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ABSTRACT  
Scientific explanation has been widely recognised as one of the 
primary proficiencies in global science education. From research 
and practical perspectives, investigating the cognitive process of 
constructing scientific explanations by integrating core ideas is 
essential to make sense of phenomena or solve problems. This 
study applied the cognitive diagnosis modeling (CDM) approach to 
diagnose students’ cognitive patterns of constructing scientific 
explanations by integrating chemical reactions and patterns. We 
localised three well-designed assessment tasks and 
correspondingly developed five cognitive attributes. Responses 
from 244 Grade 9 students in two middle schools were collected, 
scored, and analyzed. Results show that the five developed 
cognitive attributes are reliable and e.ective in identifying 
students’ cognitive challenges in constructing scientific 
explanations in a content-specific domain. In addition, we 
articulated students’ potential cognitive process of constructing 
scientific explanations. We identified a primary cognitive pathway 
that students may follow: making correct claims, finding suFcient 
evidence based on data patterns, and providing scientific 
principles for the reasoning process. The cognitive diagnosis results 
could be used to guide teachers in selecting teaching materials 
and strategies and arranging lesson sequences to support the 
development of students’ scientific explanations by integrating 
chemical reactions and patterns.
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Introduction

Scientific explanations require students to provide written or oral responses to explain 
how or why a phenomenon occurs with supporting evidence and scientific knowledge 
(Gotwals & Songer, 2013; McNeill et al., 2006; Yeo & Gilbert, 2014). Constructing scien-
tific explanations goes beyond descriptions of natural patterns to support students in 
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providing plausible explanations for real-world phenomena by seeking evidence and 
responding to the ideas or knowledge claims in science (Driver et al., 2000; Sandoval 
& Millwood, 2005; Schwarz et al., 2017). From an educational reform perspective, ‘con-
structing scientific explanations’ is widely recognised as one of the primary scientific 
proficiencies that all students should obtain in national science standards across 
countries such as the U.S. Next Generation Science Standards (NGSS, the Lead States, 
2013) and the Chinese Compulsory Education Science Curriculum Standards (He 
et al., 2021, 2022; Ministry of Education, P. R. China, 2022). In the NGSS, students 
deepen their understanding of disciplinary core ideas (DCIs) and expand the connections 
with crosscutting concepts (CCCs) through participating in science and engineering 
practices (SEPs), such as constructing scientific explanations (the NGSS Lead states, 
2013). Similarly, the Chinese Compulsory Education Science Curriculum Standards 
(He et al., 2021, 2022; Ministry of Education, P. R. China, 2022) also emphasise that ‘stu-
dents should learn to collect evidence and make evidence-based reasoning when con-
ducting scientific inquiry.’ From a research perspective, supporting and developing 
students’ proficiency in constructing scientific explanations has been investigated glob-
ally in the field of science education in the past two decades (e.g. McNeill et al., 2006; 
Sevian & Gonsalves, 2008; Tang, 2016; Yeo & Gilbert, 2014). So far, a substantial 
amount of research has explored to understand the framework of constructing scientific 
explanations (e.g. Sandoval, 2003; Yao & Guo, 2018), investigate the instructional strat-
egies to support students in constructing scientific explanations (e.g. McNeill et al., 2006), 
and examine the learning progressions in constructing scientific explanations (e.g. 
Songer & Gotwals, 2012). However, challenges remain in uncovering students’ cognitive 
processes when they construct scientific explanations to explain real-world phenomena 
or solve problems, particularly how to integrate specific DCIs and CCCs in the cognitive 
process. It is unknown about the cognitive sequence of how students apply multiple 
dimensions (e.g. DCIs, CCCs, and SEPs) in their sensemaking or problem-solving 
process. More importantly, it is essential to diagnose where do students encounter a chal-
lenge cognitively when they construct a scientific explanation to address the real-world 
situations. Therefore, the field of science education calls for a deeper understanding of 
the cognitive process involved in constructing scientific explanations (Braaten & Wind-
schitl, 2011; Osborne & Patterson, 2011).

Unpacking the cognitive features of constructing scientific explanations would provide 
teachers and students with diagnostic, elaborative, and concrete information to further 
support student scientific proficiency. More empirical studies are needed to unfold the 
underlying students’ cognitive process of constructing scientific explanations when they 
make sense of phenomena or solve problems. So far, researchers have employed a new 
measurement approach, cognitive diagnostic modeling (CDM; de la Torre & Minchen, 
2014), to diagnose complex constructs, such as problem-solving (Li et al., 2020) and scien-
tific explanations (Hu et al., 2021). CDMs are restricted latent class models in which the 
latent variables or attributes are discrete, usually dichotomous (de la Torre & Minchen, 
2014). The existing studies mainly used two measurement approaches (e.g. item response 
theory and classical testing theory) to validate assessments of students’ scientific 
explanations and report evaluating students’ performances in constructing scientific expla-
nations (e.g. Gotwals & Songer, 2013). However, constructing scientific explanations is a 
complex activity that cannot be performed without incorporating disciplinary core ideas 
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(e.g. chemical reactions) and crosscutting concepts (e.g. patterns), especially in explaining 
real-world phenomena (Gotwals & Songer, 2013; NGSS, 2013; Schwarz et al., 2017). This 
argument is also evident by reviewing previous studies (e.g. Chang et al., 2014; Cheng & 
Gilbert, 2017; Cooper et al., 2016; Talanquer, 2013; Weinrich & Talanquer, 2016; Yan & 
Talanquer, 2015) of investigating students’ reasoning and visualisation of chemical reac-
tions in describing, explaining, and predicting chemical phenomena.

This study explores the emerging features of middle school students’ cognitive process 
when they construct scientific explanations with the DCI of chemical reactions and the 
CCC of patterns in the context of Chinese science classrooms. We conducted this study 
in China because the new Chinese science standards share the same vision with the 
NGSS, emphasising the importance of constructing scientific explanations by integrating 
DCIs and CCCs. In this study, we adopted well-designed assessment tasks for assessing 
students’ constructing scientific explanations with the integration of chemical reactions 
and patterns. We analyzed students’ responses to the tasks, developed cognitive attri-
butes, and applied the CDM approach (Ma & de la Torre, 2016) to explore the essential 
cognitive features and emerging cognitive processes of middle school students’ con-
structing scientific explanations. We anticipate this study will provide a deeper and 
more comprehensive understanding of students’ science proficiency in integrating scien-
tific explanations with DCIs and CCCs, which would further support student science 
learning and teacher classroom instruction. Our study’s approach would provide 
research insights for science education researchers to explore the latent cognitive 
process of students’ complex science learning.

Research questions

We explore three research questions (RQs): 

RQ1. What are the validity and reliability of the assessment tasks and the associated cogni-
tive attributes for diagnosing middle school students’ proficiency in constructing scientific 
explanations with chemical reactions and patterns?

RQ2. What are the cognitive characteristics of middle school students’ proficiency in con-
structing scientific explanations with chemical reactions and patterns?

RQ3. What are the emergent cognitive pathways of middle school students’ proficiency in 
constructing scientific explanations with chemical reactions and patterns?

Literature review

This section reviews the relevant literature on scientific explanations and CDMs to contex-
tualise our study. We further demonstrate how the previous research informs our design of 
the CDM approach to investigate the underlying cognitive attributes and potential cogni-
tive pathways of constructing scientific explanations in content-specific domains.

Scientific explanations

Scientific explanation is considered an essential learning goal in science education to 
promote conceptual understanding and reasoning about mechanisms (Strike & 
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Posner, 1985). It is also a crucial component of scientific inquiry reforms that help stu-
dents develop and support their explanations through their investigations (Driver et al., 
2000; Duschl, 2000).

Constructing scientific explanations is a complex process involving multiple cognitive 
elements (McNeill et al., 2006). To better understand and support this complex process, 
researchers have approached the construct of scientific explanations from various per-
spectives, such as philosophical views (e.g. Hempel & Oppenheim, 1948), theoretical 
and empirical evidence (e.g. Braaten & Windschitl, 2011; McNeill et al., 2006; Songer 
et al., 2009), or educational standards documents (e.g. Ministry of Education, 
P. R. China, 2022; NGSS Lead States, 2013; NRC, 2012). E3orts have been made to 
address the challenge of supporting students in constructing scientific explanations 
through exploring scientific explanation frameworks (Braaten & Windschitl, 2011; 
NRC, 2012; Osborne & Patterson, 2011; Sandoval, 2003). For instance, McNeill et al. 
(2006) introduced the claim-evidence-reasoning (CER) model to help students ‘justify 
their claims using appropriate evidence and scientific principles.’ This model aligns 
with the nature of constructing scientific explanations, emphasising the explicit appli-
cation of theories to reveal the causal relationships and underlying mechanisms of a 
specific situation or phenomenon (Braaten & Windschitl, 2011; NRC, 2012; Osborne 
& Patterson, 2011).

The emphasis in scientific explanation is applying students’ knowledge to solve real- 
world problems rather than just memorising information to answer questions (Li et al., 
2021; NRC, 2012; Pellegrino & Hilton, 2012). A scientific explanation comprises three 
elements: claim, evidence, and reasoning (McNeill et al., 2006; Songer & Gotwals, 
2012). A claim is a testable statement about a phenomenon; evidence is the data that sup-
ports the claim, and reasoning is the justification that shows why the evidence supports 
the claim using scientific principles (Gotwals et al., 2012). The nature of constructing 
scientific explanations is creating a claim or statement and making a reasoning process 
to show how evidence and scientific principles can be used to support a proposed 
claim. The structure of constructing scientific explanations requires higher demands 
for assessment. A handful of studies have applied large-scale assessment data to 
measure students’ scientific explanation proficiencies in content-general domains (Hu 
et al., 2021; Kim et al., 2015; Zhan et al., 2019). This study addresses the gap in previous 
studies that aims to diagnose student scientific explanations in content-specific domains 
that incorporate the specific disciplinary core ideas and crosscutting concepts, such as 
chemical reactions and patterns.

Cognitive diagnostic assessment

Constructing scientific explanations is an essential science practices for students to apply 
what they have learned to solve real-world problems, not just memorise information to 
answer questions (McNeill et al., 2006). Despite its benefits, constructing scientific expla-
nations is challenging for students and teachers (He et al., 2023a), requiring teacher- 
appropriate instructional support. However, teachers may need diagnostic information 
on student performance on assessment tasks to inform their instructional decisions 
(He et al., 2024). So far, a handful of studies have applied Item Response Theory 
(IRT) approaches to assess student proficiency in constructing scientific explanations 
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(e.g. He et al., 2023b; Songer & Gotwals, 2012; Yao & Guo, 2018), ranking a student’ 
achievement against other students on a single proficiency continuum. The IRT-based 
assessments fail to provide diagnostic information for o3ering specific student feedback 
and informing teacher instructions. Compared to IRT, CDMs identify fine-grained cog-
nitive attributes based on the measurement constructs (e.g. scientific explanations) and 
classify students’ proficiencies based on their mastery of skills and attributes of interest 
(Ma & de la Torre, 2016). Notably, using the CDM approach in analyzing classroom 
assessments would o3er deeper insights into the cognitive process of constructing scien-
tific explanations and provide more detailed diagnostic information to inform teachers’ 
instructional decisions and support students’ development of scientific explanation 
proficiency.

Theoretical considerations
CDMs focus on identifying and diagnosing the underlying cognitive attributes required 
to complete specific tasks (e.g. de La Torre, 2009; DiBello & Stout, 2007; Tatsuoka, 2009). 
CDMs can bridge item response theory (IRT) and cognitive psychology by creating prob-
abilistic models that re;ect the cognitive processes involved in task performance 
(Mislevy, 1996). The CDM approach aligns with the vision of converting experts’ cogni-
tive models of a domain into probabilistic models for learners’ observed outcomes.

CDMs were developed in response to Mislevy’s (1994) call for more robust integration 
between cognitive science and measurement practices, significantly informed and sup-
ported by Knowledge Space Theory (KST, Doignon & Falmagne, 1999). KST conceptu-
alises learners’ knowledge as discrete states within a structured system, facilitating 
predicting observable responses based on a learner’s current knowledge state. KST’s rep-
resentations of learning as discrete and structured nature of knowledge, enabling CDMs 
to diagnose and assess cognitive attributes and their interdependencies more e3ectively. 
This integration enhances the precision and diagnostic power of psychometric models, 
aligning with the goals of CDMs to re;ect complex cognitive processes accurately. 
Thus, KST serves as a crucial cognitive science theory that underpins and enriches the 
theoretical consideration of CDMs. By leveraging KST’s detailed representation of 
knowledge structures and cognitive pathways, CDMs can develop more accurate and 
practical diagnostic assessments, aligning with Mislevy’s (1994) call for models that faith-
fully re;ect the knowledge, skills, and abilities they measure and the practical demands of 
their use.

Applications of CDMs in science assessment
Applying CDMs in assessing students’ scientific proficiency is a growing area in science 
education. Cognitive diagnostic assessment (CDA) o3ers a comprehensive approach to 
diagnosing students’ learning by presenting attribute mastery patterns (AMPs) as their 
cognitive features. A series of attribute mastery patterns can be ordered sequentially to 
represent students’ potential cognitive pathways toward a specific learning goal using 
corresponding assessments (e.g. Hu et al., 2021; Wu et al., 2021). Studies using large- 
scale datasets, such as PISA or TIMSS, increasingly examine students’ scientific literacy 
through cognitive diagnostic assessments (e.g. Hu et al., 2021; Kim et al., 2015; Zhan 
et al., 2019). The cognitive attributes in these studies are either content-oriented (e.g. 
thermochemistry, Chen et al., 2017) or practice-oriented (e.g. scientific explanations, 
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Hu et al., 2021; scientific argumentation, Zhai et al., 2022). For instance, Hu et al. (2021) 
applied CDMs to diagnose elementary students’ scientific explanations in six countries 
(China, the United States, Singapore, Australia, the United Kingdom, and Russia). 
Their study developed general cognitive attributes of constructing scientific explanations, 
such as observing and describing the phenomenon, obtaining and analyzing data, using 
facts, constructing re;ections, systematic use of theory, and scientific reasoning. A typical 
cognitive pathway in their study was found to describe the phenomenon, construct 
re;ections, scientific reasoning, obtain data, use facts, analyze data, and observe the 
phenomenon. Hu et al. (2021) also re;ected that elementary students’ ability to construct 
scientific explanations relates to their understanding of content knowledge (e.g. energy 
and force and motion). Their cognitive attributes of constructing scientific explanations 
are domain-general without consideration of specific DCIs and CCCs.

Therefore, this study highlights that students’ proficiency in constructing scientific 
explanations must be distinct from the specific DCIs and CCCs when students make 
sense of phenomena or solve problems. To address this, this study introduces cognitive 
attributes focusing on three-dimensional constructs (NGSS Lead States, 2013), including 
the SEP of constructing scientific explanations, the DCI of chemical reactions, and the 
CCC of patterns. We also explore the potential cognitive pathways using the three- 
dimensional cognitive attributes.

Methods

To address the research questions, we employed an evidence-centered design (ECD; 
Mislevy & Haertel, 2006) approach to create assessment tasks for diagnosing students’ 
proficiency in constructing scientific explanations that integrate chemical reactions 
and patterns (Harris et al., 2019). We then assessed the psychometric properties of 
these tasks. Subsequently, we identified cognitive attributes for constructing scientific 
explanations incorporating chemical reactions and patterns. Finally, we validated these 
cognitive attributes using the CDM approach and explored potential cognitive pathways 
for students’ constructing scientific explanations involving chemical reactions and 
patterns.

Instrumentation

Assessment tasks
We adopted three assessment tasks from the Next Generation Science Assessment 
project to assess middle school students’ constructing scientific explanations with the 
integration of chemical reactions and patterns (NGSA, 2024). All three tasks were devel-
oped using an ECD design process (Mislevy & Haertel, 2006), including unpacking three 
dimensions from NGSS, articulating learning performance goals, determining evidence 
statements and task design features, and developing tasks and rubrics (Harris et al., 
2019). Such a systematic design process ensured the tasks’ content validity. In addition, 
during the iterative design process, several rounds of internal and external expert reviews 
ensured the tasks’ face validity. So far, these tasks have been widely used in science class-
rooms across countries. For this study, we translated and modified them by replacing the 
original names with Chinese names and preserving their key features, such as task 
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scenarios and data information. We further modified the prompts in the three tasks and 
provided entire sca3olding for constructing scientific explanations, such as claims, evi-
dence, and reasoning (McNeill et al., 2006). We conducted this way because Chinese stu-
dents have yet to experience practice-based instruction in everyday science classrooms. 
All three tasks were structured using the same three prompts (see Figure 1 and Appendix 
A). The three prompts ask students to make an appropriate claim (prompt 1), cite 
suMcient evidence that would support their claims (prompt 2), and connect the claim 
and evidence with the DCI of chemical reactions and the CCC of patterns in the reason-
ing process (prompt 3). Two graduate assistants and three collaborative teachers 
reviewed the tasks. They provided feedback on the appropriateness of language used 

Xiao Fan experimented using ammonia and hydrogen chloride. She poured the 
hydrogen chloride and ammonia solutions into different beakers. She could tell by 
the strong smell from each beaker that ammonia gas was coming from one
and hydrogen chloride gas from the other. When she placed the two beakers close 
together, she observed a white cloud of tiny particles form where the gases mixed 
. This is shown in the video: Mixing ammonia and hydrogen chloride gas. 
She asked a lab student to test and calculate the density of ammonia gas, hydrogen 
chloride gas, and the white substance. The data are in Table 1.

Use the data in Table 1 to support your answers to the three questions below.

Question #1
Write a claim relating ammonia and hydrogen chloride before mixing and the
white substance formed after mixing to state if a chemical reaction occurred.

Question #2
Show evidence to support your claim.

Question #3
Give reason(s) that the evidence you use supports your claim.

 g

Figure 1. An example of constructing scientific explanations tasks (Task 1).
Note: the task was modified from Tiffany’s strong smelling beakers (ID#: 080-02-c02) in the NGSA project (2024). Access the 
original task via the link: https://ngss-assessment.portal.concord.org/resources/200/tixany-s-strong-smelling-beakers-id- 
080-02-c02
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in the task scenarios and the clarity and explicitness of the three prompts, which ensured 
the face validity of the three tasks in the Chinese version. Figure 1 shows the three assess-
ment tasks (Task 1). Also, see the other two tasks in Appendix A.

Scoring rubrics
We developed analytic rubrics for the three tasks for scoring students’ written responses 
to constructing scientific explanations (He et al., 2023b). For diagnostic purpose, we 
created five rubric criteria to score students’ responses to the three prompts. We 
divided all aspects of evidence and reasoning into single criteria (see the five aspects in 
Table 1). The binary score approach (1 or 0) was used to score each specific item 
based on the criteria in the rubrics. If the student’s response meets the criterion, we 
scored 1; otherwise, we scored 0. Instead of using a holistic score, we decided to use a 
set of binary sub-scores for two reasons. First, a set of binary sub-scores can tease the 
criteria in detail, o3ering specific and suMcient information about diagnosing students’ 
proficiency (He et al., 2023b). Second, we adopted the binary scoring approaches from 
previous CDM studies (e.g. Hu et al., 2021; Wu et al., 2021; Zhai et al., 2022), which 
would be more applicable to CDM models. Table 1 provides a scoring example. Based 
on the five criteria in the analytic rubric, we scored the student’s response and provided 
the points as (1, 0, 1, 0, 1). The student missed the points on Items 1.2-1 and 1.3-1 
because the response needed to include information about the odour data and 
whether the odour is a property.

Cognitive attributes
Cognitive attributes play a crucial role in cognitive diagnostic assessment. Cognitive attri-
butes are invisible cognitive states hidden behind assessment tasks that are diMcult to 
observe directly. Students’ mastery can be judged by their responses to specific items in 
assessment tests. Therefore, the quality of attributes is critical and directly determines the 
e3ectiveness of cognitive diagnosis (Wu et al., 2020). We unpacked the five attributes 
(see Table 2) based on the NGSS (NGSS Lead States, 2013), the Chinese new science 

Table 1. The rubric and scoring examples for Task 1.
Student Response:
1. Yes, a chemical reaction occurs when mixing ammonia and hydrogen chloride together. 
2. The density of ammonia, hydrogen chloride, and white substances is dixerent, which indicates that white 

substances are new substances. 
3. I used density because it is a property that can be used to identify whether substances are the same or not. 

A new substance produced indicates a chemical reaction occurs.

Questions Scoring 
items

Criteria Scores  
(0/1)

1.1 1.1-1 The student states that a chemical reaction occurs. 1
1.2 1.2-1 The student describes the pattern (comparing before and after) in odour data as 

evidence to support the claim.
0

1.2-2 The student describes the pattern (comparing before and after) in density data as 
evidence to support the claim.

1

1.3 1.3-1 The student indicates that odour is a characteristic property used to identify 
substances, and a change in odour indicates that a new substance has been 
produced, that is, a chemical reaction has occurred.

0

1.3-2 The student indicates that density is a characteristic property used to identify 
substances, and a change in density indicates that a new substance has been 
produced, that is, a chemical reaction has occurred.

1
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standards (Ministry of Education, P. R. China, 2022), and the relevant literature of scientific 
explanations (McNeill et al., 2006; Songer & Gotwals, 2012). These five cognitive attributes 
include three SEP attributes related to constructing science explanations: SEP-Claim (A1), 
‘Build an appropriate claim,’ SEP-Evidence (A2), ‘Use evidence/scientific data to support 
the claim,’ and SEP-Reasoning (A3) ‘Construct reasoning to justify claim with evidence’); 
one DCI attribute: DCI-Chemical Reactions (A4) ‘Apply the ideas of characteristic properties 
to identify whether a chemical reaction occurs’); and one CCC attribute: CCC-Patterns (A5) 
‘Identify the patterns of data similarities and di3erences.’These cognitive attributes were 
designed by unpacking the ‘Chemical Reactions’ (using characteristic properties of sub-
stances to identify new substances and determining whether a chemical reaction occurs), 
the subcomponents of the ‘Constructing scientific explanations’ practices based on the 
Claim-Evidence-Reasoning framework (McNeill et al., 2006; Songer & Gotwals, 2012), 
and unpack the crosscutting concept ‘Patterns’ (similarities and di3erences in data). Table 
2 displays the cognitive attributes and their descriptions, which are expressed as dichotomous 
categories that re;ect the examinee’s latent cognitive state.

Q-matrix
The Q matrix is a two-way specification table that links student responses with their 
cognitive states by indicating the specific attributes in each item (Wu et al., 2021). The 
Q-matrix table provides a straightforward representation of the relationship between 
items, categories, and attributes (Tu et al., 2019). Therefore, we created a Q matrix for 
the three assessment tasks, mapping the items to the attributes (See Table 3). The 
matrix assigns a ‘1’ to items that measure the attribute and a ‘0’ to those that do not. 
For instance, item 1.1-1 only contains A1 (SEP-Claim), given that it is designed to 
assess a student’s claim (which is also re;ected as a cognitive attribute). For another 
example, item 1.3-1 contains four attributes (A1, A2, A3, and A4) because the item 
requires students to connect evidence and their claims using appropriate core ideas. 
We had external experts review the attribute assignments before we administrated our 
tasks.

Table 2. The cognitive attributes and their descriptions
Code Attribute Description

A1 
(SEP-Claim)

Build an appropriate claim Students can build an appropriate claim to explain 
the phenomenon or real-world problem (e.g. 
whether a chemical reaction occurs).

A2 
(SEP-Evidence)

Use evidence/scientific data to support the 
claim

Students can use supcient data (changes in density, 
solubility, and/or odour) as evidence to support 
their claims.

A3 
(SEP-Reasoning)

Construct reasoning to justify claim with 
evidence

Students can construct a reasoning process that 
connects the data of characteristic properties (e.g. 
density, odour, and solubility) to the claim (e.g. 
whether a chemical reaction occurs).

A4 
(DCI-Chemical 

Reaction)

Apply the ideas of characteristic properties 
to identify whether a chemical reaction 
occurs or not

Students can apply the ideas of characteristic 
properties of substances (e.g. density, odour, 
solubility) and changes in properties to identify 
new substances and determine whether a chemical 
reaction occurs.

A5 
(CCC-Patterns)

Identify the patterns (the similarities and 
dixerences) of data

Students can identify the similarities and dixerences 
in data on the properties of substances such as 
density and solubility.
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Participants and data collection

Two hundred and fifty Grade 9 students from two middle schools participated in this 
study. One school (N = 132) is in the northern region of mainland China, and another 
school (N = 118) is located in the southern part of mainland China. Even though the 
two schools are from di3erent provinces, their students come from middle-class families 
in urban areas and have a wide range of academic achievement. After removing four 
incomplete data, we obtained the final analytic sample of 244 students’ responses on 
our assessment test. 47.6% of the final sample were female students, whereas 52.4% 
were male. As mentioned above, like the NGSS, constructing scientific explanations is 
one of the essential science practices in the new Chinese science curriculum standards 
(He et al., 2021, 2022; Ministry of Education, P. R. China, 2017). Despite the practice- 
based science being recently introduced to China’s science classrooms, the students 
who participated in our study had already experienced it because their teachers had 
implemented our CER-based curriculum in their classrooms before. The three tasks’ 
assessment test (Chinese version) was administered using paper-pencil format. 
Because the primary purpose of this study was validating the cognitive attributes for diag-
nosing students’ proficiency in constructing scientific explanations, we administered the 
test after students had completed their chemistry curriculum at the end of the middle 
school level. Forty-five minutes was allocated for students in a typical class period, 
suMcient for all students to complete the assessment test. We explained the purpose of 
this study to the students and their teachers before we collected their responses on our 
assessment test. Informed consent was obtained from all participants involved in the 
study. Their personal information was confidential and anonymous.

Scoring

We recruited three graduate research assistants who obtained a bachelor’s degree in 
chemistry to score students’ responses to the three tasks. They were enrolled in a full- 
time Master’s chemistry teacher preparation programme at a national teacher education 

Table 3. Q Matrix.
Attributes

Task Item
A1 

(SEP-Claim)
A2 

(SEP-Evidence)
A3 

(SEP-Reasoning)
A4 

(DCI-Chemical Reaction)
A5 

(CCC-Patterns)

Task 1 1.1-1 1 0 0 1 0
1.2-1 1 1 0 0 1
1.2-2 1 1 0 0 1
1.3-1 1 1 1 1 0
1.3-2 1 1 1 1 0

Task 2 2.1-1 1 0 0 1 0
2.2-1 1 1 0 0 1
2.2-2 1 1 0 0 1
2.3-1 1 1 1 1 0
2.3-2 1 1 1 1 0

Task 3 3.1-1 1 0 0 1 0
3.2-1 1 1 0 0 1
3.2-2 1 1 0 0 1
3.3-1 1 1 1 1 0
3.3-2 1 1 1 1 0
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university in China. Participating in our research project, they had suMcient experience 
designing assessments, creating rubrics, and scoring students’ responses on open-ended 
tasks. The scoring process consists of a training stage and a formal scoring stage (He 
et al., 2023a). In the training stage, the first and second authors had a 3-hour meeting 
with them. They introduced assessments and rubrics to the three raters and also provided 
scored examples for deeper understanding. Then, we prepared a training dataset and ran-
domly selected 10% of students (N = 30) from the sample for their scoring practices. We 
let three raters work on the training dataset separately within a week. After they com-
pleted, we organised a 3-hour meeting with them to discuss any discrepancies. The 
raters achieved a reasonable consensus in the training stage, leading to the formal 
scoring stage. In the formal stage, we overlapped another 10% of students to check the 
inter-rater reliability and evenly assigned them the rest of the data so they could work 
individually. We used Fleiss’s kappa (Fleiss & Cohen, 1973) to measure the inter-rater 
reliability (IRR). Fleiss’s kappa is a statistical measure used to assess agreement reliability 
between more than two raters when assigning scores to several items, which fit our 
scoring purpose. We calculated the final IRRs for each task (Task 1 is 0.816; Task 2 is 
0.792; and Task 3 is 0.942), with an average of 0.84, indicating the three raters’ scores 
are consistent. The final data is reliable for further CDM analysis.

Cognitive diagnostic model

The CDM is a psychometric approach incorporating cognitive psychology to diagnose 
and evaluate students’ internal psychological processing, providing comprehensive infor-
mation about cognitive diagnosis. The core assumption is that a student’s response 
meeting the criteria in a task depends on having mastery of a specific set of latent 
skills and knowledge (i.e. cognitive attributes). By asking students to attempt to 
respond carefully to sets of well-designed tasks and then analyzing their responses, 
researchers can make detailed inferences about the attributes they have and have not 
mastered (Leighton & Gierl, 2007). Instead of producing a total score (or multiple 
scores) or a grade level, CDMs assign students into discrete subgroups based on their 
mastery of the di3erent attributes being measured in the test (Ma & de la Torre, 
2016). In doing so, CDMs provide fine-grained information about individual students’ 
proficiency profiles and the identification of latent subgroups in the targeting population. 
Therefore, to ensure the cognitive diagnosis is valid and reliable, selecting an appropriate 
CDM based on the theoretical and empirical model-data fit is critical.

To date, researchers have developed a variety of CDMs, which can be divided into two 
categories according to the parameter type. One is the reduced cognitive diagnostic 
model such as DINA (Deterministic Input, Noisy ‘And’ Gate; de La Torre, 2009), 
DINO (Deterministic Input, Noisy ‘Or’ Gate; Templin & Henson, 2006), rRUM 
(reduced Reparameterized Unified Model; Hartz, 2002), LLM (Linear Logistic Model; 
Maris, 1999), and ACDM (Additive Cognitive Diagnostic Model; de La Torre, 2011), 
which contain only single attribute parameters but not interaction parameters between 
multiple attributes. Another category is the saturated cognitive diagnostic model, such 
as the G-DINA (generalized DINA; de La Torre, 2011) model, which contains not 
only all single-attribute parameters but also multi-attribute interaction parameters. 
That is, the probability of a student’s response meeting the criteria in our rubrics is 
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a3ected by the main and interaction e3ects. In addition, according to the complexity of 
the relationship between attributes, the models can be divided into compensated, par-
tially compensated, and non-compensatory models. Simply put, the compensation 
model, such as DINO and LLM, refers to the fact that each cognitive attribute contributes 
di3erently to the correct answering item, and even if only some cognitive attributes are 
mastered, it is possible to answer the item correctly. The non-compensation model 
means that the subjects can only answer the item correctly if they have mastered all cog-
nitive attributes, such as the DINA model.

Model selection
Before reporting the results to the three RQs, we processed the model selections using 
the model fitting test (Tatsuoka, 1984). The model fitting estimation is mainly carried 
out from three aspects: test (i.e. our assessment test with three tasks), item (i.e. our 
criteria), and subjects (i.e. middle school students). The test fitting is mainly used 
to examine the overall fit of the selected model and the data to ensure the applicability 
of the selected model and the accuracy of the diagnostic classification of the subjects. 
The item fitting test examines the fit between the item and the selected model, illus-
trating the item’s quality. The subject fitting examines whether the selected model 
suits the test subjects.

We utilised the FlexCDMs platform (Tu, 2019) to determine the most appropriate CDM 
using relative fit indices such as the Akaike Information Criterion (AIC), Bayesian Infor-
mation Criterion (BIC), and Deviation. The Deviation measures the discrepancy between 
the model and reality, with a lower Deviation indicating a better fit. The AIC and BIC were 
used to assess the goodness of fit of CDM models, with a smaller value indicating a better fit 
of the data to the model (Vrieze, 2012). As indicated in Table 4, the LLM was the best- 
fitting model compared to other models such as DINA, DINO, and ACDM. We 
decided to choose the LLM also because the selected model meets our theoretical assump-
tions: (a) each cognitive attribute would contribute to the likelihood of constructing scien-
tific explanations (Zhai et al., 2022); (b) the select model incorporates logistic regression 
principles to relate the probability of a student’s response to the presence or absence of 
specific cognitive attributes. Based on our results (see Table 4), the LLM fits well to validate 
the cognitive attributes of students’ proficiency in constructing scientific explanations.

Analytic strategies
Accordingly, this study reports the results of three RQs using the outputs from the 
LLM analysis. For RQ1, we first analyzed the items using the Root Mean Square 

Table 4. Parameter comparisons in dixerent models.
Models Deviation AIC BIC

DINA 3103.43 3225.43 3440.23
DINO 3127.02 3249.02 3463.83
rRUM 2870.41 3058.41 3389.42
LLM 2782.44 2970.44 3301.46
ACDM 2958.12 3146.12 3477.13
GDM 3000.38 3158.38 3436.58
LCDM 2860.78 3204.78 3810.47
G-DINA 2672.66 3046.66 3705.17

Note. LLM is the final model used in this study.
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Error of Approximation (RMSEA) as the absolute fit index (Oliveri & von Davier, 
2011) and subject fitting using the Lz statistic index (Cui & Li, 2015). The 
RMSEA fit statistics of items examine how well each item fits within the overall 
CDM model. The Lz statistic can be used to ;ag students with response patterns 
that are highly inconsistent with their estimated attribute mastery profiles. We 
then estimated the item discrimination (Wang et al., 2018) and the reliability of cog-
nitive attributes (Templin & Bradshaw, 2013). We assessed the classification accuracy 
and consistency of the attributes, as reported by Cui et al. (2012). This is a critical 
indicator to evaluate the reliability and validity of classification results in cognitive 
diagnostic assessment.

For RQ2, we reported the probability of attribute mastery and attribute mastery pat-
terns (AMPs). An AMP explicitly represents whether the student has mastered each attri-
bute, where ‘1’ signifies mastery and ‘0’ signifies non-mastery. Based on the LLM analysis, 
we calculated the number of emerging AMPs from our sample and presented the AMPs 
with a number over 5. Regarding individual students’ cognitive diagnosis, the FlexCDMs 
platform (Tu, 2019) plotted a diagram to demonstrate a student’s AMP using the prob-
ability of mastering the five cognitive attributes. Such analyses demonstrate an in-depth 
understanding of students’ cognitive attributes and provide individual formative feed-
back for students (Tatsuoka, 2009). This study presented several diagrams of students’ 
cognitive structures with the same total score.

Regarding RQ3, we articulated the cognitive pathways based on the relationship 
between di3erent AMPs, connecting all possible relationships to form a diagram of 
potential cognitive pathways for the sampled students. Cognitive pathways refer to the 
hierarchical arrangement of AMPs, characterised by partial order relationships 
between them (Tatsuoka, 2009; Wu et al., 2021). In this study, the diagram of potential 
cognitive pathways depicts students’ gradual acquisition of the number of attributes from 
0 (none) to 5 (complete mastery). For instance, students with the AMP of 10010 have 
mastered two attributes (A1 and A4), whereas students with the AMP of 11010 have mas-
tered three attributes (A1, A2, and A4). The AMP of 11010 contains the AMP of 10010, 
so a connection is articulated from the AMP of 11010 to the AMP of 10010. This study 
articulated all potential connections between AMPs to articulate a diagram of potential 
cognitive pathways.

Results

RQ1. Psychometric properties of the assessment tasks and the associate 
cognitive attributes

Item fit statistics
Based on the LLM analysis, we estimated the fit of the items using RMSEA. A critical 
value of 0.1 was set for the RMSEA index (Oliveri & von Davier, 2011). A value of 
RMSEA less than 0.1 indicates a good fit for the item, while a value greater than 0.1 
implies a poor fit. Table 5 presents the RMSEA values of the 15 items calculated using 
the LLM model. Except for items 1.3-1 and 3.2-1, all other items showed RMSEA 
values less than 0.1, with an average RMSEA value of 0.0685, indicating a good fit of 
the items with the LLM model.
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We tested the subject fitting using the Lz statistic index (Cui & Li, 2015). A value 
greater than – 2 indicates that the subject’s response aligns well with the model. 
Results showed that 97.6% of the students’ responses fit well with the LLM model, ensur-
ing the cognitive attribute estimates are valid and reliable.

Item discrimination
Cognitive diagnostic assessment evaluates the accuracy of cognitive attributes and the 
quality of test items through item discrimination (Wang et al., 2018). Table 6 presents 
the discriminations of all 15 items, ranging from 0.279–0.999. A more considerable 
value indicates a higher discrimination. The results indicate that most items can dis-
tinguish students with di3erent attribute profiles.

Reliability of cognitive attributes
To evaluate the reliability of the cognitive attributes, we calculated the test-retest consist-
ency of the five specific attributes (A1-A5 in Table 2) based on Templin and Bradshaw’s 
(2013) approach. The results showed that the five attributes were highly reliable, with 
scores of 0.9779 (A1), 0.9686 (A2), 0.9931 (A3), 0.9805 (A4), and 0.9079 (A5), yielding 
an average reliability of 0.9656.

The classification accuracy at the attribute level for the five attributes ranged from 
0.73–0.77, which indicates that they are reliable in diagnosing the integration of con-
structing explanations with scientific ideas.

RQ2. The cognitive characteristics of middle school students’ proficiency

To answer RQ2, this section presents students’ cognitive characteristics, including attri-
bute mastery probability, AMPs, and cognitive structure analysis.

Attribute mastery probability
In terms of attribute mastery and non-mastery probabilities (See Figure 2), the students 
performed best in the attributes of A1, ‘Build an appropriate claim,’ and A5, ‘Identify pat-
terns (the similarity and di3erences) of data,’ with mastery probabilities over 75%. Their 

Table 5. RMSEA of each item.
Item RMSEA Item RMSEA Item RMSEA

1.1-1 0.0481 2.1-1 0.0464 3.1-1 0.0300
1.2-1 0.0900 2.2-1 0.0684 3.2-1 0.1100
1.2-2 0.0648 2.2-2 0.0730 3.2-2 0.0546
1.3-1 0.1025 2.3-1 0.0420 3.3-1 0.0735
1.3-2 0.0704 2.3-2 0.0886 3.3-2 0.0654

Table 6. Item discrimination.
Item Discrimination Item Discrimination Item Discrimination

1.1-1 0.279 2.1-1 0.632 3.1-1 0.450
1.2-1 0.662 2.2-1 0.943 3.2-1 0.874
1.2-2 0.975 2.2-2 0.413 3.2-2 0.447
1.3-1 0.840 2.3-1 0.999 3.3-1 0.867
1.3-2 0.938 2.3-2 0.892 3.3-2 0.973
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performance in the DCI attribute of A4, ‘apply the ideas of characteristic properties to 
identify whether a chemical reaction occurs or not,’ was moderate, with a mastery prob-
ability of about 41.63%. Performance was poor on A2, ‘Use evidence/scientific data to 
support the claim’ (39.85%), and A3, ‘Construct reasoning to justify claim with evidence.’ 
These results align with previous findings that students often struggled with fully com-
prehending how to use appropriate or suMcient evidence to support their claims 
(Sandoval, 2003; Sandoval & Millwood, 2005). Additionally, students struggled with 
reasoning and failed to adequately support their claims (Jiménez-Aleixandre et al., 2000).

Attribute Mastery Patterns
Theoretically, 32 Attribute Mastery Patterns (AMPs) should correspond to five cognitive 
attributes. However, the LLM analysis indicated that 244 students were grouped into 20 
AMPs. We grouped the AMPs based on the number of mastery attributes (see Table 7). 
Most of the students concentrated on seven AMPs (see the Bold Font in Table 7), namely 
AMPs 2, 3, 6, 14, 15, 18, and 20, with the highest two probabilities being ‘10001’ (19.26%) 
and ‘11011’ (10.25%), respectively. These AMPs indicate that the students experienced 
challenges in providing adequate evidence to support their claims and using scientific 
principles in their reasoning.

A closer examination of the total number of AMPs in Table 7 revealed that 8.61% of 
the students (AMP2, ‘10000’) were able to claim that ‘a chemical reaction had taken place’ 
due to their mastery of attribute A1 but did not master any other attributes. 19.26% of the 
students (AMP6, ‘10001’) had the potential to locate evidence for claims by analyzing 
data patterns because of their expertise in attributes A1 and A5. Another 9.84% of the 
students (AMP3, ‘00011’) thoroughly understood the core concepts of chemical reactions 
because of their mastery of attributes A4 and A5. 8.61% of the students (AMP15, ‘11001’) 

Figure 2. The mastery and non-mastery probability of the five attributes.

INTERNATIONAL JOURNAL OF SCIENCE EDUCATION 15



were able to provide suMcient evidence for claims by analyzing data patterns based on 
their mastery of attributes A1, A2, and A5. 6.56% of the students (AMP14, ‘10110’) 
could reason about claims using partial evidence, having mastered attributes A1, A3, 
and A4, but could not provide adequate evidence. 10.25% of the students (AMP18, 
‘11011’) knew how to reason about claims using evidence, rooted in their mastery of attri-
butes A1, A2, A4, and A5, but the reasoning process was not ;awless. 7.79% of the stu-
dents (AMP20, ‘11111’) had mastered all attributes and possessed complete scientific 
explanation competencies.

Cognitive structure analysis
Figure 3 presents the pentagon diagrams of the four students’ cognitive structures with 
the same total score (i.e. 10 points). Taking StudID8 as an example, the pentagon diagram 
shows the student’s probabilities of mastering the five cognitive attributes. Points close to 
the centre of the diagram indicate less mastery for the attribute and vice versa. It is clear 
that the four students obtained the same total score but exhibited varying structures of 
cognitive attributes. For instance, StuID8 is highly likely to master all attributes except 
for A3 and A4. StuID85 demonstrates mastery of attributes 1, 4, and 5 but needs help 
with attributes 2 and 3. Meanwhile, StuID192 has a near-1 mastery probability for 
attributes A1, A2, and A4 but only a superficial understanding of attribute A5. 
StuID143 exhibits mastery of attributes A1 and A4, with a probability of approximately 
0.5 for the mastery of attributes A2, A3, and A5, indicating a basic understanding but not 
complete mastery. The above exemplar analysis indicates that even if students 
obtained the identical total scores, their cognitive mastery of attributes may vary. The 
above exemplar analysis also supports using CDMs to diagnose students’ constructing 
scientific explanations, which would o3er meaningful information to teachers’ classroom 
instruction.

Table 7. The attribute mastery patterns.
Category ID AMP Frequency (N ) Percentage (%)

0 1 00000 4 1.64
1 2 10000 21 8.61
2 3 00011 24 9.84

4 01001 3 1.23
5 01010 5 2.05
6 10001 47 19.26
7 10010 11 4.51
8 10100 2 0.82
9 11000 7 2.87

3 10 00111 11 4.51
11 01011 2 0.82
12 10011 3 1.23
13 10101 2 0.82
14 10110 16 6.56
15 11001 21 8.61
16 11010 5 2.05

4 17 01111 6 2.46
18 11011 25 10.25
19 11101 10 4.10

5 20 11111 19 7.79
Note: the five-digit in the AMP column (3rd column) indicate the presence and absence of the five cognitive attributes 

(A1, A2, A3, A4, and A5). For instance, AMP3 is 00011, indicating that students with the AMP3 had mastered A4 and A5 
but not mastered A1, A2, and A3.
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RQ3. The cognitive pathways of middle school students’ proficiency

We articulated a diagram (see Figure 4) of potential cognitive pathways that depict stu-
dents’ gradual acquisition of the number of attributes from none (AMP1, 00000) to com-
plete mastery (AMP20, 11111). As mentioned above, the connections between AMPs are 
determined by the inclusion relationships between AMPs (Tatsuoka, 2009; Wu et al., 
2021). However, some AMPs did not satisfy the inclusion relationship, so the corre-
sponding AMPs were excluded from the diagram. This study found 20 AMPs from 
the LLM analysis of 244 students (see Table 7). However, we included 13 AMPs in the 
diagram (see Figure 4). For example, we excluded AMP3 (00011) because the AMP 
could not include the AMP2 (10000). Following this approach, we articulated the poten-
tial cognitive pathways that students may follow to develop. Of these cognitive pathways, 
a cognitive pathway, followed by a sequence of A1 → A5 → A2 → A4 → A3, contains 
most students (N = 141, 97.9%). The results suggest that when students develop their 
proficiency in constructing scientific explanations, they might follow the cognitive 
pathway that they can make an appropriate claim (A1), identify the di3erences and simi-
larities of data (A5), use data patterns as evidence (A2), apply the relevant core ideas 
(A4), and construct a reasoning process to justify claim with evidence and core ideas 
(A3). The primary cognitive pathway may provide a potential developmental process 
for advancing students’ constructing scientific explanations, which may inform teachers’ 
classroom instructions. In addition, the other cognitive pathways (e.g. A1 → A4 → A2 → 
A5 → A3) also provide valuable information about students’ potential cognitive 
processes.

Discussions and conclusions

This study utilised a CDM approach to analyze students’ proficiency in constructing 
scientific explanations integrating chemical reactions and patterns. We employed well- 
validated assessment tasks (NGSA, 2024) that required students to construct scientific 
explanations using claims, evidence, and reasoning (McNeill et al., 2006) to make 
sense of phenomena related to chemical reactions. The validity and reliability of the 
assessment tasks and cognitive attributes were evaluated using the CDM approach (de 
la Torre & Minchen, 2014). The identified cognitive attributes highlight the critical 

Figure 3. Comparison of dixerent cognitive structures with the same total score.
Note. A1 refers to cognitive attribute 1, and so on and so forth. Cognitive structure refers to the probability of mastering 
each cognitive attribute for four students with the same total score.
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components for students to construct scientific explanations in a content-specific domain 
from an integrated perspective. This extends previous studies focusing on developing 
practice-oriented attributes (Hu et al., 2021; Zhai et al., 2022). Our results indicate 
that the assessment tasks e3ectively diagnose middle school students’ cognitive chal-
lenges in constructing content-specific scientific explanations. Based on the mastery of 
the cognitive attributes, the sample was divided into 20 groups, each representing a 
specific cognitive pathway of students’ proficiency in constructing scientific explanations 
that integrate chemical reactions and patterns. We found that most students had chal-
lenges providing ‘suMcient evidence’ and making ‘evidence-based reasoning.’ The 
diagram of potential cognitive pathways reveals that students’ proficiency in constructing 
scientific explanations that integrate chemical reactions and patterns might exhibit mul-
tiple pathways, which can support teachers in clearly understanding the students’ profi-
ciency and provide teachers with insights for providing targeted feedback and support in 
classroom.

Unfolding complex construct through CDM approach

The CDM approach was utilised to assess the e3ectiveness of adopted assessment tasks in 
capturing students’ proficiency in constructing scientific explanations that integrate the 
core ideas of chemical reactions and patterns. The study also delves into the cognitive 

Figure 4. The cognitive pathways of students’ constructing scientific explanations.
Note: The five-digit in the boxes is representing an AMP. The number in the parentheses is the frequency of the AMP. For 
instance, 10000 (21) is AMP2 (see Table 7) and contains 21 students.
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process, provides insight into students’ cognitive levels, and portrays potential multiple 
cognitive pathways. The adopted assessment tasks are designed to measure students’ 
integrated proficiency, which involves di3erent components working together to solve 
real-world problems or comprehend phenomena and requires advanced cognitive pro-
cesses. Compared to previous studies of only focusing on science practices (e.g. Hu 
et al., 2021; Zhai et al., 2022), this study diagnosed students’ proficiency in constructing 
scientific explanations integrated with chemical reactions and patterns. Therefore, the 
study addressed a challenge that was previously explored in prior research by uncovering 
complex latent cognitive attributes and processes.

Compared to traditional IRT and CTT models, the CDMs provide a more nuanced 
understanding of complex constructs using constructed assessment tasks (de La Torre, 
2009), particularly regarding complex usable knowledge constructs (Harris et al., 2019; 
He et al., 2022). This study also enhances the applications of CDMs, providing a compre-
hensive set of fine-grained skills or attributes when evaluating students’ mastery in a 
domain-specific area (Carpenter & Moser, 2020; Zhan et al., 2018). The CDM approach 
empirically uncovered students’ cognitive proficiency in constructing scientific expla-
nations and o3ered pedagogical insights by presenting the variety of students’ cognitive 
attribute patterns. As such, it o3ers a deeper understanding of the cognitive attributes of 
constructing scientific explanations in a content-specific domain.

Furthermore, this study empirically validates using NGSA tasks (NGSA, 2024) in 
other educational contexts (i.e. China). Previous studies, such as those by Harris et al. 
(2019), have only discussed the design of these tasks and have yet to provide empirical 
evidence of the task quality. Our CDM analysis suggested that most items have good dis-
crimination, demonstrating the reliability and validity of these assessment tasks in 
measuring students’ integrated proficiency in constructing scientific explanations in a 
content-specific domain to make sense of phenomena or solve real-world problems.

Validating cognitive attributes of complex constructs

This study advances the field by developing and validating five cognitive attributes crucial 
in constructing scientific explanations, revealing the underlying cognitive processes 
involved in a content-specific domain. The reliability of these cognitive attributes has 
been confirmed through high test-retest agreement (average of 0.97), classification accu-
racy (0.77), and agreement (0.73). These validated attributes provide a means of diagnos-
ing students’ proficiency in constructing scientific explanations and identifying potential 
learning obstacles by examining individual attribute mastery. They also o3er a valuable 
tool for teachers to select instructional strategies and assessments, targeting the develop-
ment of some specific attributes.

This study goes beyond previous works such as Hu et al. (2021) and Zhai et al. (2022) 
by incorporating the CDM approach to evaluate practice-based and content-based attri-
butes in constructing scientific explanations. To achieve this, we categorised the cognitive 
attributes into three groups: disciplinary core ideas (DCI, i.e. chemical reactions), science 
and engineering practice (SEP, i.e. constructing explanations), and crosscutting concepts 
(CCC, i.e. patterns). The SEP attributes align with McNeill et al.’s (2006) CER frame-
work, which emphasises making claims, citing evidence, and reasoning with evidence. 
The DCI attribute is specific to chemical reactions, while the CCC attribute is crucial 
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as identifying patterns in data that can be used as evidence to support the created claim in 
a scientific explanation. Our results revealed students’ proficiency in making claims, pro-
viding evidence, and reasoning with evidence but also provided insights into their cog-
nitive mastery in chemical reactions and patterns. These findings highlight the critical 
aspects of diagnosing students’ constructing scientific explanations in a content- 
specific domain.

Moreover, our results indicated that nearly all students mastered at least one cognitive 
attribute. The highest mastery rates could be found in ‘making correct claims’ and ‘iden-
tifying patterns in data.’ However, students were struggling with ‘providing evidence’ and 
‘reasoning based on evidence,’ with only a 27.80% mastery rate in reasoning. Our 
findings align with existing studies on scientific explanation and scientific literacy at a 
coarse-grained level (McNeill et al., 2006; Yao & Guo, 2018; Zhan et al., 2019), indicating 
that students often struggle with the suMciency and adequacy of evidence and using core 
ideas to support the reasoning for claims. The relationship between students’ mastery of 
disciplinary core ideas and the construction of complete scientific explanations remains 
to be determined. Studies such as Zhan et al. (2019), which applied CDM analysis on 
PISA2015 science test data, found that content knowledge has the most significant 
in;uence on scientific literacy. Hu et al. (2021) also found that students’ ability to con-
struct scientific explanations is topic-specific, emphasising the connection between 
content knowledge and explanation construction.

Visualising latent cognitive pathways of complex constructs

Through the CDM approach, this study visualises latent cognitive pathways required for 
constructing explanations of chemical reactions and identifying patterns. These cognitive 
pathways revealed the various trajectories in which students develop their integrated 
scientific explanation proficiencies. Our study found 20 di3erent patterns among the 
244 students, with the most common pattern (i.e. AMP6, 10001) accounting for approxi-
mately 19% of the students. These students could make a claim and provide one piece of 
evidence. The evidence in the tasks was in the form of data or information, and students 
had to determine if factors like mass, odour, and density could be used as characteristic 
properties to identify substances. However, most students could only provide one piece 
of evidence. Approximately 10% of the students had mastered the disciplinary core ideas 
but were unable to apply them in constructing scientific explanations. They either failed 
to connect the evidence to the claims despite having all the necessary evidence or could 
not use their knowledge to solve the problem. This highlights the importance of devel-
oping usable knowledge, which our assessment task can e3ectively diagnose (Harris 
et al., 2019; Li, 2021).

Applying CDMs in our adopted assessment tasks identified various AMPs, o3ering 
insight into students’ cognitive characteristics for constructing scientific explanations. 
Analysis of those AMPs also informs a potential primary cognitive pathway, outlining 
the cognitive development process of students’ scientific explanation competencies in 
a content-specific situation. Our findings indicate that several cognitive pathways 
cover most students in our sample. This primary learning pathway is characterised by 
students first making an appropriate claim, then seeking evidence based on information, 
and finally using evidence to be reasoning while mastering chemical ideas, providing a 
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valuable understanding of the cognitive process of students constructing scientific 
explanations.

In science education, using CDMs to delineate cognitive pathways of complex con-
structs still needs to be explored. The diagram of cognitive pathways provides an 
approach to articulate students’ potential cognitive process, which may re;ect learners’ 
mastery sequence of a specific group of students in a particular context but not re;ect 
the content sequence that is described in a curriculum standard. This di3erentiation 
between learner and content logic sets the boundary for a learner-centered approach 
(Confrey et al., 2014). The cognitive pathways and individual students’ diagnosis infor-
mation may guide science teachers in selecting and adjusting their instructional 
materials, classroom strategies, and assessment activities.

It should be noted that there is a crucial relationship between our cognitive pathways 
and the well-studied ‘learning progression’ in science education (e.g. Songer et al., 2009). 
Presenting cognitive pathways is a cognitive perspective of learning progressions. Our 
study aligns with the existing work on the learning progressions of scientific explanations 
(e.g. Gotwals et al., 2012; Yao & Guo, 2018), which captures students’ learning progress in 
constructing scientific explanations. While there is no empirical evidence about the 
relationship between our cognitive pathways and existing research on learning pro-
gression, future studies must incorporate students’ cognitive pathways with learning pro-
gressions and investigate teachers’ instructional feedback in supporting students with 
diverse cognitive pathways. In addition, teachers may use the developed cognitive path-
ways in di3erent ways to guide their classroom instruction, depending on their pro-
fessional status or student backgrounds.

Limitations

Building upon a CDM approach, this study investigated the cognitive process by which 
students construct scientific explanations by integrating chemical reactions and patterns. 
The inclusion relationships between AMPs were used to outline potential cognitive path-
ways, re;ecting students’ cognitive development. Our findings contribute to ongoing 
research on validating assessments and provide a cognitive perspective on the diagnosis 
of students’ constructing scientific explanations. Moreover, the findings of this study 
provide a new perspective to understand students’ cognitions towards three-dimensional 
learning of integrating DCIs, SEPs, and CCCs to make sense of phenomena or solve real- 
world problems. This study also proposed a guided approach to develop cognitive attri-
butes and apply CDMs to investigate the cognitive features of three-dimensional learn-
ing, which may inform researchers in other content areas or other educational contexts.

While our study sheds light on essential insights, it is critical to acknowledge the limit-
ations and areas for further improvement. One limitation is using convenience sampling, 
which may limit the generalizability of our results to a larger population. While they were 
deemed adequate, this study only utilised three assessment tasks. Some items with med-
iocre fit statistics (i.e. items 1.3-1 and 3.2-1) may challenge the reliability and validity of 
the tasks for diagnostic purposes. While the CDM models we used are more applicable to 
binary criteria, we also acknowledge that using binary criteria in our rubrics may be con-
strained to capture the cognitive attributes for holistically diagnosing students’ profi-
ciency. We encourage future research investigating whether di3erent types of rubrics 
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(He et al., 2023b) would impact the CDM estimations of cognitive attributes on such 
complex constructs. For the CDMs, this study did not account for the interaction 
between cognitive attributes when using the LLM, which may have a3ected the esti-
mations of the cognitive attributes and the potential cognitive pathways. We acknowl-
edged that the percentages of the cognitive attributes and the potential cognitive 
pathways may vary by other subject contents within the same science practices (e.g. con-
structing scientific explanations) or the same subject content with di3erent practices (e.g. 
designing solutions). Future research should consider these limitations and areas for 
improvement to provide a more comprehensive understanding of cognitive pathways 
in our study’s context. Despite these limitations, our study makes a valuable contribution 
to science education. This study’s cognitive patterns and pathways would provide mean-
ingful information to help teachers adjust their instructional strategies better to support 
students’ cognitive development in science classrooms.
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Appendix A

Figure A1. Task 2-Layers in a test tube.
Note: The task was modified from Layers in a test tube (ID#: 019-03-c02) in the NGSA project (2024); Access to the original 
task via the link: https://ngss-assessment.portal.concord.org/resources/202/layers-in-a-test-tube-id-019-03-c02.
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Figure A2. Task 3-Mixing clear liquids.
Note: The task was modified from Mixing clear liquids (ID#: 018.03-c02) in the NGSA project (2024); Access to the original 
task via the link: https://ngss-assessment.portal.concord.org/resources/201/mixing-clear-liquids-id-018-03-c02.
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