
Vol.:(0123456789)

The International Journal of Advanced Manufacturing Technology (2024) 134:3031–3050 
https://doi.org/10.1007/s00170-024-14279-z

CRITICAL REVIEW

Current state and emerging trends in advanced manufacturing: smart 
systems

Kamyar Raoufi1   · John W. Sutherland2 · Fu Zhao3 · Andres F. Clarens4 · Jeremy L. Rickli5 · Zhaoyan Fan1 · 
Haihong Huang6 · Yue Wang7 · Wo Jae Lee2 · Nehika Mathur8 · Matthew J. Triebe8 · Sai Srinivas Desabathina1 · 
Karl R. Haapala1

Received: 25 June 2024 / Accepted: 12 August 2024 / Published online: 3 September 2024 
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024

Abstract
Advanced manufacturing is challenging engineering perceptions of how to innovate and compete. The need for manufac-
turers to rapidly respond to changing requirements and demands; obtain, store, and interpret large volumes of data and 
information; and positively impact society and our environment requires engineers to investigate and develop new ways 
of making products for flexible and competitive production. In addition to the associated operational, technological, and 
strategic advantages for industry, advanced manufacturing creates educational, workforce, and market opportunities. Thus, 
this literature review aims to investigate the current state and emerging trends in advanced manufacturing. Specifically, this 
study addresses advances in manufacturing from manufacturing systems perspective, concentrating on emerging trends in 
process sensing and monitoring, equipment control and automation, machine tools, sustainable manufacturing, and green 
supply chain management. This review finds myriad efforts have been undertaken by researchers in industry, academia, 
and government labs from around the world, which have supported the development and implementation of new process 
technologies to improve manufacturing systems extending from unit process and shop floor operations to facility and sup-
ply chain management activities. However, emerging global challenges remain in various domains including energy (e.g., 
resource scarcities and global warming), critical materials vulnerable to supply disruptions due to crisis and rapid changes 
in demand, and services (e.g., healthcare supply chains during COVID-19 pandemic). Thus, manufacturing industry must 
continue the innovative development of advanced materials, manufacturing processes, and systems that ensure cost efficient, 
rapidly flexible, high quality, and responsible production of goods and services.

Keywords  Advanced manufacturing · Conventional processes · Additive manufacturing · Manufacturing systems · Smart 
manufacturing

1  Introduction

Advanced manufacturing represents a continuous transfor-
mation of manufacturing in terms of technologies, processes, 
skills, and strategies to satisfy the future needs of society as 

a result of growth in affluence and population [1]. National 
efforts in the USA [1, 2], Japan [3, 4], and other countries 
throughout Europe [5, 6] and across the globe highlight the 
importance of healthy and robust advanced manufacturing 
industries. Strategic support of advanced manufacturing 

 *	 Kamyar Raoufi 
	 raoufik@oregonstate.edu

1	 School of Mechanical, Industrial, and Manufacturing 
Engineering, Oregon State University, Corvallis, OR, USA

2	 Environmental and Ecological Engineering, Purdue 
University, West Lafayette, IN, USA

3	 School of Mechanical Engineering, Environmental 
and Ecological Engineering, Purdue University, 
West Lafayette, IN, USA

4	 Engineering Systems and Environment, University 
of Virginia, Charlottesville, VA, USA

5	 Department of Industrial and Systems Engineering, Wayne 
State University, Detroit, MI, USA

6	 School of Mechanical Engineering, Hefei University 
of Technology, Hefei, China

7	 Cummins Inc., Columbus, IN, USA
8	 Systems Integration Division, National Institute of Standards 

and Technology (NIST), Gaithersburg, MD, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-024-14279-z&domain=pdf
http://orcid.org/0000-0002-4897-9532


3032	 The International Journal of Advanced Manufacturing Technology (2024) 134:3031–3050

aims to improve the competitive advantages and leadership 
of national manufacturing industries across global markets. 
In particular, advanced manufacturing technologies and a 
skilled workforce provide significant benefits for the pro-
duction of industrial and consumer products by utilizing 
cutting-edge developments at the manufacturing process 
and systems levels [7, 8]. Considering the importance of 
advanced manufacturing to the global economy and soci-
ety, the objective of this literature review is to summarize 
recent operational, technical, and strategic developments in 
advanced manufacturing systems. We then use this summary 
as a springboard to discuss open challenges and future trends 
in advanced manufacturing. This research presents emerging 
trends in manufacturing equipment and systems, as well as 
measurement, modeling, analysis, and decision making for 
manufacturing. To conclude the literature review, the chal-
lenges, future trends, and recommendations identified are 
discussed as well.

2 � Emerging trends in smart manufacturing 
systems

The following sections discuss several emerging trends in 
advanced manufacturing—process sensing and monitoring, 
equipment control and automation, multi-axis and multi-
tasking machine tools, and developments in model-based 
enterprise and sustainable manufacturing—followed by a 

discussion on how manufacturing policy is driving emerging 
supply chain management practices.

2.1 � Process sensing and monitoring

Process monitoring is intended to improve the productivity 
of machining processes and to mitigate tool/workpiece fail-
ure [9]. This goal mandates the accurate prediction of tool 
condition and, accordingly, setting of process parameters, 
such as speed and feed, to attain optimal production condi-
tions. In traditional monitoring practices, the prediction of 
tool condition is dependent on the skill of the operator, and 
always marked with uncertainty [10]. Sensor-based moni-
toring yields accurate and valuable information about tool 
conditions [11]. Essential elements of a sensor-based moni-
toring system are: (1) sensor or sensing elements, (2) signal 
processing algorithms, (3) feature generation, (4) feature 
selection/extraction, and (5) process knowledge modeling 
[12]. Table 1 lists types of sensors and associated algorithms 
for tool wear monitoring, which are detailed below.

2.1.1 � Single sensors

During metal cutting, process variables such as acoustic 
emissions, vibrations, and forces are influenced by cutting 
tool conditions [13]. Information for some of these vari-
ables, e.g., acoustic emissions data, can be independently 
used for inferring the tool conditions. In prior research [10, 

Table 1   Summary of recent process monitoring developments

Category Sensor types Application Model References

Single
sensors

Acoustic emissions sensor Estimation of grinding wheel wear 
in surface and creep-feed grinding

Support vector machine (SVM), 
Genetic clustering algorithm, 
C4.5 algorithm

[10, 14, 15]

Dynamometer Identification of chatter and estima-
tion of tool wear in micro-milling

Index-based reasoner hidden 
Markov models (HMMs)

[16, 17]

Current sensor Induction motor rotor bar condition Support vector machine (SVM) [18]
Accelerometer Rotary system fault detection Transformer-based classifier using 

Mahalanobis distance
[19]

Power sensor Machine state identification such as 
tool and cutting conditions

Unsupervised nonintrusive load 
monitoring (NILM)

[20]

Multiple sensors Fusion of current and sound sensor Tool wear monitoring in turning Least squares version of support 
vector machines (LS-SVM)

[21]

Dynamometer, load cell (force), 
strain gauge, and accelerometer

Estimation of tool wear in broaching Least squares version of support 
vector machines (LS-SVM)

[22]

Dynamometer, current, voltage, 
accelerometer, microphone, and 
acoustic emissions sensor

Estimation of tool wear for an 
industrial face milling center

Artificial neural network (ANN) [23]

Dynamometer, accelerometer, and 
microphone

Estimation of tool wear in drilling Two-stage fuzzy logic scheme [24]

Accelerometer Estimation of tool state in turning Artificial neural network (ANN) [25]
Dynamometer, accelerometer, and 

microphone
Estimation of tool wear in milling Random Forest (RF) [26]
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14, 15], acoustic emissions sensor data processed by artifi-
cial intelligence techniques (e.g., support vector machine 
(SVM) modeling and genetic clustering algorithms) are used 
for determining the grinding wheel condition. Other single 
sensors that have been used to monitor tool and rotor condi-
tions include dynamometers, current and voltage sensors, 
and microphones (Table 1).

2.1.2 � Multiple sensors

With the development in microelectronics and sensing tech-
nology, multiple types of sensors can be embedded to collect 
data. With the concept of multiple-sensor data fusion, the 
information collected by different sensors can be synthe-
sized to estimate the status of cutting tools with improved 
accuracy [12]. Aliustaoglu et al. [24] used the fuzzy logic 
technique to fuse or combine information from force, vibra-
tion, and acoustic emission sensors to predict drilling tool 
wear. It was found that the estimated tool wear based on the 
fused data was more accurate compared to the results based 
on any individual sensors. The authors reported that tool 
wear estimates could be further improved by considering 
multiple sensor inputs and sensor fusion technique as part of 
the fusion model. In another study [21], current and acoustic 
emissions sensors were used for monitoring tool wear in a 
computer numerical control (CNC) lathe. The study dem-
onstrated that with increased cutting speed and feed rate, 
the accuracy of tool wear estimates increased due to the 
improved signal to noise ratio in sensor data under these 
conditions.

Wu et al. [26] monitored cutting force, vibration, and 
acoustic emissions using a dynamometer, three accelerom-
eters, and an acoustic emission sensor. The authors imple-
mented a random forest (RF) algorithm on a scalable cloud 
computing system. By implementing RFs in parallel on the 
cloud, the processing speed was significantly increased with 
a high prediction accuracy of tool wear in milling. Nasir 
and Sassani [27] reviewed the opportunities and challenges 
presented by machining and tool monitoring through deep 
learning techniques. Opportunities highlighted were the abil-
ity to handle large data sets, handling high-dimensional data, 
optimal sensor fusion, and hybrid intelligent models. Some 
of the challenges highlighted included model selection and 
process uncertainty. Serin et al. [28] reviewed and summa-
rized the various tool monitoring techniques and provided 
the underlying theory of recent deep learning techniques that 
have emerged in tool monitoring such as kernel filters and 
neural networks. Areas of opportunities the authors high-
lighted include the use of support vector machine (SVM) 
in tool monitoring since this algorithm has the potential to 
broaden its training over time with various cutting condi-
tions. The authors also highlighted transfer learning (TL) 
since it can also reduce the task of collecting and labeling 

large amounts of data. TL can adapt knowledge for one task 
and apply it to another, thus reducing the collection of data 
and training of a new algorithm.

2.2 � Equipment control and automation

The growth in cyber-physical systems (CPS) research has 
been driven by recent breakthroughs in sensor and sensor 
network technologies with simultaneous improvements 
in distributed computing and advanced algorithms. These 
trends have important impacts on manufacturing processes 
by expanding the capabilities of machining operations, 
improving reliability, and reducing waste to improve sus-
tainability, leading to the creation of a distinct area termed 
cyber-physical production systems (CPPS) [29]. The follow-
ing sections provide an overview of recent work in this area.

2.2.1 � Advances in motion command algorithms 
for positioning systems

The software-based tools used in machine tools to control 
metalworking operations are improving as a result of the 
development of myriad iterative machine learning techniques 
[30]. These data-driven methods have critical advantages 
over conventional techniques for monitoring workpieces 
with improved tolerances due to iterative motion control and 
positioning systems [31]. One important application of these 
algorithms is in additive manufacturing where the repeat-
ability of metal part production is difficult to achieve [32]. 
Conventional additive manufacturing operations function in 
x, y, and z axes, but advanced controllers can enable material 
addition along multiple axes (via rotating platforms) and in 
non-uniform material layer thicknesses, which could address 
some of the primary drawbacks of existing additive manu-
facturing methods.

2.2.2 � Supervisory systems and factory automation

At the manufacturing enterprise level, the growth of cyber-
physical systems stands to revolutionize the ways in which 
manufacturing systems operate by leveraging advances in 
the Internet of Things (IoT) [33]. In particular, advances in 
the way humans interact with these complex systems-of-
systems are important to reduce the impact of human error. 
Situational awareness, which is the broad study of human 
perception and comprehension within a manufacturing 
environment, stands to greatly enhance the capability of 
manufacturing workers [34]. The benefits of these devel-
opments will vary based on the size of the manufacturing 
facility and resources available to invest in the hardware 
and software required, but as domain-specific languages 
and frameworks emerge, adoption will be more widespread 
[35]. Moreover, machine tool controllers provide important 
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advantages in predictive maintenance, e.g., predicting tool 
wear [30]. Large-scale data sets can now be processed across 
a broad range of operating conditions, workpiece materials, 
tools, and other factors to predict tool condition, unexpected 
failures, and unexploited life enabling real-time cost-based 
maintenance decisions [36]. As an example, non-paramet-
ric techniques are used to carry out time-series analysis of 
machine tool vibration and workpiece surface roughness to 
estimate tool health and forecasting [37].

2.3 � Machine tool development

With continuously changing market requirements, e.g., the 
need for products with more complex geometries at higher 
precision and lower cost, machine tools have been subject to 
evolutionary, ground-breaking improvements and satisfying 
multiple criteria, including productivity, accuracy, longev-
ity, serviceability, energy consumption, and environmental, 
health, and safety (EHS) considerations [38]. As a result of 
these capability improvements, multi-functional machine 
tools have emerged as a pathway for efficiency and pro-
ductivity by integrating multiple operations (e.g., milling, 
turning, and additive processes). Conventionally, parts are 
machined to the intended geometry, dimensions, and surface 
quality by a series of processes, which necessitates a variety 
of machine tools. Multi-functional machine tools have been 
investigated from two directions: multi-tasking machine 
tools and hybrid machine tools, which are discussed next. 
More recently, research has begun investigating machine 
tools as integral components to cyber-physical and digi-
tal systems [39, 40], which are discussed in the following 
sections.

2.3.1 � Multi‑tasking machine tools

Multi-tasking machine tools are able to execute simple and 
complex turning, milling, drilling, boring, reaming, and tap-
ping operations [41–44]. These machines have been built 
with intelligence such that operator intervention is elimi-
nated for operations including workpiece set-up changes and 
tool changes. Multi-tasking machines often have two main 
spindles and plural tool posts, while multi-axis machine 
tools are developed based on milling machine tool archi-
tectures. The five-axis machine tool is the most common 
type of multi-axis machine tool. With the development of 
multi-axis control and multi-tasking functionality, multi-
tasking machine tools can also be multi-axis machine tools. 
Figure 1 shows the evolution of machine tools from two-axis 
lathes developed four decades ago to the recently developed 
multi-functional machine tools. Recently, the demand for 
simultaneous five-axis and multi-tasking machine tools has 
increased for making large-scale and complex products, such 
as ship propellers and crank shafts, aerospace components, 

and large spiral bevel gears [43–45]. The need for making 
parts with complex geometries with high accuracy in a sin-
gle setup can be met by using a single multi-axis or multi-
tasking machine tool. These multi-function machine tools 
reduce or eliminate workpiece clamping and handling pro-
cesses, which improves production efficiency, simplifies pro-
duction management and planning, and improves transpar-
ency throughout the production of a single part. Multi-axis 
and multi-tasking machine tools have many advantages, but 
due to their complex structure, achieving successful machin-
ing operations can be difficult. Researchers have investigated 
computer-aided manufacturing systems to minimize asso-
ciated programming time and labor needs [42, 46]. While 
displacement errors are a challenge, up to 75% of the overall 
geometrical errors of machined workpieces are due to the 
effects of temperature [47, 48]. In particular, the aerospace 
industry requires complex parts using high performance 
alloys with superior thermal and mechanical properties, 
which decrease machinability and productivity [49]. Another 
drawback of the multi-axis and multi-tasking machine tools 
is self-interference [42].

2.3.2 � Hybrid machine tools

Hybrid machine tools can be considered as machining equip-
ment that implement other manufacturing process functions, 
beyond conventional cutting operations. Hybrid machine 
tools, which are different from multi-tasking machine tools, 
have been defined as integrated manufacturing processes 
with different forms of energy or forms of energy sources 
[50], such as additive or subtractive machine tools combined 
with laser-based machining. The commonly used manufac-
turing processes, such as mechanical machining (MM), elec-
trochemical (ECM), electric discharge machining (EDM), 
additive manufacturing, laser cutting, forming, and laser 
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Fig. 1   The evolution of machine tools [41]
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heating have been at least partially integrated. Three or more 
processes can be integrated into a single hybrid machine 
tool. Possible hybrids of typical manufacturing processes are 
shown in Table 2. Hybrid machine tools can be categorized 
into three types, i.e., subtractive manufacturing (SM), form-
ing manufacturing (FM), and additive manufacturing (AM).

SM-based hybrid machine tools generally aim to real-
ize higher performance, in terms of material removal rate, 
surface integrity, and tool wear [51]. Zhu et al. [52] estab-
lished an experimental bench that combines grinding and 
ECM to machine precision small holes in hard-to-machine 
materials. Similarly, the combination of EDM and MM is 
also able to machine hard and brittle materials [51]. Com-
bining laser cutting and other machining processes, such 
as MM [53], EDM, and ECM, is usually adopted to reduce 
tool wear and production time, as well as to increase sur-
face quality. Moreover, laser heating and ultrasonic vibra-
tion have been explored as auxiliary processes for improving 
machining performance. Laser-assisted mechanical machin-
ing (LAMM), which can reduce material hardness, was pre-
sented over 20 years ago [54] and was used to machine high-
strength materials in recent years [55]. Kumar et al. [56] 
studied a laser-assisted micro-grinding process for a hard 
silicon nitride ceramic. Assisted by the laser, the machining 
force of the grinding process was reduced by up to 40%. 
Researchers have also investigated ultrasonic-assisted cut-
ting. For example, Zhong et al. [57] proposed an ultrasonic 
vibration rig of a CNC machine tool for the turning of alu-
minum-based metal matrix composite workpieces. They 
demonstrated that ultrasonic vibration improved the surface 
roughness of the workpiece under given combinations of 
speed, feed, depth of cut, and vibration frequency.

FM-based hybrid machine tools, which combine tradi-
tional forming and laser treatment processes can be of ben-
efit for sheet metal forming. In particular, the heat energy 
provided by lasers is effective for changing the microstruc-
ture and mechanical properties of the irradiated work-
pieces. Using a laser to heat the material near the drawing 
edge before the operation can reduce the drawing force and 
forming steps as well as to obtain deeper features [58, 59]. 

Duflou et al. [60] utilized a laser to heat the underside of 
the sheet for increasing formability in the single point incre-
mental forming (SPIF) process. Biermann et al. [61] found 
that using a laser for heating the workpiece in front of the 
forming tool is effective to assist the forming process. Mod-
eling of the laser-assisted SPIF process was investigated 
to predict the bending angle of workpieces [62]. Additive-
incremental forming hybrid manufacturing can result in the 
development of a rapid prototyping technique that exploits 
the peculiarities of both the utilized processes [63]. Additive 
manufacturing-based hybrid machine tools address some of 
the challenges of additive processes capable of making metal 
parts with complex geometries, but tend to exhibit poor sur-
face quality, low dimensional accuracy, and long production 
time [64]. For improving accuracy and surface quality and 
saving companies time and costs, the integration of addi-
tive manufacturing with traditional machining technologies 
has been widely practiced in research areas and industries, 
such as the HYBRID HSTM 1000 [65] system from France 
and the INTEGREX i-400 AM [66] from Japan. Additive 
manufacturing-based hybrid manufacturing processes are 
usually called hybrid additive and subtractive manufacturing 
(HASM) processes. HASM processes generally use an addi-
tive manufacturing process to build a near-net shape, which 
is subsequently machined to its final shape with desired accu-
racy using an SM process [51, 67].

Manogharan et al. [68] investigated the HASM process, 
and presented that the key to a successful rapid high preci-
sion hybrid process is developing a process that does not 
inhibit future developments and makes use of existing addi-
tive and subtractive processes. Du et al. [69] developed a 
process technology to take advantage of selective laser melt-
ing (SLM) and precision milling. Additive manufacturing-
based hybrid tools are generally developed based on multi-
axis 3D printing mechanisms. A disadvantage of traditional 
3D printers is that the product can only be printed along 
flat layers. With the development of robotic technology, 3D 
printers employing an industrial robot with more than three 
degrees of freedom (DOF), can realize multi-plane motion 
[70]. Li et al. [71] developed a novel HASM platform that 

Table 2   Possible hybrids of 
typical manufacturing processes

MM ECM EDM Additive 
manufactur-
ing

Laser cutting Forming Laser heating

MM ■ ■ ■ ■ ■ ■
ECM ■ ■ ■ ■
EDM ■ ■ ■
Additive manufacturing ■ ■
Laser cutting ■ ■ ■
Forming ■ ■ ■
Laser heating ■ ■ ■
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combines fused deposition modeling (FDM) and a 6-DOF 
machine tool to overcome limitations of typical additive 
processes. Manogharan et al. [72] analyzed the econom-
ics of HASM processes and presented a composite model 
to determine the unit cost of producing mechanical parts. 
Le et al. [64, 73] proposed a direct material reuse strategy 
to recover end-of-life (EoL) parts using a HASM process. 
Their methodology starts with investigating the feasibility 
of applying metal-based additive processes for printing new 
features onto an EoL part. Next, a manufacturing process 
plan for additive and machining operations is determined. 
By considering the relationships of the added and removed 
features as well as manufacturing precedence constraints, the 
setups are designed. Their approach could reduce energy and 
resource consumption for a selected part.

2.4 � Model‑based enterprise

A model-based enterprise integrates technical and busi-
ness processes through the definition of a common prod-
uct model through which the data from different life cycle 
phases can be coordinated and various modeling and simula-
tion efforts can be integrated [74, 75]. This will reduce cost 
and time for development, production, and support. Within 
a model-based enterprise, data is created once and reused 
downstream. However, acquiring the right data to build and 
improve the models and provide the data to stakeholders 
throughout the life cycle is challenging. The idea of a digital 
thread has been investigated to support the collection and 
transmission of data throughout a product’s life cycle. This 
section will provide an overview of digital threads and their 
support of model-based enterprises.

2.4.1 � Digital system model, digital thread, digital twin

The digital thread, originating from the aerospace industry, 
was initially described as a technique supporting the sys-
tems engineering process for digital management through 
Computer Aided Design (CAD), manufacturing, assem-
bly, and delivery [76]. The definition has since expanded 
beyond the design and manufacturing stage to include other 
data throughout a product’s life cycle. Many threads, when 
woven together, make up a “digital tapestry,” as described 
in Bullen [77]. The terms digital system model and digital 
twin are associated with a digital thread. Definitions of digi-
tal system model (adapted from Kraft [76]), digital thread 
(adapted from the working draft of ISO/AWI 23247–5 [78], 
and digital twin (adapted from ISO and National Academies 
[79, 80] are listed below.

•	 Digital system model: A digital representation of a 
system that integrates authoritative data, information, 

algorithms, and systems engineering to define aspects 
for specific activities throughout the system life cycle.

•	 Digital thread: The connected communication frame-
work of contextualized life cycle data. The communica-
tion is supported by information modeling standards and 
technologies and enables data traceability.

•	 Digital twin: A fit for purpose digital representation 
with synchronization between an observable element and 
its digital representation, has predictive capability, and 
informs decision-making.

The expanded digital thread systems perspective aligns 
with the need for life cycle considerations in sustainable 
manufacturing systems. Methods and approaches that con-
nect the product and manufacturing process life cycle stages 
contribute to the goal and definition of sustainable manufac-
turing. An indication of this alignment is found in Hedburg 
et al. [81], which proposes a concept to address unstructured 
datasets, multiple data repositories, and domain-specific 
schema for life cycle stages. The research concept proposed 
the system to share and utilize data across the life cycle. 
It would respond to industry’s major challenge of linking 
product life cycle data resulting from the unique contexts 
in which data is used for a specific product life cycle stage 
(e.g., design vs. use). While this concept did not address 
sustainability, its principles can be applied to support sus-
tainable manufacturing. A digital thread may connect design 
tools, sensors, machines, models, companies, and more to 
one another [77]. It allows for communication and data shar-
ing across multiple entities. This idea builds on smart manu-
facturing, Industry 4.0, and other emerging technologies to 
share data that can improve processes and entities beyond 
the originating individual. These connections can have great 
benefits in efficiency and optimization. These technological 
benefits can include lower costs and reduced cycle times, 
and also a number of environmental benefits, e.g., improved 
energy efficiency and higher resource efficiency [82, 83].

Process and system models are a digital twin of the manu-
facturing processes or systems, that may contain sustainabil-
ity-related information, and traverse a digital thread. While 
much knowledge is captured across this digital thread from 
design through production and inspection, manufacturing 
organizations have not fully realized smart manufacturing 
through model-based enterprises for improving quality and 
sustainability performance [81]. Much work is still needed to 
attain sustainability goals through model-based enterprises. 
Cloud technologies enable digital model-based enterprises 
by moving data storage and computing away from desktops 
and local servers to distributed data centers across the Inter-
net, and exhibit elasticity, or the ability to adapt to changes; 
economy, or the reduction in cost due to renting server 
space; and virtualization, or the ability for multiple users to 
store data on a single server [84]. Elasticity enables nearly 
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continuous optimization to improve energy and resource 
efficiency. Storage space rental, along with the ability for 
multiple users to store data on the same physical equipment, 
allow for the reduction in physical server space (only the 
space required is paid for). Using cloud-based technologies, 
a faster response to changes in computing requirements can 
be provided in addition to reduced waste in data storage.

Maintenance can account for as much as 60–70% of pro-
duction life cycle total cost [85], and replacing worn-out 
components may be up to 70% of the total maintenance cost 
[86]. The use of cloud-based augmented reality can promote 
preventive maintenance practices, reducing cost, time, and 
resources used in maintenance [87]. Mourtzis et al. [87] 
proposed a Cloud-Based Augmented Reality Remote Main-
tenance Shop-Floor Monitoring Product-Service System 
(CARM2-PSS) approach that consists of a wireless sensor 
network that can pull data in real time, preprocess the data, 
and then determine the machine status and the machining 
time. This information is used to provide augmented real-
ity service instructions. Manufacturing process monitoring 
allows for better control of process parameters. For example, 
part quality often presents challenges in the implementation 
of additive manufacturing of metallic parts due to a variety 
of factors, including a poor understanding of the complex 
physical phenomena that take place during the process [88]. 
Other defects include part geometric errors caused by poor 
process control. Real-time monitoring can increase the avail-
ability of process knowledge and the ability to improve qual-
ity by modifying process parameters [89–91].

2.4.2 � Data collection and transmission

As the semantic framework in the digital system model, the 
digital thread supports the interplay (sharing) of data and 
information [76]. Here, the digital thread is involved in data 
collection and transmission, and the digital system model 
includes data certification, traceability, authenticity, and 
cybersecurity. Hedberg et al. [92] identified three standards 
for creating a manufacturing digital thread: (1) MTConnect 
[93], (2) ISO 10303 the Standard for the Exchange of Prod-
uct Model Data (STEP) [94], and (3) the ISO 23952:2020 
the Quality information framework (QIF) [95]. MTConnect 
is an open protocol standard based on Extensible Markup 
Language (XML) [96] for data integration that facilitates 
communication within a manufacturing system [97]. Near-
real time data is supported by MTConnect. Bengtsson et al. 
[98] utilized MTConnect to collect production data from a 
Boeing shop floor along with discrete event simulation to 
investigate sustainable machining using Life Cycle Assess-
ment (LCA). The STEP standard enables defining and shar-
ing product manufacturing information (e.g., geometric 
dimensions, tolerances, and part specifications), kinemat-
ics, and tessellations [81, 99]. For example, STEP contains 

information that can support assembly/disassembly analysis 
during the design stage [100, 101]. Lastly, QIF enables the 
exchange of metrology data using information models and 
integrates the product definition into the quality informa-
tion [81].

The Smart Manufacturing System (SMS) testbed, devel-
oped and operated at NIST [102], exhibited many of the 
digital thread concepts. Lu et al. [103] stated an SMS maxi-
mizes a manufacturer’s competitiveness “by using advanced 
technologies that promote rapid flow and widespread use 
of digital information within and between manufacturing 
systems.” The SMS testbed demonstrated the integration 
between product designs and fabrication/inspection data. 
Data was collected using the MTConnect standard. Techni-
cal data packages, query-able data, and a real-time stream 
of data were provided [104]. Challenges identified by the 
testbed include cybersecurity concerns in the form of data 
losses and cyber-attacks [102]. A challenge of data transmis-
sion is the issue of data interoperability. Throughout the life 
cycle, there are many data standards and data formats, which 
can make it difficult to transfer and read data from other 
parts of the product life cycle. MTConnect, STEP, and QIF 
are three standards that can provide an interoperable digital 
thread throughout design, manufacturing, and inspection. 
To address data interoperability concerns within manufac-
turing, Monnier et al. [105] provided a review of the data 
formats that can be found within the manufacturing stage 
of the product life cycle data (design, manufacturing, and 
inspection) and a description of the different mapping tech-
niques across these standards with the associated tradeoffs. 
AM has its own challenges in data interoperability due to 
how new the field is. To address this, Li et al. [106] outlined 
the need for a common data model within AM to make AM 
data FAIR (Findable, Accessible, Interoperable, and Reus-
able) and described the design philosophy around the current 
effort to develop an AM common data model.

Collection and transmission of critical data (e.g., pro-
cess parameters) is currently an area of research in additive 
manufacturing receiving intense scrutiny to achieve com-
ponent quality certification. Additively produced compo-
nents require continuous monitoring during production to 
ensure sufficient quality throughout all layers of a compo-
nent, which requires research into both sensor technology 
and monitoring algorithms. Tapia and Elwany [88] reviewed 
several types of sensors used in additive manufacturing, e.g., 
pyrometers, photodiodes, digital cameras, thermocouples, 
and displacement sensors. They concluded that additional 
studies are required to fully understand monitoring and 
control in metal additive manufacturing and that there is a 
lack of statistical models and algorithms developed based 
on the monitored data. They found that research is limited 
to simple geometries and, thus, potential effects of com-
plex geometries is unknown. To increase the usability of 
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AM data, Lu et al. [107] describe how metadata needs to 
be collected and accessible. The authors surveyed common 
AM data-collection methods, including in the lab and in 
the field, as well as in-process monitoring and post-process 
part inspection. The focus was to identify acquisition-related 
metadata to improve data usability. Data fusion has been a 
challenge in AM due to the increasingly available data from 
the monitoring of AM processes. Feng et al. [108] presented 
a data registration method to align data acquired from AM 
as a first step towards addressing data fusion. The authors 
provided a common reference and coordinate system as well 
as effective ways to transform between coordinate systems.

2.5 � Sustainable manufacturing

Sustainable manufacturing has been defined as, “[t]he crea-
tion of goods or services using a system of processes that 
simultaneously addresses economic, environmental, and 
social aspects in an attempt to improve the positive or reduce 
the negative impacts of production by means of responsible 
and conscious actions” [109]. Environmental and economic 
metrics for sustainable manufacturing often focus on mate-
rial and energy inputs and wastes and other outputs for a 
given manufacturing process or system. This focus is driven 
by the scope of evaluation for sustainable manufacturing 
systems (Fig. 2), which suggests a circular path of materials 
and products and includes design, manufacturing, distribu-
tion, use, and value recovery.

In this system, material and product flows alone will 
not fully support sustainable manufacturing. Rather, mate-
rial and product flows must be supported by information 
flows between stages in the context of the digital systems 
model, digital thread, digital twin, and model-based defini-
tion/enterprise [76, 103]. Major initiatives in the USA and 
abroad, e.g., Industry 4.0, the National Institute of Standards 
and Technology (NIST) Smart Manufacturing programs, the 

Smart Manufacturing Leadership Coalition (SMLC), and the 
Clean Energy Smart Manufacturing Innovation Institute 
(CESMII), sponsored by the US Department of Energy, are 
pursuing efforts to predict and reduce energy use, waste, 
cost, and cycle times within the manufacturing phase of the 
life cycle, among other sustainability performance measures, 
which are seen as key benefits of implementing a digital 
thread [82, 83, 102]. This section describes three approaches 
to addressing sustainable manufacturing challenges.

2.5.1 � Unit manufacturing processes (UMPs)

Mani et al. [111] recognized a need for a standard science 
and information base to measure manufacturing sustain-
ability impacts. Five elements were determined as neces-
sary and sufficient elements for sustainability performance: 
(1) unit manufacturing processes (UMPs) and operations, 
(2) inputs and outputs, (3) operation rules, (4) operation 
resources, and (5) dataflow among operations. A standard 
representation of a generic UMP model is defined in the 
ASTM E3012-22 standard and is shown below in Fig. 3 
[112, 113]. Importantly, UMP models document sustain-
able manufacturing related aspects, such as energy/material 
inputs, wastes, product life cycle management (PLM) and 
sustainability plans, and human resources. ASTM E3012-22 
models interface with ASTM E2986-22 [114] to guide UMP 
boundary determination.

Sustainable manufacturing systems

Product
scheduling and
process planning

Sustainable manufacturing systems

Forward
supply chain

Product
recovery

Reverse
supply chain

Product
design

Product
acquisition
and use

Manufacturing
processes

Inspection/
Disassembly

Fig. 2   Sustainable manufacturing system elements for material flow. 
Similar routing of information and data is possible with a digital 
thread [110]

Fig. 3   Schematic of NIST-developed UMP model to capture inputs, 
outputs, resources, and information for a process under consideration 
[113]
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Information about the manufacturing process param-
eters is contained in the model as are transformation equa-
tions that define how energy, material, and information are 
converted from model inputs to outputs. Rickli et al. [115] 
showed there is the capacity for networks of UMPs to be 
modeled by describing the potential for connecting UMP 
models as part of modeling an additive metal deposition 
process. Bernstein et al. [116] demonstrated the potential 
for informing a LCA through the data generated from the 
development and application of UMP models. More research 
is required for these applications. However, a repository of 
standardized UMP models will promote consistency among 
performance assessments, allow for data-driven analysis 
activities, and provide reference material that will assist 
industry in modeling and improving their operations [117, 
118].

2.5.2 � Measurements, metrics, and characterization 
for sustainable manufacturing

Recognizing the importance of measuring sustainability 
practices to quantify improvements, it is necessary to clarify 
the differences between measurements, metrics, and indica-
tors. Sustainability indicators help manufacturers evaluate 
their performance from the triple bottom line perspective, 
i.e., environment, economic, and social, perspectives. Such 
indicators can also be used in ways that directly relate to 
manufacturing metrics, such as energy use, material con-
sumption, and productivity. Feng and Joung [119] identified 
several key characteristics of indicators, i.e., they must be 
measurable, relevant, understandable, reliable/usable, data 
accessible, and flexible. They described the sustainability 
measurement process as “a sequence of operations, with the 
necessary instruments and tools and having the objective of 
determining the value of an indicator.” Sustainability met-
rics are simply “a set of measurements, corresponding to 
standard indicators that are used to evaluate sustainability 
performance” [119].

Over the years, a number of indicators have been pro-
posed for sustainability performance measurement. The 
Organization of Economic Co-operation and Development 
(OECD) published a Sustainable Manufacturing Toolkit 
[120] that uses 18 indicators for sustainable manufacturing 
under three categories, i.e., inputs, operations, and products. 
The NIST Sustainable Manufacturing Indicator Repository 
defined metrics under five dimensions of sustainability, i.e., 
environmental stewardship, economic growth, social well-
being, technological advancement, and performance man-
agement [121]. Cohen et al. [122] compiled a database of 
557 sustainability indicators in 2014, indicating the growth 
in sustainability management during the previous decade. 
On reviewing several sustainability performance tools for 
evaluation and decision-making in practice, Feng and Joung 

[119] noted that manufacturers require a standardized frame-
work to evaluate their own sustainability practices and to 
minimize their reliance on external stakeholders. They pro-
posed the development of a sustainability management infra-
structure comprising a sustainability indicator repository, 
measurement methods, guidelines, and performance analy-
sis. Building on previous work, Joung et al. [123], reviewed 
eleven sets of publicly available sustainability indicators and 
identified those that were related to manufacturing, provid-
ing manufacturers a common repository of sustainability 
indicators.

With regard to the development and use of sustainability 
metrics, Feng et al. [124] highlighted the fact that developed 
metrics can be applied to assess sustainability across the 
product life cycle and can also be used at an organizational 
level for decision-making. De Silva et al. [125] developed a 
scoring method to put the idea of sustainability evaluation in 
practice in the context of electronics products. Lu et al. [126] 
presented a framework for the development of product and 
process metrics and explored how both sets of metrics inter-
act with each other to support sustainable manufacturing. 
More recently, Faulkner and Badurdeen [127] used sustain-
ability metrics to develop a methodology that could lead to 
Sustainable Value Stream Mapping, building on a technique 
used in lean manufacturing. Shuaib et al. [128] proposed the 
development of a Product Sustainability Index (Prod SI), a 
metrics system that helps assess sustainability at the product 
level. Huang and Badurdeen [129] extended this work to the 
enterprise level through the development of the framework 
for the Enterprise Sustainability Index, En SI. Meanwhile, 
Calik and Badurdeen [130] developed the first known scale 
to measure sustainable innovation performance. However, 
this scale requires validation using industry data. Lucato 
et al. [131] developed a conceptual framework to evaluate 
the sustainability performance of a manufacturing process 
from the triple bottom line perspective. Unlike previously 
proposed frameworks, their approach integrates all three pil-
lars of sustainability, environmental, social, and economic, 
into a single measurement variable.

One major challenge in developing absolute measures for 
sustainability is the lack of well-defined approaches to char-
acterize sustainability performance for manufacturing [132]. 
Through the characterization of sustainability performance, 
manufacturers can better position themselves in improving 
productivity. In the recent past, LCA tools that use life cycle 
inventory (LCI) databases have been developed and used in 
measuring impacts. LCAs require a lot of data that can be 
sparse and may not align with the actual manufacturing pro-
cesses, which makes performing an LCA difficult and prone 
to inaccuracies [133]. To aid in metric characterization, Kel-
lens et al. [134, 135] developed a two-level screening and 
in-depth approach based on the LCA methodology to com-
bine the unit process life cycle inventory (UPLCI) effort in 
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the USA and the CO2PE! initiative in Europe. This UMP 
modeling methodology has been used to generate process 
models for evaluating the environmental impacts of various 
UMPs such as grinding [136], drilling [137], metal injection 
molding [138–140], high speed laser directed energy deposi-
tion [141], laser powder bed fusion [142], stereolithography 
[143], gas metal arc welding [144] polymer injection mold-
ing [145], and fused deposition modeling [146].

To improve the communication of sustainability perfor-
mance across integrated supply chains, especially in sharing 
relevant data and information, Garretson et al. [109] focused 
on better defining the terminology associated with sustaina-
bility related practices. Vinodh and Joy [147] used structural 
equation modeling (SEM) to model sustainable manufactur-
ing system enablers and outcomes. The benefit of SEM is 
the use of actual empirical data from industry as opposed 
to theoretical data. Further, as a means of characterizing 
the performance of sustainable manufacturing, Shao et al. 
[148] proposed the sustainable process analysis framework 
(SPAF), Zhang et al. [149] developed a product sustainabil-
ity index (ProdSI) based on a five-level hierarchical frame-
work, and Ordouei et al. [150] introduced the concept of 
analytical hierarchy process (AHP) and the implementation 
of sustainability indices from the triple-bottom line perspec-
tive. Kluczek [151] developed a multi-criteria approach for 
the assessment of sustainability of manufacturing processes.

Using AHP, activities in the manufacturing processes 
are assigned rankings in terms of sustainability objectives, 
allowing a less technical approach to evaluating sustainabil-
ity. Zhang et al. [152] integrated systems thinking methods 
as an initial step to defining a unified theoretical framework 
for assessing sustainability. Duflou et al. [153] emphasized 
the variety of considerations that go into reducing environ-
mental impact, focusing on energy and resource efficiency. 
They characterized analysis and system optimization chal-
lenges and opportunities at each level of the manufacturing 
system (i.e., the unit-process through supply chain levels). 
Loglisci et al. [154] proposed a set of indicators for sus-
tainable manufacturing evaluation focusing on conditions 
of human work and the environment. Similarly, Sutherland 
et al. [155] explored ways of integrating social impacts into 
LCA. Shokravi and Kurnia [156] proposed a conceptual 
method of measuring sustainability performance of indus-
trial networks quantitatively using aleatory and epistemic 
uncertainties considering economic, environmental, and 
social aspects. In the past, the main challenges in charac-
terizing sustainability performance have included a lack of 
harmonized nomenclature and standards, lack of structured 
information, and limited decision models. Sustainability 
metrics existed at company, regional, and national levels 
[157]. However, standards have started to emerge to pro-
vide guidance to small and medium-sized manufacturers, 
as outlined in Escoto et al. [158]. These include quality 

management standards (ISO 9000 series), environmental 
management standards (ISO 14000 series), and sustainable 
production standards (ISO 20140 & ASTM E60.13 series). 
Continued work is required to develop standards, unify 
nomenclature, and build decision models addressing the lack 
of definite information.

2.5.3 � Data visualization of sustainability assessment

Advancing digital thread technologies for sustainable manu-
facturing involves research opportunities in data visualiza-
tion [159]. In particular, the complex interplay of economic, 
environmental, and social metrics for sustainable manufac-
turing increase the difficulty of communicating the metrics 
and their implications to people from machine operators to 
engineering and business decision makers, consumers and 
policy makers [160]. Innovative data visualization methods 
can enhance communication of such complex information 
and the importance of considering sustainability perfor-
mance indicators in manufacturing, to different audiences. 
Effective visualization of sustainability performance analysis 
results should lead to awareness and a subsequent need to 
take action (e.g., apply the results in making a decision). 
While one intended audience for a visualization of results 
may need detailed information (e.g., experimental design or 
analysis methodology), another audience may only be inter-
ested in the results of the analysis. Consequently, to develop 
analysis methods, software tools, and other solutions, the 
needs of various audiences should be considered. Raoufi 
et al. [159] introduced two questions to be taken into account 
in presenting sustainability analysis results: (1) What does 
the user hope to accomplish? and (2) What barriers do users 
face in achieving their objective(s)? While the answers to 
these questions are specific to the system(s) under study, 
they clarify the decision to be made, its magnitude, and its 
frame of reference. Given this focus, decision makers will 
be able to arrive at a conclusion without need to interpret 
extraneous information. Educating decision makers about 
sustainability analysis methods related to their industry was 
seen as a key to helping them better understand the goal(s) 
of conducting such assessments.

While visualization of sustainability assessment results 
can inform decision makers of the attendant uncertain-
ties [161–164], few studies have investigated the impact 
of quantitative uncertainty visualization on different audi-
ences [161]. The inherent uncertainties in LCA and the vol-
ume of data required across the product life cycle increase 
the complexity and the challenges for visualization of the 
results [165, 166]. Tabular data and bar charts are the typi-
cal formats for reporting LCA results, which do not support 
rapid and intuitive visual analysis of the uncertainties and, 
in fact, may cause a false sense of certainty for some audi-
ences [159]. Ramanujan et al. [166] reiterated this point in 
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their work to identify opportunities for future research in 
product LCA to support effective sustainable design decision 
making. They concluded that visualization frameworks are 
needed to integrate life cycle data with visual representations 
of the results and to address the attendant complexities and 
uncertainties in an easy-to-understand way.

2.6 � Supply chain management

The role of the supply chain management (SCM) is to pro-
vide the right product to the right customers at competitive 
costs, time, quality, and quantities. In the short-term, SCM 
principles help reduce cycle times and inventory, thereby 
contributing towards greater productivity. The overarching 
objective of sustainable SCM is to develop the means for 
long-term environmental, social, and economic value for all 
stakeholders. This section first provides a brief introduction 
to green SCM, and then investigates SCM from a sustain-
ability perspective.

2.6.1 � Green supply chain management

A supply chain is a network that consists of the stakehold-
ers (e.g., suppliers, manufacturers, distributors, wholesalers, 
retailers, and customers) involved directly or indirectly in 
the development, production, and delivery of products and/
or services to customers. These activities take place both 
through upstream and downstream flows and distribution 
of information and finances [167]. It is known that environ-
mental, social, and economic impacts exist across the supply 
chain. With this awareness, business and government leaders 
have been striving to address SCM from the triple bottom 
line perspective.

According to the UN, supply chain sustainability or 
green supply chain management (GSCM) is “the manage-
ment of environmental, social, and economic impacts and 
the encouragement of good governance practices throughout 
the life cycles of goods and services” [168]. Managing a 
supply chain is a complex process given that the network 
comprises numerous sub-systems, activities, relationships, 
and operations. The green component of GSCM integrates a 
set of sustainability principles in the procurement, manufac-
turing, distribution, and reverse-logistics stages [169]. Effec-
tive implementations of SCM result in accurate demand 
forecasts, increased customer service and responsiveness, 
better supply chain communications as well as reduced 
risk, production cycle time, and duplication [170]. With 
an increasing foothold, a greater number of governments, 
firms, and supply chain partners are collaborating to tackle 
problems related to minimizing waste, energy, and pollu-
tion, while working on increasing goodwill and maintaining 
profits [171, 172].

Collaborations between various stakeholders are espe-
cially beneficial, since they promote mutual learning with 
respect to increasing supply chain sustainability perfor-
mance. According to a study by Flammer [173], it has been 
observed that companies who incorporate sustainability 
practices have experienced significant increases in stock 
prices. Thus, firms have realized that sustainability is a 
business strategy related not just to environmentally friendly 
practices, but also to corporate social responsibility. Such 
firms have gained a competitive advantage in the market, 
including greater customer approval. In short, to achieve 
long-lasting competitive advantages, firms need to approach 
sustainability from the triple bottom line perspective, taking 
into account economic, environmental, and social aspects 
[174].

One key SCM activity is the coordination and efficient 
flow of raw materials and components from suppliers to 
manufacturing units during production of a given product. 
Studies carried out by Rao and Sarkis [175, 176] emphasized 
the need for effective collaboration with suppliers through 
implementing green design, increasing awareness of sup-
ply chain impacts, and helping suppliers develop their own 
GSCM programs. Chin et al. [170] found that environmental 
collaboration between practitioners and suppliers in design-
ing green products facilitates the connection between GSCM 
and industrial sustainability performance. Similarly, Singh 
and Dyer [177] reported that the establishment of long-term 
collaborative relationships characterized by strong inter-
organizational interactions facilitates the pursuit of GSCM 
initiatives.

2.6.2 � GSCM initiatives

Supply chain managers may encounter a number of green 
initiatives. Prior research has attempted to define the most 
important factors in developing a sustainable supply chain 
[178]. Masoumik et al. [179] highlighted the lack of research 
demonstrating how external and internal drivers can interac-
tively affect business managers’ decisions in selecting strate-
gies for implementation of GSCM. While some studies use 
AHP, they found that the decision factors included in these 
models are more relevant to operational levels rather than 
strategic levels of management. They proposed a conceptual 
model based on application of the natural-resource-based 
view (NRBV) and institutional theory. The model comprised 
a literature review and used analytic network process (ANP) 
modeling to structure the decision framework, where ANP 
is a more generalized form of AHP. Pimenta and Ball [180] 
recognized that the scope of GSCM is extremely broad, 
ranging from green purchasing to integrated life cycle man-
agement. Their study focused mainly on upstream supply 
chain management activities because it is at this stage that 
the main diffusion of environmental sustainability practices 
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takes place. Similarly, Lee et al. [181] developed a research 
model relating GSCM practice and business performance 
through three organizational variables as moderators, i.e., 
employee satisfaction, operational efficiency, and relational 
efficiency. To test the proposed hypotheses relating GSCM 
practice implementation and business performance, SEM 
was used (e.g., [182]). They found that the GSCM practice 
implementation improves the operational efficiency and the 
relational efficiency, which eventually enhances the business 
performance.

While GSCM initiatives can help promote supply 
chain sustainability, the implementation of GSCM strate-
gies must be performed with prudence. Laosirihongthong 
et al. [183], for example, reported that pursuing a low-cost 
strategy may negatively impact an organization’s ability to 
invest in GSCM. The purpose of their study was to examine 
the deployment of proactive and reactive practices in the 
implementation of GSCM. The study found that the threat of 
legislation and regulation (reactive practices), including the 
applicability of Waste Electrical and Electronic Equipment 
(WEEE) directive in August 2005, Kyoto Protocol’s Clean 
Development Mechanism (CDM) in 2008–2012, Climate 
Change Act (in the UK) in 2008, American Clean Energy 
Bill (USA) in 2009, and Restriction of Hazardous Substance 
(RoHS) directive in July 2006, were a consideration that 
compelled companies to enhance their environmental, eco-
nomic, and intangible performance. Among proactive prac-
tices reported, i.e., green purchasing practices, eco-design 
practices, and reverse logistics practices, the last were less 
common and did not have a significant impact on GSCM 
performance. In addition, while corporate social responsi-
bility encourages reduction of negative social impacts (and 
increasing social benefits) across supply chains, a review on 
supply chain network design by Eskandarpour et al. [184] 
found that a large body of work focuses on the environmen-
tal and economic aspects of sustainability. In fact, there has 
been little consideration of social aspects in the context of 
sustainable manufacturing, especially in terms of quantita-
tive studies. The authors observed that most research with 
regard to modeling techniques concentrates on the devel-
opment of deterministic MILP (mixed integer linear pro-
gramming) models as opposed to stochastic models. These 
deterministic models are solved using standard modeling 
tools and solvers.

3 � Challenges, future trends, 
and recommendations

This review considered recent research in support of 
advanced manufacturing systems. Emerging trends include 
process sensing and monitoring, equipment control and 
automation, multi-axis and multi-tasking machine tools, 

model-based enterprises, and sustainable manufacturing. 
These trends are each summarized below, and relevant 
opportunities for future research are highlighted.

3.1 � Process sensing and monitoring

Process sensing and monitoring provides valuable informa-
tion about tool and workpiece conditions, which helps in 
reducing the failure and, consequently, improves machining 
productivity. Sensor-based monitoring is conducted through 
single sensors or multiple sensors. For single sensors, min-
iaturization of the sensor package and embedding the sen-
sor within the cutting tool is a key to accessing parameters 
with high signal-to-noise ratios [185]. Multiple sensors can 
help improve the sensing accuracy by fusing the data from 
individual sensors [186, 187]. Data-based algorithms, such 
as the Artificial Neural Network, Support Vector Machine, 
and Random Forest [188] approaches, that rely on histori-
cal data have been identified as powerful solutions to fusing 
multiple streams of sensor data for most applications. To 
better understand the correlations among sensor data and 
target phenomena being monitored, physical models, espe-
cially for complicated machining process such as grinding, 
are still highly demanded.

3.2 � Equipment control and automation

The recent research in the area of equipment control and 
automation has focused on two key areas: (1) advances in 
motion command algorithms for positioning systems and (2) 
supervisory systems and factory automation. In the former 
research area, development of iterative motion control and 
positioning systems improved the quality (tolerances and 
repeatability) of parts produced using machining, metal-
based additive manufacturing, and other processes. How-
ever, further research is needed for developing advanced 
controllers in multi-material, multi-scale additive manufac-
turing processes. Moreover, to improve real-time control, 
analytical and data-driven models are needed to address the 
high computational challenges of simulation and physics-
based finite element analysis. In the latter research area, 
advances in the Internet of Things (IoT) improved manu-
facturing systems operations. However, further studies are 
needed to investigate the hardware and software required 
for integrating data analytics with IoT and other distributed 
processing techniques. Moreover, collecting data and apply-
ing data analytics across all phases of the product life cycle 
needs further investigation.

3.3 � Machine tool development

Recent industrial initiatives, such as Industry 4.0 and Facto-
ries of the Future, have placed demands on the development 
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of machine tools for more intelligent and more autonomous 
manufacturing systems. Moreover, increasing energy costs 
and environmental problems have pushed research forward 
on the sustainable operation of machine tools with consider-
ations of higher speeds, efficiency, and reliability, and lower 
emissions. Unified management of machine tool programs 
and standardization of process approval mechanisms utiliz-
ing cloud platforms can reduce the risk of errors caused by 
human factors and avoid security risks caused by transmis-
sion media. Unified management and standardization can 
also ensure the consistency of programs and drawings with-
out repeated programming, which improves operator perfor-
mance and machine tool efficiency. Such platforms can also 
improve safety and quality, and reduce scrap rates, main-
tenance costs, and operational risks. In a related manner, 
process control, health monitoring, and energy management 
based on CPS, digital twins, and other advanced approaches 
need to be applied in multi-functional machine tools, for 
better performing and cleaner processes. It is increasingly 
a trend to provide users with customized multi-functional 
machine tools and system solutions based on the IoT and 
cloud service platforms. Future research on remanufacturing 
of machine tools should be a focus of materials, energy, and 
value recovery; strategies include remanufacturing-oriented 
design and residual life prediction of critical components.

3.4 � Model‑based enterprise (MBE)

Connectedness and aggregation of disparate data sources are 
key characteristics of digital manufacturing and the digital 
thread that can significantly alter data availability for sus-
tainability performance assessment. While research into the 
digital manufacturing enterprise has been prevalent, research 
leveraging the digital thread specifically for sustainability 
evaluation is less common. The review conducted herein 
and reflection on recent research have identified several 
research recommendations related to the digital thread for 
sustainable manufacturing. First, manufacturing case stud-
ies must be undertaken and reported to better demonstrate 
the capabilities and benefits of linking digital manufacturing 
information with life cycle methods and tools, such as the 
integration NIST UMP models and Brightway2 discussed 
in Sect. 2.5.1.

3.5 � Sustainable manufacturing

The degree to which a manufactured product or process is 
environmentally impactful can be quantified using any one 
of a number of different frameworks — most based on life 
cycle accounting principles [189]. While these frameworks 
vary in flexibility and customizability (e.g., [190–192]), a 
comparatively small number of metrics appear regularly in 
the life cycle literature for sustainable manufacturing: energy 

use, greenhouse gas (GHG) emissions, water use, and a few 
others. More recently, specialized ways of characterizing the 
performance of a manufacturing system are gaining accept-
ance. The focus on GHG emissions in recent years had led to 
formalized carbon auditing schemes that are now widespread 
in industry [193]. GHG accounting protocols typically bin 
firm’s activities into three tiers [194]: Tier 1 represent all 
the direct emissions from the operations of a firm, Tier 2 
captures the emissions from energy that a firm uses, and 
Tier 3 accounts for all the upstream emissions that come 
from suppliers. As many companies make commitments to 
decarbonize over the coming decades, this kind of carbon 
accounting will be applied more broadly to manufacturing 
operations. For those seeking a broader evaluation of sus-
tainability, the United Nations released sustainable devel-
opment goals in 2015 [195] that take a comprehensive and 
quantifiable approach to measuring sustainability. Recent 
work has sought to apply these development goals to sus-
tainable manufacturing by thinking beyond individual tech-
nical decisions at the plant level and focusing on directed 
technical change and the way that firms operate to achieve 
sustainability goals [196].

Data visualization is another area that will advance tech-
nologies for sustainable manufacturing. Promising efforts 
are being made around investigating visual communication 
of sustainability assessment results. However, there is still a 
need to investigate the types, means, and content for sustain-
ability performance visualization that align with industry 
experience. The effective visual representation of quanti-
tative information, including uncertainty, for sustainability 
performance is still preliminary. In addition to developing 
pedagogical approaches for educating and training decision 
makers (e.g., [197–212]), a related area identified from aca-
demic and industrial perspectives is the need to define user 
interface/user experience (UI/UX) factors and visualization 
formats enabling or preventing decision makers in interpret-
ing sustainability performance data and information.

3.6 � Supply chain management

Supply chain management (SCM) enables stakeholders to 
provide products and/or services to customers. Green SCM 
(GSCM) integrates sustainability principles with different 
stages of an SCM and develops long-term values from tri-
ple bottom line perspective for all the stakeholders. However, 
its implementation is challenging due to the limited amount 
of data available in supporting green supply chain decision 
making. Few studies have been carried out using SEM and 
regression analyses to address this issue. However, further 
research is needed in this area. Moreover, given the strong 
support of industry and academic researchers for implement-
ing GSCM initiatives, a challenge lies in the ability to strategi-
cally implement initiatives that are most effective for different 
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manufacturing enterprises. Several models and approaches 
implementing GSCM have been conceptualized and future 
research would require these concepts to be validated through 
the development of robust manufacturing enterprise and 
product supply chain models. As approaches and tools for 
economic and environmental analysis of industry continue 
to mature, future research must focus on how to adequately 
evaluate the broad social impacts of manufacturing activities. 
These activities occur across the whole product life cycle and 
directly impact workers, communities, and global society in 
profound and often unpredictable ways.
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