariant MCMC ensemble sampler,
emcee (Foreman-mackey et al. 2013), to constrain the
properties of the host DM halo (i.e., the halo mass Mh and
the halo concentration parameter c) and the initial scale length
of the GC distribution r0. The observational data that provide
the constraints involves the present-day masses of the GCs (m),
the half-mass radii (l1/2), and the projected distances to the
galaxy center (R), from Danieli et al. (2022).10 With the
primary focus being the radial segregation in mass, we adopt
three logarithmic mass bins (as indicated in Figure 5), and use
the median quantities mlog iá ñ , 〈l1/2〉i, and Rlog iá ñ for
constructing the likelihood. We parameterize the radial mass
segregation using two sets of quantities: the slopes

m m R Rlog log log logij j i j ig º á ñ - á ñ á ñ - á ñ( ) ( ), and the

number of GCs at each bin relative to the total number of the
surviving GCs, fi. These two quantities measure the steepness
of the radial mass segregation and sample the evolved GC mass
function, respectively. Overall, we consider a logarithmic
likelihood given by

p w
y y

y
ln

1

2
, 28

k

k
k k

k

,data ,model
2

,data
2å= -
-

( )
( )

( )

where yk,data and yk,model refer to the observed values and model

predictions, respectively, and yk represents one of the following

quantities, mlog iá ñ{ }, Rlog iá ñ{ } {〈l1/2〉i}, ij j igá ñ >{ } , and {fi},

with i, j= 1, 2, 3 the mass-bin indices, and wk as the weight for

the kth quantity. We adopt uniform weighting (wk= 1), which

essentially gives the mass-segregation signal an emphasis

because there are three γij slopes that measure it. We adopt

uniform priors for Mlog h, clog , and the initial spatial scale r0,

within ranges that are chosen according to the galaxy of interest

(see Section 3 for example).
To speed up the MCMC inference, instead of evolving the

GC populations on the fly for each iteration, we precompute the
model predictions yk,model on a mesh grid spanned by the
parameters of interest. During the MCMC random walk,
yk,model is evaluated by linear interpolation. Examples of the
precomputed models can be seen in Appendix C. Note that we
opt for not including the total number of GCs as a quantity of
interest in our model. This allows us to focus more efficiently
on the correlations and on the moments of the observables.
Hence, when precomputing the models, we adopt arbitrarily
large initial number of GCs to ensure smooth interpolations.
Note that ignoring GC mergers is inevitable in this approach,
since the merger rate depends on the total number. With that
said, when presenting the model realizations corresponding to
the posterior models, we adopt an initial GC number that leads
to a surviving GC abundance comparable to what is observed.

3. The Dark-matter Halo of NGC5846-UDG1

As a proof of concept, we apply the aforementioned
method to study the halo of UDG1 and its GC population.
We assume uniform priors of M Mlog 8, 10.5h Î( ) [ ] ,

clog log 2, log 30Î [ ], and r0 ä [1, 5] kpc, and choose

M M10min
5.5= , and M M10max

8=  for the ICMF, and
evolve GCs for 10 Gyr, after verifying that the results are
not sensitive to slight variations of these values. We use 64
random walkers, and show results of 20,000 iterations after
1000 burn-in timesteps. Below, we first present the posterior
distributions of the parameters, then compare model realiza-
tions with the best-fit parameters with the data, for the two
halo–profile scenarios respectively, and finally discuss the
results in the context of scaling relations of galaxy–halo
connection.

3.1. NFW Halo

Figure 4 shows the posterior distributions for NFW host
halos. The mode values (in the 3D parameter space) are
Mh= 109.1Me, c= 4, and r0= 3.1 kpc, as indicated by the red
stars. The median values, together with the 16th and 84th
percentiles, are M Mlog 8.9h 0.5

0.7= -
+( ) , c 6.0 3.1

8.4= -
+ , and

r 3.20 1.4
1.2= -
+ kpc, as indicated by the red lines. Figure 5 shows

a model realization with the mode parameters, with 300 star
clusters intially.
First, focusing on the R–m plane of Figure 5, there is a clear

trend of mass segregation in the model realization, very similar
to that observed. The parameter space that can give rise to such
a prominent mass segregation is actually rather limited: a halo
significantly more massive than 109.5Me can hardly reproduce
the slope and the small distances of the most massive GCs,
irrespective of how c or r0 is varied (see, e.g., Appendix C).
Second, the evolved GC size distribution and the size–mass

relation are reproduced fairly well: note that the initial GC size
distribution is quite broad, but the evolution shrinks the size
distribution to better match that observed. Related, the evolved
GC size–mass relation is almost flat, as observed, while the
initial one has a slope of 0.24. These two trends are largely
because the low-mass GCs expand due to two-body relaxation
and tidal interactions while the massive ones are almost intact,
as discussed in Figure 3.

10
Note that the half-mass radii and masses were not published in their original

work. We have used the full width at half-maximum (FWHM) sizes to estimate
the half-mass radii, as l1/2 = FWHM/2. We obtain the GC masses using
m = γLV, where γ is the mass-to-light ratio, set to be 1.6 (Müller et al. 2020),
and LV is V-band luminosity. We only include the GC candidates withMV < 25
mag, which gives us a sample of 34 GCs.
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Third, the GC mass distribution evolves from an initial broad
one toward a narrower distribution in better agreement with
what is observed. This is partly because of the depletion of the
lowest-mass clusters (m 104.5Me), but also partly because
some of the most massive clusters (m 106Me) have sunk to
the center of the system to contribute to the formation of an
NSC and thus are not taken into account here. We will discuss
this further in Section 4.

As can be seen from the posteriors in Figure 4, there is an
anticorrelation between halo concentration c and halo mass Mh.
This degeneracy is driven by the mass segregation, which can
only be achieved with an appropriate amount of DF— overly
strong DF would result in orbital decay that is too fast, such
that all the massive GCs sink to the center, forming a stellar
nucleus instead of a continuous radial mass gradient; overly
weak DF would have no effect. Ignoring the Coulomb
logarithm, the strength of DF at a radius r can be estimated
with the quantity rρ(r)/M(r), as can be seen from Equation (2),
where the DF acceleration aDF scales linearly with the local
density ρ(r) and inversely with the velocity squared,
V2

∼GM(r)/r. For NFW profiles, it is easy to show that this
quantity increases with increasing halo mass or concentration,
for the radius range of interest (r 5 kpc). This is not the case
for a Burkert profile, as will be discussed shortly in Section 3.2.

At the posterior median value, the halo mass of Mh∼ 109Me

corresponds to aM
å
/Mh ratio of ∼0.1, much higher than that of

normal galaxies. Also, interestingly, the concentration is much
lower than the cosmological average values. The expected halo
concentration is ∼25 (Dutton & Macciò 2014) for a halo mass
of Mh∼ 109Me, ∼3σ higher than the posterior median. We
discuss the implications of these findings in Section 3.3.

The initial star–cluster distribution, with a scale distance of
r0∼ 3 kpc, is more extended than the present-day smooth
stellar distribution of UDG1, which has an effective radius of

2 kpc. This may provide clues for understanding star cluster

formation. One scenario is that the star clusters may have

formed ex situ and been brought in by satellite galaxies, which

have since then been disrupted in UDG1 and released their star

clusters. The other scenario, perhaps a more natural one given

the similar colors of the GCs (Danieli et al. 2022), is that the

clusters may have formed in situ but in an extended

configuration or with high velocity dispersion, e.g., during

collisions of high-redshift gas clouds that belong to different

satellite galaxies (Silk 2017; van Dokkum et al. 2022).

3.2. Burkert Halo

Figure 6 shows the posterior distributions with Burkert

halos. The results are overall similar to those with an NFW

halo, but with subtle, interesting differences. The mode values

are Mh= 109.0Me, c= 25 (c
−2= 16),11 and r0= 5.0 kpc, and

the medians with the 16th and 84th percentiles are
M Mlog 9.8h 1.0

0.4= -
+( ) , c 22 9

5= -
+ (c 142 6

4=- -
+ ), and r0 =

3.4 1.4
1.1

-
+ kpc. The mode halo mass is similar to that of the

NFW case, both of which leave the galaxy in the relatively
DM-poor territory with respect to the stellar-mass–halo-mass
relations (e.g., Behroozi et al. 2013). The concentration is
significantly higher, within 1σ of cosmological concentration–
mass relations (e.g., Dutton & Macciò 2014), but is still on the
lower side for its halo mass. The median halo mass is higher,
making the galaxy less extreme in terms of the stellar-to-halo–
mass ratio.
For the Burkert halo, the degeneracy between concentration

and halo mass is weaker. Again, this can be understood using

the proxy of DF strength, r V rcirc
2r ( ) ( ) —while, in the NFW

case, increasing both c and Mh can increase this quantity for the

radius range of interest (r 5 kpc); it is no longer the case with

a Burkert profile. Instead, the ρ(r) changes when varying c

almost exactly cancels that in Vcirc
2 . This is also why the

constraining power on halo concentration is rather weak. For

the initial scale distance r0, we also obtain a median value that

is larger than the effective radius of UDG1, so the same

formation scenarios could be hypothesized.
Similarly, we generate a model realization of 300 GCs with

the mode parameters of the Burkert halo, and as shown in

Figure 7, it also reproduces most aspects of the data. Hence,

either a cuspy halo or a cored halo can more or less reproduce

the observed GC statistics. There is a weak but noticeable

difference, that more GCs can reach smaller distances in a

Burkert host: in the R–m plane, very few model GCs with

m∼ 105Me populate the region of R 1 kpc in the NFW host,

but, here, there is a more significant low-R tail. The same trend

was actually also seen in Bar et al. (2022), which adopted a

simpler model and ignored the details of GC evolution. The

most obvious difference that the different profile shapes can

cause is actually the fraction of GCs that reach the center of the

host galaxy and form an NSC. We will discuss this further in

Section 4.

Figure 4. Posterior distributions of the model parameters (halo mass Mh, halo
concentration c, and the scale radius r0 for the initial star–cluster distribution),
assuming an NFW host halo. The red lines indicate the median and the 16th
and 84th percentiles. The red stars indicate the 2D projections of the 3D mode
value.

11
Halo concentration usually refers to c

−2 = rvir/r−2, with r
−2 the radius at

which the logarithmic density slope is −2. The NFW scale radius rs is the same
as r

−2, but the Burkert scale radius rs( = rvir/c) is r
−2/1.52, so the Burkert

concentration c quoted here is 1.52 times the c
−2 as commonly reported in

cosmological concentration–mass–redshift relations.
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3.3. Comparison with Scaling Relations

With the aforementioned halo–profile constraints, UDG1 is
an outlier in several scaling relations of galaxy–halo connection
and halo structure. First, for more massive galaxies, the
abundance of GCs, NGC, is an excellent indicator of the host
virial mass (Harris et al. 2017): a simple linear relation,
Mvir= 5× 109Me×NGC, fits the observational median for
almost 5 decades in halo mass from Mvir∼ 1010Me to 1015Me.
The scatter of this relation increases toward the lower-mass
end, MNlog vir

1 2
GC

s µ - , and is approximately 0.31 dex at
Mvir= 1011Me (Burkert & Forbes 2020). This relation has
been widely used as a halo–mass estimator (e.g., Forbes et al.
2021) and was the basis of the hypothesis that some of the most
GC-abundant UDGs are failed L

*

galaxies (e.g., van Dokkum
et al. 2016). If we assume for simplicity that the scatter in virial
mass at a fixed GC abundance is the same as that in the GC
abundance at fixed mass, i.e., 0.31Mlog vir

s = , at NGC= 20 and

NMlog GC
1 2

vir
s µ - , then a galaxy with 50 GCs is expected to have
a virial mass of Mvir= 1010.7±0.2Me. Hence, according to our
halo–mass estimates, UDG1, with a virial mass of approxi-
mately Mvir∼ 108.6−10.2Me, is a dramatic outlier to this
empirical NGC–Mvir relation (as extrapolated to the lower-mass
range) by several σ. We illustrate this in the upper panel of
Figure 8. Here, the gray band actually represents the full width
of the distribution of the observational sample compiled by
Burkert & Forbes (2020)—despite the increase of the scatter at
the low-mass end, UDG1 is still an outlier.

However, the NGC–Mvir relation is based on massive
galaxies, so the extrapolation to the low-mass end

(Mvir 1010Me) is ungrounded, and the scatter of the relation
may contain systematics with morphology. In fact, as Burkert
& Forbes (2020) already noticed, in their effort of explaining
this relation with halo merger trees, the relation must flatten at
Mvir 1010Me or NGC 100, which is exactly the regime of

Figure 5. Model realization with an NFW host halo and the mode parameters (Mh = 109.10Me, c = 4.08, and r0 = 3.14 kpc) compared to the data. The diagonal
panels show the (individually normalized) one-point functions of star–cluster mass m, size l1/2, and galactocentric distance R. The red circles stand for the median
model predictions in the three mass bins (whose boundaries are indicated by the vertical dashed green lines), while the gray circles are those from observation. The
error bars indicate the 16th and 84th percentiles. The numbers i shown in the center of the circles in the R − l1/2 plane mean that this point is for the ith mass bin.

Figure 6. The same as Figure 4, but assuming a Burkert host halo.
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GC-rich UDGs. This flattening is supported by the observa-
tional sample of dwarf galaxies whose virial masses are
individually constrained with gas kinematics (Forbes et al.
2018), as represented by the gray band in Figure 8. Our virial–
mass estimate of UDG1 is qualitatively in line with the
flattening of the NGC–Mvir relation at the low-mass end, but
more extreme, highlighting the danger of naively inverting the
relation to infer the virial mass with the number of GCs.

Second, UDG1 is also an outlier to the stellar-mass–total-mass
relation from abundance matching especially if assuming an NFW
halo, as illustrated in the middle panel of Figure 8. For
comparison, we have chosen the median relation as in Behroozi
et al. (2013), and the recent estimate of the low-mass-end scatter
using the dwarf satellites in the ELVES sample (Danieli et al.
2023). We caution that, despite being intensively studied, the low-
mass end of the relation remains highly uncertain, and different
assumptions lead to different results (see, e.g., Danieli et al. 2023,
and the references therein). Our particular choice here is among
the most flat for the low-mass-end median slope and among the
largest in the scatter—even with these conservative choices,
UDG1 is a ∼2σ outlier if assuming an NFW halo.

Third, as the bottom panel of Figure 8 shows, UDG1 stands
out with respect to the concentration–mass relation of DM
halos if the halo density profile is NFW. For comparison, we
have shown a median c

−2–Mvir relation from cosmological N-
body simulations (Dutton & Macciò 2014), with a constant
scatter of 0.3 dex assuming a log-normal c

−2 distribution at
fixed Mvir (Diemer & Kravtsov 2015; Benson 2020).12

Obviously, assuming an NFW halo, the UDG1 halo is

significantly less concentrated than what is expected cosmolo-
gically for its mass. The concentration is within 1σ of the
concentration–mass relation if the halo has a Burkert profile,
but is still lower than the median relation. Overall, this is
consistent with the scenario that UDG formation results from
repeated supernovae feedback, which makes both the halo less
concentrated and also the stellar distribution puffy (e.g., Jiang
et al. 2019; Freundlich et al. 2020).
In short, the UDG1 DM halo stands out as a ∼2σ outlier

compared to all the aforementioned scaling relations, especially
when assuming an NFW profile. It is in line with the
understanding that there is huge scatter in these relations at
the low-mass end, and warns us against generalizing these
relations to extreme galaxies and using them as virial mass
estimators. We caution that our halo mass estimates for UDG1
are based on the assumption of a static host halo, whereas in
reality the UDG1 halo might be a satellite of the galaxy group
NGC5846, and thus have been environmentally processed. It
may also have internally driven evolution due to supernovae
feedback. To consider the host halo of UDG1 as a subhalo
evolving in mass and structure is beyond the scope of this
work, but it is reasonable to speculate that the peak virial mass
of the system in the past is higher than our estimates here, and
thus brings the system closer to the empirical scaling laws.

4. Discussion

In this section, we first discuss a few observational
implications, including the line-of-sight (LOS) velocity disper-
sion of the GCs in UDG1, the orbital eccentricity distribution
of the GCs, the stripped mass fraction of the GCs, and the
fraction of NSCs. Second, we compare our model with that of
the previous work of Bar et al. (2022), Modak et al. (2023).

Figure 7. The same as Figure 5, but for the best-fit Burkert halo Mh = 109.0Me, c = 25 (c
−2 = 16.4), and r0 = 5.0 kpc.

12
The scatter in principle varies with mass and the selection of halos based on

whether they are relaxed, and 0.3 dex is a ballpark estimate.
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Finally, we comment on the simplifications in this work, and
point out potential future improvements and applications of our
method. We explore the possibility of an initial mass
segregation in Appendix D.

4.1. Velocity Dispersion and Orbital Eccentricity of the GCs

In the upper panels of Figure 9, we present the LOS
velocity–dispersion profile of the evolved GCs in halos of the

best-fit parameters. The dispersion profiles in the Burkert halo
and in the NFW halo are similar, and, in comparison with that
of smooth stars, which reflect the equilibrium kinematics of the
host potential, both show a significant decrease, more so at
smaller R. This is another manifestation of DF, besides mass
segregation. Observationally, Müller et al. (2020) have
measured the velocities of 11 of the member GCs of UDG1,
and inferred a dispersion of 9.4 km s5.4

7.0 1s = -
+ - , at R≈ 1.8 kpc

(i.e., the average distance of the 11 GCs to the galaxy center),
assuming a simple pressure-supported spherical system. Our
model predictions agree with this measurement. In fact, a closer
examination of the posterior distribution of the GC velocity
dispersion of Müller et al. (2020) reveals that the mode value is
approximately 8 km s−1, almost exactly on top of our NFW
model results.
Interestingly, however, Forbes et al. (2021) measured the

velocities of the smooth stellar distribution of UDG1 using
KCWI on the Keck telescope, and found a rather high value of
the smooth-star velocity dispersion of σ

å
= 17± 2 km s−1,

higher than the equilibrium value (σ∼ 11 km s−1
) of a low-

mass (Mvir∼ 109Me) and extremely low-concentration system
as advocated by our best-fit NFW cases, and more consistent
with a virial mass of Mvir∼ 109.5−10Me and of normal
concentration as in the Burkert cases. In none of the models
explored here, we reproduce such a large difference between
the GC dispersion and the smooth-star kinematics. We opt not
to dive into the factors that may reconcile the tension, such as
oversimplifications in our model or nonequilibrium of the
stellar distribution. Instead, we can see that these two
observational studies together (Müller et al. 2020; Forbes
et al. 2021) present a qualitatively similar picture as what our
model reveals here, i.e., the GCs of UDG1 have smaller
velocity dispersion than the smooth stars, indicative of DF, and
the virial mass of UDG1 is lower than what is expected from
the scaling laws.
The different GC dynamics with the two halo profiles may

result in different orbital eccentricities of the GCs. As shown in
the lower panels of Figure 9, while the orbital eccentricity
distributions are initially similar (which is by construction,
because we assumed isotropic velocity distribution in both
cases), evolution in the Burkert host makes the orbits slightly
more eccentric. This effect actually only operates on the GCs
whose initial apocenter is larger than the core radius and whose
initial pericenter is below the core radius. Such GCs experience
DF only at the apocenter but not at the pericenter because of
core-stalling—this makes the orbits more radial. Note that DF
will otherwise not affect orbital eccentricity, a counterintuitive
behavior already discussed in van den Bosch et al. (1999),
because the eccentricity decreases near pericenter but increases
again near apocenter.

4.2. Nucleated Ultra-diffuse Galaxies

A significant fraction of UDGs are nucleated, in the sense
that they feature a compact stellar distribution at or near the
geometric center of the system (Greco et al. 2018; Lim et al.
2018; Iodice et al. 2020; Marleau et al. 2021). The compact
stellar source, also known as the NSC, is more compact than a
stellar bulge as in an early-type galaxy and is more massive
than a typical GC—imaging samples can be found in Lim et al.
(2018; Figure 3). The fraction of UDGs that are nucleated is
approximately 30%–40% in nearby galaxy clusters, and seem
to show an environment dependence such that the fraction is

Figure 8. NGC5846-UDG1, with its DM halo constrained with the GC
statistics, in comparison with the empirical scaling relations of GC number NGC

vs. virial mass Mvir (upper), stellar mass M
å
vs. virial mass Mvir (middle), and

halo concentration c vs. virial mass Mvir (bottom). The orange/green circles
with error bars represent the medians with the 16th and 84th percentiles, and
the crosses of corresponding colors represent the mode values, assuming
NFW/Burkert halo. The lines stand for the median relations from Behroozi
et al. (2013), Burkert & Forbes (2020), and Dutton & Macciò (2014). The
dashed parts of the lines indicate extrapolations to a lower-mass range than that
of the observational or simulation samples from which these relations are
extracted. The gray band in the upper panel represents the full scatter of the
observational sample as in Burkert & Forbes (2020). The red band in the
middle panel indicates the 1σ scatter in Mlog  at fixed virial mass, as
constrained using dwarf satellites in the ELVES sample, from Danieli et al.
(2023). The cyan band indicates the 1σ scatter of 0.3 dex, assuming log-normal
distributions of c at fixed virial masses. UDG1 is an outlier to these scaling
laws by ∼2σ–3σ.
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higher in the densest region and decreases toward the outskirts
of the galaxy cluster (Lim et al. 2018).

It is natural to attribute the formation of an NSC to the
coalescence of the GCs that have lost their orbital angular
momentum completely due to DF and sunk to the center. If this
is the case, we can expect that different DM profiles, as well as
different initial GC distributions, can determine the nucleated-
ness of a UDG and the mass of the NSC. Modak et al. (2023)
already showed that NSCs only form in cuspy halos and almost
never form in a cored halo. Here, we revisit this scenario using
our model, which is more refined in terms of GC evolution
compared to the previous work. We emphasize that this
experiment is for GC-rich dwarfs in general, no longer aimed at
reproducing UDG1. We quantify the nucleatedness of the
resulting system using the mass fraction of the nucleus, fnucleus,
defined as the total mass of the GCs that settle to r< 0.1 kpc,
divided by the total mass of all the GCs.

Figure 10 shows fnucleus as a function of halo mass Mh, halo
concentration c, and the initial Hernquist scale of the GC
distribution r0. Here, a cuspy NFW profile and a cored Burkert
profile exhibit a dramatic difference, in the sense that the
nucleus fraction in a cored halo is usually much lower (except
for the combination of the lowest Mh, highest c, and largest r0,
which happens to be our best-fit case), whereas that of a cuspy
halo is usually much higher, especially when the halo mass is

below Mh∼ 109.5Me. The generally low nucleus fractions of a
cored halo are due to the stalling effect, which prevents the
GCs from dropping deeper (see Banik & van den Bosch 2022,
for a thorough discussion) and is empirically captured by the
Petts et al. (2015) prescription adopted here. However, in our
best-fit Burkert profile, which has a fairly high concentration,
while there is a flat core in the very center, the density is still
steeply rising toward the center in the radius range where most
GCs are. The inset of Figure 10 compares the best-fit NFW and
Burkert profiles: we can see clearly that the Burkert profile is
even steeper than the NFW counterpart at the initial Hernquist
scale radius for the GC distribution. It is this steep density slope
at the regime where the GCs populate that gives rise to
sufficiently strong DF and therefore mass segregation. Other-
wise, if the core radius is larger than where the star clusters are,
there will be no mass-segregation trend, and, for the same
reason, no NSC forming.
There are trends of the nucleus fraction with the model

parameters. First, a larger halo mass leads to smaller fnucleus.
This is because of the dependence of the DF strength on the
mass ratio between the GC and the host. Second, and
intuitively, a larger scale length leads to smaller fnucleus, since
if GCs start out at large distances, they need stronger DF or
longer time to sink to the center. Third, as to the concentration
dependence, for NFW halos, a higher concentration leads to a

Figure 9. Upper panels: LOS velocity–dispersion profiles of the GC population in comparison with that of the smooth stars. Lower panels: cumulative distributions of
orbital eccentricity of the star clusters. The left column represents the result for NFW halo while the right column represents the result for Burkert halo. The solid lines
represent our best-fit model results while the dashed line represents our median model results. In the upper panels, black lines stand for smooth stars, and green lines
stand for evolved GCs. In the lower panels, red lines stand for the final stage, and blue lines stand for the initial distribution, and the line style differentiates the mode
and median results, respectively. The orange circle with error bar is inferred from the observed kinematics, based on about one-fifth of all the ∼50 member GCs
(Müller et al. 2020).
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lower fnucleus, at fixed halo mass. This, again, can be attributed
to the competing effects on DF from c and Mh, as we discussed
in the context of the c

−2-Mh degeneracy of a cuspy halo in
Section 3.1. For Burkert halos, the c

−2-trend is vague, and can
similarly be attributed to the null effect of varying c

−2 on the
DF acceleration as we argued in Section 3.2, unless the halo
mass is sufficiently low such that a higher c

−2 makes the
regime of steep density slope overlapping with the GCs. The
difference in the nucleus fraction between the cuspy and cored
cases implies the possibility of using NSCs to infer the DM
distribution of UDGs, and could be further explored in future
statistical studies.

4.3. Stripped Fraction of GCs

A higher host–halo density will lead to more tidal stripping
of star clusters, as can be expected from Equation (11). Hence,
naturally, a positive correlation exists between halo concentra-
tion and the stripped mass fraction of the GCs, as shown in the
lower panels of Figure 10. For the same reason, when

concentration is fixed, a more cuspy halo results in more
stripped mass from the star clusters—this can be seen by
comparing the NFW and Burkert results in the lower panels of
Figure 10.
However, if we limit the scope of comparison to the halos

that can produce the observed mass segregation, we get the
seemingly counterintuitive result that, in the best-fit NFW case,
the stripped fraction of the GCs is marginal, whereas, in the
best-fit Burkert model, the GCs have contributed a fairly large
fraction (10%) of their masses to the smooth stars. This is
simply because the best-fit Burkert halo is actually denser in the
regime where most of the GCs exist (rr0), as shown by the
inset of Figure 10.
Note that the star clusters that have been completely

disrupted also deposit their mass to the smooth-star reservoir.
It is an interesting question whether UDGs obtain a significant
(or even dominant) fraction of their smooth stellar mass from
stripping as well as from disrupted star clusters (e.g., Danieli
et al. 2023). However, since the fraction of completely
dissolved star clusters depends sensitively on the Mmin

Figure 10. Upper panels: the mass fraction of nuclear star cluster (the total mass of the GCs that have sunk to the center of the galaxy due to DF, divided by the total
mass of all the GCs in the galaxy) as a function of halo mass. Lower panels: The stripped fraction of GCs (the total mass difference between GCs in beginning and in
final stage, divided by the total mass of all the GCs in the galaxy) as a function of halo mass. The left and right columns show the results assuming cuspy (NFW) and
cored (Burkert) profiles, respectively. Different colors represent different combinations of the halo concentrations (c) and the scale length (r0) of the initial GC
distribution, as indicated. The inset panel shows the density profile of NFW halo (red solid line) and Burkert halo (blue solid line) with best-fit parameters. The vertical
green dotted line represents effective radius of the galaxy while the blue dotted line and red dotted line stand for the best-fit initial GC scale radius for NFW case and
Burkert case, respectively.
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parameter of the ICMF, and Mmin is not a parameter that we
have sufficient constraining power based on radial mass
segregation, we cannot make a conclusive argument on this
scenario.

4.4. Comparison with Previous Studies

Bar et al. (2022) also studied the mass segregation of GCs in
UDG1 using a semianalytical model of similar nature to ours.
Modak et al. (2023) studied GC statistics in a more compact
dwarf galaxy but adopted a very similar model to that of Bar
et al. (2022). There are a couple of major improvements here in
our approach.

First, the previous studies did not trace the mass and
structural evolution of GCs along the orbits, but instead
adopted, e.g., as in Bar et al. (2022), a simple empirical model
of GC mass loss, m t m t t0 1 0d= -( ) ( )( ), with δ= 0.3,
t0= 10 Gyr, for all the GCs. That is, the mass evolution is
linear with time, irrespective of the local tidal field, and there is
no structural evolution. Modak et al. (2022) makes the mass
evolution exponential, but the other aspects remain the same.
Related, the GC mass distribution in these works was manually
set to match that observed. As discussed in Section 2, the mass
and structural evolution affects the DF strength, via the
Coulomb logarithm, and thus, the orbit evolution could be
different if the mass or size is not properly accounted for. In our
model, the GCs evolve self-consistently in mass and structure
under the influence of tidal effects and two-body relaxation.
Besides, the evolution starts from theoretically motivated or
observationally motivated initial mass functions and initial
structural distributions. As such, besides the GC mass-
segregation signal, the evolved GC mass function and size–
mass relation are also emergent predictions in our model, and,
as demonstrated, they both agree decently with the data.

Second, the previous studies did not aim at statistically
constraining the DM halo mass or structure. Instead, they
adopted a couple of somewhat arbitrary fixed halo masses and
profiles, and tested whether mass segregation could arise under
these somewhat arbitrary choices. For example, Bar et al.
(2022) used an NFW host with Mh= 109.78Me, and c

−2= 6
and a Burkert host, with Mh= 109.53Me, and c

−2= 15.4.
Basically, their halo masses are approximately 0.5–1 dex
higher than what we found here, and their halo concentrations
happen to be in the same ballpark with our posterior-mode
values. Interestingly, however, they could achieve mass
segregation with these more massive halos, whereas our model
cannot.

The main factor that causes the difference lies in the star–
cluster evolution—with our model, mass loss depends on the
instantaneous internal and external conditions, such that the
clusters getting closer to the host center experience stronger
mass loss. This counterbalances the mass-segregation effect of
DF. Hence, to obtain mass segregation with our model,
stronger DF is needed, which translates to a lower halo mass
because of the dependence of DF on the perturber-to-host mass
ratio. This is illustrated in Figure 11, where we keep the host
halo as well as the initialization of coordinates and velocities
the same, and evolve the star clusters using the Modak et al.
(2023) model and our model, respectively, for results shown in
the left and right panels. The mass initialization cannot be
exactly the same because of the difference in the evolution
prescriptions, but we have adjusted the ICMF to make the
evolved mass distributions comparable. As can be seen, with

the Modak et al. (2023) model, significant mass segregation
can already be produced for a relatively massive NFW host
halo of Mh= 1010Me, while our model produces a marginal
trend for this mass. For the lower halo mass of Mh= 109Me,
both models can produce similarly strong mass segregation.
Another factor here is that the previous studies did not

follow star–cluster structural evolution. As we already
discussed, neglecting the size results in a larger Coulomb
logarithm and thus stronger DF. In short, it is easier to get mass
segregation with the Modak et al. (2023), Bar et al. (2022)
models, because the mass loss is orbit-independent, and
because DF is stronger when neglecting the cluster size. It is
therefore important to model GC evolution accurately for the
purpose of constraining DM distribution.

4.5. Simplifications and Future Work

While in this work we have improved upon previous studies
by introducing a self-consistent physical model of GC
evolution and employing MCMC to constraint the DM halo
properties, we caution that there are still oversimplifications
that leave room for future improvements. Addressing them
quantitatively is beyond the scope of current work, but, here,
we point out qualitatively how they might affect the results and
sketch ideas for future studies. The discussion applies not just
to the specific galaxy UDG1, but to GC-rich dwarf galaxies in
general.
First, we have assumed that the host potential is static over

the entire evolution of the GC population. However, UDG1 is a
satellite galaxy of the galaxy group NGC5846, and many GC-
rich low-surface-brightness galaxies are members of galaxy
groups or clusters. That is, the host halo of UDG1 may be a
subhalo that has experienced significant mass loss if it had
orbital pericenters sufficiently close to the center of the host
group. In this case, UDG1 may lie closer to the scaling
relations (Section 3.3) if its peak virial mass and the
concentration at the peak mass are used in place of the
present-day values. In fact, it has been argued that the
differential tidal mass loss between the subhalo and the stellar
component can produce DM-deficient dwarf galaxies (Moreno
et al. 2022). Even for an isolated dwarf galaxy, the host halo is
not static, but increases in mass gradually. It is in principle
possible to parameterize the mass assembly history of the host
halo or subhalo using empirical models extracted from
cosmological simulations (e.g., Wechsler et al. 2002). How-
ever, this would introduce additional model parameters that
need to be marginalized over, not to mention that there is
significant halo-to-halo variance in the mass histories (Jiang &
van den Bosch 2017) so that a certain choice of the
parameterization may not be representative. A more viable
way of exploring statistically the effect of a dynamic host is to
postprocess cosmological numerical or semiananlytical simula-
tions and populate simulated halos with GCs and study the GC
statistics. We leave this idea to a future study.
Second, there are a few other mechanisms for GC mass and

structural evolution besides tidal interactions and two-body
relaxation, including, among others, stellar evolution and
gravothermal core collapse. Lamers et al. (2010) provide an
empirical formula for mass loss of GCs due to stellar evolution
obtained from collisional N-body simulations. Following their
model, GCs lose ∼25% of their initial mass over 10 Gyr,
insensitive to their initial masses. Therefore, this effect can
simply be offset by shifting the ICMF. The more complicated
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effect is the gravothermal core collapse of GCs, which steps in
after when an isothermal core is established due to two-body
relaxation. The core contracts since it is dynamically hotter
than the outer part and transports energy to the outskirts. This
makes the GC profile deviate from the EFF profile assumed in
this work (or more generally, the King models), and become
cuspy and resistant to tidal mass loss. The core-collapse
timescale has been estimated to be 12–19 times the relaxation
time τr given in Equation (13) (Quinlan 1996), so it can be
shorter than the Hubble time for the lower-mass GCs
(m 104.5Me).

Third, if future kinematics observations can narrow down the
DM profile, we can then adapt our model to constrain the other
model ingredients. For instance, while the ICMF is believed to
follow the functional form of Equation (19), the power-law
slope as well as the mass scales are not fully constrained and
likely exhibit variation from one population to another (see,
e.g., Alexander & Gieles 2013, for a discussion on the power-
law slope). It would be interesting to treat the ICMF parameters
as free parameters, and combine the GC evolution model and
the MCMC method as in this study to constrain the ICMF, to
investigate, for example, whether UDGs have a unique ICMF.

5. Conclusion

In this work, we are motivated by a remarkable ultra-diffuse

galaxy, UDG1, whose globular-cluster population exhibits

interesting radial mass segregation, and aim to explore the

possibility of reproducing the mass segregation of the GCs with

DF and constraining the DM content of the UDG using

photometric data alone. To this end, we have introduced a

simple semianalytical model that describes the evolution of GC

populations in their host DM halo and galaxy, accounting for

the effects of DF, tidal evolution, and two-body relaxation. We

also consider educated assumptions of the initial properties of

the GC progenitors, including the mass function, structure, and

spatial distributions. We forward-model the GCs in a UDG1-

like host potential (consisting of a DM halo and a smooth

stellar distribution) to match the observed GC statistics from

Danieli et al. (2022), and use MCMC to constrain the DM

distribution (halo mass Mh and concentration c) of UDG1, as

well as the scale radius of the initial star–cluster spatial

distribution (r0). While we have focused on UDG1, the

methodology developed here is generally applicable to dwarf

Figure 11. Illustration of the impact of the star–cluster evolution model on the halo mass at which GC mass segregation occurs: projected galactocentric distance vs.
GC mass, in host halos of given mass and concentration, as quoted, obtained using the Modak et al. (2023) model (left) and the model presented in this work (right)
with the same initialization scheme. To make the results statistically robust, 20 random realizations of 50 initial star clusters are included. Linear regression results are
overplotted to gauge the strength of the mass segregation. Upper panels: with a relatively massive halo (Mh = 1010Me), our model produces marginal mass
segregation, while the Modak et al. (2023) model, featuring orbit-independent mass loss and neglecting star–cluster size in the DF treatment, can already produce
fairly strong mass segregation. Lower panels: with a lower halo mass of Mh ∼ 109Me and a low concentration, both models can produce rather strong mass
segregation.
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galaxies in equilibrium with a rich GC population. We
summarize our methodology and the main findings as follows.

We have shown that the orbital evolution under the influence
of DF depends on the mass and structural evolution. Our model
can self-consistently evolve the mass and structure of
individual GCs along their orbits, capturing the effect of a
varying tidal field along an eccentric orbit around the central
region of a galaxy. In the limit of a weak tidal field, the mass
and structural evolution in our model reduces to that of the
classical work of Hénon (1965); while, in the limit when the
timescale for tidal stripping is shorter than the two-body
relaxation, the structural evolution follows that of the empirical
tidal evolution track for collisionless systems of Peñarrubia
et al. (2010) with cored density profiles, which applies to the
assumed EFF density profiles of the GCs. Reassuringly, over
the timescale of ∼10 Gyr, a population of star clusters drawn
from reasonable ICMFs (Trujillo-Gomez et al. 2019) and initial
structure–mass distributions (Brown & Gnedin 2021) evolves
in a converging manner regarding its evolved mass and size
distributions—notably, the lower-mass clusters (m 104.5Me)

expand and get dissolved more easily, whereas the most
massive clusters (m 106Me) remain largely intact, making
the evolved GC mass function peak at m∼ 105Me and the
evolved GC size–mass relation flat, as observed.

No matter whether the density profile of UDG1 is cuspy or
cored, we find that the DM halos that can give rise to the
observed mass segregation are of low mass and low
concentration. In particular, with an NFW (Burkert) halo, we
obtained a posterior-mode halo mass of Mh= 109.1Me

(109.0Me) and concentration of c
−2≈ 4 (16). There is a

concentration–mass degeneracy (anticorrelation) in the case of
an NFW profile, driven by the similar effects of increasing
concentration and increasing mass on the DF strength in the
central few kiloparsecs of the host potential. Given the stellar
mass of UDG1 of M

å
∼ 108Me, these halo–mass estimates put

UDG1 in the DM-poor territory.
In fact, UDG1 is an outlier compared to both the stellar-to-

total-mass relation (e.g., Behroozi et al. 2013; Danieli et al.
2023) and the GC-abundance–total-mass relation (e.g., Harris
et al. 2017; Burkert & Forbes 2020). The latter relation is
known to flatten and increase in scatter at the low-mass end,
and UDG1, with our halo–mass estimates, is in qualitative
agreement with this trend, although more extreme. This warns
against using this relation naively for halo–mass estimates
for UDGs.

The estimated halo concentrations are lower than the
cosmological average value expected for halos of the posterior
masses. This lends support to the theoretical picture that UDGs
populate low-concentration halos, which are puffed up by
repeated supernovae outflows or environmental effects (e.g., Di
Cintio et al. 2017; Chan 2019; Jiang et al. 2019). The posterior
scale distance of the initial star–cluster distribution (which is
assumed to follow an Hernquist profile) is r0∼ 3 kpc. Hence,
the star clusters were likely in a more extended configuration
initially than the (present-day) smooth stars, which has an
effective radius of 2 kpc. This may imply that the star clusters
are either of ex situ origin or formed in situ but in an extended
configuration achievable via collisions of high-redshift gas
clouds.

The radial mass segregation of GCs can be reproduced with
either assumption of the halo profile, if we just focus on the
distance–mass slope of the GCs that have not sunk to the center

of the galaxy (Section 3). However, if we include all the GCs
including the ones that have completely lost orbital angular
momentum due to DF, and consider the NSC that forms out of
GC mergers at the center of the galaxy, then the cuspy NFW
halo can yield massive NSCs provided that the halo mass is
below 1010Me, whereas cored halos do not result in any
significant NSC. Therefore, a viable formation mechanism for
nucleated UDGs (e.g., Lim et al. 2018) is the orbital decay of
GCs in a low-mass cuspy halo (see also Modak et al. 2023). As
UDG1 seems to be a nonnucleated UDG, our results suggest
that it is more likely to be hosted by a cored, low-mass DM
halo. This is, again, in line with the theoretical picture that
UDG formation goes hand-in-hand with the core formation of
DM halos due to nonadiabatic perturbations of the gravitational
potential.
Last but not the least, compared to the observationally costly

kinematics measurements, our model can reproduce the
observed LOS velocity dispersion of the GCs (Müller et al.
2020), and can reveal the difference between the velocity
dispersion of the GCs and the smooth stellar background. This
also manifests DF and is in qualitative agreement with what is
observed (Forbes et al. 2021).
In summary, we have demonstrated with the case study of

UDG1 that, as long as dwarf galaxies host a statistically
significant number of GCs and the GCs form a radial mass
trend, one can use a computationally efficient semianalytical
model such as the one laid out in this work to constrain the
hosting DM distributions. This is in principle feasible with
imaging data alone. However, getting clean samples of GCs
with little contamination from background galaxies or fore-
ground stars requires deep, high-resolution imaging—this will
soon be enabled by upcoming instruments, such as the Vera C.
Rubin Observatory (LSST), the Chinese Survey Space
Telescope (CSST), and Nancy Grace Roman Space Telescope
(WFIRST).

Acknowledgments

F.J. thanks Avishai Dekel, Aaron Romanowsky, Frank van
den Bosch, Hui Li, Kyle Kremer, Xiaolong Du, Ethan Nadler,
and Jacob Shen for helpful general discussions. J.L. acknowl-
edges the Tsinghua Astrophysics High-Performance Comput-
ing platform at Tsinghua University for providing
computational resources for this work.
Software: EMCEE (Foreman-Mackey et al. 2013), SatGen

(Jiang et al. 2021).

Appendix A
Analytics of Stellar Profiles and DM Halo Profiles

This section presents useful analytical expressions for the
profiles we use in this work, including NFW (Navarro et al.
1997), Burkert (Burkert 1995), and a profile that describes the
stellar density of UDG1. The density profiles are already given
in the main text; here, we list the enclosed mass (M),
gravitational potential (Φ), gravitational acceleration in the
cylindrical coordinate system ( fR, ff= 0, fz), and the 1D
velocity dispersion (σ) for an isotropic velocity distribution.

A.1. NFW
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A.3. UDG1 Stellar Profile
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Appendix B
GC Profile: EFF Profile

The EFF profile is specified by the total mass, mtot, the scale
length, a, and the power-law slope, η—the density profile is
given by
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is the central density, with Γ(x) as the gamma function.
The enclosed mass of EFF profile is given by
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where a b c z, ; ;21( ) is the hypergeometric function. By

solving m(l)= 0.5mtot, one can show that the half-mass–radius

is given by

l a2 1 , B41 2
1 22

2 3= -h-( ) ( )

a quantity that is repeatedly used in our model.
As mentioned in Section 2.2, to estimate the tidal heating

parameter ft, we have used the tidal evolution track of
Peñarrubia et al. (2010) expressed in terms of the maximum-
circular velocity vmax and the radius lmax at which vmax is
reached. To this end, we need a relation between lmax and the
parameters defining the profile, which is obtained as follows.
The radius at which the circular velocity reaches maximum,
lmax, is given by the solution of dv dl 0circ

2 = , i.e.,
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and is well approximated by

l a1.825 B6max » ( )

for η= 2.
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Appendix C
GC Mass–Distance Relations

As mentioned in Section 2.4, to facilitate the parameter

inference, we precompute the model predictions of the

observables used to construct the likelihood using 1000 GCs

on a mesh grid spanned by the parameters of interest. We

perform linear interpolation for model evaluations during the

MCMC run.
Using the tabulated results, we plot the median relations

between the evolved GC mass and distance for different halo

mass Mh and different scale length r0 of the initial star–cluster

distribution, in Figures 12–13. The concentrations are kept

Figure 12. The median galactocentric distance 〈R〉 vs. the median GC mass 〈m〉, in three mass bins, for different host halo masses (Mh) and different scale distance of
the initial star–cluster distribution (r0). The green dashed lines stand for the boundaries of the mass bins. The gray circles represent the data with the error bars
indicating the 16th and 84th percentiles (the same across panels). The lines are model realizations for NFW halos with concentration c = c

−2 = 4 fixed. The purple
dash lines stand for the interpolation with the best-fit parameters.

Figure 13. The same as Figure 12, but for Burkert halos with c = 25 (c
−2 = 16).
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fixed at the posterior-mode values, i.e., Figure 12 is for NFW
halos of c= c

−2= 4, and Figure 13 is for Burkert halos of
c= 25 (c

−2= 16). For the NFW case, we can see a clear mass
segregation at Mh 109.5Me, not very sensitive to r0. For the
Burkert case, the mass segregation is achieved at Mh 1010Me

but requires a relatively large r0. In both cases, the halo mass
cannot be too small (108.5Me); otherwise, the median
distances would be too small.

Appendix D
Effect from Initial Mass Segregation

Throughout this study, we have assumed that there is no
mass segregation in the initialization. However, there might be
mass segregation ∼10 Gyr ago if the molecular clouds that
form GCs later had experienced DF already; or it might be that
the gas–disk instability imprinted some primordial mass
segregation. Here, we explore the effect of such an initial
mass segregation. In particular, since our best-fit halo mass is
low, we aim to qualitatively answer the question—what level
of primordial mass segregation can give rise to the final
observed segregation strength, in a halo that is significantly
more massive than our posterior-mode masses and thus yields a
much weaker DF effect.

In Figures 14 and 15, we show the model results assuming
an initial mass segregation of different slopes. We keep all the

other parameters the same as before, i.e., M M10min
5.5= , and

M M10max
8=  for the ICMF and draw 300 GCs. To obtain an

initial segregation, instead of drawing all the GCs from a single

Hernquist profile, we split them into three mass bins of 100

GCs each. We draw the distances of the GCs in each group

with a different Hernquist profile. For the low-mass GCs, we

adopt a scale radius of r0,low= 4.8 kpc. To get different initial

mass-segregation levels, we adopt r0,mid= 2.8 and 3.5 kpc for

the intermediate-mass GCs, for the experiments shown in

Figures 14 and 15, respectively; and, similarly, r0,high= 0.4 and

1.5 kpc, respectively. We also limit the initial radius range of

the three groups by choosing different minimal radius rmin and

maximal radius rmax—for low-mass GCs, we set rmin,low =
1 kpc, and r 5 kpc;max,low = for intermediate-mass GCs, we set

r 0.5 kpcmin,low = , and r 4 kpc;max,low = and for high-mass

GCs, we use r 0.1 kpcmin,low = , and r 2 kpcmax,low = . The slope

of the initial mass segregation is −0.52 in Figure 14, and is

−0.35 in Figure 15, comparable to and much smaller than the

observed slope of −0.57, respectively. Then, we evolve them

in an NFW halo of 109.8Me and c= 15, which will not produce

significant mass segregation with our fiducial setup. Not

surprisingly, in such a relatively massive, normal-concentration

halo, an initial mass segregation that is marginally weaker than

the final one can basically reproduce the final mass segregation;

whereas a significantly weaker initial mass segregation cannot.

Figure 14. The same as Figures 5 and 7 but with a high-mass NFW host halo (Mh = 109.8Me, c = 15). 300 GCs are initialized in three mass groups with equal
number, according to different Hernquist profiles such that the initial slope is −0.52.
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