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Abstract

Advanced manufacturing is challenging engineering perceptions of how to innovate and compete. The need for manufacturers
to rapidly respond to changing requirements and demands; obtain, store, and interpret large volumes of data and information;
and positively impact society and our environment requires engineers to investigate and develop new ways of making products
for flexible and competitive production. In addition to the associated operational, technological, and strategic advantages for
industry, advanced manufacturing creates educational, workforce, and market opportunities. Thus, this literature review is
aimed at investigating the current state and emerging trends in advanced manufacturing. Specifically, this study addresses
advances in manufacturing process technologies, focusing on shaping processes (mass reducing, mass conserving, and
joining) as well as non-shaping processes (heat treatment and surface finishing), and metal-based additive manufacturing.
This literature review finds myriad efforts have been undertaken by researchers in industry, academia, and government labs
from around the world, which have supported the development and implementation of new process technologies to improve
manufacturing systems extending from unit process and shop floor operations to facility and supply chain management
activities. However, as evidenced by recent and emerging global challenges in energy, critical materials, and health care,
the manufacturing industry must continue the innovative development of advanced materials, manufacturing processes, and
systems that ensure cost-efficient, rapidly flexible, high-quality, and responsible production of goods and services.
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manufacturing as an enabler of industry process accuracy
improvement, reduction of energy and materials consump-
tion, and enhanced waste management [5]. These national
efforts have noted the significant benefits that advanced
manufacturing technologies and a skilled workforce provide
in producing industrial and consumer products, e.g., quality
improvement, market share growth, lower cost and process
time, and higher productivity. These benefits are enabled by
cutting-edge developments at the manufacturing process and
systems levels [6—8].

Sustainable development has received increasing atten-
tion from society, academia, and industry for the past half
century due to global warming, growing public awareness,
corporate social responsibility, stricter regulations, and
resource scarcity [9]. Advanced manufacturing provides
opportunity for engineers and researchers to imagine new
ways of making products for sustainable manufacturing as
well as smart, rapid, flexible, and competitive production.
Thus, the objective of this literature review is to investigate
recent operational, technical, and strategic developments
as well as open challenges and future trends in advanced
manufacturing processes from sustainability perspec-
tive. Advanced manufacturing technologies incorporate
numerous unit manufacturing processes (UMPs) to convert
raw materials into a final product utilizing energy, labor,
equipment and tools, and supporting systems. This review
focuses on several shaping processes (mass reducing, mass
conserving, and joining) and non-shaping processes (heat
treatment and surface finishing). In addition, metal-based
additive manufacturing processes are reviewed to elucidate
recent advances impacting their performance in terms of
cost, resource use, and worker health and safety. Section 2
addresses advances in manufacturing processes, focusing
on shaping processes, non-shaping processes, and metal-
based additive manufacturing processes. Section 3 presents
challenges, future trends, and recommendations identified
through the review.

2 Advances in manufacturing process
technologies

By synthesizing definitions reported in research literature,
Garretson et al. [10] defined a unit manufacturing process
(UMP) as “the smallest elementary manufacturing activ-
ity required for a specific taxonomological transformation
and composed of machines, devices, or equipment.” This
review paper leverages the taxonomy reported by Todd et al.
[11] to categorize the UMPs reviewed. The first category
in the taxonomy covers shaping processes (Sects. 2.1-2.3)
and includes mass reducing, mass conserving, and joining
processes. The second category encompasses non-shaping
processes (Sects. 2.4-2.5) and includes heat treatment and
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surface finishing processes. Finally, advances in metal-based
additive manufacturing processes are reviewed in Sect. 2.6.
It should be noted that additive manufacturing technologies
were developed and became commercially viable for produc-
tion after the taxonomy was published.

2.1 Mass reducing processes

In mass reducing processes, the desired geometry of the
final product is achieved by removing the extra material
from the workpiece [12]. Todd et al. [11] defined three
branches of mass reducing processes: mechanical, thermal,
and chemical. The most widely used processes in this cat-
egory, machining processes, underlie mechanical reducing
[12]. This section focuses on single-point, multi-point, and
abrasive machining processes. In single- and multi-point
cutting, a tool with one and multiple cutting edge(s) are
used respectively to remove material from the workpiece.
Abrasive machining utilizes a pattern of randomly-oriented
cutting points (grits) applied to a belt, disk, wheel, or other
substrate. These grits range widely in materials and sizes.

2.1.1 Single-point material removal

Single-point material removal is a foundational industrial
manufacturing process. Small, medium, and large manufac-
turers leverage single-point machining processes (e.g., turn-
ing, boring, and planning) to convert raw stock material to
final product dimensions. Single-point machining processes
can achieve high volume production, high quality finishes,
and precise dimensional tolerances. Due to their prevalence
in industry, relatively minor improvements in the sustain-
ability performance of single-point material removal opera-
tions can have a significant impact industry-wide. Turning
operations have been the focus of many studies that inves-
tigate how changes to cutting parameters can contribute to
enhancing sustainability performance.

Bhanot et al. [13] presented an approach to perform sus-
tainability assessment of turning processes in the automotive
industry. Production cost, cutting quality, production rate,
and process management were considered as a function of
machining process attributes (e.g., material removal rate,
surface roughness, cutting temperature, machine idle time,
and machine cost) to quantify the economic aspect. Water
intensity, energy intensity, materials, and waste manage-
ment were considered as a function of water consumption
per unit of output, energy per unit output, hazardous materi-
als, and air and water emissions, respectively, to quantify the
environmental aspect. Finally, worker health, worker safety,
labor relations, and training/education had measures such
as average number of hours of training per operator, skill
level, noise levels, and exposure to high energy components
to quantify the social aspect. These metrics were determined
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using a survey to obtain industry stakeholder perspectives.
Economic and environmental metrics were determined as
functions of turning process parameters (e.g., cutting speed,
cutting force, and lubrication) using transformation equa-
tions. These metrics were then aggregated via grey relational
analysis, a multi-criteria decision-making method, to evalu-
ate the trade-offs between the three pillars of sustainabil-
ity for wet machining, dry machining, and standard cutting
parameter cases. Results indicated that wet machining aligns
with the economic aspect more than the other two, requiring
operating modifications (e.g., dry machining and minimum
quantity lubrication, discussed later) to balance the envi-
ronmental aspect. Additionally, the authors concluded that
dry conditions (dry machining) can balance environmental
and economic concerns; however, it was not indicated how
tool wear or machining quality was affected. The approach
presented by Bhanot and co-workers [13, 14] touches upon
several key areas of study in single-point machining: (1)
optimization and tuning of material removal parameters and
tools, (2) advanced lubrication and cooling methods (dis-
cussed in Sect. 2.1.2), and (3) assisted turning and machin-
ing technologies.

Multiple approaches to optimizing single-point machin-
ing processes to balance trade-offs between sustainability
aspects have been pursued in prior research. Helu et al. [15]
determined that green machining of Ti-6Al-4 V for maxi-
mizing surface quality should target rough cut improvement
strategies and feed rate optimization since finish cuts and
feed rate most influence surface quality. However, their rec-
ommendations are not universal, since other cutting param-
eters can affect energy, tool wear, service costs, and finished
part functionality. In general, they demonstrated how trade-
offs in sustainability aspects are dependent on the function-
ality of the finished parts. Helu et al. [15] built on their prior
work [16], which completed a total cost analysis of energy,
tooling, service, and quality for single-point machining strat-
egies that aim to reduce process times. The study was moti-
vated by the realization that, while process time reduction
strategies typically reduce machining energy costs, these
strategies can increase stresses, forces, and heat on the tool,
part, and machine, which in turn influence service, tooling,
and quality costs. Results of the total cost analysis indicated
a decrease in energy costs, an increase in tooling costs, and
an increase or decrease in service costs, depending on spe-
cific process time reduction decisions.

These outcomes were limited because machine tool
breakdown variability was not fully captured, reductions
in other energy overheads (e.g., HVAC or lighting costs)
were not considered, and part functionality as related to
machining parameters was not incorporated. Single-point
machining process research has investigated various mod-
eling methods to characterize the relationship between
turning parameters, desired turning outcomes (e.g., surface

roughness), and sustainability metrics [15, 17]. Response
surface methodology (modeling the relationships between
cutting parameters and energy consumption), Taguchi analy-
sis, analysis of variance (ANOVA), and evolutionary heuris-
tics are methods that have been employed to quantify and to
optimize these relationships for different materials (Table 1).

Since 2020, single point machining sustainable manufac-
turing research has expanded the types of sustainability met-
rics considered in cutting parameter decisions, investigated
sustainability tradeoffs for different types of material, and
analyzed additional turning strategies, such as multi-pass
processes. Pujiyanto et al. [26] incorporated a total noise
metric in assessment of multi-pass carbon steel C45 turning
as a means to addressing the social pillar of sustainability. In
addition to energy consumption of a turning process, Vuke-
lic et al. [27] included four life cycle assessment indicators
into their optimization of cutting parameters for dry turn-
ing of Inconel 601 based on environmental and economic
considerations. In an investigation of AISI 1045 steel turn-
ing process parameter optimization, La Fé Perdomo et al.
[24] utilized CO, emissions as a measure for environmental
sustainability and defined social sustainability as operator
safety which was a metric disaggregated into exposure to
toxic chemicals, exposure to high temperature, and exposure
to high-speed surfaces.

Other recent single-point machining sustainability stud-
ies leveraged existing metrics for economic and environ-
mental sustainability elements but for case studies of dif-
ferent turning process designs or materials. Pujiyanto et al.
[26] not only incorporated the social sustainability metric
of total noise but also considered multi-pass turning pro-
cesses, and Li et al. [29] evaluated the environmental and
economic aspects of multi-direction turning (as opposed
to single-direction turning). Herwan et al. [30], Trifunovié
et al. [28], and Vukelic et al. [27] undertook sustainable
single-point machining studies on grey cast iron, polyoxym-
ethylene copolymer, and Inconel 601 materials that had not
previously been studied from a sustainability perspective.
Single-point machining sustainability analyses appear to
have or be converging to a common framework as single-
point machining sustainability studies have matured. This
framework, typically, entails execution of experiments based
on Design of Experiments methods (i.e., Taguchi methods),
characterization of the relationships between cutting param-
eters and key sustainability metrics, identification of Pareto
frontier(s) of non-dominated solutions, and selection of
cutting parameters using a multi-criteria decision making
(MCDM) approach. The framework is generally observable
in the selected references in Table 1, where researchers have
leveraged methods such as ANOVA and response surface
analysis to evaluate the relationship between cutting param-
eters and sustainability metrics and then used evolutionary
heuristics such as particle swarm and genetic algorithm
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Table 1 (continued)

Reference

Key findings

Methodology

Study goal

[29]

TOPSIS provided framework for determining a multi-

TOPSIS

Multi-objective evaluation of forward and reverse multi-

objective scheme for multi-directional turning

directional turning considering energy consumption, cut-

ting time, production cost, surface roughness efficiency,

cost, and quality

(30]

ANOVA and Taguchi based Bayesian optimization method Higher cutting speeds demonstrated better surface rough-

Optimize energy consumption, tool cost, and surface

ness and a depth of cut of 0.1mm was best for all sustain-

ability indexes

roughness for grey cast iron finish cutting by high speed

dry turning

to generate a set of solutions on or near the Pareto fron-
tier. MCDM methods, such as TOPSIS, are implemented
to select a set of cutting parameters from non-dominated
solutions.

From 2022 to 2024, three review papers emerged that
summarize aspects of sustainable single-point machining.
Pimenov et al. [31] reviewed resource savings from opti-
mization of general machining for sustainable manufactur-
ing with a focus on lubrication and cooling methods such
as minimum quantity lubrication, nanofluids, and veg-
etable oils. Xu et al. [32] reviewed both the smart (Indus-
trial Internet of Things—IIOT) and sustainable aspects of
ultra-precision machining. Only ultra-precision machining
processes were considered, and the outcome of the review
was a six-layer IIOT framework for smart and sustainable
ultra-precision machining that aimed to address low energy
efficiency, lack of real-time monitoring data, and machining
efficacy challenges of ultra-precision machining. Soori et al.
[33] provided a broad review of sustainable CNC machining
systems, resulting in a list of future sustainable machining
research suggestions in major thrust areas such as mate-
rial selection, energy efficiency, waste reduction, life cycle
assessment, lean manufacturing, renewable energy, monitor-
ing/machine utilization, supply chain, virtual simulation, and
operator training/engagement.

Analysis of energy, cutting parameters, and surface
roughness relationships have typically been the focus of
improving the sustainability performance of turning. Stud-
ies have conducted life cycle assessment (LCA) to provide
additional depth, but environmental and social metrics have
not been fully integrated into existing optimization methods
[13, 24, 34, 35]. Efforts to transition single-point material
removal operations toward the use of environmental-friendly
cutting fluids have followed the trend from conventional
techniques (e.g., flood, high pressure, mist, and internal
cooling) to new methods that reduce fluid use or use more
environmental-friendly fluids (e.g., dry machining, mini-
mum quantity lubrication, and cryogenic cooling) [36, 37].
Section 2.1.2 discusses detailed advancements in lubrication
and cooling for sustainable machining that are relevant to
single- and multi-point material removal.

Recent advancements in ultrasonic machining and laser-
assisted machining (LAM) may provide new opportuni-
ties to explore sustainable methods of single-point mate-
rial removal, particularly when combined with existing
approaches to optimizing cutting parameters, minimum
quantity lubrication, cryogenic machining, or dry machining
[14, 38]. LAM is the use of an external heat source to soften
a workpiece to enhance cutting. Ultrasonic vibration assisted
machining (UVAM) or ultrasonic assisted turning (UAT)
applies vibrations directly to the workpiece or cutting tool.
Studies on the effect of these assistive methods have sug-
gested that they provide enhancements to cutting force, tool
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life, and surface properties [14, 38, 39]. However, rigorous
sustainability analyses and LCA studies are needed to make
definitive conclusions on the impact of LAM and UVAM on
single-point material removal sustainability metrics since
reported studies have evaluated sustainability performance
at a cursory level [39, 40].

2.1.2 Multi-point material removal and cutting fluid use

In a multi-point material removal process, a cutting tool
removes material from the workpiece with multiple cut-
ting edges, reducing production time and cost compared to
single-point processes [41]. Multi-point material removal
processes are ubiquitous in industry, especially for machin-
ing complex surfaces. Cutting fluids are widely used as
lubricants and coolants while protecting the workpiece from
corrosion. They are effective in improving the machinabil-
ity, productivity, tool life (decreasing tool wear caused by
diffusion and adhesion), and workpiece quality. However,
cutting fluids can cause environmental, ecological, and
human health problems during distribution, utilization, and
disposal. The costs and environmental impacts of cutting
fluids are two major factors influencing their current and
future use [42]. Reducing fluid use and developing envi-
ronmental-friendly alternatives have been explored to miti-
gate these problems while improving machining quality and
productivity.

Dry machining and minimum quantity lubrication
(MQL) Dry machining is a technology that obviates the need
for cutting fluid during a machining process and can effec-
tively alleviate the problems attendant with cutting fluid use.
However, since cutting fluid serves several important func-
tions, the application of dry machining is not a simple task
of just turning off the cooling lubricant supply [43]. Several
studies have investigated the effective use of dry machining
and the impacts caused by the lack of cutting fluids. One
approach has demonstrated the design of self-lubricating
textured tools, which can reduce cutting force, cutting tem-
perature, and tool wear [44—49]. Other research has explored
how machining parameters affect the dry machining process
[50-52]. Studies have shown that dry machining may reduce
tool flank wear and burr formation, but the lack of cutting
fluid may also cause larger surface roughness [53-55].

Another effective method to reduce the use of cutting
fluids is minimum quantity lubrication (MQL), also called
near dry machining or micro-lubrication. In this method, the
cutting fluids are mixed with compressed air and fed directly
to the cutting zone in minute quantities [43, 56]. Research
has investigated MQL as a way to reduce the human health
impacts of the lubricants [57], as well as the use of solvents
other than water, such as CO, [58]. Individual components
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of MQL systems, such as feed technology, machine tools,
and cutting tools, mutually affect each other [43]. Much
research has been done to analyze the impact of MQL sys-
tem parameters on the cutting fluid distribution and drop-
let size [56, 59-62]. Droplets with smaller diameters can
penetrate the surface more easily and improve heat transfer
and lubrication. Air flow and distance between the cutting
zone and nozzle have the strongest influence on the droplet
diameter [42].

Machining parameters can also affect cutting fluid perfor-
mance. As a starting point, simulation or experiment-based
research has attempted to quantify these process impacts.
Jiang et al. [63] provided a model to optimize the machin-
ing parameters. Their model treats cutting fluid consump-
tion and process cost as two objectives and uses a genetic
algorithm to solve the resulting multi-objective optimization
problem. Igbal et al. [64] provided an experimental approach
to quantify the impacts of flank wear as a tool replacement
criterion for milling process sustainability metrics, includ-
ing energy use, process cost, work surface roughness, and
material removal rate. During the machining process, the
cutting tool can wear due to abrasion, adhesion, and oxida-
tion [65]. Effective use of MQL can improve the quality of
the workpiece and can reduce tool wear and cost [66—70].
In some cases, such as milling with large cutting depth, cut-
ting fluid reaches the chip-tool interface hardly. New tech-
niques have been designed to effectively use a cutting fluid
in those cases. Huang et al. [71] reported a contact-charged
electrostatic spray lubrication technique, which improved
the tribological and lubrication performance compared to
traditional MQL. This method can create droplets of smaller
size, which enhance oxygen penetration, providing a protec-
tive oxide layer for the workpiece (sometimes such layers are
not desirable). Nadolny et al. [72] developed a system for
centrifugal supply of oil mist during grinding. They dem-
onstrated improved wheel life and reduced roughness of the
machined surface.

A concern with some MQL techniques is the generation
of mists, which can impact worker health. Another limitation
of MQL techniques is that not enough lubrication may be
provided when they are used in the machining of materials
such as titanium alloy. Recent work has focused on using
micro-flood techniques [73] or nanofluids that improve the
efficacy of the fluid and can be used more selectively [74].
Shen et al. [75] provided an experimental study of high-
speed, near-dry electrical discharge machining (EDM),
which is suitable for difficult-to-machine materials. They
analyzed the effects of machining parameters, such as cur-
rent, droplet size, and electrode rotation speed, on quality
metrics (e.g., surface roughness). Pan et al. [76] compared
cutting force and cutting temperature in milling of titanium
alloy when different types of lubrication are deployed.
Results show that nanofluid MQL significantly reduced
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friction coefficient and cutting forces. Bai et al. [77] studied
the impacts of adding Al,O; nanoparticles into cottonseed
oil-based cutting fluids. Experiments are carried out to find
the optimal concentration of Al,O; nanoparticles that lead
to the best performance. Cutting force, specific energy, and
surface roughness are analyzed.

Environmental-friendly cutting fluids Gas-based coolant/
lubricants may be an environmental-friendly substitute for
cutting fluids. In machining, both gas and cooled-pressured
fluids can be referred to as gas-based coolant/lubricants
[57]. Commonly used gas-based coolant/lubricants are air,
nitrogen, argon, helium, and carbon dioxide, which can pre-
vent the cutting tool and workpiece from being oxidized at
high cutting temperatures [57, 78]. Gas-based coolant can
be used to form mist or droplets, improving the lubrication
capability of traditional cutting fluids [57, 79]. Under some
machining conditions (e.g., heavy-duty cutting), the cutting
fluid may fail to reach the cutting zone using conventional
cooling methods, and pressurized gas-based coolants can
be applied to overcome this challenge. A pressurized gas
stream with fluid droplets may reduce built-up edge and tool
wear [78]. However, one major problem of gas-based cut-
ting fluids is that they have poor cooling capacity. Research
has demonstrated that the application of cryogenic cooling,
or refrigerated air, in a variety of machining operations can
reduce temperatures in the cutting zone and reduce tool wear
[80—83]. Pereira et al. [81] concluded that one approach to
balance technical and environmental issues in machining is
to combine the cryogenic and MQL techniques. In addition,
it has been reported that bio-based cutting fluids can have
similar or improved performance than mineral oil-based flu-
ids while also being more readily degradable [57, 84—86].
However, some bio-based coolants such as vegetable oils
have the disadvantage of low thermal and oxidative stability,
high freezing points, and poor corrosion protection. Addi-
tives may be used to solve these issues [87, 88].

2.1.3 Abrasive machining

Abrasive machining is the process where material is
removed from the workpiece surface by multiple ran-
domly-oriented hard grains that each function much like a
small cutting tool. Grinding is the most representative and
widely used abrasive machining method and is the focus
of this section, though polishing, honing, and grinding
are used to refine dimensions or to finish surfaces. The
specific energy consumption (SEC, energy per unit volume
of cutting material) of grinding [89] is greater than the
SEC of other standard machining operations [90, 91] and
has been a focus of recent manufacturing research. The
specific energy, e, for grinding can be determined from the

cutting force, F, wheel speed, v, and volumetric material
removal rate, Q, as shown in Eq. 1 [92]:

e=Fv/Q ()

The cutting force, F, is composed of three compo-
nents, i.e., the chip removal force, F_, sliding force, F,,
and ploughing force, F),, as shown in Eq. 2 [90].

F=F.+F +F, )

During grinding, F and F,, do not contribute to shear-
ing of the material but generate heat and deform the
material. If wheel speed is held constant, the issue to
consider in reducing energy use is how to balance F and
O to achieve a reduction in e (Eq. 1). One solution is to
add texture to the grinding wheel [93]. Textured grinding
wheels possess active and passive grinding areas on the
wheel surface [94]. Active grinding areas perform mate-
rial removal (presence of abrasive grains), while passive
grinding areas mark the absence of abrasive grains on the
grinding wheel surface. This arrangement on the grinding
wheel surface reduces the number of active cutting edges
and suppresses sliding, F, and ploughing, F),, forces [93].
Consequently, the overall cutting force, F, will be reduced.
Azarhoushang et al. [95] provided a detailed theoretical
model (Eq. 3) to demonstrate that texturing (wheel struc-
turing) significantly reduces the specific grinding energy
when compared to conventional non-textured wheels of
the same dimension.

<hcu,max— con >m _ (1 _ 1)% _ € _tex (3)

hcu,max— tex c—con

In this equation, Ay . con @Nd Ay maxrex ar€ the maxi-
mum uncut chip thicknesses associated with conventional
and textured grinding wheel, respectively; y indicates
the ratio of surface area of active grinding to total grind-
ing; e, .., and e, are the SEC by the conventional and
textured wheel, respectively; m is a constant determined
by the roughness of the ground surface (equal to 0.3 for
roughing operations and in the range of 0.8-1.0 for fin-
ishing operations); and # is a constant representing the
abrasive grain density, which can generally be determined
experimentally. In addition to reducing specific grinding
energy, textured grinding wheels improve spacing for chip
accommodation [89, 93] and, thus, mitigate wheel loading
and frequent dressing. Dry machining conditions are also
attainable with textured grinding wheels [89, 95] facilitat-
ing more coolant flow into the grinding zone than conven-
tional wheels [96-99]. Thus, texturing enables minimiza-
tion of coolant use and reduces associated environmental
and social concerns [100]. Textured grinding wheels are
classified into three categories based on the width of the
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minimal repeated geometrical unit of the grinding passive
area: microtexture, macrotexture, and megatexture [94].
Table 2 summarizes the major differences of the three
types on the aspects of passive area width, the method for
texture generation, and the major applications.

Grinding wheels with microtextures Microtextures of less
than 100 pm are generally produced by laser ablation to
directly cut the textures into a piece of hard material, e.g.,
cubic boron nitride (CBN), while megatextures and macro-
textures are made by bonding abrasive grains on the grind-
ing wheel base and mechanically cutting the textures. The
fabrication accuracy in laser ablation generates homogenous
cutting edges with uniform protrusion and preferential crys-
tallographic orientation [101, 102]. The advantage is pas-
sive, and active grinding areas are cut on the solid abrasive
eliminating the need for bonding material and reduces the
environmental impacts associated with the bonding mate-
rial [102].

Grinding wheels with macrotextures Grinding wheels with
macrotextures (engineered wheels) are characterized by
controlled arrangement of abrasive grains on the grinding
wheel surface, such that the texture dimension is between
100 and 500 pum [94]. Patterns inspired by nature, such as
phyllotactic patterns, have been investigated for arranging
the abrasive grains on the grinding wheel [103—106]. The
effectiveness and efficiency of such patterns with varying
divergence angles, phyllotactic coefficients, and abrasive
grain cluster radii have been experimentally observed [104].
An analytical approach to model the temperature fields in
grinding with a phyllotactic-patterned wheel was studied by
Lyu et al. [105]. The model was based on the moving heat
source theory developed by Jaeger [60]. It was established
and experimentally verified that a phyllotactic-patterned
wheel can reduce grinding temperatures more effectively
than a grinding wheel with a random arrangement of abra-
sive grains.

Grinding wheel with megatextures Megatexture gener-
ally includes textures with a passive area width larger than

Table 2 Categorization of textured grinding wheels [94]

500 pm, e.g., segmented, grooved, and slotted grinding
wheels. To study thermal damage to the workpiece, Fang
et al. [107] developed an analytical model to predict the
temperature profile in surface grinded with a segmented
wheel. The magnitude of fluctuations in wheel tempera-
ture profile was estimated by using several wheel segments.
They measured different temperature profiles, which varied
based on wheel-workpiece engagement state using identical
grinding parameters. They found that the peak and valley
temperatures along the profiles remained consistent under
the same grinding parameters, even when varying the wheel-
segment engaging states. Xiaorui et al. [108] undertook a
semi-analytical approach in establishing a force model for
grinding with a segmented wheel by considering the func-
tion of instantaneous material removal rate (MRR). Thus,
the analytical approach was used to express instantaneous
MRR as a function of segment geometry.

2.2 Mass conserving processes

Mass conserving processes refer to making products through
consolidation (e.g., casting and molding) and deformation
(e.g., forging, extrusion, drawing, rolling, bending, and
stamping); the material weight remains essentially the same
before and after processing. It is important to regard manu-
facturing processes not only as obligatory steps to generate
a product but also to consider technology as an enabler for
more environmentally benign products [109]. This view has
also been taken in recent developments of mass conserving
processes by including considerations of energy efficiency,
cost reduction, productivity, and material efficiency.

2.2.1 Consolidation

In consolidation processes, a liquid material is poured into
a mold that contains a cavity of the desired shape and is
then allowed to solidify (e.g., casting and molding). Reduc-
ing energy consumption and CO, emissions have been con-
sidered for improving consolidation processes [110, 111].
Green sand molds are still the most popular tooling for dis-
crete part casting processes and are prone to emitting carbon

Microtexture Macrotexture Megatexture
Passive area width <100 pm 100-500 um >500 pm
Texture generation Laser ablation Single-point dressing tool, masking, fly cutting, milling, and ~ Single-point
electroplating dressing tool

Applications Micro-grinding tool

Surface grinding and external cylindrical grinding

and segmented
dressing
Surface grinding
and creep-feed
grinding
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and other compounds [112]. Casting energy consumption
and CO, emissions can be reduced by implementing con-
tinuous casting-heat treatment processes [113] and vacuum-
assisted molding processes [114]. Meanwhile, sustainability
performance of casting can be improved through modeling
and simulation of the production system [115, 116]. Die
casting, a typical casting process, is energy-intensive, mate-
rial-wasting, and emissions-causing [117]. Recently, com-
puter-aided technologies have been adopted in die casting to
improve sustainability for process planning [118] and design
optimization [119]. Similarly, in polymer injection mold-
ing, energy consumption modeling has been shown to be
effective in reducing the energy consumption [120—124] and
handling the uncertainty and complexity [125]. When calcu-
lating the energy consumption, the idle or baseline energy
consumption of the machine tool is non-negligible [122].
With broader, integrated consideration, sensitivity analysis
in LCA and life cycle inventory (LCI) activities is neces-
sary to assess the environmental impacts of the injection
molding processes in further detail [126, 127]. This aspect
allows researchers to identify priority areas systematic met-
rics, thereby actions to develop more sustainable practices
[127]. In addition, approaches such as the Taguchi method,
the NSGA-II algorithm [128], and cloud energy manage-
ment systems [129] have been useful in optimizing injection
molding energy consumption.

2.2.2 Deformation

Deformation processes refer to methods that apply pressure
to plastically deform a blank and, thus, obtain a desired
shape and size of workpiece. These processes include bulk
forming (e.g., forging and extrusion) and sheet metal form-
ing (e.g., drawing, rolling, bending, and stamping). Forging
can improve the mechanical properties of metal components,
but the process requires high loads and energy consump-
tion. Current research has concentrated on forging specifi-
cations, management models, and auxiliary tools with little
guidance given for energy-saving design of forged products.
Prior research has demonstrated improved forging qual-
ity and energy savings by optimizing process parameters
[130-134]. Importantly, energy-saving forging scheduling
and production planning with intelligent algorithms can
increase process utilization with high energy efficiency and
low carbon emissions [135, 136]. Recent research focusing
on the extrusion process has sought to quantify and to opti-
mize energy consumption through process modeling [137]
and numerical simulation [138]. Other work has pursued
quantifying energy consumption, solid waste generation, and
carbon emissions to optimize extrusion process sustainabil-
ity performance [139].

In addition, a body of work has investigated energy-effi-
cient sheet metal forming. Research investigating energy

consumption of deep drawing focused on optimization of
process parameters and friction reduction [140-143]. Gao
et al. [141] introduced a process partition concept to energy
consumption analysis in deep drawing, which could provide
the basis for significant energy reduction. Further, for the
purpose of cost reduction and productivity and material
efficiency improvement, a novel process technology, micro
deep drawing has been advocated, due to its excellent char-
acteristics, such as high throughput, high efficiency, high
accuracy, high denseness, short cycle time, and low cost
[144—-146]. From the machine level viewpoint, Lohse et al.
[147, 148] conducted energy efficiency analysis of several
industrial presses, which led to the development of a system
model that is able to analyze energy efficiency in detail for
electrical, mechanical, and hydraulic energy losses during
the deep drawing process.

In the rolling process, recent research on energy effi-
ciency has focused on process parameter optimization
through simulation and experiments [149-153], energy
efficient approaches without sacrificing the robustness and
performance [154, 155], and production scheduling optimi-
zation through different algorithms [156, 157]. Little work
has been done to investigate the environmental impacts of
the bending process. The main focus has been on process
development and numerical simulation to improve form-
ability [158-163]. Similarly, while sheet metal stamping
is a high-cost, energy-intensive process, little work has
been done to quantify the environmental impacts of the
process. Gao et al. [164] proposed a comprehensive model
of the stamping process chain for tracing carbon footprint,
which would lead to the related energy and carbon emis-
sion reduction. Few researchers have taken an energy per-
spective as an objective in the planning and scheduling of
stamping processes [165]. Several have studied the energy
required to operate a stamping press [166] and developed
energy-saving and energy efficiency-improving methods
for the press [167-170]. New insight and a novel approach
for integrating energy consumption estimation with LCI
has been proposed by Cooper et al. [171], which was dem-
onstrated for several forming processes. They concluded
that researchers interested in reducing the environmen-
tal impacts of sheet metal forming should concentrate on
innovations that would reduce sheet metal blanking and
post-forming trimming losses, in addition to reducing die
production impacts.

Single point incremental forming (SPIF) is a recent
development in forming technology based on the modi-
fication of computer numerically controlled (CNC)
machine tools. SPFI offers significant opportunities for
forming operations, including improvements in machine
efficiency, forming tool production, and forming system
lubrication [172]. Energy saving approaches have also
been studied in SPIF. For example, comparative analysis
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of CO, emissions [173, 174], modeling of energy con-
sumption [175, 176], and an analysis of the parameter
impacts [177] for SPIF has been demonstrated under
specific frameworks. Such approaches can enable further
process improvements that will enable minimization of
manufacturing energy consumption.

Besides the contributions in saving energy, the trade-
off between sustainability indicators in deformation pro-
cesses is receiving more attention [178]. Hussain and
Al-Ghamdi [179] analyzed energy, cost, and productiv-
ity as functions of process parameters for incremental
sheet forming. Li et al. [180] proposed an operation
scheduling method for a multi-hydraulic press system,
which obtained a significant trade-off between process
duration and average energy consumption. Gong et al.
[181] investigated the trade-off between energy and
labor costs in blow molding production through multi-
objective optimization. Efforts discussed above are sum-
marized in Fig. 1.

2.3 Joining processes

Since joining processes are essential for manufactur-
ing complex products [182] and often consume signifi-
cant amounts of energy, it is necessary to investigate
opportunities to improve their energy efficiency. Some
researchers have previously analyzed joining processes
from energy and sustainability perspectives; for example,
Borsato [183] developed a semantic information model
as a formal ontology, which facilitates computer-aided
calculations of an energy efficiency indicator (degree-of-
perfection) for joining processes. This section introduces
recent energy and sustainability research developments
for mechanical and thermal joining processes.

2.3.1 Mechanical joining

In mechanical joining, the joint is created by placing two or
more components under elevated pressure and temperature
[184]. These processes are divided to four categories: cold
welding, explosive welding, friction welding, and ultrasonic
welding [11] as investigated in this section.

Cold welding Cold welding, or cold pressure welding, is
a solid-state welding process that occurs when two clean
contacting metal surfaces are brought together under high
pressure at room temperature [12]. Since cold pressure weld-
ing has no thermal impact, it offers advantages over fusion
welding and warm pressure welding [185]. Fusion welding
requires heat energy to melt the base metals, while warm
pressure welding uses heat and pressure to deform the base
metals [12]. Cold welding has not been specifically inves-
tigated from a sustainability perspective, but studies have
explored the development of new processes and the improve-
ment of existing processes. While weld quality is dimin-
ished when a surface oxide layer exists, cold welding during
the divergent extrusion process has demonstrated removal
of surface oxides by upset collar formation, which led to
higher bond strength [186]. Ebbert et al. [187] developed
the electrochemical support (ECUF) process for inline elec-
trochemical removal of surface oxides during cold welding
to overcome the challenge of preparing the joining surface.
ECUF needs lower applied forces and enables higher tool
flexibility.

Explosive welding In explosive welding, metal plates
are placed in parallel and joined as a result of defor-
mation processes induced by high pressure in the colli-
sion area [188]. Lysak and Kuzmin [188] developed an
energy balance method to evaluate the energy losses of
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Fig. 1 Recent research on mass conserving processes
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colliding plates in explosive welding. They considered
deformation of the plates and jet formation to improve
the welding efficiency and the strength of the joint and to
minimize energy losses. They found that welding param-
eters such as impact velocity and impact pressure can
considerably impact each of the energy balance items.

Friction welding Friction welding is a solid state join-
ing process that creates the joint by combining frictional
heat (mechanical rubbing between the two surfaces) and
pressure (sufficient force to make a metallurgical bond)
[12]. Garretson et al. [189] developed a unit process
based analysis method to evaluate the sustainability per-
formance of friction-welded metal aircraft assemblies
for a cradle-to-gate life cycle scope. They utilized eight
metrics to investigate the environmental, economic, and
social impacts (e.g., energy consumption, cost, and acute
injuries) of inertial (linear and rotational) friction welding
of metal plate, bar, and tube. They found that compared to
a bolted assembly, the friction welded assembly requires
less total cycle time. This reduces the metrics that are
directly proportional to cycle time and, ultimately, results
in better sustainability performance. Recently, another
friction welding process, friction stir welding (FSW),
has gained popularity for joining metal sheet and plate
[190]. FSW utilizes a rotating tool, which moves along
the joint between the two components to create the fric-
tional heat and make the weld seam. Few studies have
investigated FSW from energy and material efficiency
perspectives, however. Hamilton et al. [190] applied a
heat input model of FSW for developing a characteristic
temperature curve to define an energy-based slip factor
to anticipate maximum welding temperature. The model
considers temperature data, welding conditions based
upon the solidus temperature, and the energy per unit
length of weld. Vilaga et al. [191] developed an analytical
model for 2D and 3D cases to predict the thermal field
during FSW. They defined an FSW thermal efficiency
coefficient based on the mechanical power of the tool
and the point power source producing the thermal field.

Ultrasonic welding To create a joint, oscillatory shear
stresses of ultrasonic frequency are generated at the inter-
face of two workpieces, usually less than 3 mm in thick-
ness, placed together under a relatively moderate clamping
force [12]. Ultrasonic spot welding has been shown to reduce
process time and energy consumption compared to conven-
tional spot welding processes, e.g., resistance spot welding
(RSW) [192, 193]. In RSW, two workpieces, usually steel
sheet metal, are placed together under pressure. A current is
then applied to generate electrical resistance heating, form-
ing the joint [12].

2.3.2 Thermal joining

Another set of processes for making permanent joints is
thermal joining. A heating source, filler material, and shield-
ing of the melt pool are three key requirements of these
processes [184]. They have been classified under three cat-
egories: brazing, soldering, and thermal welding [11]. Each
of these categories is comprised of several UMPs and inves-
tigated in this section.

Brazing Brazing joins metals by melting a filler metal (also
called brazing metal) and distributing it between the surface
of the workpieces [12]. Sekulic et al. [194] evaluated the
use of brazing in the assembly of compact aluminum heat
exchangers. They developed and applied an energy metric
that considers the actual and theoretical minimum process
energy use and found that actual energy use in controlled
atmosphere brazing (CAB) is five orders of magnitude
greater than the theoretical minimum. CAB is commonly
used in the automotive, aerospace, and process industries.
Sekulic [195] had earlier developed an entropy-based evalu-
ation metric and demonstrated its application for the CAB
process and found that the metric could be used to elucidate
other aspects of resource consumption, energy system opti-
mization, and sustainability optimization.

As opposed to heating the filler material, torch brazing
heats the workpiece faying surfaces to a proper temperature,
and then, filler in the form of rod or wire is added to the
joint [12]. However, drawbacks of torch brazing include non-
uniform distribution of temperature, high energy consump-
tion, and a long cycle time [196]. To avoid these drawbacks,
Nicoara et al. [196] investigated the joining of aluminum
tubes using inductive brazing, a process in which filler metal
is preloaded between the workpieces. Electrical resistance
is then generated between the workpieces using a high-fre-
quency AC field [12]. They found that inductive brazing has
significantly lower energy consumption and carbon footprint
compared to torch brazing.

Soldering Similar to brazing, soldering applies a melted
filler metal and distributes it between the surfaces of the
workpieces being joined [12]. The melting temperature of
the filler metal is typically defined below 450 °C (840 °F)
for soldering, while it is above 450 °C (840 °F) for brazing
[12]. The main environmental challenge of developing new
solders is mitigating the toxicity of lead [197]. University
and industry researchers are working to improve the sus-
tainability performance of soldering processes. For instance,
Lanin [197] investigated ultrasonic soldering to mitigate flux
formation of lead-free solders, which improved the environ-
mental performance of electronic component manufacturing.
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To avoid oxidization and tarnishing of lead-free solder,
Hewlett-Packard created a mixture of tin, silver, and copper
for use in electronics packaging [198].

Thermal welding The third and final group of thermal join-
ing processes is thermal welding, which includes several
UMPs (e.g., braze welding, diffusion bonding, and elec-
tric arc welding) [11]. Haapala et al. [199] evaluated the
environmental impacts of bonding and brazing processes
for the production of stainless steel arrayed microchannel
devices using a cradle-to-gate scope. By investigating nickel
nanoparticle-assisted diffusion brazing and conventional dif-
fusion bonding utilizing nickel phosphorus electroplating,
they concluded that the health, safety, and environmental
impacts of the production and use of metal nanoparticles
are uncertain in many applications and must be better under-
stood. Building on this work, Brown et al. [200] conducted
a cradle-to-gate LCA to investigate the relative environmen-
tal impacts of nickel nanoparticle synthesis techniques, i.e.,
synthesis in ethylene glycol, in aqueous surfactant solution,
and in microemulsions, for use in diffusion bonding of the
microfluidic devices. Since the solvent is merely water, they
found that synthesis in aqueous surfactant solution has better
environmental performance compared to the other synthesis
techniques. Brown et al. [201] next conducted a cradle-to-
gate LCA to investigate the relative environmental impacts
of patterning (photochemical machining and laser cutting)
and bonding (i.e., nano-assisted diffusion brazing and diffu-
sion bonding) for making a stainless steel microchannel air
preheater. They found no significant difference in the overall
impacts of the patterning techniques; however, compared
to diffusion bonding, diffusion brazing caused impacts of
the two process flows to increase by greater than 20%. This
increase was due to the production of nickel nanoparticles
(mainly the use of nickel chloride and associated electricity).

Electric arc welding is a thermal welding process encom-
passing several fusion (liquid-state) processes, which melt
the weld material and the workpieces. DuPont and Marder
[202] investigated the arc efficiency and melting efficiency
of plasma arc welding (PAW), gas tungsten arc welding
(GTAW), gas metal arc welding (GMAW), and submerged
arc welding (SAW). They were able to semi-empirically
predict process thermal efficiency using welding process
parameters. Mose and Weinert [182] developed an analysis
methodology to assess the energy profile and energy effi-
ciency of process chains, which they applied to FSW and
GMAW. They aimed to estimate product embodied energy,
to enhance factory energy efficiency, and to optimize process
energy consumption. They found that the ventilation system
has a significant impact on the energy demand for GMAW.
Although FSW needs an additional milling process to
achieve higher surface quality, the energy demand compared
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to GMAW is lower. To determine the thermal efficiency of
laser beam welding of materials with a high thermal con-
ductivity, Ganser et al. [203] developed a numerical model
based on computational fluid dynamics (CFD) simulation
to estimate the molten pool isotherms. They determined the
thermal efficiency for various geometries and welding veloc-
ities; they defined thermal efficiency as the ratio between
the required energy for melting the volume of metal in the
fusion zone and the absorbed laser beam energy. The model
enables investigating the impacts of welding speed, laser
beam power, and beam focus diameter on thermal efficiency
during laser beam welding.

Yan et al. [204] developed a multi-objective optimiza-
tion model of arc welding to minimize energy consump-
tion and maximize thermal efficiency of the process. The
welding model considers current, voltage, and velocity
as the variables subject to machine, heat input, and qual-
ity constraints. DuPont et al. [205] previously conducted
a literature review to identify manufacturing challenges,
approaches, and achievements in fusion welding for energy
applications. They found that computational modeling can
play a key role in (1) developing fusion welding technology
simultaneously with alloy development, (2) investigating the
mechanical properties of welds based on the microstructural
modeling, and (3) defining long-term creep properties from
short-term tests.

2.4 Heat treatment processes

Sections 2.1-2.3 have presented advancements in manu-
facturing processes classified as shaping processes. Next,
Sects. 2.4-2.5 will present advancements in non-shaping
processes, including heat treatment and surface finishing
processes. Heat treatment describes a number of processes,
including annealing, hardening, and sintering [11]. These
processes involve heating and cooling of the material to
improve the mechanical properties through microstructural
changes [12]. Mendikoa et al. [206] developed a method-
ology to optimize heat treatment process energy efficiency
and maintenance cost based on temperature—time curve for
cast steel parts. In the methodology, an expert provides the
process design using intervals instead of specific values for
each manufacturing process parameter. The process param-
eter values are then selected from within the intervals to
optimize the energy efficiency and maintenance cost.

2.4.1 Annealing

Annealing enables grain recrystallization and stress relief,
improving machinability through reduced hardness. Anneal-
ing follows three steps: heating the workpiece to a proper
temperature, maintaining that temperature for a speci-
fied time, and cooling at a slow rate [12]. Garretson [207]
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modeled the annealing process for sustainability perfor-
mance evaluation by treating the workpiece as the process
information carrier. Given information about the incoming
workpiece and the desired annealing process output, he cal-
culated the energy consumed by recrystallization annealing
(complete return of the grain structure to its pre-coldworked
state) and recovery annealing (partial return of the cold-
worked workpiece to its original grain structure).

2.4.2 Hardening

Heat treatment processes include surface hardening and
through hardening [11]. In surface hardening, a local area or
the entire workpiece surface is heated [12], while in through
hardening, the hardness of the entire part or section of a part
is increased. Under surface hardening, induction hardening
and laser surface hardening processes have been investi-
gated from the sustainability perspective. These processes
are thermal treatments; thus, no chemical changes occur
during the process. Eastwood and Haapala [208] applied
a physics-based mathematical model for induction harden-
ing to estimate energy use in evaluating product economic,
environmental, and social performance. They demonstrated
the approach for induction hardening the teeth of a steel
bevel gear, which enables engineers to make design and
production decisions informed by principles of sustainabil-
ity. Orazi et al. [209] developed a laser process for surface
hardening of large cylindrical components mounted in a
machine spindle and demonstrated a significant reduction
in energy use compared to induction hardening. The new
process also did not exhibit softening phenomena typical of
induction hardening and had greater flexibility. The authors
presented a physical model-based simulation to aid in set-
ting appropriate process parameters (e.g., laser beam speed).
In addition, research has investigated energy performance
improvement resulting from the integration of heat treatment
with other manufacturing processes. Goschel et al. [210]
studied press hardening, which combines forming and heat
treatment processes. They developed a procedure for energy
and material balancing (PEMB) to identify approaches for
more energy- and resource-efficient processes and process
chains. To calculate the total energy consumption, idle
energy (the product of basic cycle time and basic load) and
process energy were summed. Process energy was calculated
based on force—displacement measurements or a mathemati-
cal function of shear strength, sheet thickness, length of the
cutting line, and displacement of the punch.

2.4.3 Sintering
Sintering is accomplished as the last step of traditional

powder metallurgy, a process to produce components
by pressing and sintering metallic powders [12]. After

blending and pressing the powders, sintering heats the
metal compact to a temperature between 70 and 90% of
its melting point to enhance strength and hardness. Spark
sintering and hot pressing are two UMPs used to perform
compaction and sintering in one step. Hot pressing applies
heat during compaction, while the rest of the process is
similar to conventional powder metallurgy pressing. Spark
sintering overcomes some of the drawbacks of hot press-
ing, such as proper mold material selection and long pro-
cess cycle time. Spark sintering involves two steps: first,
powder is located in a die and then the workpiece is com-
pressed by upper and lower punches, while a high-energy
electrical current sinters the powder. Spark plasma sinter-
ing (SPS) utilizes low sintering temperature and provides
more conductivity in composite ceramics manufacturing
[211]. Moreover, the heating rate in SPS is fast, while
the soaking time is short. Musa et al. [212] quantitatively
compared the hot pressing and SPS processes consider-
ing end-product characteristics, operation conditions (i.e.,
holding temperature, process time, and applied pressure),
and specific energy consumption (kJ/gram) of the product
obtained from consolidating Ti-Al,05-TiC powders. They
found SPS has a significantly shorter cycle time than hot
pressing, resulting in better environmental and economic
performance. Sahakian et al. [213] investigated the func-
tional, cost, and environmental impacts of three different
processes. The first two involved micro powder injection
molding (PIM) of silicon carbide (SiC) and aluminum
nitride (AIN), while the third involved an epoxy process.
Their goal was to determine the most appropriate mate-
rial for electronics packaging of power semiconductors.
They found epoxy would be the most cost efficient and
environmental-friendly option on a per-part basis (due to
the elimination of sintering); SiC ranked as the last option.

2.5 Surface finishing processes

Surfaces have a disproportionately large impact on the
energy use and environmental burden of products. Shaping
operations are inherently energy-intensive and typically
require lubricants, which are resource-intensive and can
have significant health impacts. The resulting move toward
dry or near-dry machining has consequences on surface
finishes and tolerances [214]. Following these shaping
steps, surface finishing processes, which include clean-
ing, coating, and/or surface modification, have an outsized
impact on the chemical and energy demands of produc-
tion [215]. Thus, surface finishing has been a major focus
of research seeking to identify more benign technologies.
This section discusses recent technology and model devel-
opment for sustainability performance improvement in the
areas of surface preparation, coating, and modification.
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2.5.1 Surface preparation

After a part is shaped, a broad suite of mechanical, ther-
mal, or chemical techniques can be used to remove burrs
and polish a surface. Many of these processes have envi-
ronmental implications (Sect. 2.1). Mechanical techniques
(e.g., abrasive grinding) generate significant amounts of heat
and require grinding fluids; for example, burnishing might
require lubricants that have human health impacts [216].
In response, a great deal of research has focused on MQL
(Sect. 2.1.1). Thermal techniques include controlled heating
and cooling cycles that often result in hardening of the sur-
face, and quenching fluids are often used to cool the work-
piece. Water-based quenchant has historically been effective.
However, one of its most concerning health impacts is the
use of biocides as they produce more recalcitrant wastewa-
ters. Recent work suggests careful control of nutrient levels
in the fluids may be effective to limit bacterial growth [217].

Cryogenic machining processes are becoming popular as
they do not require water; however, there is a major energy
penalty generally translated into higher costs [218]. Chemi-
cal processes often include degreasing and cleaning steps
that prepare a metal part for coating, which can be material-
intensive if organic solvents are used [219]. Recent work
has explored the formulation of ionic-liquid based solvents
(molten salts with extremely high vapor pressures) for sur-
face preparation [220]. Environmental impacts and costs
vary greatly and are determined by the molecules organic
structure. More research is needed to understand whether
ionic liquids will be a preferable alternative to existing
organic or aqueous-based solvents. Finally, recent work
using extremophile bacteria to etch certain metals (e.g.,
copper) could be pioneering in developing microbiological
methods for surface modification without the use of organic
or pH modified solvents [221].

2.5.2 Surface coating

Manufactured surfaces are often coated to achieve corro-
sion or wear resistance or to achieve a desired tribologi-
cal or optical behavior. Many of the most common coating
technologies (e.g., electrochemical deposition and chemi-
cal vapor deposition) result in hazardous waste streams that
are expensive to treat. Recent alternatives emerged from
efforts in nano-scale science have been centered on creat-
ing nano-scale textures on the surface of metals that can
achieve a range of functions, extreme hydrophobicity in
particular, which are desirable alternatives to conventional
coating techniques [222]. These nano-textures are often
designed to mimic the morphology of lotus leaves and are
being deployed on a growing range of metal surfaces [223].
Chemical processes (e.g., electroplating) are historically
among the more environmentally impactful manufacturing

@ Springer

operations as the aqueous waste solutions contain high con-
centrations of dissolved metals, e.g., hexavalent chromium
[224]. A great deal of recent research has focused on devel-
oping novel methods for treating this waste [225], while
other work has focused on using deep eutectic solvents that
can more efficiently transfer the dissolved metals to the part
surface [226].

2.5.3 Surface modification

Surface modification processes are typically carried out to
harden or otherwise enhance the properties of the workpiece
surface. Thermal or chemical diffusion processes are effec-
tive, though generally slow, processes for hardening metal
surfaces [227]. Most of the surface modification literature
has focused on steel, but growing interest has focused on
light metals, which are being increasingly used in different
energy efficiency applications, but which are much harder
to treat at the surface using thermal or chemical techniques
[228]. Mechanical hardening processes (e.g., shot peening
or rolling) are widespread but can result in toxic industrial
waste streams [229]. Recent work has focused on developing
shot-free peening by using a cavitating water jet to improve
the fatigue strength of the workpiece surface [230]. Simi-
larly, nanoparticle-enabled rolling fluids are being explored
to improve the efficacy and reduce the impact of rolling
operations [231].

2.6 Metal-based additive manufacturing

Several metal-based additive manufacturing (AM) processes
and systems have been developed that build up parts by join-
ing successive layers of material using metal powder, wire,
or foil. Research on these novel processes has been primarily
focused on improving productivity and quality while reduc-
ing cost. AM technologies have enabled the production of
complex geometries (e.g., hollow structures and cavity-con-
taining components) which use less material. This enhanced
capability allows a designer to create more environmentally
optimized designs without compromising functional perfor-
mance [232]. In addition, lightweight structures achieved via
AM processes could bring further environmental benefits
by reducing use phase energy consumption [233]. However,
it has been pointed out that AM processes may have their
own environmental challenges [234, 235], e.g., high energy
consumption and air emissions during printing and feedstock
production. Whether or not AM processes are more environ-
mentally friendly than traditional methods largely depend
on production volume and part geometry [236]. Therefore,
improving the sustainability performance of AM is critical
to expanding its application in various industries, includ-
ing aerospace, automotive, and healthcare. In this section,
prior AM research addressing sustainability performance is
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introduced. The focus here is on metal-based AM processes,
which have gained broad application in industry. Following
to the ASTM F2792-12a classification, three technologies
are selected i.e., powder bed fusion, direct energy deposi-
tion, and binder jetting, which are the most intensively stud-
ied to date.

2.6.1 Powder bed fusion

Powder bed fusion (PBF) covers a range of processes, e.g.,
direct metal laser sintering (DMLS), selective laser melt-
ing (SLM), and electron beam melting (EBM), and they
can be classified based on energy source [237-239]. The
common energy sources used in PBF are lasers, electron
beams, ultrasonic vibration, plasma, explosion, and hot ion-
ized gases. In these processes, the energy source selectively
consolidates the powder material to form each layer. Liao
and Cooper [240] analyzed published studies on cumula-
tive energy demand of parts made via PBF over different
stages, i.e., manufacturing of AM machines, powder pro-
duction, direct energy consumption, product use, and end of
life. It was pointed out that life cycle energy consumption is
dominated by direct energy usage during production, due to
slow processing rate. There are many studies that focused
on improving the understanding of PBF’s energy consump-
tion. For example, Kellens et al. [241] reported the power
profile of the major subsystems for an SLM machine during
the preheating, melting, recoating, and cooling phases when
making an ANSI 316 stainless steel part. The experimen-
tal results showed that melting required the highest average
power (3.25 kW), followed by recoating, preheating, and
cooling. Baumers et al. [242] investigated whether shape
complexity impacts process energy use. They computed
a voxel-based shape complexity metric and measured the
power consumption of an electron beam process in making
a titanium part. They found that while the process energy
consumption does not have a strong correlation with the
shape complexity, it is mainly impacted by the product
cross-sectional area. In addition to manufacturing energy
consumption, several research studies incorporated a com-
prehensive LCA to evaluate the environmental impacts (e.g.,
energy consumption [233, 243-245], material consumption
[244,246], and CO, emissions [233, 243, 245]) of AM. Sev-
eral of these studies also compared the associated environ-
mental impacts with the impacts of machined components
using analytical models [233, 243-245, 247]. The common
life cycle stages for additive and machined components are
shown in Fig. 2.

Huang et al. [233] are one of the first to compare AM vs.
conventional manufacturing process chain while considering
use phase energy saving. For metallic aircraft components,
the study quantifies the net changes in life cycle primary
energy and greenhouse gas (GHG) emissions. The authors
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developed cradle-to-gate LCI models to estimate energy and
GHG reductions when additively manufactured (PBF pro-
cess) aircraft components (optimized design) are adopted
in place of machined parts. In the study, five steps were
implemented: (1) identify candidates for the adoption of
AM components in the aircraft system, (2) estimate replace-
able mass by AM components, (3) quantify the energy and
GHG reduction associated with the component replacement
using LCI models, (4) develop a temporal adoption model
(until the year 2050) under different adoption scenarios (e.g.,
adoption rate), and (5) report potential energy savings and
GHG reductions due to AM component adoption using the
fuel use model over the period 2014-2015. They estimated
fleet-wide life cycle energy savings and associated cumula-
tive GHG emission reductions as 70-173 million GJ/year
and 92-215 million metric tons, respectively, from 2014
to 2050. Raoufi et al. [248-250] investigated the economic
and environmental performance of laser powder bed fusion
(LPBF) at low and high production volumes for making
a 316 1 stainless steel microscale product. Moreover, they
compared LPBF with another AM process (binder jetting)
and a powder metallurgy process (metal injection molding).
They found that LPBF would lead to higher unit cost than
binder jetting and metal injection molding for the range of
annual production volumes explored due to the capital tool-
ing cost as well as the labor cost associated with the powder
removal step. Moreover, LCA results indicated LPBF and
binder jetting have lower environmental impacts compared
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to metal injection molding at low production volumes.
However, the environmental impacts of the selected addi-
tive manufacturing processes do not reduce significantly as
production volume increases since the main environmental
impact drivers for both additive manufacturing processes are
raw material and utilities.

Priarone et al. [243] proposed analytical models to esti-
mate life cycle energy demand and CO, emissions when
manufacturing a Ti-6Al-4 V- or stainless steel-based metal
component via PBF or conventional machining. They found
that additive manufacturing led to greater energy savings and
CO, emissions reductions than production using conven-
tional machining processes. Further, they noted that great-
est environmental benefits were achieved by lightweighting,
enabled by design optimization. Obeidi et al. [251] studied
the optimization of the powder bed fusion (PBF) process by
reducing build time through adjustments to the build layer
thickness of deposited metal powder and the input volumet-
ric energy density. They adjusted the layer thickness from 30
microns to 60 and 90 microns, which resulted in build time
savings of around 50% and 66.4%, respectively; this adjust-
ment reduced energy consumption from 36.5 to 18.4 kW and
12.25 kW, while only observing minor reductions in AM
part quality. This optimization leads to a direct reduction
in the total cost of production by decreasing factors such as
electric energy usage, inert gas consumption, and labor, all
while maintaining the chemical and mechanical properties
of the parts.

Another method to improve sustainability performance
in AM processes is to reuse and recycle powder material as
powder production is the 2nd largest contributor to cumu-
lative energy demand [240]. The powders are commonly
produced via atomization (e.g., water, gas, plasma, and
centrifugal atomization), which is an energy-intensive pro-
cess. From cost and material/energy efficiency standpoints,
it is desired to reuse/recycle the unused powder from the
process. Several extensive studies have been done on the
powder reuse/recycling for EBM. Tang et al. [252] stud-
ied the influence of powder reuse on the characteristics
of Ti-6Al-4 V powder and found that the tensile strength
of the built parts is not affected for up to 20 reuse cycles.
The oxygen and nitrogen content of the powder increases
slightly after each cycle, which puts a limit on the maxi-
mum number of reuses. These results are in agreement with
other studies [253-256]. When a more stable alloy is used
(e.g., Inconel 718), no negative effects are observed, and
the powders can be used many more times. The physical
properties (e.g., flowability) then limit the number of reuse
cycles. Meier et al. [257] also studied the feasibility of reus-
ing Ti-6Al-4 V powder in PBF. They found that Ti6Al4V
powder can be reused up to 18 times without compromising
tensile strength but observed the impact strength decreased
by 30% for vertical and 12% for horizontal stress-relieved
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specimens. The study also found that changes in particle size
distribution (PDS) and powder morphology do not nega-
tively impact the processability of PBF and argued that it
is essential to adequately mix and compact the feed powder
to ensure consistent quality. Recently, Warner et al. [258]
reviewed strategies to enable powder reuse in PBF. Three
most commonly adopted reuse methods are single batch (no
new powder addition until the current batch runs out while
sieving is done to remove agglomerates), collective aging
(multiple batches are used but powder of the same age are
mixed for reuse), top up method (place sieved powders on
top of the bed), and refreshing method (mix sieved powders
after one or several prints with virgin ones for next batch).
One of the key areas of interest is powder characterization.
A wide range of properties are measured, e.g., particle size,
shape, fluidity, composition, and microstructure, but more
comprehensive method is needed. Eventually successful
power reuse relies on the quality of the parts built. Similar
to particle characterization, many mechanical properties are
measured but there is no universal approach or standard that
has been reached.

For powder-based AM processes, concerns also have
been raised about occupational exposure to nanoparticles
(between 1 and 100 nm), especially when alloys containing
chromium, nickel, and cobalt are used. Graff et al. [259]
evaluated three common technologies used to measure the
concentration, size, and composition of particles emitted
from the selected laser melting of IN939 powder. They sug-
gested that better measurement techniques for nanoparticles
are needed, and clinical trials are needed to determine the
health effects. Karlsson et al. [260] evaluate potential health
hazards of particles released from PBF of two nickel-based
alloys. Limited particle releases were found, and minimal
effects on the cultured lung cells were observed up to 100
pg/ml level. At PBF facility, background particle concentra-
tion is low, but peaks of nanoparticles were observed when
sieving and post-print grinding occur. It was pointed out that
further studies are needed to understand the toxicity of nano-
particles. Occupational health studies at Swedish companies
suggest that based blood and urine samples impacted kidney
function and respiratory system inflammation are possible,
but long-term studies are needed [261].

2.6.2 Binder jetting

Binder jetting (BJ) printing offers higher production effi-
ciency and lower costs compared to the powder metallurgy
method while also being capable of fabricating complex
metal parts [262]. During the BJ process, two materials
are used: a liquid bonding agent and a metal powder. The
bonding agent (binder) is selectively deposited on the power
bed to bind the metal powder in a specific area to form a
layer. A comparative LCA study indicates that production



The International Journal of Advanced Manufacturing Technology (2024) 135:4089-4118 4105

of metal powder is the largest contributor to the cumula-
tive energy demand, followed by direct energy consumption
during printing [263]. As mentioned in the LPBF section,
Raoufi et al. [248-250] characterized the economic and
environmental performance of metal additive manufactur-
ing (LPBF and BJ) and powder metallurgy (metal injection
molding) processes for producing components of a 316 1
stainless steel microscale product. They found that the main
cost drivers in BJ are the capital tooling cost as well as the
labor cost associated with the depowdering steps. From the
environmental aspect, their LCA results indicated that the
main environmental impact drivers for both additive manu-
facturing processes were raw material and utilities—process
inputs more directly tied to the number of parts produced.
Zhou et al. [264] proposed a framework connecting design,
process optimization and planning, energy and material con-
sumption, and production to describe making a part using
BJ. The feedback from the modeling framework facilitates
part design and process planning. From the experimental and
simulation results, the authors concluded there are oppor-
tunities to enhance BJ sustainability performance through
design optimization and proper process parameter selection.
Also, the limitations of BJ include the need for post-pro-
cessing due to curing and densification, lower resolution,
high surface roughness, and the potential for part distortion,
which can result in defective products [265].

Avoiding the production of defective parts is important
for industrial sustainability as this reduces powder consump-
tion. To investigate the factors affecting a part quality in BJ,
for example, Miyanaji et al. [266] provided a perspective of
the process principles and characteristics by investigating
the process design considerations. They found that process
parameters (e.g., binder saturation, feedstock flowability,
powder spreading, and drying) could significantly impact the
geometric accuracy and integrity of the green parts. Chen
and Zhao [267] focused on four key process parameters (i.e.,
layer thickens, saturation, power ratio, and drying time) and
two quality properties (i.e., surface quality and dimensional
accuracy) to find the optimal process parameters. Experi-
mental results showed that layer thickness and drying time
were the most significant factors affecting surface roughness
and shrinkage rate, respectively. Using the optimal settings,
the surface roughness was reduced by 39.88% and shrink-
age decreased by 85.85% on average from the initial process
parameters. Tang et al. [244] proposed a new framework to
minimize the impacts of energy and material consumption
of BJ through part design optimization. To take advantage of
the design freedom offered by AM, the authors suggest the
product functional description (i.e., functional surfaces and
functional volumes) should be used as an input to evaluate
the environmental impacts of BJ. The results of applying the
proposed method to evaluate an aircraft engine bracket show
that BJ consumed significantly less energy when fabricating

the topologically optimized product than the original design.
BJ, however, usually requires post-processing for better sur-
face quality. Further study incorporating the environmental
impacts of different post-processes should be conducted.
Reuse of powder BJ is another way of reducing environ-
mental impacts. Bidare et al. [268] investigated the reus-
ability of two stainless steel powders. It was found that high
humidity in the printing chamber leads to packing density
decrease due to even slightly increased moisture content of
the powder. Degradation also occurs due to loss of fine par-
ticles and binder residue. It is also possible to recycle green
part wastes, but more research is needed.

2.6.3 Directed energy deposition

Common directed energy deposition (DED) technologies are
laser metal deposition, laser engineering net shaping, and
direct metal deposition (DMD). In DED processes, metal
powder or wire is fed through a nozzle; the material is then
melted onto the specific surface of the part using a concen-
trated energy source such as a laser or electron beam [269].
Typically, a DED machine is equipped with a multi-axis
arm, so the feeding nozzle can move in multiple directions to
deposit the material from any angle. Due to this functional-
ity, DED can repair an existing part by depositing additional
material, in addition to printing new parts [270]. Several
efforts have been found to model the resource consumption
in laser metal deposition processes to evaluate environmen-
tal impacts [271, 272]. Le Bourhis et al. [271] proposed
a global method to estimate the life cycle environmental
impacts of a part manufactured using the laser melt deposi-
tion process. They developed predictive models for mate-
rial, fluid, and electricity consumption defined from a CAD
model and manufacturing path. This approach intended to
integrate the environmental models (for material, fluid, and
electricity use) into the design loop for design optimiza-
tion. For the method to quantify environmental impacts, a
damage-oriented method, Eco-Indicator 99 [273], was used.
The authors showed that the manufacturing path is a key
factor affecting environmental impact when printing a part.
Further study for optimizing tool paths is needed to improve
resource efficiency in the process.

Kerbrat et al. [274] proposed a methodology to evalu-
ate the environmental impacts of parts produced using
different feeding nozzle sizes in the laser melting dep-
osition process. In the study, the consumption of three
resources (i.e., powder, gas, and electricity) was consid-
ered to quantify environmental impacts using Eco-Indi-
cator 99; two different nozzle sizes (4 mm and 0.8 mm)
were tested. To quantify the environmental impact, both
analytic and empirical models were developed as func-
tions of process parameters, machine knowledge (e.g.,
nozzle efficiency and the ratio of lost/fused powder), and
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several other factors. The proposed methodology was
used to evaluate the environmental impact of a given part.
Experimental results showed that higher environmental
impact was observed when the smaller nozzle size was
used, mainly due to the extended manufacturing time.
The manufacturing time was significantly decreased when
the larger nozzle was used (74 min and 1315 min, respec-
tively, when 4 mm and 0.8 mm nozzles were used). As
noted by the authors, however, the environmental impact
due to the nozzle size can be dependent on part design.
Also, when the larger nozzle was used, powder consump-
tion (193 mPts) was the most predominant factor con-
tributing to environmental impact rather than electric-
ity (131 mPts) and gas (6 mPts) consumption. Efforts
for improving the energy and material efficiency of the
metal-based AM processes have largely been limited to
understanding how energy is consumed and how process
conditions affect material reusability. For DED processes,
it has been suggested that powder utilization efficiency
could be improved by changing nozzle design [275, 276].
Further research is needed to use the gained knowledge
from past studies to improve the sustainability perfor-
mance of AM processes and machines.

The powders are commonly produced via water or gas
atomization which is an energy-intensive process. From
both a cost and material/energy efficiency standpoint, it is
desired to reuse/recycle the unused powder from the pro-
cess. This is particularly true for the laser direct deposi-
tion process, where more than 60% of powders are wasted
and disposed [275]. It is known that the unused powders
degrade due to exposure to elevated temperatures, thus
using recycled powders may cause part quality issues.
Slotwinski et al. [277] analyzed how recycling could
affect the characteristics of stainless steel (17-4SS) and
cobalt chrome (CoCr) powders used in the direct metal
laser sintering process. They found that the powder size
distribution increases after recycling. Besides these efforts
on escalating energy and material efficiency, productiv-
ity, and reducing manufacturing cost, it is important to
take all resource streams into account, not only energy
and GHG emissions. Researchers have to understand the
complete life cycle of the products and emphasize resource
efficiency in addition to energy efficiency. For instance,
embodied energy has to be included into manufacturing
planning and monitoring and into supply chain consid-
erations [110]. Therefore, future research needs to aim at
reducing impacts of resource uses in addition to minimiz-
ing energy use. In the meantime, the research direction
should be gradually shifted to the production system level
such as process planning/scheduling and production sys-
tem development based on high-fidelity simulation and
experiments with expanding LCI database. Details are
presented in Fig. 3.
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Fig. 3 Further study on mass conserving processes

3 Challenges, future trends,
and recommendations

Production systems incorporate numerous UMPs to convert
raw materials into a final product utilizing energy, labor,
equipment and tools, and supporting systems. This review
has focused on several shaping processes (mass reducing,
mass conserving, and joining) and non-shaping processes
(heat treatment and surface finishing). In addition, metal-
based additive manufacturing processes were reviewed to
elucidate recent advances impacting their performance in
terms of cost, resource use, and worker health and safety.
Each of these is summarized below, and opportunities for
future research are highlighted.

3.1 Mass reducing processes

Mass reducing processes generate a desired part geom-
etry by removing material from a workpiece, which can be
accomplished through mechanical, thermal, and/or chemical
reducing. Mechanical reducing is the most common and is
the focus of this review. Future research opportunities for
single point, multi-point, and abrasive machining processes
are summarized as follows.

3.1.1 Single-point material removal

Single-point material removal represents a critical set of
manufacturing processes utilized by a wide range of manu-
facturers. The single-point material removal has a rich his-
tory of research, and the literature review provided in this
paper indicates that it will continue to address significant
future research challenges. Three key advanced manufac-
turing trends were identified in sustainable research. First,
multi-objective single-point material removal optimization
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models should continue to be enhanced to better understand
the trade-offs between each pillar of sustainability across the
machine tool and machined component life cycles. Enhance-
ments need to target, specifically, the trade-offs of decisions
in the manufacturing phase (e.g., high feed rate) with the
impact on performance of machine tools and machined parts
during their use phase. Second, while not unique to single-
point material removal, social sustainability metrics should
become more standardized across cases. Social sustainability
metrics have been incorporated in recent single-point mate-
rial removal studies, but further studies are needed. Third,
detailed sustainable manufacturing studies should con-
tinue to be undertaken as new materials are developed and
advancements are made to single-point material removal,
e.g., laser-assisted machining and ultrasonic-assisted turn-
ing (UAT).

3.1.2 Multi-point material removal and cutting fluid use

Similar to single-point material removal, cutting fluids
play an important role in multi-point removal machining—
another broad set of operations widely used by all manu-
facturers. Reducing cutting fluid use while also improving
the performance of environmentally-friendly alternatives
are two major future research directions. With respect to
reducing the use of cutting fluids, opportunities exist in
dry machining, MQL, and design of new tools, optimizing
machining parameters. Opportunities may exist in designing
environmentally-friendly cutting fluids, such as gas-based
coolants and bio-based coolants. Because of its better lubri-
cation properties and environmental benefits, the demand for
bio-based cutting fluids is expected to increase. Two major
challenges should be solved to make bio-based cutting fluids
even more applicable: First, the costs of bio-based cutting
fluids are relatively high, and the scale of the production is
low (since bio-based cutting fluids are mainly made from
vegetable oils, efforts should be made to balance the needs
for vegetable oils between manufacturing and food supply
[278]); second, physical and chemical properties of vegeta-
ble oil tend to be less preferable than petroleum-based oils
or mineral oil. Additives can improve the performance of
bio-based cutting fluids but can introduce additional sus-
tainability-related impacts.

3.1.3 Abrasive machining

Abrasive machining represents a broad set of technologies
applied across industry—grinding is the most commonly
used abrasive process. Due to the random cutting edges on
the grinding wheel surface, the mathematical modeling of
the grinding process is more complex than other cutting
processes, such as milling and turning. Although some
research has studied simplified models considering a single

grit, building comprehensive models that reliably predict
the behavior of grinding processes is still a challenge. A
number of research studies have explored relevant sustain-
ability impacts. On the system level, the effect of the life
cycle of the grinding wheel and the associated tool design
has been studied [92, 100]. On the component level, add-
ing textures to the wheel surface helps reduce the specific
grinding energy.

Textured grinding wheels are categorized into microtex-
ture, macrotexture, and megatextures. Controlling crystal-
lographic orientation through laser ablation has been applied
for grinding wheel microtexturing [94]. However, other ori-
entations and diamond crystallite specifications (i.e., sizes,
shapes, and spacing) need further research for specific sce-
narios (materials, tool type, and size). With regard to the
grinding wheels with macrotextures, a rigorous mathemati-
cal model able to calculate and prove an optimized pattern
for a particular grinding operation is lacking.

3.2 Mass conserving processes

With advancements in materials science, novel materials
with high strength, toughness, ductility, corrosion resistance,
and low density, including high-strength steels, titanium
alloys, and magnesium alloys, have seen wide use in manu-
facturing [279]. Mass conserving processes are facing the
challenge of how to achieve the consolidation or deforma-
tion of these novel materials under normal conditions with
high quality. High-pressure die casting [280] can be reliably
applied with high efficiency. Multi-physical field-assisted
processes, such as microwave-assisted injection molding
[281], electromagnetics assisted drawing [282, 283], hot
stamping [284], and rolling with inter-pass cooling [285],
can effectively achieve higher speed and quality require-
ments. New processing techniques, with considerations of
higher efficiency and reliability under complex application
scenarios, have been emerging for traditional materials. For
instance, advanced cold forming technology can alleviate
difficulties of precision manufacturing for complex hollow
components. Flexible bending [286] is capable of control-
ling the trajectory of the forming tool that directly interacts
with the tube blank using numerical control. The tube blank
experiences continuous bending deformation, overcoming
some difficulties of forming three-dimensional complex
metal bends. Incremental forming [287] has demonstrated
the plastic forming of complex bend tubes with three-dimen-
sional spatial axes and variable cross-sections. Its implemen-
tation combines a local spinning process with a multi-roll
free bending forming process. Furthermore, reduction of
tube wall thickness can be better controlled if incremental
forming technology is integrated with the hydraulic bulging
process. Improving the sustainability of mass conserving
processes (especially consolidation) is worthy of further
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investigation. In particular, cleaner and more energy-efficient
processes need to be developed.

3.3 Joining processes

Mechanical, thermal, and chemical joining processes typi-
cally have high energy consumption, which necessitates
enhancement of their sustainability performance from an
environmental perspective. Mechanical joining processes
include cold welding, explosive welding, friction weld-
ing, and ultrasonic welding. While researchers have mainly
focused on developing new cold welding processes or
improving the existing cold welding processes for surface
oxide removal, sustainability performance has not received
much attention. Further research in explosive welding is
needed to investigate the impacts of the collision param-
eters and conditions on the energy balance items to improve
energy efficiency. Few studies have investigated the sustaina-
bility performance of friction welding and friction stir weld-
ing processes. It has been suggested that weighting schemes
could be applied for a better comparison of the economic,
environmental, and social metrics in friction welding. More-
over, a scaling factor(s) could be developed to consider the
division of heat generation between plastic deformation and
friction. Recently, researchers have focused on developing
solid-state welding processes such as ultrasonic spot welding
for improving environmental performance relative to con-
ventional spot welding processes.

Thermal joining processes include brazing, soldering, and
thermal welding. The main difference between brazing and
soldering is the melting temperature of the filler material.
Researchers have mainly focused on sustainability assessment
of aluminum applications (e.g., heat exchangers) in brazing,
while other materials and applications remain open to investi-
gation. In soldering, mitigating the toxicity of lead is the main
environmental challenge; lead-free solders have attracted
attention from university and industry researchers. However,
while lead-free solders improve the sustainability performance,
they have drawbacks, such as flux formation. Thermal welding
processes have experienced more scrutiny under sustainability
assessments than brazing and soldering. Metal nanoparticles
have been proposed to reduce energy use of diffusion brazing
and diffusion bonding. However, it was found that production
and use of metal nanoparticles need further investigation since
they could increase systemic material and energy demands, as
well as health and safety concerns.

3.4 Heat treatment processes

Heat treatment describes a set of non-shaping manufac-
turing processes including annealing, hardening, and

@ Springer

sintering. Using a UMP-based mathematical model of the
annealing process, it was found that influencing the mate-
rial properties by changing the annealing profile (e.g.,
cooling rate) would impact the cycle time of follow-on
machining processes for making the intended product.
Collaboration with suppliers to provide the proper, or
known, material properties could offer an opportunity
to improve performance while reducing overall energy
consumption and the associated environmental impacts.
Also, providing a more-detailed mathematical model
would assist applying optimization techniques to deter-
mine the optimal process parameters. Other reported work
described a UMP-based mathematical model for induction
hardening. The model utilizes design inputs and process
parameters to quantify sustainability metrics. Verifying
the model using experimental data (e.g., liquid flows,
cycle time, and utilities) remains undone. With regard to
the sintering process, three potential research directions
were identified. First, to analyze the sensitivity of the
sustainability metrics, process input uncertainty needs to
be investigated. Second, the impact of heat treating on
use and end-of-life phase sustainability metrics should
be considered. Third, to provide more precise compari-
son studies for device applications, the impact of mate-
rial properties on the product performance needs to be
investigated.

3.5 Surface finishing processes

Shaping processes are typically energy and resource inten-
sive. To improve their sustainability performance, dry or
near-dry operations have been investigated, which impacts
the surface finishes. Surface finishing processes, similar
to shaping processes, have high energy and chemical con-
sumption. Research on surface finishing processes is clas-
sified into surface preparation, surface coating, and surface
modification. Since chemical processes in surface prepa-
ration are material intensive, using ionic-liquid—based
solvents instead of existing organic or aqueous-based
solvents needs more research. To avoid hazardous waste
streams from typical surface coating processes, nano-
scale texture coating has been introduced. Its application
has been explored for magnesium alloys, which provides
an opportunity to investigate other metals. Moreover, to
improve the sustainability performance of chemical coat-
ing processes from environmental perspective, treating the
waste needs further investigation. While surface finish-
ing processes of steel have received much attention from
researchers, light metals need further investigation. Also,
considering the successful feasibility assessment of nan-
oparticle-based cooling-lubricating fluids, its commercial
development is a motivation for further research.
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3.6 Metal-based additive manufacturing

Metal-based additive manufacturing makes it possible to
produce parts with complex geometry that cannot be made
via traditional processes. Although metal-based additive
manufacturing processes themselves tend to be energy inten-
sive and the production of feedstock materials is also energy
intensive, these processes can greatly reduce material con-
sumption and achieve significant energy savings during use
phase through more optimized part designs. Many studies
have examined the environmental performance of a variety
of metal-based additive manufacturing processes using LCA
methodology. It has been pointed out that process parameters
can be optimized and process monitoring techniques can
be utilized to reduce energy consumption while increasing
part quality. Future efforts are needed, however, to advance
understandings on hybrid processes and at the production
system level, including process planning, manufacturing
scheduling, and supply chain management.

At the process-level, more investigation should be done
to model and understand the performance of multi-material
geometries, by especially focusing on multi-scale process
modeling from the material (microstructural) level, both
during manufacturing and product use. As these processes
continue to evolve, including the use of new alloys and alloy-
ing methods (e.g., alloy jetting), the effects on worker safety
and health must be better understood and mitigated.
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