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ABSTRACT

Scientific explanation has been widely recognised as one of the
primary proficiencies in global science education. From research
and practical perspectives, investigating the cognitive process of
constructing scientific explanations by integrating core ideas is
essential to make sense of phenomena or solve problems. This
study applied the cognitive diagnosis modeling (CDM) approach to
diagnose students’ cognitive patterns of constructing scientific
explanations by integrating chemical reactions and patterns. We
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localised  three  well-designed  assessment  tasks  and
correspondingly developed five cognitive attributes. Responses
from 244 Grade 9 students in two middle schools were collected,
scored, and analyzed. Results show that the five developed
cognitive attributes are reliable and effective in identifying
students’ cognitive challenges in  constructing scientific
explanations in a content-specific domain. In addition, we
articulated students’ potential cognitive process of constructing
scientific explanations. We identified a primary cognitive pathway
that students may follow: making correct claims, finding sufficient
evidence based on data patterns, and providing scientific
principles for the reasoning process. The cognitive diagnosis results
could be used to guide teachers in selecting teaching materials
and strategies and arranging lesson sequences to support the
development of students’ scientific explanations by integrating
chemical reactions and patterns.

Introduction

Scientific explanations require students to provide written or oral responses to explain
how or why a phenomenon occurs with supporting evidence and scientific knowledge
(Gotwals & Songer, 2013; McNeill et al., 2006; Yeo & Gilbert, 2014). Constructing scien-
tific explanations goes beyond descriptions of natural patterns to support students in
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providing plausible explanations for real-world phenomena by seeking evidence and
responding to the ideas or knowledge claims in science (Driver et al., 2000; Sandoval
& Millwood, 2005; Schwarz et al., 2017). From an educational reform perspective, ‘con-
structing scientific explanations’ is widely recognised as one of the primary scientific
proficiencies that all students should obtain in national science standards across
countries such as the U.S. Next Generation Science Standards (NGSS, the Lead States,
2013) and the Chinese Compulsory Education Science Curriculum Standards (He
et al., 2021, 2022; Ministry of Education, P. R. China, 2022). In the NGSS, students
deepen their understanding of disciplinary core ideas (DClIs) and expand the connections
with crosscutting concepts (CCCs) through participating in science and engineering
practices (SEPs), such as constructing scientific explanations (the NGSS Lead states,
2013). Similarly, the Chinese Compulsory Education Science Curriculum Standards
(He et al., 2021, 2022; Ministry of Education, P. R. China, 2022) also emphasise that ‘stu-
dents should learn to collect evidence and make evidence-based reasoning when con-
ducting scientific inquiry.” From a research perspective, supporting and developing
students’ proficiency in constructing scientific explanations has been investigated glob-
ally in the field of science education in the past two decades (e.g. McNeill et al., 2006;
Sevian & Gonsalves, 2008; Tang, 2016; Yeo & Gilbert, 2014). So far, a substantial
amount of research has explored to understand the framework of constructing scientific
explanations (e.g. Sandoval, 2003; Yao & Guo, 2018), investigate the instructional strat-
egies to support students in constructing scientific explanations (e.g. McNeill et al., 2006),
and examine the learning progressions in constructing scientific explanations (e.g.
Songer & Gotwals, 2012). However, challenges remain in uncovering students’ cognitive
processes when they construct scientific explanations to explain real-world phenomena
or solve problems, particularly how to integrate specific DCIs and CCCs in the cognitive
process. It is unknown about the cognitive sequence of how students apply multiple
dimensions (e.g. DCIs, CCCs, and SEPs) in their sensemaking or problem-solving
process. More importantly, it is essential to diagnose where do students encounter a chal-
lenge cognitively when they construct a scientific explanation to address the real-world
situations. Therefore, the field of science education calls for a deeper understanding of
the cognitive process involved in constructing scientific explanations (Braaten & Wind-
schitl, 2011; Osborne & Patterson, 2011).

Unpacking the cognitive features of constructing scientific explanations would provide
teachers and students with diagnostic, elaborative, and concrete information to further
support student scientific proficiency. More empirical studies are needed to unfold the
underlying students’ cognitive process of constructing scientific explanations when they
make sense of phenomena or solve problems. So far, researchers have employed a new
measurement approach, cognitive diagnostic modeling (CDM; de la Torre & Minchen,
2014), to diagnose complex constructs, such as problem-solving (Li et al., 2020) and scien-
tific explanations (Hu et al., 2021). CDMs are restricted latent class models in which the
latent variables or attributes are discrete, usually dichotomous (de la Torre & Minchen,
2014). The existing studies mainly used two measurement approaches (e.g. item response
theory and classical testing theory) to validate assessments of students’ scientific
explanations and report evaluating students’ performances in constructing scientific expla-
nations (e.g. Gotwals & Songer, 2013). However, constructing scientific explanations is a
complex activity that cannot be performed without incorporating disciplinary core ideas
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(e.g. chemical reactions) and crosscutting concepts (e.g. patterns), especially in explaining
real-world phenomena (Gotwals & Songer, 2013; NGSS, 2013; Schwarz et al., 2017). This
argument is also evident by reviewing previous studies (e.g. Chang et al., 2014; Cheng &
Gilbert, 2017; Cooper et al., 2016; Talanquer, 2013; Weinrich & Talanquer, 2016; Yan &
Talanquer, 2015) of investigating students’ reasoning and visualisation of chemical reac-
tions in describing, explaining, and predicting chemical phenomena.

This study explores the emerging features of middle school students’ cognitive process
when they construct scientific explanations with the DCI of chemical reactions and the
CCC of patterns in the context of Chinese science classrooms. We conducted this study
in China because the new Chinese science standards share the same vision with the
NGSS, emphasising the importance of constructing scientific explanations by integrating
DCIs and CCCs. In this study, we adopted well-designed assessment tasks for assessing
students’ constructing scientific explanations with the integration of chemical reactions
and patterns. We analyzed students’ responses to the tasks, developed cognitive attri-
butes, and applied the CDM approach (Ma & de la Torre, 2016) to explore the essential
cognitive features and emerging cognitive processes of middle school students’ con-
structing scientific explanations. We anticipate this study will provide a deeper and
more comprehensive understanding of students’ science proficiency in integrating scien-
tific explanations with DCIs and CCCs, which would further support student science
learning and teacher classroom instruction. Our study’s approach would provide
research insights for science education researchers to explore the latent cognitive
process of students’ complex science learning.

Research questions
We explore three research questions (RQs):

RQI. What are the validity and reliability of the assessment tasks and the associated cogni-
tive attributes for diagnosing middle school students’ proficiency in constructing scientific
explanations with chemical reactions and patterns?

RQ2. What are the cognitive characteristics of middle school students’ proficiency in con-
structing scientific explanations with chemical reactions and patterns?

RQ3. What are the emergent cognitive pathways of middle school students’ proficiency in
constructing scientific explanations with chemical reactions and patterns?

Literature review

This section reviews the relevant literature on scientific explanations and CDMs to contex-
tualise our study. We further demonstrate how the previous research informs our design of
the CDM approach to investigate the underlying cognitive attributes and potential cogni-
tive pathways of constructing scientific explanations in content-specific domains.

Scientific explanations

Scientific explanation is considered an essential learning goal in science education to
promote conceptual understanding and reasoning about mechanisms (Strike &
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Posner, 1985). It is also a crucial component of scientific inquiry reforms that help stu-
dents develop and support their explanations through their investigations (Driver et al.,
2000; Duschl, 2000).

Constructing scientific explanations is a complex process involving multiple cognitive
elements (McNeill et al., 2006). To better understand and support this complex process,
researchers have approached the construct of scientific explanations from various per-
spectives, such as philosophical views (e.g. Hempel & Oppenheim, 1948), theoretical
and empirical evidence (e.g. Braaten & Windschitl, 2011; McNeill et al., 2006; Songer
et al, 2009), or educational standards documents (e.g. Ministry of Education,
P. R. China, 2022; NGSS Lead States, 2013; NRC, 2012). Efforts have been made to
address the challenge of supporting students in constructing scientific explanations
through exploring scientific explanation frameworks (Braaten & Windschitl, 2011;
NRC, 2012; Osborne & Patterson, 2011; Sandoval, 2003). For instance, McNeill et al.
(2006) introduced the claim-evidence-reasoning (CER) model to help students ‘justify
their claims using appropriate evidence and scientific principles.” This model aligns
with the nature of constructing scientific explanations, emphasising the explicit appli-
cation of theories to reveal the causal relationships and underlying mechanisms of a
specific situation or phenomenon (Braaten & Windschitl, 2011; NRC, 2012; Osborne
& Patterson, 2011).

The emphasis in scientific explanation is applying students’ knowledge to solve real-
world problems rather than just memorising information to answer questions (Li et al.,
2021; NRC, 2012; Pellegrino & Hilton, 2012). A scientific explanation comprises three
elements: claim, evidence, and reasoning (McNeill et al, 2006; Songer & Gotwals,
2012). A claim is a testable statement about a phenomenon; evidence is the data that sup-
ports the claim, and reasoning is the justification that shows why the evidence supports
the claim using scientific principles (Gotwals et al.,, 2012). The nature of constructing
scientific explanations is creating a claim or statement and making a reasoning process
to show how evidence and scientific principles can be used to support a proposed
claim. The structure of constructing scientific explanations requires higher demands
for assessment. A handful of studies have applied large-scale assessment data to
measure students’ scientific explanation proficiencies in content-general domains (Hu
et al,, 2021; Kim et al,, 2015; Zhan et al., 2019). This study addresses the gap in previous
studies that aims to diagnose student scientific explanations in content-specific domains
that incorporate the specific disciplinary core ideas and crosscutting concepts, such as
chemical reactions and patterns.

Cognitive diagnostic assessment

Constructing scientific explanations is an essential science practices for students to apply
what they have learned to solve real-world problems, not just memorise information to
answer questions (McNeill et al., 2006). Despite its benefits, constructing scientific expla-
nations is challenging for students and teachers (He et al., 2023a), requiring teacher-
appropriate instructional support. However, teachers may need diagnostic information
on student performance on assessment tasks to inform their instructional decisions
(He et al., 2024). So far, a handful of studies have applied Item Response Theory
(IRT) approaches to assess student proficiency in constructing scientific explanations
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(e.g. He et al.,, 2023b; Songer & Gotwals, 2012; Yao & Guo, 2018), ranking a student’
achievement against other students on a single proficiency continuum. The IRT-based
assessments fail to provide diagnostic information for offering specific student feedback
and informing teacher instructions. Compared to IRT, CDMs identify fine-grained cog-
nitive attributes based on the measurement constructs (e.g. scientific explanations) and
classify students’ proficiencies based on their mastery of skills and attributes of interest
(Ma & de la Torre, 2016). Notably, using the CDM approach in analyzing classroom
assessments would offer deeper insights into the cognitive process of constructing scien-
tific explanations and provide more detailed diagnostic information to inform teachers’
instructional decisions and support students’ development of scientific explanation
proficiency.

Theoretical considerations
CDMs focus on identifying and diagnosing the underlying cognitive attributes required
to complete specific tasks (e.g. de La Torre, 2009; DiBello & Stout, 2007; Tatsuoka, 2009).
CDMs can bridge item response theory (IRT) and cognitive psychology by creating prob-
abilistic models that reflect the cognitive processes involved in task performance
(Mislevy, 1996). The CDM approach aligns with the vision of converting experts’ cogni-
tive models of a domain into probabilistic models for learners’ observed outcomes.
CDM:s were developed in response to Mislevy’s (1994) call for more robust integration
between cognitive science and measurement practices, significantly informed and sup-
ported by Knowledge Space Theory (KST, Doignon & Falmagne, 1999). KST conceptu-
alises learners’ knowledge as discrete states within a structured system, facilitating
predicting observable responses based on a learner’s current knowledge state. KST’s rep-
resentations of learning as discrete and structured nature of knowledge, enabling CDMs
to diagnose and assess cognitive attributes and their interdependencies more effectively.
This integration enhances the precision and diagnostic power of psychometric models,
aligning with the goals of CDMs to reflect complex cognitive processes accurately.
Thus, KST serves as a crucial cognitive science theory that underpins and enriches the
theoretical consideration of CDMs. By leveraging KST’s detailed representation of
knowledge structures and cognitive pathways, CDMs can develop more accurate and
practical diagnostic assessments, aligning with Mislevy’s (1994) call for models that faith-
fully reflect the knowledge, skills, and abilities they measure and the practical demands of
their use.

Applications of CDMs in science assessment

Applying CDMs in assessing students’ scientific proficiency is a growing area in science
education. Cognitive diagnostic assessment (CDA) offers a comprehensive approach to
diagnosing students’ learning by presenting attribute mastery patterns (AMPs) as their
cognitive features. A series of attribute mastery patterns can be ordered sequentially to
represent students’ potential cognitive pathways toward a specific learning goal using
corresponding assessments (e.g. Hu et al., 2021; Wu et al., 2021). Studies using large-
scale datasets, such as PISA or TIMSS, increasingly examine students’ scientific literacy
through cognitive diagnostic assessments (e.g. Hu et al., 2021; Kim et al., 2015; Zhan
et al., 2019). The cognitive attributes in these studies are either content-oriented (e.g.
thermochemistry, Chen et al., 2017) or practice-oriented (e.g. scientific explanations,
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Hu et al., 2021; scientific argumentation, Zhai et al., 2022). For instance, Hu et al. (2021)
applied CDMs to diagnose elementary students’ scientific explanations in six countries
(China, the United States, Singapore, Australia, the United Kingdom, and Russia).
Their study developed general cognitive attributes of constructing scientific explanations,
such as observing and describing the phenomenon, obtaining and analyzing data, using
facts, constructing reflections, systematic use of theory, and scientific reasoning. A typical
cognitive pathway in their study was found to describe the phenomenon, construct
reflections, scientific reasoning, obtain data, use facts, analyze data, and observe the
phenomenon. Hu et al. (2021) also reflected that elementary students’ ability to construct
scientific explanations relates to their understanding of content knowledge (e.g. energy
and force and motion). Their cognitive attributes of constructing scientific explanations
are domain-general without consideration of specific DCIs and CCCs.

Therefore, this study highlights that students’ proficiency in constructing scientific
explanations must be distinct from the specific DCIs and CCCs when students make
sense of phenomena or solve problems. To address this, this study introduces cognitive
attributes focusing on three-dimensional constructs (NGSS Lead States, 2013), including
the SEP of constructing scientific explanations, the DCI of chemical reactions, and the
CCC of patterns. We also explore the potential cognitive pathways using the three-
dimensional cognitive attributes.

Methods

To address the research questions, we employed an evidence-centered design (ECD;
Mislevy & Haertel, 2006) approach to create assessment tasks for diagnosing students’
proficiency in constructing scientific explanations that integrate chemical reactions
and patterns (Harris et al., 2019). We then assessed the psychometric properties of
these tasks. Subsequently, we identified cognitive attributes for constructing scientific
explanations incorporating chemical reactions and patterns. Finally, we validated these
cognitive attributes using the CDM approach and explored potential cognitive pathways
for students’ constructing scientific explanations involving chemical reactions and
patterns.

Instrumentation

Assessment tasks

We adopted three assessment tasks from the Next Generation Science Assessment
project to assess middle school students’ constructing scientific explanations with the
integration of chemical reactions and patterns (NGSA, 2024). All three tasks were devel-
oped using an ECD design process (Mislevy & Haertel, 2006), including unpacking three
dimensions from NGSS, articulating learning performance goals, determining evidence
statements and task design features, and developing tasks and rubrics (Harris et al.,
2019). Such a systematic design process ensured the tasks’ content validity. In addition,
during the iterative design process, several rounds of internal and external expert reviews
ensured the tasks’ face validity. So far, these tasks have been widely used in science class-
rooms across countries. For this study, we translated and modified them by replacing the
original names with Chinese names and preserving their key features, such as task
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scenarios and data information. We further modified the prompts in the three tasks and
provided entire scaffolding for constructing scientific explanations, such as claims, evi-
dence, and reasoning (McNeill et al., 2006). We conducted this way because Chinese stu-
dents have yet to experience practice-based instruction in everyday science classrooms.
All three tasks were structured using the same three prompts (see Figure 1 and Appendix
A). The three prompts ask students to make an appropriate claim (prompt 1), cite
sufficient evidence that would support their claims (prompt 2), and connect the claim
and evidence with the DCI of chemical reactions and the CCC of patterns in the reason-
ing process (prompt 3). Two graduate assistants and three collaborative teachers
reviewed the tasks. They provided feedback on the appropriateness of language used

Xiao Fan experimented using ammonia and hydrogen chloride. She poured the
hydrogen chloride and ammonia solutions into different beakers. She could tell by
the strong smell from each beaker that ammonia gas was coming from one
and hydrogen chloride gas from the other. When she placed the two beakers close
together, she observed a white cloud of tiny particles form where the gases mixed
. This is shown in the video: Mixing ammonia and hydrogen chloride gas.
She asked a lab student to test and calculate the density of ammonia gas, hydrogen
chloride gas, and the white substance. The data are in Table 1.

Table 1. Data of substances before and after mixing

Gas Appearance Odor Density
Ammonia Colorless gas Strong smell 0.77 g/em’
Hydrogen Chloride Colorless gas Strong smell 1.49 g/em’
White substance (formed after two White fume Odorless 1.53 g/em’
gases mixed)

Use the data in Table 1 to support your answers to the three questions below.

Question #1
Write a claim relating ammonia and hydrogen chloride before mixing and the
white substance formed after mixing to state if a chemical reaction occurred.

Question #2
Show evidence to support your claim.

Question #3
Give reason(s) that the evidence you use supports your claim.

Figure 1. An example of constructing scientific explanations tasks (Task 1).

Note: the task was modified from Tiffany’s strong smelling beakers (ID#: 080-02-c02) in the NGSA project (2024). Access the
original task via the link: https://ngss-assessment.portal.concord.org/resources/200/tiffany-s-strong-smelling-beakers-id-
080-02-c02
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in the task scenarios and the clarity and explicitness of the three prompts, which ensured
the face validity of the three tasks in the Chinese version. Figure 1 shows the three assess-
ment tasks (Task 1). Also, see the other two tasks in Appendix A.

Scoring rubrics

We developed analytic rubrics for the three tasks for scoring students’ written responses
to constructing scientific explanations (He et al., 2023b). For diagnostic purpose, we
created five rubric criteria to score students’ responses to the three prompts. We
divided all aspects of evidence and reasoning into single criteria (see the five aspects in
Table 1). The binary score approach (1 or 0) was used to score each specific item
based on the criteria in the rubrics. If the student’s response meets the criterion, we
scored 1; otherwise, we scored 0. Instead of using a holistic score, we decided to use a
set of binary sub-scores for two reasons. First, a set of binary sub-scores can tease the
criteria in detail, offering specific and sufficient information about diagnosing students’
proficiency (He et al., 2023b). Second, we adopted the binary scoring approaches from
previous CDM studies (e.g. Hu et al., 2021; Wu et al,, 2021; Zhai et al., 2022), which
would be more applicable to CDM models. Table 1 provides a scoring example. Based
on the five criteria in the analytic rubric, we scored the student’s response and provided
the points as (1, 0, 1, 0, 1). The student missed the points on Items 1.2-1 and 1.3-1
because the response needed to include information about the odour data and
whether the odour is a property.

Cognitive attributes

Cognitive attributes play a crucial role in cognitive diagnostic assessment. Cognitive attri-
butes are invisible cognitive states hidden behind assessment tasks that are difficult to
observe directly. Students’ mastery can be judged by their responses to specific items in
assessment tests. Therefore, the quality of attributes is critical and directly determines the
effectiveness of cognitive diagnosis (Wu et al., 2020). We unpacked the five attributes
(see Table 2) based on the NGSS (NGSS Lead States, 2013), the Chinese new science

Table 1. The rubric and scoring examples for Task 1.

Student Response:

1. Yes, a chemical reaction occurs when mixing ammonia and hydrogen chloride together.

2. The density of ammonia, hydrogen chloride, and white substances is different, which indicates that white
substances are new substances.

3. | used density because it is a property that can be used to identify whether substances are the same or not.
A new substance produced indicates a chemical reaction occurs.

Questions Scoring Criteria Scores
items (0/1)
1.1 1.1-1 The student states that a chemical reaction occurs. 1
12 1.2-1 The student describes the pattern (comparing before and after) in odour data as 0
evidence to support the claim.
1.2-2 The student describes the pattern (comparing before and after) in density data as 1
evidence to support the claim.
13 1.3-1 The student indicates that odour is a characteristic property used to identify 0

substances, and a change in odour indicates that a new substance has been
produced, that is, a chemical reaction has occurred.

13-2 The student indicates that density is a characteristic property used to identify 1
substances, and a change in density indicates that a new substance has been
produced, that is, a chemical reaction has occurred.
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Table 2. The cognitive attributes and their descriptions

Code Attribute Description

Al Build an appropriate claim Students can build an appropriate claim to explain

(SEP-Claim) the phenomenon or real-world problem (e.g.
whether a chemical reaction occurs).

A2 Use evidence/scientific data to support the  Students can use sufficient data (changes in density,

(SEP-Evidence) claim solubility, and/or odour) as evidence to support
their claims.

A3 Construct reasoning to justify claim with Students can construct a reasoning process that

(SEP-Reasoning) evidence connects the data of characteristic properties (e.g.

density, odour, and solubility) to the claim (e.g.
whether a chemical reaction occurs).

A4 Apply the ideas of characteristic properties  Students can apply the ideas of characteristic
(DCI-Chemical to identify whether a chemical reaction properties of substances (e.g. density, odour,
Reaction) occurs or not solubility) and changes in properties to identify

new substances and determine whether a chemical
reaction occurs.
A5 Identify the patterns (the similarities and Students can identify the similarities and differences
(CCC-Patterns) differences) of data in data on the properties of substances such as
density and solubility.

standards (Ministry of Education, P. R. China, 2022), and the relevant literature of scientific
explanations (McNeill et al., 2006; Songer & Gotwals, 2012). These five cognitive attributes
include three SEP attributes related to constructing science explanations: SEP-Claim (A1),
‘Build an appropriate claim,” SEP-Evidence (A2), ‘Use evidence/scientific data to support
the claim,” and SEP-Reasoning (A3) ‘Construct reasoning to justify claim with evidence’);
one DCI attribute: DCI-Chemical Reactions (A4) ‘Apply the ideas of characteristic properties
to identify whether a chemical reaction occurs’); and one CCC attribute: CCC-Patterns (A5)
‘Identify the patterns of data similarities and differences. These cognitive attributes were
designed by unpacking the ‘Chemical Reactions’ (using characteristic properties of sub-
stances to identify new substances and determining whether a chemical reaction occurs),
the subcomponents of the ‘Constructing scientific explanations’ practices based on the
Claim-Evidence-Reasoning framework (McNeill et al., 2006; Songer & Gotwals, 2012),
and unpack the crosscutting concept ‘Patterns’ (similarities and differences in data). Table
2 displays the cognitive attributes and their descriptions, which are expressed as dichotomous
categories that reflect the examinee’s latent cognitive state.

Q-matrix

The Q matrix is a two-way specification table that links student responses with their
cognitive states by indicating the specific attributes in each item (Wu et al., 2021). The
Q-matrix table provides a straightforward representation of the relationship between
items, categories, and attributes (Tu et al., 2019). Therefore, we created a Q matrix for
the three assessment tasks, mapping the items to the attributes (See Table 3). The
matrix assigns a ‘1’ to items that measure the attribute and a ‘0’ to those that do not.
For instance, item 1.1-1 only contains Al (SEP-Claim), given that it is designed to
assess a student’s claim (which is also reflected as a cognitive attribute). For another
example, item 1.3-1 contains four attributes (Al, A2, A3, and A4) because the item
requires students to connect evidence and their claims using appropriate core ideas.
We had external experts review the attribute assignments before we administrated our
tasks.
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Table 3. Q Matrix.

Attributes

Al A2 A3 A4 A5
Task Item (SEP-Claim) (SEP-Evidence) (SEP-Reasoning) (DCI-Chemical Reaction) (CCC-Patterns)

Task 1 1.1-1 1
1.2-1
1.2-2
1.3-1
1.3-2
Task 2 2.1-1
2.2-1
2.2-2
2.3-1
23-2
Task 3 3.1-1
3.2-1
3.2-2
3.3-1
3.3-2

(=)
o
—_
o

_\_._\_._\_._\_._\_._\_._\_.
e B B O m O
——mO0OO0OO0O—-—mO0OO0OO—==0O0
N Y = JE Yy O NN )
C0O—- 2000 = =000 ==

Participants and data collection

Two hundred and fifty Grade 9 students from two middle schools participated in this
study. One school (N =132) is in the northern region of mainland China, and another
school (N=118) is located in the southern part of mainland China. Even though the
two schools are from different provinces, their students come from middle-class families
in urban areas and have a wide range of academic achievement. After removing four
incomplete data, we obtained the final analytic sample of 244 students’ responses on
our assessment test. 47.6% of the final sample were female students, whereas 52.4%
were male. As mentioned above, like the NGSS, constructing scientific explanations is
one of the essential science practices in the new Chinese science curriculum standards
(He et al., 2021, 2022; Ministry of Education, P. R. China, 2017). Despite the practice-
based science being recently introduced to China’s science classrooms, the students
who participated in our study had already experienced it because their teachers had
implemented our CER-based curriculum in their classrooms before. The three tasks’
assessment test (Chinese version) was administered using paper-pencil format.
Because the primary purpose of this study was validating the cognitive attributes for diag-
nosing students’ proficiency in constructing scientific explanations, we administered the
test after students had completed their chemistry curriculum at the end of the middle
school level. Forty-five minutes was allocated for students in a typical class period,
sufficient for all students to complete the assessment test. We explained the purpose of
this study to the students and their teachers before we collected their responses on our
assessment test. Informed consent was obtained from all participants involved in the
study. Their personal information was confidential and anonymous.

Scoring

We recruited three graduate research assistants who obtained a bachelor’s degree in
chemistry to score students’ responses to the three tasks. They were enrolled in a full-
time Master’s chemistry teacher preparation programme at a national teacher education
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university in China. Participating in our research project, they had sufficient experience
designing assessments, creating rubrics, and scoring students’ responses on open-ended
tasks. The scoring process consists of a training stage and a formal scoring stage (He
et al., 2023a). In the training stage, the first and second authors had a 3-hour meeting
with them. They introduced assessments and rubrics to the three raters and also provided
scored examples for deeper understanding. Then, we prepared a training dataset and ran-
domly selected 10% of students (N = 30) from the sample for their scoring practices. We
let three raters work on the training dataset separately within a week. After they com-
pleted, we organised a 3-hour meeting with them to discuss any discrepancies. The
raters achieved a reasonable consensus in the training stage, leading to the formal
scoring stage. In the formal stage, we overlapped another 10% of students to check the
inter-rater reliability and evenly assigned them the rest of the data so they could work
individually. We used Fleiss’s kappa (Fleiss & Cohen, 1973) to measure the inter-rater
reliability (IRR). Fleiss’s kappa is a statistical measure used to assess agreement reliability
between more than two raters when assigning scores to several items, which fit our
scoring purpose. We calculated the final IRRs for each task (Task 1 is 0.816; Task 2 is
0.792; and Task 3 is 0.942), with an average of 0.84, indicating the three raters’ scores
are consistent. The final data is reliable for further CDM analysis.

Cognitive diagnostic model

The CDM is a psychometric approach incorporating cognitive psychology to diagnose
and evaluate students’ internal psychological processing, providing comprehensive infor-
mation about cognitive diagnosis. The core assumption is that a student’s response
meeting the criteria in a task depends on having mastery of a specific set of latent
skills and knowledge (i.e. cognitive attributes). By asking students to attempt to
respond carefully to sets of well-designed tasks and then analyzing their responses,
researchers can make detailed inferences about the attributes they have and have not
mastered (Leighton & Gierl, 2007). Instead of producing a total score (or multiple
scores) or a grade level, CDMs assign students into discrete subgroups based on their
mastery of the different attributes being measured in the test (Ma & de la Torre,
2016). In doing so, CDMs provide fine-grained information about individual students’
proficiency profiles and the identification of latent subgroups in the targeting population.
Therefore, to ensure the cognitive diagnosis is valid and reliable, selecting an appropriate
CDM based on the theoretical and empirical model-data fit is critical.

To date, researchers have developed a variety of CDMs, which can be divided into two
categories according to the parameter type. One is the reduced cognitive diagnostic
model such as DINA (Deterministic Input, Noisy ‘And’ Gate; de La Torre, 2009),
DINO (Deterministic Input, Noisy ‘Or’ Gate; Templin & Henson, 2006), rRUM
(reduced Reparameterized Unified Model; Hartz, 2002), LLM (Linear Logistic Model;
Maris, 1999), and ACDM (Additive Cognitive Diagnostic Model; de La Torre, 2011),
which contain only single attribute parameters but not interaction parameters between
multiple attributes. Another category is the saturated cognitive diagnostic model, such
as the G-DINA (generalized DINA; de La Torre, 2011) model, which contains not
only all single-attribute parameters but also multi-attribute interaction parameters.
That is, the probability of a student’s response meeting the criteria in our rubrics is
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affected by the main and interaction effects. In addition, according to the complexity of
the relationship between attributes, the models can be divided into compensated, par-
tially compensated, and non-compensatory models. Simply put, the compensation
model, such as DINO and LLM, refers to the fact that each cognitive attribute contributes
differently to the correct answering item, and even if only some cognitive attributes are
mastered, it is possible to answer the item correctly. The non-compensation model
means that the subjects can only answer the item correctly if they have mastered all cog-
nitive attributes, such as the DINA model.

Model selection

Before reporting the results to the three RQs, we processed the model selections using
the model fitting test (Tatsuoka, 1984). The model fitting estimation is mainly carried
out from three aspects: test (i.e. our assessment test with three tasks), item (i.e. our
criteria), and subjects (i.e. middle school students). The test fitting is mainly used
to examine the overall fit of the selected model and the data to ensure the applicability
of the selected model and the accuracy of the diagnostic classification of the subjects.
The item fitting test examines the fit between the item and the selected model, illus-
trating the item’s quality. The subject fitting examines whether the selected model
suits the test subjects.

We utilised the FlexCDMs platform (Tu, 2019) to determine the most appropriate CDM
using relative fit indices such as the Akaike Information Criterion (AIC), Bayesian Infor-
mation Criterion (BIC), and Deviation. The Deviation measures the discrepancy between
the model and reality, with a lower Deviation indicating a better fit. The AIC and BIC were
used to assess the goodness of fit of CDM models, with a smaller value indicating a better fit
of the data to the model (Vrieze, 2012). As indicated in Table 4, the LLM was the best-
fitting model compared to other models such as DINA, DINO, and ACDM. We
decided to choose the LLM also because the selected model meets our theoretical assump-
tions: (a) each cognitive attribute would contribute to the likelihood of constructing scien-
tific explanations (Zhai et al., 2022); (b) the select model incorporates logistic regression
principles to relate the probability of a student’s response to the presence or absence of
specific cognitive attributes. Based on our results (see Table 4), the LLM fits well to validate
the cognitive attributes of students’ proficiency in constructing scientific explanations.

Analytic strategies
Accordingly, this study reports the results of three RQs using the outputs from the
LLM analysis. For RQI, we first analyzed the items using the Root Mean Square

Table 4. Parameter comparisons in different models.

Models Deviation AIC BIC

DINA 3103.43 3225.43 3440.23
DINO 3127.02 3249.02 3463.83
rRUM 2870.41 3058.41 3389.42
LLM 2782.44 2970.44 3301.46
ACDM 2958.12 3146.12 347713
GDM 3000.38 3158.38 3436.58
LCDM 2860.78 3204.78 3810.47
G-DINA 2672.66 3046.66 3705.17

Note. LLM is the final model used in this study.
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Error of Approximation (RMSEA) as the absolute fit index (Oliveri & von Davier,
2011) and subject fitting using the L, statistic index (Cui & Li, 2015). The
RMSEA fit statistics of items examine how well each item fits within the overall
CDM model. The L, statistic can be used to flag students with response patterns
that are highly inconsistent with their estimated attribute mastery profiles. We
then estimated the item discrimination (Wang et al., 2018) and the reliability of cog-
nitive attributes (Templin & Bradshaw, 2013). We assessed the classification accuracy
and consistency of the attributes, as reported by Cui et al. (2012). This is a critical
indicator to evaluate the reliability and validity of classification results in cognitive
diagnostic assessment.

For RQ2, we reported the probability of attribute mastery and attribute mastery pat-
terns (AMPs). An AMP explicitly represents whether the student has mastered each attri-
bute, where ‘1’ signifies mastery and ‘0’ signifies non-mastery. Based on the LLM analysis,
we calculated the number of emerging AMPs from our sample and presented the AMPs
with a number over 5. Regarding individual students’” cognitive diagnosis, the FlexCDMs
platform (Tu, 2019) plotted a diagram to demonstrate a student’s AMP using the prob-
ability of mastering the five cognitive attributes. Such analyses demonstrate an in-depth
understanding of students’ cognitive attributes and provide individual formative feed-
back for students (Tatsuoka, 2009). This study presented several diagrams of students’
cognitive structures with the same total score.

Regarding RQ3, we articulated the cognitive pathways based on the relationship
between different AMPs, connecting all possible relationships to form a diagram of
potential cognitive pathways for the sampled students. Cognitive pathways refer to the
hierarchical arrangement of AMPs, characterised by partial order relationships
between them (Tatsuoka, 2009; Wu et al,, 2021). In this study, the diagram of potential
cognitive pathways depicts students’ gradual acquisition of the number of attributes from
0 (none) to 5 (complete mastery). For instance, students with the AMP of 10010 have
mastered two attributes (A1 and A4), whereas students with the AMP of 11010 have mas-
tered three attributes (A1, A2, and A4). The AMP of 11010 contains the AMP of 10010,
so a connection is articulated from the AMP of 11010 to the AMP of 10010. This study
articulated all potential connections between AMPs to articulate a diagram of potential
cognitive pathways.

Results

RQ1. Psychometric properties of the assessment tasks and the associate
cognitive attributes

Item fit statistics

Based on the LLM analysis, we estimated the fit of the items using RMSEA. A critical
value of 0.1 was set for the RMSEA index (Oliveri & von Davier, 2011). A value of
RMSEA less than 0.1 indicates a good fit for the item, while a value greater than 0.1
implies a poor fit. Table 5 presents the RMSEA values of the 15 items calculated using
the LLM model. Except for items 1.3-1 and 3.2-1, all other items showed RMSEA
values less than 0.1, with an average RMSEA value of 0.0685, indicating a good fit of
the items with the LLM model.
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Table 5. RMSEA of each item.

Item RMSEA Item RMSEA ltem RMSEA
1.1-1 0.0481 2.1-1 0.0464 3.1-1 0.0300
1.2-1 0.0900 2.2-1 0.0684 3.2-1 0.1100
1.2-2 0.0648 2.2-2 0.0730 3.2-2 0.0546
1.3-1 0.1025 2.3-1 0.0420 3.3-1 0.0735
13-2 0.0704 2.3-2 0.0886 3.3-2 0.0654

We tested the subject fitting using the L, statistic index (Cui & Li, 2015). A value
greater than - 2 indicates that the subject’s response aligns well with the model.
Results showed that 97.6% of the students’ responses fit well with the LLM model, ensur-
ing the cognitive attribute estimates are valid and reliable.

Item discrimination

Cognitive diagnostic assessment evaluates the accuracy of cognitive attributes and the
quality of test items through item discrimination (Wang et al., 2018). Table 6 presents
the discriminations of all 15 items, ranging from 0.279-0.999. A more considerable
value indicates a higher discrimination. The results indicate that most items can dis-
tinguish students with different attribute profiles.

Reliability of cognitive attributes
To evaluate the reliability of the cognitive attributes, we calculated the test-retest consist-
ency of the five specific attributes (A1-A5 in Table 2) based on Templin and Bradshaw’s
(2013) approach. The results showed that the five attributes were highly reliable, with
scores of 0.9779 (A1), 0.9686 (A2), 0.9931 (A3), 0.9805 (A4), and 0.9079 (A5), yielding
an average reliability of 0.9656.

The classification accuracy at the attribute level for the five attributes ranged from
0.73-0.77, which indicates that they are reliable in diagnosing the integration of con-
structing explanations with scientific ideas.

RQ2. The cognitive characteristics of middle school students’ proficiency

To answer RQ2, this section presents students’ cognitive characteristics, including attri-
bute mastery probability, AMPs, and cognitive structure analysis.

Attribute mastery probability

In terms of attribute mastery and non-mastery probabilities (See Figure 2), the students
performed best in the attributes of A1, ‘Build an appropriate claim,” and A5, ‘Identify pat-
terns (the similarity and differences) of data,” with mastery probabilities over 75%. Their

Table 6. Item discrimination.

ltem Discrimination ltem Discrimination Iltem Discrimination
1.1-1 0.279 2.1-1 0.632 3.1-1 0.450
1.2-1 0.662 2.2-1 0.943 3.2-1 0.874
1.2-2 0.975 2.2-2 0413 3.2-2 0.447
1.3-1 0.840 2.3-1 0.999 3.3-1 0.867

13-2 0.938 2.3-2 0.892 3.3-2 0.973
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Figure 2. The mastery and non-mastery probability of the five attributes.

performance in the DCI attribute of A4, ‘apply the ideas of characteristic properties to
identify whether a chemical reaction occurs or not,” was moderate, with a mastery prob-
ability of about 41.63%. Performance was poor on A2, ‘Use evidence/scientific data to
support the claim’ (39.85%), and A3, ‘Construct reasoning to justify claim with evidence.’
These results align with previous findings that students often struggled with fully com-
prehending how to use appropriate or sufficient evidence to support their claims
(Sandoval, 2003; Sandoval & Millwood, 2005). Additionally, students struggled with
reasoning and failed to adequately support their claims (Jiménez-Aleixandre et al., 2000).

Attribute Mastery Patterns

Theoretically, 32 Attribute Mastery Patterns (AMPs) should correspond to five cognitive
attributes. However, the LLM analysis indicated that 244 students were grouped into 20
AMPs. We grouped the AMPs based on the number of mastery attributes (see Table 7).
Most of the students concentrated on seven AMPs (see the Bold Font in Table 7), namely
AMPs 2, 3, 6, 14, 15, 18, and 20, with the highest two probabilities being ‘10001’ (19.26%)
and ‘11011° (10.25%), respectively. These AMPs indicate that the students experienced
challenges in providing adequate evidence to support their claims and using scientific
principles in their reasoning.

A closer examination of the total number of AMPs in Table 7 revealed that 8.61% of
the students (AMP2, ‘10000’) were able to claim that ‘a chemical reaction had taken place’
due to their mastery of attribute Al but did not master any other attributes. 19.26% of the
students (AMP6, 10001°) had the potential to locate evidence for claims by analyzing
data patterns because of their expertise in attributes Al and A5. Another 9.84% of the
students (AMP3, ‘00011°) thoroughly understood the core concepts of chemical reactions
because of their mastery of attributes A4 and A5. 8.61% of the students (AMP15, ‘11001”)
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Table 7. The attribute mastery patterns.

Category ID AMP Frequency (N) Percentage (%)
0 1 00000 4 1.64
1 2 10000 21 8.61
2 3 00011 24 9.84
4 01001 3 1.23
5 01010 5 2.05
6 10001 47 19.26
7 10010 1 4.51
8 10100 2 0.82
9 11000 7 2.87
3 10 00111 1 4.51
11 01011 2 0.82
12 10011 3 1.23
13 10101 2 0.82
14 10110 16 6.56
15 11001 21 8.61
16 11010 5 2.05
4 17 01111 6 246
18 11011 25 10.25
19 11101 10 4.10
5 20 11111 19 7.79

Note: the five-digit in the AMP column (3rd column) indicate the presence and absence of the five cognitive attributes
(A1, A2, A3, A4, and A5). For instance, AMP3 is 00011, indicating that students with the AMP3 had mastered A4 and A5
but not mastered A1, A2, and A3.

were able to provide sufficient evidence for claims by analyzing data patterns based on
their mastery of attributes Al, A2, and A5. 6.56% of the students (AMP14, ‘10110’
could reason about claims using partial evidence, having mastered attributes Al, A3,
and A4, but could not provide adequate evidence. 10.25% of the students (AMPIS,
‘11011°) knew how to reason about claims using evidence, rooted in their mastery of attri-
butes Al, A2, A4, and A5, but the reasoning process was not flawless. 7.79% of the stu-
dents (AMP20, ‘11111°) had mastered all attributes and possessed complete scientific
explanation competencies.

Cognitive structure analysis

Figure 3 presents the pentagon diagrams of the four students’ cognitive structures with
the same total score (i.e. 10 points). Taking StudID8 as an example, the pentagon diagram
shows the student’s probabilities of mastering the five cognitive attributes. Points close to
the centre of the diagram indicate less mastery for the attribute and vice versa. It is clear
that the four students obtained the same total score but exhibited varying structures of
cognitive attributes. For instance, StulD8 is highly likely to master all attributes except
for A3 and A4. StulD85 demonstrates mastery of attributes 1, 4, and 5 but needs help
with attributes 2 and 3. Meanwhile, StuID192 has a near-1 mastery probability for
attributes Al, A2, and A4 but only a superficial understanding of attribute AS5.
StuID143 exhibits mastery of attributes Al and A4, with a probability of approximately
0.5 for the mastery of attributes A2, A3, and A5, indicating a basic understanding but not
complete mastery. The above exemplar analysis indicates that even if students
obtained the identical total scores, their cognitive mastery of attributes may vary. The
above exemplar analysis also supports using CDMs to diagnose students’ constructing
scientific explanations, which would offer meaningful information to teachers’ classroom
instruction.
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Figure 3. Comparison of different cognitive structures with the same total score.

Note. A1 refers to cognitive attribute 1, and so on and so forth. Cognitive structure refers to the probability of mastering
each cognitive attribute for four students with the same total score.

RQ3. The cognitive pathways of middle school students’ proficiency

We articulated a diagram (see Figure 4) of potential cognitive pathways that depict stu-
dents’ gradual acquisition of the number of attributes from none (AMP1, 00000) to com-
plete mastery (AMP20, 11111). As mentioned above, the connections between AMPs are
determined by the inclusion relationships between AMPs (Tatsuoka, 2009; Wu et al.,
2021). However, some AMPs did not satisfy the inclusion relationship, so the corre-
sponding AMPs were excluded from the diagram. This study found 20 AMPs from
the LLM analysis of 244 students (see Table 7). However, we included 13 AMPs in the
diagram (see Figure 4). For example, we excluded AMP3 (00011) because the AMP
could not include the AMP2 (10000). Following this approach, we articulated the poten-
tial cognitive pathways that students may follow to develop. Of these cognitive pathways,
a cognitive pathway, followed by a sequence of A1 — A5 — A2 — A4 — A3, contains
most students (N =141, 97.9%). The results suggest that when students develop their
proficiency in constructing scientific explanations, they might follow the cognitive
pathway that they can make an appropriate claim (A1), identify the differences and simi-
larities of data (A5), use data patterns as evidence (A2), apply the relevant core ideas
(A4), and construct a reasoning process to justify claim with evidence and core ideas
(A3). The primary cognitive pathway may provide a potential developmental process
for advancing students’ constructing scientific explanations, which may inform teachers’
classroom instructions. In addition, the other cognitive pathways (e.g. Al - A4 - A2 —
A5 — A3) also provide valuable information about students’ potential cognitive
processes.

Discussions and conclusions

This study utilised a CDM approach to analyze students’ proficiency in constructing
scientific explanations integrating chemical reactions and patterns. We employed well-
validated assessment tasks (NGSA, 2024) that required students to construct scientific
explanations using claims, evidence, and reasoning (McNeill et al., 2006) to make
sense of phenomena related to chemical reactions. The validity and reliability of the
assessment tasks and cognitive attributes were evaluated using the CDM approach (de
la Torre & Minchen, 2014). The identified cognitive attributes highlight the critical
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Figure 4. The cognitive pathways of students’ constructing scientific explanations.

Note: The five-digit in the boxes is representing an AMP. The number in the parentheses is the frequency of the AMP. For
instance, 10000 (21) is AMP2 (see Table 7) and contains 21 students.

components for students to construct scientific explanations in a content-specific domain
from an integrated perspective. This extends previous studies focusing on developing
practice-oriented attributes (Hu et al., 2021; Zhai et al., 2022). Our results indicate
that the assessment tasks effectively diagnose middle school students’ cognitive chal-
lenges in constructing content-specific scientific explanations. Based on the mastery of
the cognitive attributes, the sample was divided into 20 groups, each representing a
specific cognitive pathway of students’ proficiency in constructing scientific explanations
that integrate chemical reactions and patterns. We found that most students had chal-
lenges providing ‘sufficient evidence’ and making ‘evidence-based reasoning.’ The
diagram of potential cognitive pathways reveals that students’ proficiency in constructing
scientific explanations that integrate chemical reactions and patterns might exhibit mul-
tiple pathways, which can support teachers in clearly understanding the students’ profi-
ciency and provide teachers with insights for providing targeted feedback and support in
classroom.

Unfolding complex construct through CDM approach

The CDM approach was utilised to assess the effectiveness of adopted assessment tasks in
capturing students’ proficiency in constructing scientific explanations that integrate the
core ideas of chemical reactions and patterns. The study also delves into the cognitive
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process, provides insight into students’ cognitive levels, and portrays potential multiple
cognitive pathways. The adopted assessment tasks are designed to measure students’
integrated proficiency, which involves different components working together to solve
real-world problems or comprehend phenomena and requires advanced cognitive pro-
cesses. Compared to previous studies of only focusing on science practices (e.g. Hu
et al., 2021; Zhai et al., 2022), this study diagnosed students’ proficiency in constructing
scientific explanations integrated with chemical reactions and patterns. Therefore, the
study addressed a challenge that was previously explored in prior research by uncovering
complex latent cognitive attributes and processes.

Compared to traditional IRT and CTT models, the CDMs provide a more nuanced
understanding of complex constructs using constructed assessment tasks (de La Torre,
2009), particularly regarding complex usable knowledge constructs (Harris et al., 2019;
He et al,, 2022). This study also enhances the applications of CDMs, providing a compre-
hensive set of fine-grained skills or attributes when evaluating students’ mastery in a
domain-specific area (Carpenter & Moser, 2020; Zhan et al., 2018). The CDM approach
empirically uncovered students’ cognitive proficiency in constructing scientific expla-
nations and offered pedagogical insights by presenting the variety of students’ cognitive
attribute patterns. As such, it offers a deeper understanding of the cognitive attributes of
constructing scientific explanations in a content-specific domain.

Furthermore, this study empirically validates using NGSA tasks (NGSA, 2024) in
other educational contexts (i.e. China). Previous studies, such as those by Harris et al.
(2019), have only discussed the design of these tasks and have yet to provide empirical
evidence of the task quality. Our CDM analysis suggested that most items have good dis-
crimination, demonstrating the reliability and validity of these assessment tasks in
measuring students’ integrated proficiency in constructing scientific explanations in a
content-specific domain to make sense of phenomena or solve real-world problems.

Validating cognitive attributes of complex constructs

This study advances the field by developing and validating five cognitive attributes crucial
in constructing scientific explanations, revealing the underlying cognitive processes
involved in a content-specific domain. The reliability of these cognitive attributes has
been confirmed through high test-retest agreement (average of 0.97), classification accu-
racy (0.77), and agreement (0.73). These validated attributes provide a means of diagnos-
ing students’ proficiency in constructing scientific explanations and identifying potential
learning obstacles by examining individual attribute mastery. They also offer a valuable
tool for teachers to select instructional strategies and assessments, targeting the develop-
ment of some specific attributes.

This study goes beyond previous works such as Hu et al. (2021) and Zhai et al. (2022)
by incorporating the CDM approach to evaluate practice-based and content-based attri-
butes in constructing scientific explanations. To achieve this, we categorised the cognitive
attributes into three groups: disciplinary core ideas (DCI, i.e. chemical reactions), science
and engineering practice (SEP, i.e. constructing explanations), and crosscutting concepts
(CCG, i.e. patterns). The SEP attributes align with McNeill et al.’s (2006) CER frame-
work, which emphasises making claims, citing evidence, and reasoning with evidence.
The DCI attribute is specific to chemical reactions, while the CCC attribute is crucial
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as identifying patterns in data that can be used as evidence to support the created claim in
a scientific explanation. Our results revealed students’ proficiency in making claims, pro-
viding evidence, and reasoning with evidence but also provided insights into their cog-
nitive mastery in chemical reactions and patterns. These findings highlight the critical
aspects of diagnosing students’ constructing scientific explanations in a content-
specific domain.

Moreover, our results indicated that nearly all students mastered at least one cognitive
attribute. The highest mastery rates could be found in ‘making correct claims’ and ‘iden-
tifying patterns in data.” However, students were struggling with ‘providing evidence’ and
‘reasoning based on evidence,” with only a 27.80% mastery rate in reasoning. Our
findings align with existing studies on scientific explanation and scientific literacy at a
coarse-grained level (McNeill et al., 2006; Yao & Guo, 2018; Zhan et al., 2019), indicating
that students often struggle with the sufficiency and adequacy of evidence and using core
ideas to support the reasoning for claims. The relationship between students’ mastery of
disciplinary core ideas and the construction of complete scientific explanations remains
to be determined. Studies such as Zhan et al. (2019), which applied CDM analysis on
PISA2015 science test data, found that content knowledge has the most significant
influence on scientific literacy. Hu et al. (2021) also found that students’ ability to con-
struct scientific explanations is topic-specific, emphasising the connection between
content knowledge and explanation construction.

Visualising latent cognitive pathways of complex constructs

Through the CDM approach, this study visualises latent cognitive pathways required for
constructing explanations of chemical reactions and identifying patterns. These cognitive
pathways revealed the various trajectories in which students develop their integrated
scientific explanation proficiencies. Our study found 20 different patterns among the
244 students, with the most common pattern (i.e. AMP6, 10001) accounting for approxi-
mately 19% of the students. These students could make a claim and provide one piece of
evidence. The evidence in the tasks was in the form of data or information, and students
had to determine if factors like mass, odour, and density could be used as characteristic
properties to identify substances. However, most students could only provide one piece
of evidence. Approximately 10% of the students had mastered the disciplinary core ideas
but were unable to apply them in constructing scientific explanations. They either failed
to connect the evidence to the claims despite having all the necessary evidence or could
not use their knowledge to solve the problem. This highlights the importance of devel-
oping usable knowledge, which our assessment task can effectively diagnose (Harris
et al,, 2019; Li, 2021).

Applying CDMs in our adopted assessment tasks identified various AMPs, offering
insight into students’ cognitive characteristics for constructing scientific explanations.
Analysis of those AMPs also informs a potential primary cognitive pathway, outlining
the cognitive development process of students’ scientific explanation competencies in
a content-specific situation. Our findings indicate that several cognitive pathways
cover most students in our sample. This primary learning pathway is characterised by
students first making an appropriate claim, then seeking evidence based on information,
and finally using evidence to be reasoning while mastering chemical ideas, providing a
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valuable understanding of the cognitive process of students constructing scientific
explanations.

In science education, using CDMs to delineate cognitive pathways of complex con-
structs still needs to be explored. The diagram of cognitive pathways provides an
approach to articulate students’ potential cognitive process, which may reflect learners’
mastery sequence of a specific group of students in a particular context but not reflect
the content sequence that is described in a curriculum standard. This differentiation
between learner and content logic sets the boundary for a learner-centered approach
(Confrey et al., 2014). The cognitive pathways and individual students’ diagnosis infor-
mation may guide science teachers in selecting and adjusting their instructional
materials, classroom strategies, and assessment activities.

It should be noted that there is a crucial relationship between our cognitive pathways
and the well-studied ‘learning progression’ in science education (e.g. Songer et al., 2009).
Presenting cognitive pathways is a cognitive perspective of learning progressions. Our
study aligns with the existing work on the learning progressions of scientific explanations
(e.g. Gotwals et al., 2012; Yao & Guo, 2018), which captures students’ learning progress in
constructing scientific explanations. While there is no empirical evidence about the
relationship between our cognitive pathways and existing research on learning pro-
gression, future studies must incorporate students’ cognitive pathways with learning pro-
gressions and investigate teachers’ instructional feedback in supporting students with
diverse cognitive pathways. In addition, teachers may use the developed cognitive path-
ways in different ways to guide their classroom instruction, depending on their pro-
fessional status or student backgrounds.

Limitations

Building upon a CDM approach, this study investigated the cognitive process by which
students construct scientific explanations by integrating chemical reactions and patterns.
The inclusion relationships between AMPs were used to outline potential cognitive path-
ways, reflecting students’ cognitive development. Our findings contribute to ongoing
research on validating assessments and provide a cognitive perspective on the diagnosis
of students’ constructing scientific explanations. Moreover, the findings of this study
provide a new perspective to understand students’ cognitions towards three-dimensional
learning of integrating DCIs, SEPs, and CCCs to make sense of phenomena or solve real-
world problems. This study also proposed a guided approach to develop cognitive attri-
butes and apply CDMs to investigate the cognitive features of three-dimensional learn-
ing, which may inform researchers in other content areas or other educational contexts.

While our study sheds light on essential insights, it is critical to acknowledge the limit-
ations and areas for further improvement. One limitation is using convenience sampling,
which may limit the generalizability of our results to a larger population. While they were
deemed adequate, this study only utilised three assessment tasks. Some items with med-
iocre fit statistics (i.e. items 1.3-1 and 3.2-1) may challenge the reliability and validity of
the tasks for diagnostic purposes. While the CDM models we used are more applicable to
binary criteria, we also acknowledge that using binary criteria in our rubrics may be con-
strained to capture the cognitive attributes for holistically diagnosing students’ profi-
ciency. We encourage future research investigating whether different types of rubrics
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(He et al,, 2023b) would impact the CDM estimations of cognitive attributes on such
complex constructs. For the CDMs, this study did not account for the interaction
between cognitive attributes when using the LLM, which may have affected the esti-
mations of the cognitive attributes and the potential cognitive pathways. We acknowl-
edged that the percentages of the cognitive attributes and the potential cognitive
pathways may vary by other subject contents within the same science practices (e.g. con-
structing scientific explanations) or the same subject content with different practices (e.g.
designing solutions). Future research should consider these limitations and areas for
improvement to provide a more comprehensive understanding of cognitive pathways
in our study’s context. Despite these limitations, our study makes a valuable contribution
to science education. This study’s cognitive patterns and pathways would provide mean-
ingful information to help teachers adjust their instructional strategies better to support
students’ cognitive development in science classrooms.

Ethics Statement

All procedures performed in studies involving human participants were in accordance
with

the ethical standards of the institutional research committee of Northeast Normal
University. Informed consent was obtained from all individual participants involved in
the study.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This study is supported by the National Science Foundation [grant number DRL-2446701]. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the National Science Foundation.

Conflict of Interest Statement

The authors declare that they have no competing interests.

ORCID

Peng He © http://orcid.org/0000-0002-2877-0117
Yu Zhang © http://orcid.org/0009-0008-0180-6555
Tingting Li © http://orcid.org/0000-0002-5692-2042
Jie Yang (© http://orcid.org/0000-0003-3185-0588

References

Braaten, M., & Windschitl, M. (2011). Working toward a stronger conceptualization of scientific
explanation for science education. Science Education, 95(4), 639-669. https://doi.org/10.1002/
sce.20449


http://orcid.org/0000-0002-2877-0117
http://orcid.org/0009-0008-0180-6555
http://orcid.org/0000-0002-5692-2042
http://orcid.org/0000-0003-3185-0588
https://doi.org/10.1002/sce.20449
https://doi.org/10.1002/sce.20449

INTERNATIONAL JOURNAL OF SCIENCE EDUCATION e 23

Carpenter, T. P., & Moser, J. M. (2020). The development of addition and subtraction problem-
solving skills. In T. P. Carpenter, J]. M. Moser, & T. A. Romberg. (Eds.), Addition, and subtrac-
tion (pp. 9-24). Routledge.

Chang, H. Y., Quintana, C., & Krajcik, J. (2014). Using drawing technology to assess students’ visu-
alizations of chemical reaction processes. Journal of Science Education and Technology, 23(3),
355-369. https://doi.org/10.1007/s10956-013-9468-2

Chen, F., Zhang, S., Guo, Y., & Xin, T. (2017). Applying the rule space model to develop a learning
progression for thermochemistry. Research in Science Education, 47(6), 1357-1378. https://doi.
0rg/10.1007/s11165-016-9553-7

Cheng, M. M. W, & Gilbert, J. K. (2017). Modelling students’ visualisation of chemical reaction.
International Journal of Science Education, 39(9), 1173-1193. https://doi.org/10.1080/09500693.
2017.1319989

Confrey, J., Maloney, A. P., Nguyen, K. H., & Rupp, A. A. (2014). Equipartitioning, a foundation
for rational number reasoning: Elucidation of a learning trajectory. In A. P. Maloney, J. Confrey,
& K. H. Nguyen (Eds.), Learning over time: Learning trajectories in mathematics education (pp.
61-96). IAP Information Age Publishing.

Cooper, M. M., Kouyoumdjian, H., & Underwood, S. M. (2016). Investigating students’ reasoning
about acid-base reactions. Journal of Chemical Education, 93(10), 1703-1712. https://doi.org/
10.1021/acs.jchemed.6b00417

Cui, Y., Gierl, M. J., & Chang, H. H. (2012). Estimating classification consistency and accuracy for
cognitive diagnostic assessment. Journal of Educational Measurement, 49(1), 19-38. https://doi.
org/10.1111/j.1745-3984.2011.00158.x

Cui, Y., & Li, J. (2015). Evaluating person fit for cognitive diagnostic assessment. Applied
Psychological Measurement, 39(3), 223-238. https://doi.org/10.1177/0146621614557272

de La Torre, J. (2009). DINA model and parameter estimation: A didactic. Journal of Educational
and Behavioral Statistics, 34(1), 115-130. https://doi.org/10.3102/1076998607309474

de La Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76(2), 179-199.
https://doi.org/10.1007/s11336-011-9207-7

de la Torre, J., & Minchen, N. (2014). Cognitively diagnostic assessments and the cognitive diag-
nosis model framework. Psicologia Educativa, 20(2), 89-97. https://doi.org/10.1016/j.pse.2014.
11.001

DiBello, L. V., & Stout, W. (2007). Guest editors’ introduction and overview: IRT-based cognitive
diagnostic models and related methods. Journal of Educational Measurement, 44(4), 285-291.
hitps://doi.org/10.1111/j.1745-3984.2007.00039.x

Doignon, J.-P., & Falmagne, J.-C. (1999). Knowledge spaces. Springer-Verlag.

Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in
classrooms. Science Education, 84(3), 287-312. https://doi.org/10.1002/(SICI)1098-237X
(200005)84:3<287::AID-SCE1>3.0.CO;2-A

Duschl, R. A. (2000). Using and abusing: Relating history of science to learning and teaching
science.

Fleiss, J. L., & Cohen, J. (1973). The equivalence of weighted kappa and the intraclass correlation
coeflicient as measures of reliability. Educational and Psychological Measurement, 33(3), 613—
619. https://doi.org/10.1177/001316447303300309

Gotwals, A. W., & Songer, N. B. (2013). Validity evidence for learning progression-based assess-
ment items that fuse core disciplinary ideas and science practices. Journal of Research in Science
Teaching, 50(5), 597-626. https://doi.org/10.1002/tea.21083

Gotwals, A. W, Songer, N. B., & Bullard, L. (2012). Assessing students’ progressing abilities to
construct scientific explanations. In A.C. Alonzo & A.W. Gotwals (Eds.), Learning progressions
in science (pp. 183-210). Brill Sense.

Harris, C. J., Krajcik, J. S., Pellegrino, J. W., & DeBarger, A. H. (2019). Designing knowledge-In-
use assessments to promote deeper learning. Educational Measurement: Issues and Practice., 38
(2), 53-67. https://doi.org/10.1111/emip.12253


https://doi.org/10.1007/s10956-013-9468-2
https://doi.org/10.1007/s11165-016-9553-7
https://doi.org/10.1007/s11165-016-9553-7
https://doi.org/10.1080/09500693.2017.1319989
https://doi.org/10.1080/09500693.2017.1319989
https://doi.org/10.1021/acs.jchemed.6b00417
https://doi.org/10.1021/acs.jchemed.6b00417
https://doi.org/10.1111/j.1745-3984.2011.00158.x
https://doi.org/10.1111/j.1745-3984.2011.00158.x
https://doi.org/10.1177/0146621614557272
https://doi.org/10.3102/1076998607309474
https://doi.org/10.1007/s11336-011-9207-7
https://doi.org/10.1016/j.pse.2014.11.001
https://doi.org/10.1016/j.pse.2014.11.001
https://doi.org/10.1111/j.1745-3984.2007.00039.x
https://doi.org/10.1002/(SICI)1098-237X(200005)84:3%3C287::AID-SCE1%3E3.0.CO;2-A
https://doi.org/10.1002/(SICI)1098-237X(200005)84:3%3C287::AID-SCE1%3E3.0.CO;2-A
https://doi.org/10.1177/001316447303300309
https://doi.org/10.1002/tea.21083
https://doi.org/10.1111/emip.12253

24 (&) P.HEETAL

Hartz, S. (2002). A Bayesian framework for the unified model for assessing cognitive abilities:
Blending theory with practicality [Unpublished doctoral dissertation]. University of Illinois at
Urbana-Champaign.

He, P., Chen, L.-C,, Touitou, I., Bartz, K., Schneider, B., & Krajcik, J. (2023a). Predicting student
science achievement using post-unit assessment performances in a coherent high school chem-
istry project-based learning system. Journal of Research in Science Teaching, 60(4), 724-760.
https://doi.org/10.1002/tea.21815

He, P., Shin, N, Kaldaras, L., & Krajcik, J. (2024). Integrating artificial intelligence into learning
progression-based learning systems to support student knowledge-in-Use: Opportunities and
challenges. Handbook of Research on Science Learning Progressions, 461-487.

He, P., Zhai, X., Shin, N., & Krajcik, J. (2023b). Applying Rasch measurement to assess knowledge-
in-use in science education. In X.Liu & W. J. Boone (Eds.), Advances in applications of Rasch
measurement in science education (pp. 315-347). Springer International Publishing.

He, P, Zheng, C., & Li, T. (2021). Development and validation of an instrument for measuring
Chinese chemistry teachers’ perceptions of pedagogical content knowledge for teaching chem-
istry core competencies. Chemistry Education Research and Practice, 22(2), 513-531. https://doi.
0rg/10.1039/C9RP00286C

He, P., Zheng, C., & Li, T. (2022). Development and validation of an instrument for measuring
Chinese chemistry teachers perceived self-efficacy towards chemistry core competencies.
International Journal of Science and Mathematics Education, 20(7), 1337-1359. https://doi.
org/10.1007/s10763-021-10216-8

Hempel, C. G., & Oppenheim, P. (1948). Studies in the logic of explanation. Philosophy of Science,
15(2), 135-175. https://doi.org/10.1086/286983

Hu, T., Yang, J., Wu, R., & Wu, X. (2021). An international comparative study of students’ scien-
tific explanation based on cognitive diagnostic assessment. Frontiers in Psychology, 12, 795497
795497. https://doi.org/10.3389/fpsyg.2021.795497

Jiménez-Aleixandre, M. P., Bugallo Rodriguez, A., & Duschl, R. A. (2000). “Doing the lesson” or
“doing science”: argument in high school genetics. Science Education, 84(6), 757-792.

Kim, J., Kim, S., & Dong, H. (2015). International comparison of cognitive attributes using analysis
on science results at TIMSS 2011 based on the cognitive diagnostic theory. Journal of the Korean
Association for Science Education, 35(2), 267-275. https://doi.org/10.14697/jkase.2015.35.2.0267

Leighton, J. P., & Gierl, M. J. (2007). Why cognitive diagnostic assessment? In J. P. Leighton, & M.
J. Gierl (Eds.), Cognitive diagnostic assessment for education: Theory and applications (pp. 3-18).
Cambridge University Press.

Li, T. (2021). Developing deep learning through systems thinking. In J. Krajcik, & B. Schneider
(Eds.), Science education through multiple literacies: Project-based learning in elementary
school (pp. 79-94). Harvard Education Press.

Li, T., Miller, E., Chen, I. C,, Bartz, K., Codere, S., & Krajcik, J. (2021). The relationship between
teacher’s support of literacy development and elementary students’ modelling proficiency in
project-based learning science classrooms. Education 3-13, 49(3), 302-316.

Li, L., Zhou, X., Huang, J., Tu, D., Gao, X., Yang, Z., & Li, M. (2020). Assessing kindergarteners’
mathematics problem solving: The development of a cognitive diagnostic test. Studies in
Educational Evaluation, 66, 100879. https://doi.org/10.1016/j.stueduc.2020.100879

Ma, W, & dela Torre, J. (2016). A sequential cognitive diagnosis model for polytomous responses.
British Journal of Mathematical and Statistical Psychology, 69(3), 253-275. https://doi.org/10.
1111/bmsp.12070

Maris, E. (1999). Estimating multiple classification latent class models. Psychometrika, 64(2), 187-
212. https://doi.org/10.1007/BF02294535

McNeill, K. L., Lizotte, D. J., Krajcik, J., & Marx, R. W. (2006). Supporting students’ construction
of scientific explanations by fading scaffolds in instructional materials. The Journal of the
Learning Sciences, 15(2), 153-191. https://doi.org/10.1207/s15327809jls1502_1

Ministry of Education, P. R. China. (2022). Compulsory education chemistry curriculum standards.
Beijing Normal University Press.


https://doi.org/10.1002/tea.21815
https://doi.org/10.1039/C9RP00286C
https://doi.org/10.1039/C9RP00286C
https://doi.org/10.1007/s10763-021-10216-8
https://doi.org/10.1007/s10763-021-10216-8
https://doi.org/10.1086/286983
https://doi.org/10.3389/fpsyg.2021.795497
https://doi.org/10.14697/jkase.2015.35.2.0267
https://doi.org/10.1016/j.stueduc.2020.100879
https://doi.org/10.1111/bmsp.12070
https://doi.org/10.1111/bmsp.12070
https://doi.org/10.1007/BF02294535
https://doi.org/10.1207/s15327809jls1502_1

INTERNATIONAL JOURNAL OF SCIENCE EDUCATION e 25

Mislevy, R. J. (1994). Evidence and inference in educational assessment. Psychometrika, 59(4),
439-483. https://doi.org/10.1007/BF02294388

Mislevy, R. J. (1996). Test theory reconceived. Journal of Educational Measurement, 33(4), 379-
416. https://doi.org/10.1111/j.1745-3984.1996.tb00498.x

Mislevy, R. J., & Haertel, G. D. (2006). Implications of evidence-centered design for educational
testing. Educational Measurement: Issues and Practice, 25(4), 6-20. https://doi.org/10.1111/j.
1745-3992.2006.00075.x

National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting
concepts, and core ideas. National Academies Press.

NGSA. (2024). Next generation science assessment. https://ngss-assessment.portal.concord.org.

NGSS Lead States. (2013). Next generation science standards: For states, by states. The National
Academies Press.

Oliveri, M. E., & von Davier, M. (2011). Investigation of model fit and score scale comparability in
international assessments. Psychological Test and Assessment Modeling, 53(3), 315.

Osborne, J. F., & Patterson, A. (2011). Scientific argument and explanation: A necessary distinc-
tion? Science Education, 95(4), 627-638. https://doi.org/10.1002/sce.20438

Pellegrino, J. W., & Hilton, M. L. (2012). Education for life and work: Developing transferable
knowledge and skills in the 21st century. National Research Council.

Sandoval, W. A. (2003). Conceptual and epistemic aspects of students’ scientific explanations. The
Journal of the Learning Sciences, 12(1), 5-51. https://doi.org/10.1207/S15327809JLS1201_2

Sandoval, W. A., & Millwood, K. A. (2005). The quality of students’ use of evidence in written
scientific explanations. Cognition and Instruction, 23(1), 23-55. https://doi.org/10.1207/
$1532690xci2301_2

Schwarz, C. V., Passmore, C., & Reiser, B. J. (2017). Helping students make sense of the world using
next generation science and engineering practices. NSTA Press.

Sevian, H., & Gonsalves, L. (2008). Analysing how scientists explain their research: A rubric for
measuring the effectiveness of scientific explanations. International Journal of Science
Education, 30(11), 1441-1467. https://doi.org/10.1080/09500690802267579

Songer, N. B., & Gotwals, A. W. (2012). Guiding explanation construction by children at the entry
points of learning progressions. Journal of Research in Science Teaching, 49(2), 141-165. https://
doi.org/10.1002/tea.20454

Songer, N. B., Kelcey, B., & Gotwals, A. W. (2009). How and when does complex reasoning occur?
Empirically driven development of a learning progression focused on complex reasoning about
biodiversity. Journal of Research in Science Teaching, 46(6), 610-631. https://doi.org/10.1002/
tea.20313

Strike, K., & Posner, G. (1985). A conceptual change view of learning and understanding, cognitive
structure and conceptual change (pp. 189-210). LHTWest and AL Pines, Press, Academic.

Talanquer, V. (2013). How do students reason about chemical substances and reactions? In G.
Tsaparlis & H. Sevian (Eds.), Concepts of matter in science education (pp. 331-346). Springer
Netherlands.

Tang, K. S. (2016). Constructing scientific explanations through premise-reasoning-outcome
(PRO): an exploratory study to scaffold students in structuring written explanations.
International Journal of Science Education, 38(9), 1415-1440. https://doi.org/10.1080/
09500693.2016.1192309

Tatsuoka, K. K. (1984). Caution indices based on item response theory. Psychometrika, 49(1), 95—
110. https://doi.org/10.1007/BF02294208

Tatsuoka, K. K. (2009). Cognitive assessment: An introduction to the rule space method. Routledge.

Templin, J., & Bradshaw, L. (2013). Measuring the reliability of diagnostic classification model
examinee estimates. Journal of Classification, 30(2), 251-275. https://doi.org/10.1007/s00357-
013-9129-4

Templin, J. L., & Henson, R. A. (2006). Measurement of psychological disorders using cognitive
diagnosis models. Psychological Methods, 11(3), 287-305. https://doi.org/10.1037/1082-989X.
11.3.287

Tu, D. (2019). FlexCDMs. Retrieved July 5, 2020, from http://www.psychometrics-studio.cn.


https://doi.org/10.1007/BF02294388
https://doi.org/10.1111/j.1745-3984.1996.tb00498.x
https://doi.org/10.1111/j.1745-3992.2006.00075.x
https://doi.org/10.1111/j.1745-3992.2006.00075.x
https://doi.org/10.1002/sce.20438
https://doi.org/10.1207/S15327809JLS1201_2
https://doi.org/10.1207/s1532690xci2301_2
https://doi.org/10.1207/s1532690xci2301_2
https://doi.org/10.1080/09500690802267579
https://doi.org/10.1002/tea.20454
https://doi.org/10.1002/tea.20454
https://doi.org/10.1002/tea.20313
https://doi.org/10.1002/tea.20313
https://doi.org/10.1080/09500693.2016.1192309
https://doi.org/10.1080/09500693.2016.1192309
https://doi.org/10.1007/BF02294208
https://doi.org/10.1007/s00357-013-9129-4
https://doi.org/10.1007/s00357-013-9129-4
https://doi.org/10.1037/1082-989X.11.3.287
https://doi.org/10.1037/1082-989X.11.3.287
http://www.psychometrics-studio.cn

26 (&) P.HEETAL

Tu, D., Wang, S., Cai, Y., Douglas, J., & Chang, H. H. (2019). Cognitive diagnostic models with
attribute hierarchies: Model estimation with a restricted Q-matrix design. Applied
Psychological Measurement, 43(4), 255-271. https://doi.org/10.1177/0146621618765721

Vrieze, S. I. (2012). Model selection and psychological theory: A discussion of the differences
between the Akaike information criterion (AIC) and the Bayesian information criterion
(BIC). Psychological Methods, 17(2), 228-243. https://doi.org/10.1037/a0027127

Wang, W., Song, L., & Ding, S. (2018). The index and application of cognitive diagnostic tests from
the perspective of classification. Journal of Psychological Science, 41, 475-483.

Weinrich, M. L., & Talanquer, V. (2016). Mapping students’ modes of reasoning when thinking
about chemical reactions used to make a desired product. Chemistry Education Research and
Practice, 17(2), 394-406. https://doi.org/10.1039/C5RP00208G

Wu, X,, Wu, R, Chang, H. H., Kong, Q., & Zhang, Y. (2020). International comparative study on
PISA mathematics achievement test based on cognitive diagnostic models. Frontiers in
Psychology, 11, 2230. https://doi.org/10.3389/fpsyg.2020.02230

Wu, X., Wu, R,, Zhang, Y., Arthur, D., & Chang, H. H. (2021). Research on construction methods
of learning pathways and learning progressions based on cognitive diagnosis assessment.
Assessment in Education: Principles, Policy ¢ Practice, 28(5-6), 657-675. https://doi.org/10.
1080/0969594X.2021.1978387

Yan, F., & Talanquer, V. (2015). Students’ ideas about how and why chemical reactions happen:
Mapping the conceptual landscape. International Journal of Science Education, 37(18), 3066-
3092. https://doi.org/10.1080/09500693.2015.1121414

Yao, J. X., & Guo, Y. Y. (2018). Validity evidence for a learning progression of scientific expla-
nation. Journal of Research in Science Teaching, 55(2), 299-317. https://doi.org/10.1002/tea.
21420

Yeo, J., & Gilbert, J. K. (2014). Constructing a scientific explanation—A narrative account.
International Journal of Science Education, 36(11), 1902-1935. https://doi.org/10.1080/
09500693.2014.880527

Zhai, X., Haudek, K. C., & Ma, W. (2022). Assessing argumentation using machine learning and
cognitive diagnostic modeling. Research in Science Education, 1-20.

Zhan, P, Jiao, H., & Liao, D. (2018). Cognitive diagnosis modelling incorporating item response
times. British Journal of Mathematical and Statistical Psychology, 71(2), 262-286. https://doi.
org/10.1111/bmsp.12114

Zhan, P, Jiao, H., Liao, D., & Li, F. (2019). A longitudinal higher-order diagnostic classification
model. Journal of Educational and Behavioral Statistics, 44(3), 251-281. https://doi.org/10.
3102/1076998619827593


https://doi.org/10.1177/0146621618765721
https://doi.org/10.1037/a0027127
https://doi.org/10.1039/C5RP00208G
https://doi.org/10.3389/fpsyg.2020.02230
https://doi.org/10.1080/0969594X.2021.1978387
https://doi.org/10.1080/0969594X.2021.1978387
https://doi.org/10.1080/09500693.2015.1121414
https://doi.org/10.1002/tea.21420
https://doi.org/10.1002/tea.21420
https://doi.org/10.1080/09500693.2014.880527
https://doi.org/10.1080/09500693.2014.880527
https://doi.org/10.1111/bmsp.12114
https://doi.org/10.1111/bmsp.12114
https://doi.org/10.3102/1076998619827593
https://doi.org/10.3102/1076998619827593

INTERNATIONAL JOURNAL OF SCIENCE EDUCATION e 27

Appendix A

Xiao Fan placed two liquids in a test tube. The two liquids were soluble in each other and mixed
together. She then heated the test tube to see if the liquids would react. After heating the liquids, two
separate layers formed - Layer A and Layer B.

Liquid 1  Liquid 2 (fruity smell)
mixed then
together ” heated ™
Layer A
Layer B

She tested and measured some properties of the liquids and layers and calculated the density of these
substances, recording the data in Table 1.

Table 1. Data of sample before and after heating.

Sample Volume Solubility in Water Odor
Before Heating Liquid 1 0.45 cm? Yes alcohol

Liquid 2 0.34 cm? Yes vinegar
After Heating Layer A 0.40 cm? No none

Layer B 0.30 cm? Yes fruity

Question #1
State whether mixing and then heating Liquid 1 and Liquid 2 caused a chemical reaction to occ
relating the liquids before heating to the layers after heating.

Question #2
Describe what information from the data table you would use as evidence to support your claim and ex
why you used it.

Question #3
Support your claim with evidence and reasoning using the information in the data table.

Figure A1. Task 2-Layers in a test tube.

Note: The task was modified from Layers in a test tube (ID#: 019-03-c02) in the NGSA project (2024); Access to the original
task via the link: https://ngss-assessment.portal.concord.org/resources/202/layers-in-a-test-tube-id-019-03-c02.


https://ngss-assessment.portal.concord.org/resources/202/layers-in-a-test-tube-id-019-03-c02
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Xiao Fan dissolved two solids (Solid A and Solid B) into separate beakers, forming two clear liquids.
Then, she mixed those two clear liquids together. She found that a yellow solid was formed (Solid P).
recorded the color, solubility, and density of the solids before and after mixing in Table 1.

Table 1. Data of sample before and after mixing.

Solid Color Solubility in Water Density

A (Before Mixing) White Yes 3.12 g/em®

B (Before Mixing) White Yes 4.53 g/cm?

P (After Heating) Yellow No 6.16 g/cm®
Question #1

Write a claim about whether a chemical reaction occurs when after mixing A and B.

Question #2
Describe what information from the data table you would use as evidence to support your claim and ex|
why you used it.

Question #3
Support your claim with evidence and reasoning using the information in the data table.

Figure A2. Task 3-Mixing clear liquids.

Note: The task was modified from Mixing clear liquids (ID#: 018.03-c02) in the NGSA project (2024); Access to the original
task via the link: https://ngss-assessment.portal.concord.org/resources/201/mixing-clear-liquids-id-018-03-c02.
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