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Abstract

Advanced manufacturing is challenging engineering perceptions of how to innovate and compete. The need for manufac-
turers to rapidly respond to changing requirements and demands; obtain, store, and interpret large volumes of data and
information; and positively impact society and our environment requires engineers to investigate and develop new ways
of making products for flexible and competitive production. In addition to the associated operational, technological, and
strategic advantages for industry, advanced manufacturing creates educational, workforce, and market opportunities. Thus,
this literature review aims to investigate the current state and emerging trends in advanced manufacturing. Specifically, this
study addresses advances in manufacturing from manufacturing systems perspective, concentrating on emerging trends in
process sensing and monitoring, equipment control and automation, machine tools, sustainable manufacturing, and green
supply chain management. This review finds myriad efforts have been undertaken by researchers in industry, academia,
and government labs from around the world, which have supported the development and implementation of new process
technologies to improve manufacturing systems extending from unit process and shop floor operations to facility and sup-
ply chain management activities. However, emerging global challenges remain in various domains including energy (e.g.,
resource scarcities and global warming), critical materials vulnerable to supply disruptions due to crisis and rapid changes
in demand, and services (e.g., healthcare supply chains during COVID-19 pandemic). Thus, manufacturing industry must
continue the innovative development of advanced materials, manufacturing processes, and systems that ensure cost efficient,
rapidly flexible, high quality, and responsible production of goods and services.

Keywords Advanced manufacturing - Conventional processes - Additive manufacturing - Manufacturing systems - Smart
manufacturing

1 Introduction

Advanced manufacturing represents a continuous transfor-
mation of manufacturing in terms of technologies, processes,
skills, and strategies to satisfy the future needs of society as
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a result of growth in affluence and population [1]. National
efforts in the USA [1, 2], Japan [3, 4], and other countries
throughout Europe [5, 6] and across the globe highlight the
importance of healthy and robust advanced manufacturing
industries. Strategic support of advanced manufacturing
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aims to improve the competitive advantages and leadership
of national manufacturing industries across global markets.
In particular, advanced manufacturing technologies and a
skilled workforce provide significant benefits for the pro-
duction of industrial and consumer products by utilizing
cutting-edge developments at the manufacturing process
and systems levels [7, 8]. Considering the importance of
advanced manufacturing to the global economy and soci-
ety, the objective of this literature review is to summarize
recent operational, technical, and strategic developments in
advanced manufacturing systems. We then use this summary
as a springboard to discuss open challenges and future trends
in advanced manufacturing. This research presents emerging
trends in manufacturing equipment and systems, as well as
measurement, modeling, analysis, and decision making for
manufacturing. To conclude the literature review, the chal-
lenges, future trends, and recommendations identified are
discussed as well.

2 Emerging trends in smart manufacturing
systems

The following sections discuss several emerging trends in
advanced manufacturing—process sensing and monitoring,
equipment control and automation, multi-axis and multi-
tasking machine tools, and developments in model-based
enterprise and sustainable manufacturing—followed by a

Table 1 Summary of recent process monitoring developments

discussion on how manufacturing policy is driving emerging
supply chain management practices.

2.1 Process sensing and monitoring

Process monitoring is intended to improve the productivity
of machining processes and to mitigate tool/workpiece fail-
ure [9]. This goal mandates the accurate prediction of tool
condition and, accordingly, setting of process parameters,
such as speed and feed, to attain optimal production condi-
tions. In traditional monitoring practices, the prediction of
tool condition is dependent on the skill of the operator, and
always marked with uncertainty [10]. Sensor-based moni-
toring yields accurate and valuable information about tool
conditions [11]. Essential elements of a sensor-based moni-
toring system are: (1) sensor or sensing elements, (2) signal
processing algorithms, (3) feature generation, (4) feature
selection/extraction, and (5) process knowledge modeling
[12]. Table 1 lists types of sensors and associated algorithms
for tool wear monitoring, which are detailed below.

2.1.1 Single sensors

During metal cutting, process variables such as acoustic
emissions, vibrations, and forces are influenced by cutting
tool conditions [13]. Information for some of these vari-
ables, e.g., acoustic emissions data, can be independently
used for inferring the tool conditions. In prior research [10,

Category Sensor types Application Model References
Single Acoustic emissions sensor Estimation of grinding wheel wear ~ Support vector machine (SVM), [10, 14, 15]
Sensors in surface and creep-feed grinding ~ Genetic clustering algorithm,
C4.5 algorithm
Dynamometer Identification of chatter and estima- Index-based reasoner hidden [16, 17]
tion of tool wear in micro-milling Markov models (HMMs)
Current sensor Induction motor rotor bar condition ~ Support vector machine (SVM) [18]
Accelerometer Rotary system fault detection Transformer-based classifier using  [19]
Mahalanobis distance
Power sensor Machine state identification such as  Unsupervised nonintrusive load [20]
tool and cutting conditions monitoring (NILM)
Multiple sensors Fusion of current and sound sensor ~ Tool wear monitoring in turning Least squares version of support [21]
vector machines (LS-SVM)
Dynamometer, load cell (force), Estimation of tool wear in broaching Least squares version of support [22]
strain gauge, and accelerometer vector machines (LS-SVM)
Dynamometer, current, voltage, Estimation of tool wear for an Artificial neural network (ANN) [23]
accelerometer, microphone, and industrial face milling center
acoustic emissions sensor
Dynamometer, accelerometer, and  Estimation of tool wear in drilling ~ Two-stage fuzzy logic scheme [24]
microphone
Accelerometer Estimation of tool state in turning Atrtificial neural network (ANN) [25]
Dynamometer, accelerometer, and  Estimation of tool wear in milling Random Forest (RF) [26]

microphone
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14, 15], acoustic emissions sensor data processed by artifi-
cial intelligence techniques (e.g., support vector machine
(SVM) modeling and genetic clustering algorithms) are used
for determining the grinding wheel condition. Other single
sensors that have been used to monitor tool and rotor condi-
tions include dynamometers, current and voltage sensors,
and microphones (Table 1).

2.1.2 Multiple sensors

With the development in microelectronics and sensing tech-
nology, multiple types of sensors can be embedded to collect
data. With the concept of multiple-sensor data fusion, the
information collected by different sensors can be synthe-
sized to estimate the status of cutting tools with improved
accuracy [12]. Aliustaoglu et al. [24] used the fuzzy logic
technique to fuse or combine information from force, vibra-
tion, and acoustic emission sensors to predict drilling tool
wear. It was found that the estimated tool wear based on the
fused data was more accurate compared to the results based
on any individual sensors. The authors reported that tool
wear estimates could be further improved by considering
multiple sensor inputs and sensor fusion technique as part of
the fusion model. In another study [21], current and acoustic
emissions sensors were used for monitoring tool wear in a
computer numerical control (CNC) lathe. The study dem-
onstrated that with increased cutting speed and feed rate,
the accuracy of tool wear estimates increased due to the
improved signal to noise ratio in sensor data under these
conditions.

Wu et al. [26] monitored cutting force, vibration, and
acoustic emissions using a dynamometer, three accelerom-
eters, and an acoustic emission sensor. The authors imple-
mented a random forest (RF) algorithm on a scalable cloud
computing system. By implementing RFs in parallel on the
cloud, the processing speed was significantly increased with
a high prediction accuracy of tool wear in milling. Nasir
and Sassani [27] reviewed the opportunities and challenges
presented by machining and tool monitoring through deep
learning techniques. Opportunities highlighted were the abil-
ity to handle large data sets, handling high-dimensional data,
optimal sensor fusion, and hybrid intelligent models. Some
of the challenges highlighted included model selection and
process uncertainty. Serin et al. [28] reviewed and summa-
rized the various tool monitoring techniques and provided
the underlying theory of recent deep learning techniques that
have emerged in tool monitoring such as kernel filters and
neural networks. Areas of opportunities the authors high-
lighted include the use of support vector machine (SVM)
in tool monitoring since this algorithm has the potential to
broaden its training over time with various cutting condi-
tions. The authors also highlighted transfer learning (TL)
since it can also reduce the task of collecting and labeling

large amounts of data. TL can adapt knowledge for one task
and apply it to another, thus reducing the collection of data
and training of a new algorithm.

2.2 Equipment control and automation

The growth in cyber-physical systems (CPS) research has
been driven by recent breakthroughs in sensor and sensor
network technologies with simultaneous improvements
in distributed computing and advanced algorithms. These
trends have important impacts on manufacturing processes
by expanding the capabilities of machining operations,
improving reliability, and reducing waste to improve sus-
tainability, leading to the creation of a distinct area termed
cyber-physical production systems (CPPS) [29]. The follow-
ing sections provide an overview of recent work in this area.

2.2.1 Advances in motion command algorithms
for positioning systems

The software-based tools used in machine tools to control
metalworking operations are improving as a result of the
development of myriad iterative machine learning techniques
[30]. These data-driven methods have critical advantages
over conventional techniques for monitoring workpieces
with improved tolerances due to iterative motion control and
positioning systems [31]. One important application of these
algorithms is in additive manufacturing where the repeat-
ability of metal part production is difficult to achieve [32].
Conventional additive manufacturing operations function in
X, ¥, and z axes, but advanced controllers can enable material
addition along multiple axes (via rotating platforms) and in
non-uniform material layer thicknesses, which could address
some of the primary drawbacks of existing additive manu-
facturing methods.

2.2.2 Supervisory systems and factory automation

At the manufacturing enterprise level, the growth of cyber-
physical systems stands to revolutionize the ways in which
manufacturing systems operate by leveraging advances in
the Internet of Things (IoT) [33]. In particular, advances in
the way humans interact with these complex systems-of-
systems are important to reduce the impact of human error.
Situational awareness, which is the broad study of human
perception and comprehension within a manufacturing
environment, stands to greatly enhance the capability of
manufacturing workers [34]. The benefits of these devel-
opments will vary based on the size of the manufacturing
facility and resources available to invest in the hardware
and software required, but as domain-specific languages
and frameworks emerge, adoption will be more widespread
[35]. Moreover, machine tool controllers provide important
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advantages in predictive maintenance, e.g., predicting tool
wear [30]. Large-scale data sets can now be processed across
a broad range of operating conditions, workpiece materials,
tools, and other factors to predict tool condition, unexpected
failures, and unexploited life enabling real-time cost-based
maintenance decisions [36]. As an example, non-paramet-
ric techniques are used to carry out time-series analysis of
machine tool vibration and workpiece surface roughness to
estimate tool health and forecasting [37].

2.3 Machine tool development

With continuously changing market requirements, e.g., the
need for products with more complex geometries at higher
precision and lower cost, machine tools have been subject to
evolutionary, ground-breaking improvements and satisfying
multiple criteria, including productivity, accuracy, longev-
ity, serviceability, energy consumption, and environmental,
health, and safety (EHS) considerations [38]. As a result of
these capability improvements, multi-functional machine
tools have emerged as a pathway for efficiency and pro-
ductivity by integrating multiple operations (e.g., milling,
turning, and additive processes). Conventionally, parts are
machined to the intended geometry, dimensions, and surface
quality by a series of processes, which necessitates a variety
of machine tools. Multi-functional machine tools have been
investigated from two directions: multi-tasking machine
tools and hybrid machine tools, which are discussed next.
More recently, research has begun investigating machine
tools as integral components to cyber-physical and digi-
tal systems [39, 40], which are discussed in the following
sections.

2.3.1 Multi-tasking machine tools

Multi-tasking machine tools are able to execute simple and
complex turning, milling, drilling, boring, reaming, and tap-
ping operations [41-44]. These machines have been built
with intelligence such that operator intervention is elimi-
nated for operations including workpiece set-up changes and
tool changes. Multi-tasking machines often have two main
spindles and plural tool posts, while multi-axis machine
tools are developed based on milling machine tool archi-
tectures. The five-axis machine tool is the most common
type of multi-axis machine tool. With the development of
multi-axis control and multi-tasking functionality, multi-
tasking machine tools can also be multi-axis machine tools.
Figure 1 shows the evolution of machine tools from two-axis
lathes developed four decades ago to the recently developed
multi-functional machine tools. Recently, the demand for
simultaneous five-axis and multi-tasking machine tools has
increased for making large-scale and complex products, such
as ship propellers and crank shafts, aerospace components,
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Fig. 1 The evolution of machine tools [41]

and large spiral bevel gears [43—45]. The need for making
parts with complex geometries with high accuracy in a sin-
gle setup can be met by using a single multi-axis or multi-
tasking machine tool. These multi-function machine tools
reduce or eliminate workpiece clamping and handling pro-
cesses, which improves production efficiency, simplifies pro-
duction management and planning, and improves transpar-
ency throughout the production of a single part. Multi-axis
and multi-tasking machine tools have many advantages, but
due to their complex structure, achieving successful machin-
ing operations can be difficult. Researchers have investigated
computer-aided manufacturing systems to minimize asso-
ciated programming time and labor needs [42, 46]. While
displacement errors are a challenge, up to 75% of the overall
geometrical errors of machined workpieces are due to the
effects of temperature [47, 48]. In particular, the aerospace
industry requires complex parts using high performance
alloys with superior thermal and mechanical properties,
which decrease machinability and productivity [49]. Another
drawback of the multi-axis and multi-tasking machine tools
is self-interference [42].

2.3.2 Hybrid machine tools

Hybrid machine tools can be considered as machining equip-
ment that implement other manufacturing process functions,
beyond conventional cutting operations. Hybrid machine
tools, which are different from multi-tasking machine tools,
have been defined as integrated manufacturing processes
with different forms of energy or forms of energy sources
[50], such as additive or subtractive machine tools combined
with laser-based machining. The commonly used manufac-
turing processes, such as mechanical machining (MM), elec-
trochemical (ECM), electric discharge machining (EDM),
additive manufacturing, laser cutting, forming, and laser
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heating have been at least partially integrated. Three or more
processes can be integrated into a single hybrid machine
tool. Possible hybrids of typical manufacturing processes are
shown in Table 2. Hybrid machine tools can be categorized
into three types, i.e., subtractive manufacturing (SM), form-
ing manufacturing (FM), and additive manufacturing (AM).
SM-based hybrid machine tools generally aim to real-
ize higher performance, in terms of material removal rate,
surface integrity, and tool wear [51]. Zhu et al. [52] estab-
lished an experimental bench that combines grinding and
ECM to machine precision small holes in hard-to-machine
materials. Similarly, the combination of EDM and MM is
also able to machine hard and brittle materials [51]. Com-
bining laser cutting and other machining processes, such
as MM [53], EDM, and ECM, is usually adopted to reduce
tool wear and production time, as well as to increase sur-
face quality. Moreover, laser heating and ultrasonic vibra-
tion have been explored as auxiliary processes for improving
machining performance. Laser-assisted mechanical machin-
ing (LAMM), which can reduce material hardness, was pre-
sented over 20 years ago [54] and was used to machine high-
strength materials in recent years [55]. Kumar et al. [56]
studied a laser-assisted micro-grinding process for a hard
silicon nitride ceramic. Assisted by the laser, the machining
force of the grinding process was reduced by up to 40%.
Researchers have also investigated ultrasonic-assisted cut-
ting. For example, Zhong et al. [57] proposed an ultrasonic
vibration rig of a CNC machine tool for the turning of alu-
minum-based metal matrix composite workpieces. They
demonstrated that ultrasonic vibration improved the surface
roughness of the workpiece under given combinations of
speed, feed, depth of cut, and vibration frequency.
FM-based hybrid machine tools, which combine tradi-
tional forming and laser treatment processes can be of ben-
efit for sheet metal forming. In particular, the heat energy
provided by lasers is effective for changing the microstruc-
ture and mechanical properties of the irradiated work-
pieces. Using a laser to heat the material near the drawing
edge before the operation can reduce the drawing force and
forming steps as well as to obtain deeper features [58, 59].

Duflou et al. [60] utilized a laser to heat the underside of
the sheet for increasing formability in the single point incre-
mental forming (SPIF) process. Biermann et al. [61] found
that using a laser for heating the workpiece in front of the
forming tool is effective to assist the forming process. Mod-
eling of the laser-assisted SPIF process was investigated
to predict the bending angle of workpieces [62]. Additive-
incremental forming hybrid manufacturing can result in the
development of a rapid prototyping technique that exploits
the peculiarities of both the utilized processes [63]. Additive
manufacturing-based hybrid machine tools address some of
the challenges of additive processes capable of making metal
parts with complex geometries, but tend to exhibit poor sur-
face quality, low dimensional accuracy, and long production
time [64]. For improving accuracy and surface quality and
saving companies time and costs, the integration of addi-
tive manufacturing with traditional machining technologies
has been widely practiced in research areas and industries,
such as the HYBRID HSTM 1000 [65] system from France
and the INTEGREX i-400 AM [66] from Japan. Additive
manufacturing-based hybrid manufacturing processes are
usually called hybrid additive and subtractive manufacturing
(HASM) processes. HASM processes generally use an addi-
tive manufacturing process to build a near-net shape, which
is subsequently machined to its final shape with desired accu-
racy using an SM process [51, 67].

Manogharan et al. [68] investigated the HASM process,
and presented that the key to a successful rapid high preci-
sion hybrid process is developing a process that does not
inhibit future developments and makes use of existing addi-
tive and subtractive processes. Du et al. [69] developed a
process technology to take advantage of selective laser melt-
ing (SLM) and precision milling. Additive manufacturing-
based hybrid tools are generally developed based on multi-
axis 3D printing mechanisms. A disadvantage of traditional
3D printers is that the product can only be printed along
flat layers. With the development of robotic technology, 3D
printers employing an industrial robot with more than three
degrees of freedom (DOF), can realize multi-plane motion
[70]. Li et al. [71] developed a novel HASM platform that

Table 2 Possible hybrids of

. ’ MM ECM EDM Additive Laser cutting Forming Laser heating
typical manufacturing processes manufactur-
ing
MM | | | | |
ECM | | | |
EDM | |
Additive manufacturing W |
Laser cutting | |
Forming | | |
Laser heating | |
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combines fused deposition modeling (FDM) and a 6-DOF
machine tool to overcome limitations of typical additive
processes. Manogharan et al. [72] analyzed the econom-
ics of HASM processes and presented a composite model
to determine the unit cost of producing mechanical parts.
Le et al. [64, 73] proposed a direct material reuse strategy
to recover end-of-life (EoL) parts using a HASM process.
Their methodology starts with investigating the feasibility
of applying metal-based additive processes for printing new
features onto an EoL part. Next, a manufacturing process
plan for additive and machining operations is determined.
By considering the relationships of the added and removed
features as well as manufacturing precedence constraints, the
setups are designed. Their approach could reduce energy and
resource consumption for a selected part.

2.4 Model-based enterprise

A model-based enterprise integrates technical and busi-
ness processes through the definition of a common prod-
uct model through which the data from different life cycle
phases can be coordinated and various modeling and simula-
tion efforts can be integrated [74, 75]. This will reduce cost
and time for development, production, and support. Within
a model-based enterprise, data is created once and reused
downstream. However, acquiring the right data to build and
improve the models and provide the data to stakeholders
throughout the life cycle is challenging. The idea of a digital
thread has been investigated to support the collection and
transmission of data throughout a product’s life cycle. This
section will provide an overview of digital threads and their
support of model-based enterprises.

2.4.1 Digital system model, digital thread, digital twin

The digital thread, originating from the aerospace industry,
was initially described as a technique supporting the sys-
tems engineering process for digital management through
Computer Aided Design (CAD), manufacturing, assem-
bly, and delivery [76]. The definition has since expanded
beyond the design and manufacturing stage to include other
data throughout a product’s life cycle. Many threads, when
woven together, make up a “digital tapestry,” as described
in Bullen [77]. The terms digital system model and digital
twin are associated with a digital thread. Definitions of digi-
tal system model (adapted from Kraft [76]), digital thread
(adapted from the working draft of ISO/AWI 23247-5 [78],
and digital twin (adapted from ISO and National Academies
[79, 80] are listed below.

¢ Digital system model: A digital representation of a
system that integrates authoritative data, information,
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algorithms, and systems engineering to define aspects
for specific activities throughout the system life cycle.

¢ Digital thread: The connected communication frame-
work of contextualized life cycle data. The communica-
tion is supported by information modeling standards and
technologies and enables data traceability.

e Digital twin: A fit for purpose digital representation
with synchronization between an observable element and
its digital representation, has predictive capability, and
informs decision-making.

The expanded digital thread systems perspective aligns
with the need for life cycle considerations in sustainable
manufacturing systems. Methods and approaches that con-
nect the product and manufacturing process life cycle stages
contribute to the goal and definition of sustainable manufac-
turing. An indication of this alignment is found in Hedburg
et al. [81], which proposes a concept to address unstructured
datasets, multiple data repositories, and domain-specific
schema for life cycle stages. The research concept proposed
the system to share and utilize data across the life cycle.
It would respond to industry’s major challenge of linking
product life cycle data resulting from the unique contexts
in which data is used for a specific product life cycle stage
(e.g., design vs. use). While this concept did not address
sustainability, its principles can be applied to support sus-
tainable manufacturing. A digital thread may connect design
tools, sensors, machines, models, companies, and more to
one another [77]. It allows for communication and data shar-
ing across multiple entities. This idea builds on smart manu-
facturing, Industry 4.0, and other emerging technologies to
share data that can improve processes and entities beyond
the originating individual. These connections can have great
benefits in efficiency and optimization. These technological
benefits can include lower costs and reduced cycle times,
and also a number of environmental benefits, e.g., improved
energy efficiency and higher resource efficiency [82, 83].

Process and system models are a digital twin of the manu-
facturing processes or systems, that may contain sustainabil-
ity-related information, and traverse a digital thread. While
much knowledge is captured across this digital thread from
design through production and inspection, manufacturing
organizations have not fully realized smart manufacturing
through model-based enterprises for improving quality and
sustainability performance [81]. Much work is still needed to
attain sustainability goals through model-based enterprises.
Cloud technologies enable digital model-based enterprises
by moving data storage and computing away from desktops
and local servers to distributed data centers across the Inter-
net, and exhibit elasticity, or the ability to adapt to changes;
economy, or the reduction in cost due to renting server
space; and virtualization, or the ability for multiple users to
store data on a single server [84]. Elasticity enables nearly
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continuous optimization to improve energy and resource
efficiency. Storage space rental, along with the ability for
multiple users to store data on the same physical equipment,
allow for the reduction in physical server space (only the
space required is paid for). Using cloud-based technologies,
a faster response to changes in computing requirements can
be provided in addition to reduced waste in data storage.

Maintenance can account for as much as 60-70% of pro-
duction life cycle total cost [85], and replacing worn-out
components may be up to 70% of the total maintenance cost
[86]. The use of cloud-based augmented reality can promote
preventive maintenance practices, reducing cost, time, and
resources used in maintenance [87]. Mourtzis et al. [87]
proposed a Cloud-Based Augmented Reality Remote Main-
tenance Shop-Floor Monitoring Product-Service System
(CARMZ-PSS) approach that consists of a wireless sensor
network that can pull data in real time, preprocess the data,
and then determine the machine status and the machining
time. This information is used to provide augmented real-
ity service instructions. Manufacturing process monitoring
allows for better control of process parameters. For example,
part quality often presents challenges in the implementation
of additive manufacturing of metallic parts due to a variety
of factors, including a poor understanding of the complex
physical phenomena that take place during the process [88].
Other defects include part geometric errors caused by poor
process control. Real-time monitoring can increase the avail-
ability of process knowledge and the ability to improve qual-
ity by modifying process parameters [89-91].

2.4.2 Data collection and transmission

As the semantic framework in the digital system model, the
digital thread supports the interplay (sharing) of data and
information [76]. Here, the digital thread is involved in data
collection and transmission, and the digital system model
includes data certification, traceability, authenticity, and
cybersecurity. Hedberg et al. [92] identified three standards
for creating a manufacturing digital thread: (1) MTConnect
[93], (2) ISO 10303 the Standard for the Exchange of Prod-
uct Model Data (STEP) [94], and (3) the ISO 23952:2020
the Quality information framework (QIF) [95]. MTConnect
is an open protocol standard based on Extensible Markup
Language (XML) [96] for data integration that facilitates
communication within a manufacturing system [97]. Near-
real time data is supported by MTConnect. Bengtsson et al.
[98] utilized MTConnect to collect production data from a
Boeing shop floor along with discrete event simulation to
investigate sustainable machining using Life Cycle Assess-
ment (LCA). The STEP standard enables defining and shar-
ing product manufacturing information (e.g., geometric
dimensions, tolerances, and part specifications), kinemat-
ics, and tessellations [81, 99]. For example, STEP contains

information that can support assembly/disassembly analysis
during the design stage [100, 101]. Lastly, QIF enables the
exchange of metrology data using information models and
integrates the product definition into the quality informa-
tion [81].

The Smart Manufacturing System (SMS) testbed, devel-
oped and operated at NIST [102], exhibited many of the
digital thread concepts. Lu et al. [103] stated an SMS maxi-
mizes a manufacturer’s competitiveness “by using advanced
technologies that promote rapid flow and widespread use
of digital information within and between manufacturing
systems.” The SMS testbed demonstrated the integration
between product designs and fabrication/inspection data.
Data was collected using the MTConnect standard. Techni-
cal data packages, query-able data, and a real-time stream
of data were provided [104]. Challenges identified by the
testbed include cybersecurity concerns in the form of data
losses and cyber-attacks [102]. A challenge of data transmis-
sion is the issue of data interoperability. Throughout the life
cycle, there are many data standards and data formats, which
can make it difficult to transfer and read data from other
parts of the product life cycle. MTConnect, STEP, and QIF
are three standards that can provide an interoperable digital
thread throughout design, manufacturing, and inspection.
To address data interoperability concerns within manufac-
turing, Monnier et al. [105] provided a review of the data
formats that can be found within the manufacturing stage
of the product life cycle data (design, manufacturing, and
inspection) and a description of the different mapping tech-
niques across these standards with the associated tradeoffs.
AM has its own challenges in data interoperability due to
how new the field is. To address this, Li et al. [106] outlined
the need for a common data model within AM to make AM
data FAIR (Findable, Accessible, Interoperable, and Reus-
able) and described the design philosophy around the current
effort to develop an AM common data model.

Collection and transmission of critical data (e.g., pro-
cess parameters) is currently an area of research in additive
manufacturing receiving intense scrutiny to achieve com-
ponent quality certification. Additively produced compo-
nents require continuous monitoring during production to
ensure sufficient quality throughout all layers of a compo-
nent, which requires research into both sensor technology
and monitoring algorithms. Tapia and Elwany [88] reviewed
several types of sensors used in additive manufacturing, e.g.,
pyrometers, photodiodes, digital cameras, thermocouples,
and displacement sensors. They concluded that additional
studies are required to fully understand monitoring and
control in metal additive manufacturing and that there is a
lack of statistical models and algorithms developed based
on the monitored data. They found that research is limited
to simple geometries and, thus, potential effects of com-
plex geometries is unknown. To increase the usability of
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AM data, Lu et al. [107] describe how metadata needs to
be collected and accessible. The authors surveyed common
AM data-collection methods, including in the lab and in
the field, as well as in-process monitoring and post-process
part inspection. The focus was to identify acquisition-related
metadata to improve data usability. Data fusion has been a
challenge in AM due to the increasingly available data from
the monitoring of AM processes. Feng et al. [108] presented
a data registration method to align data acquired from AM
as a first step towards addressing data fusion. The authors
provided a common reference and coordinate system as well
as effective ways to transform between coordinate systems.

2.5 Sustainable manufacturing

Sustainable manufacturing has been defined as, “[t]he crea-
tion of goods or services using a system of processes that
simultaneously addresses economic, environmental, and
social aspects in an attempt to improve the positive or reduce
the negative impacts of production by means of responsible
and conscious actions” [109]. Environmental and economic
metrics for sustainable manufacturing often focus on mate-
rial and energy inputs and wastes and other outputs for a
given manufacturing process or system. This focus is driven
by the scope of evaluation for sustainable manufacturing
systems (Fig. 2), which suggests a circular path of materials
and products and includes design, manufacturing, distribu-
tion, use, and value recovery.

In this system, material and product flows alone will
not fully support sustainable manufacturing. Rather, mate-
rial and product flows must be supported by information
flows between stages in the context of the digital systems
model, digital thread, digital twin, and model-based defini-
tion/enterprise [76, 103]. Major initiatives in the USA and
abroad, e.g., Industry 4.0, the National Institute of Standards
and Technology (NIST) Smart Manufacturing programs, the

Sustainable manufacturing systems
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Fig.2 Sustainable manufacturing system elements for material flow.
Similar routing of information and data is possible with a digital
thread [110]
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Smart Manufacturing Leadership Coalition (SMLC), and the
Clean Energy Smart Manufacturing Innovation Institute
(CESMII), sponsored by the US Department of Energy, are
pursuing efforts to predict and reduce energy use, waste,
cost, and cycle times within the manufacturing phase of the
life cycle, among other sustainability performance measures,
which are seen as key benefits of implementing a digital
thread [82, 83, 102]. This section describes three approaches
to addressing sustainable manufacturing challenges.

2.5.1 Unit manufacturing processes (UMPs)

Mani et al. [111] recognized a need for a standard science
and information base to measure manufacturing sustain-
ability impacts. Five elements were determined as neces-
sary and sufficient elements for sustainability performance:
(1) unit manufacturing processes (UMPs) and operations,
(2) inputs and outputs, (3) operation rules, (4) operation
resources, and (5) dataflow among operations. A standard
representation of a generic UMP model is defined in the
ASTM E3012-22 standard and is shown below in Fig. 3
[112, 113]. Importantly, UMP models document sustain-
able manufacturing related aspects, such as energy/material
inputs, wastes, product life cycle management (PLM) and
sustainability plans, and human resources. ASTM E3012-22
models interface with ASTM E2986-22 [114] to guide UMP
boundary determination.

Product and Process Information

=Equipment and material specifications

=Process Specifications
=Setup-operation-teardown instructions
=Control Programs and process control

=Product and engineering specifications
=Part geometries

=Production plans

=Quality plans
=KPIs and quality plans

=PLM and sustainability plans

=Safety documentation
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-Out5|d;, factors *Equipment =Solid, liquid, emissions
=Disturbance . i
*Tooling Thermal, noise
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Fig.3 Schematic of NIST-developed UMP model to capture inputs,
outputs, resources, and information for a process under consideration
[113]
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Information about the manufacturing process param-
eters is contained in the model as are transformation equa-
tions that define how energy, material, and information are
converted from model inputs to outputs. Rickli et al. [115]
showed there is the capacity for networks of UMPs to be
modeled by describing the potential for connecting UMP
models as part of modeling an additive metal deposition
process. Bernstein et al. [116] demonstrated the potential
for informing a LCA through the data generated from the
development and application of UMP models. More research
is required for these applications. However, a repository of
standardized UMP models will promote consistency among
performance assessments, allow for data-driven analysis
activities, and provide reference material that will assist
industry in modeling and improving their operations [117,
118].

2.5.2 Measurements, metrics, and characterization
for sustainable manufacturing

Recognizing the importance of measuring sustainability
practices to quantify improvements, it is necessary to clarify
the differences between measurements, metrics, and indica-
tors. Sustainability indicators help manufacturers evaluate
their performance from the triple bottom line perspective,
i.e., environment, economic, and social, perspectives. Such
indicators can also be used in ways that directly relate to
manufacturing metrics, such as energy use, material con-
sumption, and productivity. Feng and Joung [119] identified
several key characteristics of indicators, i.e., they must be
measurable, relevant, understandable, reliable/usable, data
accessible, and flexible. They described the sustainability
measurement process as “‘a sequence of operations, with the
necessary instruments and tools and having the objective of
determining the value of an indicator.” Sustainability met-
rics are simply “a set of measurements, corresponding to
standard indicators that are used to evaluate sustainability
performance” [119].

Over the years, a number of indicators have been pro-
posed for sustainability performance measurement. The
Organization of Economic Co-operation and Development
(OECD) published a Sustainable Manufacturing Toolkit
[120] that uses 18 indicators for sustainable manufacturing
under three categories, i.e., inputs, operations, and products.
The NIST Sustainable Manufacturing Indicator Repository
defined metrics under five dimensions of sustainability, i.e.,
environmental stewardship, economic growth, social well-
being, technological advancement, and performance man-
agement [121]. Cohen et al. [122] compiled a database of
557 sustainability indicators in 2014, indicating the growth
in sustainability management during the previous decade.
On reviewing several sustainability performance tools for
evaluation and decision-making in practice, Feng and Joung

[119] noted that manufacturers require a standardized frame-
work to evaluate their own sustainability practices and to
minimize their reliance on external stakeholders. They pro-
posed the development of a sustainability management infra-
structure comprising a sustainability indicator repository,
measurement methods, guidelines, and performance analy-
sis. Building on previous work, Joung et al. [123], reviewed
eleven sets of publicly available sustainability indicators and
identified those that were related to manufacturing, provid-
ing manufacturers a common repository of sustainability
indicators.

With regard to the development and use of sustainability
metrics, Feng et al. [124] highlighted the fact that developed
metrics can be applied to assess sustainability across the
product life cycle and can also be used at an organizational
level for decision-making. De Silva et al. [125] developed a
scoring method to put the idea of sustainability evaluation in
practice in the context of electronics products. Lu et al. [126]
presented a framework for the development of product and
process metrics and explored how both sets of metrics inter-
act with each other to support sustainable manufacturing.
More recently, Faulkner and Badurdeen [127] used sustain-
ability metrics to develop a methodology that could lead to
Sustainable Value Stream Mapping, building on a technique
used in lean manufacturing. Shuaib et al. [128] proposed the
development of a Product Sustainability Index (Prod SI), a
metrics system that helps assess sustainability at the product
level. Huang and Badurdeen [129] extended this work to the
enterprise level through the development of the framework
for the Enterprise Sustainability Index, En SI. Meanwhile,
Calik and Badurdeen [130] developed the first known scale
to measure sustainable innovation performance. However,
this scale requires validation using industry data. Lucato
et al. [131] developed a conceptual framework to evaluate
the sustainability performance of a manufacturing process
from the triple bottom line perspective. Unlike previously
proposed frameworks, their approach integrates all three pil-
lars of sustainability, environmental, social, and economic,
into a single measurement variable.

One major challenge in developing absolute measures for
sustainability is the lack of well-defined approaches to char-
acterize sustainability performance for manufacturing [132].
Through the characterization of sustainability performance,
manufacturers can better position themselves in improving
productivity. In the recent past, LCA tools that use life cycle
inventory (LCI) databases have been developed and used in
measuring impacts. LCAs require a lot of data that can be
sparse and may not align with the actual manufacturing pro-
cesses, which makes performing an LCA difficult and prone
to inaccuracies [133]. To aid in metric characterization, Kel-
lens et al. [134, 135] developed a two-level screening and
in-depth approach based on the LCA methodology to com-
bine the unit process life cycle inventory (UPLCI) effort in
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the USA and the CO2PE! initiative in Europe. This UMP
modeling methodology has been used to generate process
models for evaluating the environmental impacts of various
UMPs such as grinding [136], drilling [137], metal injection
molding [138-140], high speed laser directed energy deposi-
tion [141], laser powder bed fusion [142], stereolithography
[143], gas metal arc welding [144] polymer injection mold-
ing [145], and fused deposition modeling [146].

To improve the communication of sustainability perfor-
mance across integrated supply chains, especially in sharing
relevant data and information, Garretson et al. [109] focused
on better defining the terminology associated with sustaina-
bility related practices. Vinodh and Joy [147] used structural
equation modeling (SEM) to model sustainable manufactur-
ing system enablers and outcomes. The benefit of SEM is
the use of actual empirical data from industry as opposed
to theoretical data. Further, as a means of characterizing
the performance of sustainable manufacturing, Shao et al.
[148] proposed the sustainable process analysis framework
(SPAF), Zhang et al. [149] developed a product sustainabil-
ity index (ProdSI) based on a five-level hierarchical frame-
work, and Ordouei et al. [150] introduced the concept of
analytical hierarchy process (AHP) and the implementation
of sustainability indices from the triple-bottom line perspec-
tive. Kluczek [151] developed a multi-criteria approach for
the assessment of sustainability of manufacturing processes.

Using AHP, activities in the manufacturing processes
are assigned rankings in terms of sustainability objectives,
allowing a less technical approach to evaluating sustainabil-
ity. Zhang et al. [152] integrated systems thinking methods
as an initial step to defining a unified theoretical framework
for assessing sustainability. Duflou et al. [153] emphasized
the variety of considerations that go into reducing environ-
mental impact, focusing on energy and resource efficiency.
They characterized analysis and system optimization chal-
lenges and opportunities at each level of the manufacturing
system (i.e., the unit-process through supply chain levels).
Loglisci et al. [154] proposed a set of indicators for sus-
tainable manufacturing evaluation focusing on conditions
of human work and the environment. Similarly, Sutherland
et al. [155] explored ways of integrating social impacts into
LCA. Shokravi and Kurnia [156] proposed a conceptual
method of measuring sustainability performance of indus-
trial networks quantitatively using aleatory and epistemic
uncertainties considering economic, environmental, and
social aspects. In the past, the main challenges in charac-
terizing sustainability performance have included a lack of
harmonized nomenclature and standards, lack of structured
information, and limited decision models. Sustainability
metrics existed at company, regional, and national levels
[157]. However, standards have started to emerge to pro-
vide guidance to small and medium-sized manufacturers,
as outlined in Escoto et al. [158]. These include quality
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management standards (ISO 9000 series), environmental
management standards (ISO 14000 series), and sustainable
production standards (ISO 20140 & ASTM E60.13 series).
Continued work is required to develop standards, unify
nomenclature, and build decision models addressing the lack
of definite information.

2.5.3 Data visualization of sustainability assessment

Advancing digital thread technologies for sustainable manu-
facturing involves research opportunities in data visualiza-
tion [159]. In particular, the complex interplay of economic,
environmental, and social metrics for sustainable manufac-
turing increase the difficulty of communicating the metrics
and their implications to people from machine operators to
engineering and business decision makers, consumers and
policy makers [160]. Innovative data visualization methods
can enhance communication of such complex information
and the importance of considering sustainability perfor-
mance indicators in manufacturing, to different audiences.
Effective visualization of sustainability performance analysis
results should lead to awareness and a subsequent need to
take action (e.g., apply the results in making a decision).
While one intended audience for a visualization of results
may need detailed information (e.g., experimental design or
analysis methodology), another audience may only be inter-
ested in the results of the analysis. Consequently, to develop
analysis methods, software tools, and other solutions, the
needs of various audiences should be considered. Raoufi
et al. [159] introduced two questions to be taken into account
in presenting sustainability analysis results: (1) What does
the user hope to accomplish? and (2) What barriers do users

face in achieving their objective(s)? While the answers to

these questions are specific to the system(s) under study,
they clarify the decision to be made, its magnitude, and its
frame of reference. Given this focus, decision makers will
be able to arrive at a conclusion without need to interpret
extraneous information. Educating decision makers about
sustainability analysis methods related to their industry was
seen as a key to helping them better understand the goal(s)
of conducting such assessments.

While visualization of sustainability assessment results
can inform decision makers of the attendant uncertain-
ties [161-164], few studies have investigated the impact
of quantitative uncertainty visualization on different audi-
ences [161]. The inherent uncertainties in LCA and the vol-
ume of data required across the product life cycle increase
the complexity and the challenges for visualization of the
results [165, 166]. Tabular data and bar charts are the typi-
cal formats for reporting LCA results, which do not support
rapid and intuitive visual analysis of the uncertainties and,
in fact, may cause a false sense of certainty for some audi-
ences [159]. Ramanujan et al. [166] reiterated this point in
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their work to identify opportunities for future research in
product LCA to support effective sustainable design decision
making. They concluded that visualization frameworks are
needed to integrate life cycle data with visual representations
of the results and to address the attendant complexities and
uncertainties in an easy-to-understand way.

2.6 Supply chain management

The role of the supply chain management (SCM) is to pro-
vide the right product to the right customers at competitive
costs, time, quality, and quantities. In the short-term, SCM
principles help reduce cycle times and inventory, thereby
contributing towards greater productivity. The overarching
objective of sustainable SCM is to develop the means for
long-term environmental, social, and economic value for all
stakeholders. This section first provides a brief introduction
to green SCM, and then investigates SCM from a sustain-
ability perspective.

2.6.1 Green supply chain management

A supply chain is a network that consists of the stakehold-
ers (e.g., suppliers, manufacturers, distributors, wholesalers,
retailers, and customers) involved directly or indirectly in
the development, production, and delivery of products and/
or services to customers. These activities take place both
through upstream and downstream flows and distribution
of information and finances [167]. It is known that environ-
mental, social, and economic impacts exist across the supply
chain. With this awareness, business and government leaders
have been striving to address SCM from the triple bottom
line perspective.

According to the UN, supply chain sustainability or
green supply chain management (GSCM) is “the manage-
ment of environmental, social, and economic impacts and
the encouragement of good governance practices throughout
the life cycles of goods and services” [168]. Managing a
supply chain is a complex process given that the network
comprises numerous sub-systems, activities, relationships,
and operations. The green component of GSCM integrates a
set of sustainability principles in the procurement, manufac-
turing, distribution, and reverse-logistics stages [169]. Effec-
tive implementations of SCM result in accurate demand
forecasts, increased customer service and responsiveness,
better supply chain communications as well as reduced
risk, production cycle time, and duplication [170]. With
an increasing foothold, a greater number of governments,
firms, and supply chain partners are collaborating to tackle
problems related to minimizing waste, energy, and pollu-
tion, while working on increasing goodwill and maintaining
profits [171, 172].

Collaborations between various stakeholders are espe-
cially beneficial, since they promote mutual learning with
respect to increasing supply chain sustainability perfor-
mance. According to a study by Flammer [173], it has been
observed that companies who incorporate sustainability
practices have experienced significant increases in stock
prices. Thus, firms have realized that sustainability is a
business strategy related not just to environmentally friendly
practices, but also to corporate social responsibility. Such
firms have gained a competitive advantage in the market,
including greater customer approval. In short, to achieve
long-lasting competitive advantages, firms need to approach
sustainability from the triple bottom line perspective, taking
into account economic, environmental, and social aspects
[174].

One key SCM activity is the coordination and efficient
flow of raw materials and components from suppliers to
manufacturing units during production of a given product.
Studies carried out by Rao and Sarkis [175, 176] emphasized
the need for effective collaboration with suppliers through
implementing green design, increasing awareness of sup-
ply chain impacts, and helping suppliers develop their own
GSCM programs. Chin et al. [170] found that environmental
collaboration between practitioners and suppliers in design-
ing green products facilitates the connection between GSCM
and industrial sustainability performance. Similarly, Singh
and Dyer [177] reported that the establishment of long-term
collaborative relationships characterized by strong inter-
organizational interactions facilitates the pursuit of GSCM
initiatives.

2.6.2 GSCM initiatives

Supply chain managers may encounter a number of green
initiatives. Prior research has attempted to define the most
important factors in developing a sustainable supply chain
[178]. Masoumik et al. [179] highlighted the lack of research
demonstrating how external and internal drivers can interac-
tively affect business managers’ decisions in selecting strate-
gies for implementation of GSCM. While some studies use
AHP, they found that the decision factors included in these
models are more relevant to operational levels rather than
strategic levels of management. They proposed a conceptual
model based on application of the natural-resource-based
view (NRBV) and institutional theory. The model comprised
a literature review and used analytic network process (ANP)
modeling to structure the decision framework, where ANP
is a more generalized form of AHP. Pimenta and Ball [180]
recognized that the scope of GSCM is extremely broad,
ranging from green purchasing to integrated life cycle man-
agement. Their study focused mainly on upstream supply
chain management activities because it is at this stage that
the main diffusion of environmental sustainability practices
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takes place. Similarly, Lee et al. [181] developed a research
model relating GSCM practice and business performance
through three organizational variables as moderators, i.e.,
employee satisfaction, operational efficiency, and relational
efficiency. To test the proposed hypotheses relating GSCM
practice implementation and business performance, SEM
was used (e.g., [182]). They found that the GSCM practice
implementation improves the operational efficiency and the
relational efficiency, which eventually enhances the business
performance.

While GSCM initiatives can help promote supply
chain sustainability, the implementation of GSCM strate-
gies must be performed with prudence. Laosirihongthong
et al. [183], for example, reported that pursuing a low-cost
strategy may negatively impact an organization’s ability to
invest in GSCM. The purpose of their study was to examine
the deployment of proactive and reactive practices in the
implementation of GSCM. The study found that the threat of
legislation and regulation (reactive practices), including the
applicability of Waste Electrical and Electronic Equipment
(WEEE) directive in August 2005, Kyoto Protocol’s Clean
Development Mechanism (CDM) in 2008-2012, Climate
Change Act (in the UK) in 2008, American Clean Energy
Bill (USA) in 2009, and Restriction of Hazardous Substance
(RoHS) directive in July 2006, were a consideration that
compelled companies to enhance their environmental, eco-
nomic, and intangible performance. Among proactive prac-
tices reported, i.e., green purchasing practices, eco-design
practices, and reverse logistics practices, the last were less
common and did not have a significant impact on GSCM
performance. In addition, while corporate social responsi-
bility encourages reduction of negative social impacts (and
increasing social benefits) across supply chains, a review on
supply chain network design by Eskandarpour et al. [184]
found that a large body of work focuses on the environmen-
tal and economic aspects of sustainability. In fact, there has
been little consideration of social aspects in the context of
sustainable manufacturing, especially in terms of quantita-
tive studies. The authors observed that most research with
regard to modeling techniques concentrates on the devel-
opment of deterministic MILP (mixed integer linear pro-
gramming) models as opposed to stochastic models. These
deterministic models are solved using standard modeling
tools and solvers.

3 Challenges, future trends,
and recommendations

This review considered recent research in support of
advanced manufacturing systems. Emerging trends include
process sensing and monitoring, equipment control and
automation, multi-axis and multi-tasking machine tools,
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model-based enterprises, and sustainable manufacturing.
These trends are each summarized below, and relevant
opportunities for future research are highlighted.

3.1 Process sensing and monitoring

Process sensing and monitoring provides valuable informa-
tion about tool and workpiece conditions, which helps in
reducing the failure and, consequently, improves machining
productivity. Sensor-based monitoring is conducted through
single sensors or multiple sensors. For single sensors, min-
iaturization of the sensor package and embedding the sen-
sor within the cutting tool is a key to accessing parameters
with high signal-to-noise ratios [185]. Multiple sensors can
help improve the sensing accuracy by fusing the data from
individual sensors [186, 187]. Data-based algorithms, such
as the Artificial Neural Network, Support Vector Machine,
and Random Forest [188] approaches, that rely on histori-
cal data have been identified as powerful solutions to fusing
multiple streams of sensor data for most applications. To
better understand the correlations among sensor data and
target phenomena being monitored, physical models, espe-
cially for complicated machining process such as grinding,
are still highly demanded.

3.2 Equipment control and automation

The recent research in the area of equipment control and
automation has focused on two key areas: (1) advances in
motion command algorithms for positioning systems and (2)
supervisory systems and factory automation. In the former
research area, development of iterative motion control and
positioning systems improved the quality (tolerances and
repeatability) of parts produced using machining, metal-
based additive manufacturing, and other processes. How-
ever, further research is needed for developing advanced
controllers in multi-material, multi-scale additive manufac-
turing processes. Moreover, to improve real-time control,
analytical and data-driven models are needed to address the
high computational challenges of simulation and physics-
based finite element analysis. In the latter research area,
advances in the Internet of Things (IoT) improved manu-
facturing systems operations. However, further studies are
needed to investigate the hardware and software required
for integrating data analytics with IoT and other distributed
processing techniques. Moreover, collecting data and apply-
ing data analytics across all phases of the product life cycle
needs further investigation.

3.3 Machine tool development

Recent industrial initiatives, such as Industry 4.0 and Facto-
ries of the Future, have placed demands on the development
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of machine tools for more intelligent and more autonomous
manufacturing systems. Moreover, increasing energy costs
and environmental problems have pushed research forward
on the sustainable operation of machine tools with consider-
ations of higher speeds, efficiency, and reliability, and lower
emissions. Unified management of machine tool programs
and standardization of process approval mechanisms utiliz-
ing cloud platforms can reduce the risk of errors caused by
human factors and avoid security risks caused by transmis-
sion media. Unified management and standardization can
also ensure the consistency of programs and drawings with-
out repeated programming, which improves operator perfor-
mance and machine tool efficiency. Such platforms can also
improve safety and quality, and reduce scrap rates, main-
tenance costs, and operational risks. In a related manner,
process control, health monitoring, and energy management
based on CPS, digital twins, and other advanced approaches
need to be applied in multi-functional machine tools, for
better performing and cleaner processes. It is increasingly
a trend to provide users with customized multi-functional
machine tools and system solutions based on the IoT and
cloud service platforms. Future research on remanufacturing
of machine tools should be a focus of materials, energy, and
value recovery; strategies include remanufacturing-oriented
design and residual life prediction of critical components.

3.4 Model-based enterprise (MBE)

Connectedness and aggregation of disparate data sources are
key characteristics of digital manufacturing and the digital
thread that can significantly alter data availability for sus-
tainability performance assessment. While research into the
digital manufacturing enterprise has been prevalent, research
leveraging the digital thread specifically for sustainability
evaluation is less common. The review conducted herein
and reflection on recent research have identified several
research recommendations related to the digital thread for
sustainable manufacturing. First, manufacturing case stud-
ies must be undertaken and reported to better demonstrate
the capabilities and benefits of linking digital manufacturing
information with life cycle methods and tools, such as the
integration NIST UMP models and Brightway2 discussed
in Sect. 2.5.1.

3.5 Sustainable manufacturing

The degree to which a manufactured product or process is
environmentally impactful can be quantified using any one
of a number of different frameworks — most based on life
cycle accounting principles [189]. While these frameworks
vary in flexibility and customizability (e.g., [190-192]), a
comparatively small number of metrics appear regularly in
the life cycle literature for sustainable manufacturing: energy

use, greenhouse gas (GHG) emissions, water use, and a few
others. More recently, specialized ways of characterizing the
performance of a manufacturing system are gaining accept-
ance. The focus on GHG emissions in recent years had led to
formalized carbon auditing schemes that are now widespread
in industry [193]. GHG accounting protocols typically bin
firm’s activities into three tiers [194]: Tier 1 represent all
the direct emissions from the operations of a firm, Tier 2
captures the emissions from energy that a firm uses, and
Tier 3 accounts for all the upstream emissions that come
from suppliers. As many companies make commitments to
decarbonize over the coming decades, this kind of carbon
accounting will be applied more broadly to manufacturing
operations. For those seeking a broader evaluation of sus-
tainability, the United Nations released sustainable devel-
opment goals in 2015 [195] that take a comprehensive and
quantifiable approach to measuring sustainability. Recent
work has sought to apply these development goals to sus-
tainable manufacturing by thinking beyond individual tech-
nical decisions at the plant level and focusing on directed
technical change and the way that firms operate to achieve
sustainability goals [196].

Data visualization is another area that will advance tech-
nologies for sustainable manufacturing. Promising efforts
are being made around investigating visual communication
of sustainability assessment results. However, there is still a
need to investigate the types, means, and content for sustain-
ability performance visualization that align with industry
experience. The effective visual representation of quanti-
tative information, including uncertainty, for sustainability
performance is still preliminary. In addition to developing
pedagogical approaches for educating and training decision
makers (e.g., [197-212]), a related area identified from aca-
demic and industrial perspectives is the need to define user
interface/user experience (UI/UX) factors and visualization
formats enabling or preventing decision makers in interpret-
ing sustainability performance data and information.

3.6 Supply chain management

Supply chain management (SCM) enables stakeholders to
provide products and/or services to customers. Green SCM
(GSCM) integrates sustainability principles with different
stages of an SCM and develops long-term values from tri-
ple bottom line perspective for all the stakeholders. However,
its implementation is challenging due to the limited amount
of data available in supporting green supply chain decision
making. Few studies have been carried out using SEM and
regression analyses to address this issue. However, further
research is needed in this area. Moreover, given the strong
support of industry and academic researchers for implement-
ing GSCM initiatives, a challenge lies in the ability to strategi-
cally implement initiatives that are most effective for different
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manufacturing enterprises. Several models and approaches
implementing GSCM have been conceptualized and future
research would require these concepts to be validated through
the development of robust manufacturing enterprise and
product supply chain models. As approaches and tools for
economic and environmental analysis of industry continue
to mature, future research must focus on how to adequately
evaluate the broad social impacts of manufacturing activities.
These activities occur across the whole product life cycle and
directly impact workers, communities, and global society in
profound and often unpredictable ways.
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