
Identifying Contemporaneous and Lagged Dependence
Structures by Promoting Sparsity in Continuous-time Neural

Networks
Fan Wu∗

Arizona State University
Tempe, Arizona, USA
fanwu8@asu.edu

Woojin Cho
Yonsei University

Seoul, Korea
snowmoon@yonsei.ac.kr

David Korotky
Oregon State University
Corvallis, Oregon, USA

korotkyd@oregonstate.edu

Sanghyun Hong
Oregon State University
Corvallis, Oregon, USA

sanghyun.hong@oregonstate.edu

Donsub Rim
Washington University in St. Louis

St. Louis, Missouri, USA
rim@wustl.edu

Noseong Park
KAIST

Daejeon, Korea
noseong@kaist.ac.kr

Kookjin Lee∗†
Arizona State University
Tempe, Arizona, USA
Kookjin.Lee@asu.edu

ABSTRACT
Continuous-time dynamics models, e.g., neural ordinary differen-
tial equations, enable accurate modeling of underlying dynamics
in time-series data. However, employing neural networks for pa-
rameterizing dynamics makes it challenging for humans to identify
dependence structures, especially in the presence of delayed ef-
fects. In consequence, these models are not an attractive option
when capturing dependence carries more importance than accurate
modeling, e.g., in tsunami forecasting.

In this paper, we present a novel method for identifying depen-
dence structures in continuous-time dynamics models. We take a
two-step approach: (1) During training, we promote weight sparsity
in the model’s first layer during training. (2) We prune the sparse
weights after training to identify dependence structures. In evalua-
tion, we test our method in scenarios where the exact dependence-
structures of time-series are known. Compared to baselines, our
method is more effective in uncovering dependence structures in
data even when there are delayed effects. Moreover, we evaluate our
method to a real-world tsunami forecasting, where the exact depen-
dence structures are unknown beforehand. Even in this challenging
scenario, our method still effective learns physically-consistent
dependence structures and achieves high accuracy in forecasting.

∗F. Wu and K. Lee acknowledge the support from the U.S. National Science Foundation
under grants CNS2210137 and IIS2338909.
†Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM ’24, October 21–25, 2024, Boise, ID, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0436-9/24/10. . . $15.00
https://doi.org/10.1145/3627673.3679751

CCS CONCEPTS
• General and reference→ General conference proceedings;
• Information systems → Geographic information systems; •
Applied computing → Environmental sciences.

KEYWORDS
Causality Learning, Neural OrdinaryDifferential Equations, Tsunami
Modeling
ACM Reference Format:
FanWu,Woojin Cho, David Korotky, SanghyunHong, Donsub Rim, Noseong
Park, and Kookjin Lee. 2024. Identifying Contemporaneous and Lagged De-
pendence Structures by Promoting Sparsity in Continuous-time Neural
Networks. In Proceedings of the 33rd ACM International Conference on In-
formation and Knowledge Management (CIKM ’24), October 21–25, 2024,
Boise, ID, USA. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3627673.3679751

1 INTRODUCTION
An emerging paradigm for modeling underlying dynamics in time-
series data is to use continuous-time dynamics neural networks,
such as neural ordinary differential equations (NODEs) [3, 6, 33].
Widely known as a continuous-depth extension of residual net-
works [11], NODEs have a great fit for data-driven dynamics mod-
eling as they construct dynamics in the form of ODEs. This new
paradigm has enabled breakthroughs in many applications, e.g.,
healthcare [33], computational physics [15–17], or climate model-
ing [14, 31].

A promising approach to improve modeling performance is to
increase the expressivity of the neural networks used to parameter-
ize a system, e.g., by employing convolutional neural networks or
adding extra dimensions in the state space [6]. While these com-
plex models are shown effective, it becomes harder for humans to
interpret the learned dynamics. This poses a greater challenge for
tasks that need human-interpretable dependence structures, e.g.,
predicting high-consequence events like tsunamis.

2534

https://orcid.org/0000-0002-1268-840X
https://doi.org/10.1145/3627673.3679751
https://doi.org/10.1145/3627673.3679751
https://doi.org/10.1145/3627673.3679751
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3627673.3679751&domain=pdf&date_stamp=2024-10-21

CIKM ’24, October 21–25, 2024, Boise, ID, USA Fan Wu, et al.

In this paper, we present a novel method for identifying depen-
dence structures in time-series data from continuous-time neural
networks. Unlike existing approaches that perform post-training
analyses of models, we focus on learning human-interpretable de-
pendence structure proactively during training. To this end, we
employ the score-based structure learning for dynamical systems
proposed by [2]. Because the technique can quantify the impact
of a past event on the future evolution of data, we extend it to the
models, such as neural delay differential equations [40], effective
in capturing delayed (or lagged) effects.

Our contributions. We first present a novel method for capturing
contemporaneous and also lagged dependence structures using
continuous-time neural networks. We adapt the score-based struc-
ture learning, presented by [2], to neural delay differential equations
(NDDEs). Our method consists of two steps: The first step is to train
a model while promoting the sparsity. We design a training objec-
tive composed of a data-matching loss and a sparsity-promoting
penalty term. Once trained, the second step is to prune the columns
of input layer weights with the norms smaller than a threshold
we define. The columns with high norms will only survive in the
input layer, and those corresponds to important input elements for
interpreting dependence structures.

Second, we show the effectiveness of our method in learning
complex (and also chaotic!) dynamics and their underlying depen-
dence structures. To demonstrate this effectiveness, we conduct a
comprehensive evaluation of our method on three systems where
their underlying complex dynamics are well-known: the Lorenz-96,
Mackey–Glass,and Lotka–Volterra systems. We also compare our
method extensively with four baseline methods presented in prior
work. The results show that the dependence structures our method
identifies from the data matches with the known ground-truth
structures more accurately than those captured by the baselines.

Third, we further show our method’s effectiveness in identifying
unknown dependence structures from time-series data. We apply
our method to tsunami forecasting at the Strait of Juan de Fuca [25].
This scenario presents a significant challenge as the exact depen-
dence structures in the time-series data are unknown, and the data
includes lagged effects. We use NDDEs for our method and train
them on the tsunami dataset [23]. The results indicate that our
method surpasses the baseline [20]. It more accurately predicts the
highest peaks of sea-surface elevations in areas near large popula-
tions. Our method is also able to identify the physically-consistent
dependence structures between a tsunami event and prior tide
observations, aligned with the interpretations of domain experts.

2 PRELIMINARIES
Neural ordinary differential equations (NODEs). parameterize the

time-continuous dynamics of hidden states in the data as a system
of ODEs using a neural network [3]:

𝑑𝒛

𝑑𝑡
= 𝒇 (𝒛, 𝑡 ;𝚯) (1)

where 𝒛 (𝑡) ∈ R𝑛𝑧 denotes a time-continuous hidden state, 𝒇 is
a velocity function, parameterized by a neural network whose
parameters are denoted as 𝚯. A typical parameterization of 𝑓 is
a multi-layer perceptron (MLP) 𝚯 = {(𝑊 ℓ , 𝒃ℓ)}ℓ=1. 𝚯𝑙 and 𝒃𝑙 are

weights and biases of the ℓth layer, respectively. The forward pass
of NODEs is equivalent to solving an initial value problem via
a black-box ODE solver. Given an initial condition 𝒛0 and 𝒇 , it
computes:

𝒛 (𝑡0), 𝒛 (𝑡1) = ODESolve(𝒛0,𝒇 , {𝑡0, 𝑡1};𝚯) . (2)

Neural delay differential equations (NDDEs). NODEs have a lim-
itation in the context of dependence structure modeling. NODEs
take only the current state of the input variables 𝒛 (𝑡) (shown in
Eqn. 1), which is not suitable for capturing delayed effects. To enable
modeling of delayed effects we use the computational formalism
NDDEs [40] offers. NDDEs are an extension of NODEs which takes
extra input variables 𝒛≤𝜏 (𝑡) as follows:

𝑑𝒛

𝑑𝑡
= 𝒇 (𝒛 (𝑡), 𝒛≤𝜏 (𝑡), 𝑡 ;𝚯), (3)

where 𝒛≤𝜏 (𝑡) = {𝒛 (𝑡 − 𝛾) : 𝛾 ∈ [0, 𝜏]} denotes the trajectory of the
solution in the past up to time 𝑡 − 𝜏 . To avoid numerical challenges
in handling a continuous form of delay, we use a discrete form:

𝑑𝒛

𝑑𝑡
= 𝒇 (𝒛 (𝑡), 𝒛 (𝑡 − 𝜏1), . . . , 𝒛 (𝑡 − 𝜏𝑚), 𝑡 ;𝚯), (4)

where𝑚 indicates the number of discrete delayed variables. While
NDDEs are universal approximators [40], most studies use this
continuous-depth neural networks for performing standard clas-
sification tasks, e.g., visual recognition [40, 41]. A few studies use
NDDEs for time-series modeling, but they are limited to simulated
ODE data [13, 28]. It is also unknown whether we can identify
dependence structures from these models. To our best knowledge,
we are the first who leverage NDDEs for modeling real-world time-
series data and discovering delayed dependence structures.

Score-based learning for dependence structure discovery. In re-
cent years, there have been advances in structure discovery in
continuous-time, such as neural graphical modeling (NGM) [2], the
score-based structure learning for dynamical systems. The system
of ODEs in Eqn. 1 can be re-written as:

𝑑𝑧 𝑗

𝑑𝑡
= 𝑓𝑗 (𝒛, 𝑡 ;𝜃 𝑗), 𝑗 = 1, . . . , 𝑛𝑧 (5)

where 𝑧 𝑗 denotes the 𝑗th element of the hidden state such that
𝒛 = [𝑧1, . . . , 𝑧𝑛𝑧]T. The velocity function 𝒇 consists of 𝑛𝑧 individual
neural networks such that 𝑓𝑓𝑓 (𝒛) = [𝑓1 (𝒛), . . . , 𝑓𝑛𝑧 (𝒛)]T with 𝑓𝑗 ∈ R.
Each networks are parameterized by so called model parameters
𝜃 𝑗 (i.e., 𝚯 = ∪𝑛𝑧

𝑗=1𝜃 𝑗).
Assuming the typical parameterization (i.e., affine transforma-

tion followed by nonlinearity), each individual function 𝑓𝑗 can be
written as follows (we omit the bias terms for clarity):

𝑓𝑗 (𝒛, 𝑡 ;𝜃 𝑗) =𝑊 𝐿
𝑗 𝜎 (· · ·𝜎 (𝑊

2
𝑗 𝜎 (𝑊

1
𝑗 𝒛)) · · ·), 𝑗 = 1, . . . , 𝑛𝑧 , (6)

where 𝜎 is the nonlinear activation, and𝑊 𝑙
𝑗
is the weight of the 𝑙th

layer of the 𝑗th neural network.
Given the dynamics model in Eqn. 5, the (in-)dependence struc-

ture within the processes 𝒛 can be identified via the definition of
local independence and graphical representations of the processes.
Here, we briefly recap the definition of local independence (we refer
readers to the reference [2] for the formal definition); a process 𝑧𝑖
is locally independent of 𝑧 𝑗 given 𝑧𝑘 , if the past of 𝑧𝑘 up until time
𝑡 gives the same information for predicting 𝑧𝑖 (𝑡) (𝑧𝑖 at time 𝑡) as

2535

Identifying Dependence Structures by Promoting Sparsity in Continuous-time Neural Networks CIKM ’24, October 21–25, 2024, Boise, ID, USA

the past of 𝑧𝑖 and 𝑧 𝑗 until time 𝑡 . This independence structure is
represented as a directed graph G = (𝑉 , 𝐸), where 𝑉 denotes a set
of vertices representing distinct processes {𝑧 𝑗 }𝑛𝑧𝑗=1 and 𝐸 denotes
a set of edges, where a directed edge 𝑧𝑖→𝑧 𝑗 ∈𝐸 if and only if 𝑧𝑖 is
not locally conditionally independent 𝑧 𝑗 .

With local independence and the graph G, here we briefly restate
Lemma 1 in [2] (Proposition 3.6 in [27]); given dynamics models
in the form of Eqn. 5, two processes 𝑧𝑖 and 𝑧 𝑗 are locally depen-
dent if and only if 𝑧𝑖 appears in the differential equation of 𝑧 𝑗 (i.e.,
| | 𝜕𝑓𝑗𝜕𝑧𝑖

| |𝐿2 ≠ 0, where | | · | |𝐿2 is the functional 𝐿2 norm). Moreover,

for any 𝑓𝑓𝑓 ′ such that | |
𝜕𝑓 ′𝑗
𝜕𝑧𝑖

| |𝐿2 = 0, there exists an equivalent vector
field 𝒇 such that the 𝑖th column of its input layer has the Euclidean
norm zero, i.e., | | [𝑊 1

𝑗
]𝑖 | |2 = 0. For the graph model G, we can

define the adjacency matrix A ∈ {0, 1}𝑛𝑧×𝑛𝑧 , where A𝑖 𝑗 ≠ 0 if
and only if | | 𝜕𝑓𝑗𝜕𝑧𝑖

| |𝐿2 ≠ 0, suggesting the dependence structure can
be identified through the input layer parameters𝑊 1

𝑗
, 𝑗 = 1, . . . , 𝑛𝑧 .

Thus, sparsity-promoting regularizes such as the group lasso [10]
or the adaptive group Lasso [13] can be applied to the input layer
parameters𝑊 1

𝑗
, leading to the identification of the dependence

structure (e.g., Fig. 1(a) for graphical illustration).

(a) NODE (b) NDDE

Figure 1: An illustrative operation of the input layer (the
white bars indicate zero-norm columns in weights).

3 PROPOSED METHOD
Now we present our method for (delayed) dependence structure
discovery. Score-based learning showed its effectiveness in identify-
ing dependence structures of the contemporaneous variables (those
in the same time index). But it has not been studied if the same
approach will be effective when the system has delayed effects.
Our work addresses challenges in trivial adaptation of the score-
based learning to such systems and offers a method to characterize
delayed structures.

3.1 (Delayed) Dependence Structure
We find that NDDEs’ velocity function (Eqn. 4) has the same struc-
ture as those in NODEs (Eqn. 5):

𝒇 (𝒛 (𝑡);𝚯) =

𝑓1 (𝒛 (𝑡), 𝒛 (𝑡 − 𝜏1), . . . , 𝒛 (𝑡 − 𝜏𝑚);𝜃1)

.

.

.

𝑓𝑛𝑧 (𝒛 (𝑡), 𝒛 (𝑡 − 𝜏1), . . . , 𝒛 (𝑡 − 𝜏𝑚);𝜃𝑛𝑧)

 , (7)

where 𝑓𝑗 ∈ R is the 𝑗 th element of the velocity function, i.e., 𝑑𝒛
𝑑𝑡

= 𝑓𝑗 .
The input layer of the 𝑗th velocity element, 𝑓𝑗 (𝒛) =𝑊 1

𝑗
𝒛 + 𝒃1

𝑗
. 𝒛 (𝑡)

is a vertical concatenation of all delayed variables:

𝒛 (𝑡) = [𝒛 (𝑡)T, 𝒛 (𝑡 − 𝜏1)T, . . . , 𝒛 (𝑡 − 𝜏𝑚)T]
= [𝑧1 (𝑡), . . . , 𝑧𝑛𝑧 (𝑡), 𝑧1 (𝑡 − 𝜏1), . . . , 𝑧1 (𝑡 − 𝜏𝑚), . . .] .

(8)

Inspired by the prior work’s approach [2], we propose to identify
the dependence structure through the input layer parameters𝑊 1

𝑗
;

if the 𝑖th column of the first layer weight,𝑊 1
𝑗
, contains only zero

elements (i.e., ∥ [𝑊 1
𝑗
]𝑖 ∥2 = 0), the 𝑗 th element in 𝒛 (𝑡) is independent

from the 𝑖th element of𝑧𝑧𝑧. Through this process, we are able to reveal
the structure in terms of the adjacency matrix 𝐴 ∈ R𝑛𝑧 (𝑚+1)×𝑛𝑧 (a
graphical illustration of this process is shown in Fig. 1(b)).

3.2 Sparsity-promoting Objective and Pruning
We now propose to minimize the following sparsity promoting loss
(group lasso), and by doing so, we aim to identify the structures
from the multivariate time-series over the course of the training:

𝑛train∑︁
𝑖=1

𝐿(𝑧 (𝑡𝑖), 𝑧 (𝑡𝑖)) + 𝛼

𝑛𝑧∑︁
𝑖=1

𝑛𝑧∑︁
𝑗=1

| | [𝑊 1
𝑗]𝑖 | |2, (9)

where 𝛼 is the penalty. In addition to the sparsity-promoting loss,
we leverage a magnitude-based pruning method to capture the
structure more explicitly. As the training proceeds, we prune a
column whose ℓ2-norm becomes smaller than a certain threshold,
𝜌 :

[𝑊 1
𝑗]𝑖 = 0 if ∥ [𝑊 1

𝑗]𝑖 ∥2 ≤ 𝜌, (10)

where 0 is a zero-valued vector. By applying the sparsity-promoting
loss and the pruning method, we expect that the entries of 𝒛, that
are non-causal to specific time-series, are pruned and, thus, the lags
where dependencies exist can be identified automatically.

3.3 Putting All Together
In the implementation, we employ the standard mini-batching and
a variant of stochastic gradient descent (SGD) to train the neural
network architectures described in the previous subsections. With
the sparsity promoting penalty and the pruning, the entire training
process shares the commonality with the training algorithm pro-
posed in [17], shown in Algorithm 1. We implement our method
in Python using a deep learning framework, PyTorch [32]. For the
NODEs/NDDEs capability, we use the TorchDiffeq library [3]. We
will use the notation 𝒙 to distinguish the time-stepped-series as
opposed to the continuous series 𝒛.

3.4 Discussion
Neural Granger Causality. Neural Granger Causality (NGC) [37]

is a method to learn dependence structure based on the Granger
causal interactions [8]. This method has a similarity with the pro-
posed method (and also with NGM [2]), which is to estimate the
dependence structure via measuring the signal intensity at the in-
put layers and, to achieve this goal, component-wise MLPs or RNNs
(whose input layer resembles the structures shown in Figure 1(b))
have been utilized. The major difference lies in time continuity;
NGC could handle only the discrete dynamics whereas the proposed

2536

CIKM ’24, October 21–25, 2024, Boise, ID, USA Fan Wu, et al.

Algorithm 1 Dependence Structure Discovery in NDDEs
Initialize 𝚯
for (𝑖 = 0; 𝑖 < 𝑛max; 𝑖 = 𝑖 + 1) do
Sample 𝑛batch trajectories randomly from Dtrain
Sample initial points randomly from the sampled trajectories:
𝒛𝑟 (𝑠 (𝑟)), 𝑠 (𝑟) ∈ [0, . . . ,𝑚 − ℓbatch − 1] for 𝑟 = 1, . . . , 𝑛batch
𝒛̃ (𝑡1), . . . , 𝒛̃ (𝑡𝑚)=ODESolve(𝒛𝑟

𝑠 (𝑟) ,𝒇 , {𝑡1, . . . , 𝑡𝑚};𝚯), for 𝑟 =

1, . . . , 𝑛batch
Compute the loss (Eqn. 9)
Update 𝚯 via Adam
Prune 𝚯 based on the magnitude (Eqn. 10)

end for

method (and NGM) learn a continuous-in-time dynamics. As inves-
tigated in [2, Appendix A.1], a discrete-in-time causal learning can
be inconsistent, i.e., causal strengths may change dramatically as a
function of the measurement time interval Δ𝑡 at which the process
is observed. This suggests that “Describing causality within dynam-
ical systems in discrete-time is inherently an ill-posed problem”
[2]. The proposed method inherits continuous-in-time dynamics
modeling from NGM and, thus, is naturally expected to mitigate
the weaknesses shown in discrete-time causality learning.

Utility of pruning. Employing only the sparsity-promoting loss
does not produce a sparse representation of dependence structure,
but produce dense dependence structure with many weak causal
entries (i.e., coefficients with small magnitude). To mitigate this
issue, proximal gradient descent (PGD) [30] has been considered
in NGM [2]), which essentially replaces a small enough model pa-
rameter with zero (i.e., setting a column with a small 𝐿2-norm to
zero via thresholding). However, those zeroed model parameters
can be kept updated in later gradient update steps (potentially re-
sulting in nonzero coefficient). Instead, in this method, the pruning
mechanism is employed; once a model parameter is zeroed out, that
model parameter is set as “non-trainable”, making training more
efficient and the result more interpretable.

4 EVALUATION ON SYSTEMS WITH KNOWN
DEPENDENCE STRUCTURE

We first showcase the effectiveness of the proposed method with
two canonical chaotic ODE benchmark problems, the Lorenz-96
system (Section 4.1), the Mackey–Glass (MG) equation (Section 4.2),
and a two-dimensional ODE benchmark problem, the Lotka–Volterra
(LV) equation with delays (Section 4.3). The Lorenz-96 system has
been an important testbed for climate modeling. We use this system
to showcase the structure learning in the context of NODEs with
the assumption that there is no delayed effect (for a sanity check).
The main focus is on two following benchmarks exhibiting delayed
dependence structures: the MG and LV equations. The MG equation
is another chaotic system, describing the healthy and pathologi-
cal behaviour in certain biological contexts (e.g., blood cells). We
use MG to demonstrate the structure learning with delayed vari-
ables in the context of NDDEs. Lastly, LV describes a dynamics of
prey-predator interactions in ecological systems. We consider LV
to demonstrate the structure learning in multi-dimensional systems

with delayed variables. In the all experiments, we measure perfor-
mance in two different angles, accuracy in trajectory reconstruction
and structure discovery.

Baselines. As the baselines of comparison, we consider four
methods: DYNOTEARS [29], PCMCI+ [34], Neural Granger causal-
ity (NGC) [37], and Rhino [7]. DYNOTEARS is a scored-based al-
gorithm, following the standard structural vector autoregression
(SVAR) model. PCMCI+ is a conditional independence (CI)-based
algorithm, which utilizes the Peter–Clark (PC) algorithm and the
Momentary Conditional Independence (MCI) test. NGC is based on
the Granger causal interactions [8], which are estimated via mea-
suring the signal intensity at the input layers of component-wise
MLPs or RNNs. Rhino is a functional causal algorithm that inte-
grates vector auto-regression (VAR), deep learning and variational
inference to discover causal relationships. We use implementations
of the causalnex API1 for DYNOTEARS, the tigramite API2 for
PCMCI+, the Neural-GC API3 for NGC, and the causica API4 for
Rhino.

4.1 Benchmark 1: The Lorenz-96 System
The Lorenz-96 system [21] is given by the equation:

𝑑𝑥𝑖

𝑑𝑡
= (𝑥𝑖+1 − 𝑥𝑖−2)𝑥𝑖−1 − 𝑥𝑖 + 𝐹, (11)

where 𝑖 = 1, . . . , 𝑁 with 𝑥−1 = 𝑥𝑁−1, 𝑥0 = 𝑥𝑁 , and 𝑥1 = 𝑥𝑁+1, 𝐹
denotes the forcing term.

Setup. For modeling, we use the component-wise NODE where
eachMLP, 𝑓𝑖 , has 4 layers with 100 neurons, where 𝑧𝑖 models 𝑥𝑖 with
𝑛𝑧 = 𝑁 in Eqn. 5. For the nonlinearity, we use the Tanh activation.
We put the detailed experimental setup in Supplementary Materials
(SM).

Figure 2: [Lorenz-96]
Identified dependence
structure for the systems
with 𝑁 = 6.

Results. Fig. 2 reveals the
learned dependence structure by
showing the magnitude of the
column norms of the weight ma-
trices, {𝑊 𝑗

1 }, in the input layer;
the magnitude is normalized to
have 1 as the maximum value
(black) and 0 as the minimum
value (white). The horizontal en-
tries (i.e., {𝑥𝑖 }) with darker col-
ors (close to the black color) can
be considered as the ones with
the significant contributions to
the vertical entries (i.e., { ¤𝑥𝑖 }).
Fig. 2 shows that the models have learned that ¤𝑥𝑖 is dependent
on 𝑥𝑖−2, 𝑥𝑖−1, 𝑥𝑖 , 𝑥𝑖+1 and not dependent on other entries. Further
experiments with varying 𝑁 can be found in SM. As finding struc-
tures in NODEs is not the main contribution in this work and the
same benchmark problem has been studied in [2], we refer readers
to [2] for more experimental results.
1https://github.com/quantumblacklabs/causalnex/blob/develop/causalnex/structure/
dynotears.py
2https://github.com/jakobrunge/tigramite/blob/master/tigramite/pcmci.py
3https://github.com/iancovert/Neural-GC
4https://github.com/microsoft/causica/tree/v0.0.0

2537

https://github.com/quantumblacklabs/causalnex/blob/develop/causalnex/structure/dynotears.py
https://github.com/quantumblacklabs/causalnex/blob/develop/causalnex/structure/dynotears.py
https://github.com/jakobrunge/tigramite/blob/master/tigramite/pcmci.py
https://github.com/iancovert/Neural-GC
https://github.com/microsoft/causica/tree/v0.0.0

Identifying Dependence Structures by Promoting Sparsity in Continuous-time Neural Networks CIKM ’24, October 21–25, 2024, Boise, ID, USA

4.2 Benchmark 2: The Mackey–Glass System
The Mackey–Glass (MG) system [22] is given by the equation:

𝑑𝑥

𝑑𝑡
= −𝑏𝑥 (𝑡) + 𝑎

𝑥 (𝑡 − 𝜏)
1 + 𝑥 (𝑡 − 𝜏)𝑐 , (12)

where 𝑎, 𝑏 and 𝑐 denote the ODE parameters and 𝜏 denotes the
lag. The values of 𝑥 (𝑡) for 𝑡 ≤ 0 is defined by the initial function
𝜙 (𝑡) = .5.

Setup. For parameterizing NDDEs, we model the right-hand side
of the NDDE as an MLP that takes 𝑚 = 10 candidate delayed
variables along with the current variable as an input, such that

𝒙 (𝑡) = [𝑥 (𝑡), 𝑥 (𝑡 − 𝜏1), . . . , 𝑥 (𝑡 − 𝜏10)] ∈ R11, (13)

where 𝜏𝑖 = 𝑖 (seconds), for 𝑖 = 1, . . . , 10. We use an MLP consisting
of 4 layers with 25 neurons with the Tanh activation function. We
refer readers to SM for the detailed experimental setup.

Results. Fig. 3 depicts the ground-truth trajectory and the pre-
dicted trajectory computed from the learned NDDE model. We
repeated the same training for five times with different initializa-
tions. Although themean and the two standard deviation are plotted
in Fig. 3, each prediction appear almost identical. Fig. 4 depicts the
learned dependence structure. The values are normalized to lie be-
tween [0, 1]. We can observe that the most significant contributes
are from 𝑥 (𝑡 − 𝜏4) and 𝑥 (𝑡 − 𝜏5), meaning that the delayed effect
appears within a 4∼5-seconds window, correctly predicting true
positive, but with one false positive error.

Comparisons to baselines. As baselines of comparisons, we con-
sider the recent statistical and machine learning methods for iden-
tifying causalities in time-series data with lagged (i.e., delayed)
variables: PCMCI+ [34], DYNOTEARS [29], and neural Granger
causality [37] - RNN variants (NGC-RNN). We refer readers to SM
for more descriptions on these methods. For all methods, we repeat
three independent runs. Fig. 4 shows a heatmap of numerical values
indicating the causal strength, which are normalized in a row-wise

Figure 3: [Mackey–Glass] The ground-truth trajectory (solid
blue) and the predicted trajectory computed from the learned
model (dashed red).

Figure 4: [Mackey–Glass] Identified dependence structure
for the systems with 10 delayed variables via four different
methods: NGC-RNN, DYNOTEARS, PCMCI+, and NDDE.

Table 1: [MG] Ablation on the sparsity promoting regular-
izer (wo reg. for indicating the case without the regularizer)
and the pruning method (wo prune for indicating the case
without the pruning method).

𝜏1 𝜏3 𝜏5 𝜏7 𝜏9
wo reg. 1.9E+00 2.0E+00 2.0E+00 1.1E+00 1.3E+00
wo prune 2.4E-04 4.5E-02 1.7E-01 2.2E-04 5.8E-04
ours 0 0 5.2E-02 0 0

fashion (i.e., normalized per each method). The proposed NDDE-
based method outperforms all other baselines. The second best
performing method is the PCMCI+, which somewhat captures the
strongest dependence from the fifth delayed variable 𝑥 (𝑡 −𝜏5) (true
positive), but fails to find a correct structure, having many nonzero
values in dependent elements (many false positives). The other
two baselines find the strongest dependence on the first delayed
variable. Moreover, the proposed method is the only method that
results in accurate reconstruction of the ground-truth trajectory
(Fig. 3).

Resilience to Gaussian noise and anomalies. We test the resilience
of our approach to Gaussian noise and anomalies in three differ-
ent contexts: (a) when the ground-truth trajectory is corrupted by
additive Gaussian noise; (b) when the oracle trajectory contains
Gaussian noise and 10 non-trivial anomalies [38], and (c) when
we add noise to the velocity function of the ODE describing the
Mackey–Glass system (Eqn. 12). (c) is the same approach considered
in NGM [2] to inject noise in the measurement. We describe the
detailed setup in SM.

Although increasing noise level tend to negatively affect the
performance of the proposed method (i.e., introducing more false
positives), the method is successful in finding the true positive
(𝜏 = 5) for all scenarios and all noise levels. In Fig. 5(a), our method
learns the strongest dependence on the correct ground truth delay
with up to around 8% additive noise. In Fig. 5(b), our method does
the same up to 10% noise. In Fig. 5(c) the strongest dependence
on the correct delay is learned at all noise levels. In the first two
cases, adding low levels of noise appears to mitigate the 4∼5 second
discrepancy mentioned above. In all cases, the addition of noise
appears to regularize the result. Particularly, the experimental setup
and results in (c), i.e., adding noise to the ODE, shows the resilience
of the dependence structures found by our method to all noise
levels; the points of the trajectory are smooth while the trajectory
itself is irregular due to perturbing evaluation of the system while
running the ODE solver.

We also test the same baselines considered above, PCMCI+,
DYNOTEARS, and NGC-RNN, on the noise/anomaly-perturbed
measurements. All three baselines learn the dependence structures
that are roughly the same as shown in Fig. 4; DYNOTEARS fails to
capture the true positive dependence while PCMCI+ (NGC-RNN)
produces many false positive errors (finding dependence on nearly
all variables). We refer readers to SM for detailed descriptions on
setup and additional results including predicted trajectories from
the learned models for all cases.

Ablation. Here, we present the results of the ablation study on
the usage of the sparsity promoting regularizer (i.e., 𝛼 = 0 in Eq. (9)

2538

CIKM ’24, October 21–25, 2024, Boise, ID, USA Fan Wu, et al.

(a) Noise added to trajectory. (b) Noise with anomalies. (c) Noise added to ODE

Figure 5: [Mackey–Glass] Identified dependence structures under increasing noise levels.

(a) NGC-RNN (b) DYNOTEARS (c) PCMCI+ (d) RHINO (e) NDDE

Figure 6: [Lotka–Volterra] Identified dependence structure for the systems with 2 delayed variables via five different methods:
NGC-RNN, DYNOTEARS, PCMCI+, RHINO and NDDE. Red squares indicate the ground truth dependence structure.

for no regularizer) and pruning (i.e., 𝜌 in Eq. (10) to be close to
machine precision for no pruning). Table 1 shows the magnitude of
learned dependence from delayed variables 𝑡𝑖 (presenting only the
odd numbered indices for simplicity, but the trends are same for the
even numbered indices). Table 1 essentially shows that without the
sparsity promoting regularizer, the dependence structure cannot
be effectively identified (i.e., the output variable exhibits strong de-
pendence on all delayed variables). Table 1 also shows that without
pruning, although the magnitudes are small, the output variable
still exhibits dependence on all delayed variables.

4.3 Benchmark 3: The Lotka–Volterra System
A delayed-version of Lotka–Volterra systems is given by the equa-
tion [39]:

𝑑𝑥

𝑑𝑡
= 𝑥 (𝑡) (𝑟1 − 𝑎11𝑥 (𝑡 − 𝜏) − 𝑎12𝑦 (𝑡))

𝑑𝑦

𝑑𝑡
= 𝑦 (𝑡) (−𝑟2 + 𝑎21𝑥 (𝑡) − 𝑎22𝑦 (𝑡 − 𝜏))

(14)

where 𝑟1, 𝑎11, 𝑎12, 𝑟2, 𝑎21, 𝑎22 denote the ODE parameters and 𝜏 de-
notes the lag. The initial function is defined as 𝜙 (𝑡) = [𝑥 (𝑡), 𝑦 (𝑡)] =
[0.1, 0.1] for 𝑡 ≤ 0.

Setup. For parameterizing NDDEs, we model the right-hand side
of the NDDE as anMLP that takes𝑚 = 2 candidate delayed variables
along with the current variable as an input, such that

𝒙 (𝑡) = [𝑥 (𝑡), 𝑦 (𝑡), 𝑥 (𝑡−𝜏1), 𝑦 (𝑡−𝜏1), 𝑥 (𝑡−𝜏2), 𝑦 (𝑡−𝜏2)] ∈ R6 (15)

where 𝜏𝑖 = 1.1𝑖 , for 𝑖 = 1, 2. We use an MLP consisting of 4 layers
with 100 neurons with the Tanh activation function. For details, we
refer readers to SM.

Results. As baselines of comparisons, in addition to the same
baselines considered above, Rhino [7], a variational inference-based

Figure 7: [Lotka–Volterra] The ground-truth trajectory (solid
blue) and the predicted trajectory computed from the learned
model (dashed red).

structure learning algorithm, is also considered. Again, more de-
scriptions on the method is provided in SM. Fig. 6 depicts the struc-
tures learned from the baselines and the proposed methods. The
values are normalized to lie between [0, 1]. Compared to the 1DMG
benchmark problem, the multi-dimensionality increases the prob-
lem complexity, which poses more challenges to all baselines and
the proposed method. Overall, the proposed NDDE outperforms
the baselines, identifying the dependence structure that is most
close to the ground-truth shown in Eqn. 14 (i.e., all true positives
𝑥 (𝑡), 𝑥 (𝑡 − 𝜏1), 𝑦 (𝑡) to ¤𝑥 (𝑡) and 𝑥 (𝑡), 𝑦 (𝑡), 𝑦 (𝑡 − 𝜏1) to ¤𝑦 (𝑡), but two
false positives) compared to considered baselines (Figs. 6(a)–6(d)).
The next best performing method is NGC resulting in one false pos-
itive error and two false negative errors, i.e., missing 𝑦 (𝑡), 𝑦 (𝑡 − 𝜏1)
to ¤𝑦 (𝑡), which can be considered critical.

Moreover, the proposed method stands as the exclusive approach
yielding an accurate reconstruction of the ground-truth trajectories
(Fig. 7). Fig. 7 depicts the ground-truth trajectories and the predicted
trajectories computed from the learned NDDE model. We observe
that the predictions align closely with the ground truth trajectories.

2539

Identifying Dependence Structures by Promoting Sparsity in Continuous-time Neural Networks CIKM ’24, October 21–25, 2024, Boise, ID, USA

Figure 8: The geography of the tsunami simulation depicting
the Strait of Juan de Fuca, and the location of the Gauges 702,
901, and 911.

5 AN APPLICATION TO TSUNAMI
FORECASTING

Now we further investigate the forecasting and structure discovery
capabilities of the NDDEs equipped with the learning algorithm
proposed in Sec. 3. We examine them with a dataset of tsunami
realizations used for developing tsunami forecasting models [20].
There exist only a handful of real earthquake events with large
magnitudes, so synthetic tsunami data has been generated using
numerical tsunami simulations that model the physics. In particular,
the tsunami wave propagation modeled by nonlinear partial differ-
ential equations [18]. The simulation is initiated by an incoming
tsunami wave, which interacts nonlinear with the topography and
reflecting waves. This particular setup makes the dataset ideal for
interpreting the results.

5.1 Tsunami Dataset
The dataset was created from a set of 1300 synthetic Cascadia
Subduction Zone (CSZ) earthquake events ranging in magnitude
from Mw 7.8 to 9.3 [25] and made available in [23]. These were
generated frommethods proposed in [19] using theMudPy software
[24]. The resulting seafloor deformation was then used as initial
conditions for tsunami wave propagation implemented in [5].

The tsunami data for one earthquake event contains tri-variate
time-series data with the variables (𝒙 (702) , 𝒙 (901) , 𝒙 (911)). The time
series has duration of 5-hours and is interpolated at 256 uniformly
spaced points on the time-grid. This time-series data corresponds to
gauge readings for the synthetic tsunami entering the Strait of Juan
de Fuca (SJdF). Each variable corresponds to different geological
locations denoted by the number designations 702, 901, and 911, as
shown in Fig. 8. Gauge 702 is located at the entrance of SJdF, and
the other two gauges are located further inside from the entrance:
Gauge 901 is located in Discovery Bay, and Gauge 911 is located in
the middle of Admiralty Inlet.

Among the 1300 time-series instances of tsunami, the events that
with negligible tsunami in the region of our interest were discarded;
event with tsunami amplitudes less than 0.1m at Gauge 702 or 0.5m
at Gauge 901 were removed from the dataset. This leads to the
decrease in the number of time-series instances in the dataset from
1300 to 959. We then split the remaining data into 80/5/15 for the
train/validation/test set.

Figure 9: Surface eleva-
tion at Gauge 702, 901,
and 911.

Fig. 9 shows an example of
the surface elevation time-series
measured at the three gauges.
[20] considered tsunamis orig-
inating fromhypothetical megath-
urst earthquakes in the CSZ
that reach the Puget Sound.
Since SJdF is the only path
for the tsunamis to reach high-
population areas in the Sound
(Fig. 8), the authors hypothe-
sized if observing the tsunami
near the entrance of the strait
(Gauge 702) could be used to
forecast its amplitude at Gauge 901 and 911.

5.2 Designing Model Architecture
The base of our model is an NDDE, parameterized by using an MLP,
that takes the three variables as the original input and the other
three variables are their delayed versions, as follows:

𝒙 (𝑡) = [𝒙 (702) (𝑡), 𝒙 (901) (𝑡), 𝒙 (911) (𝑡), . . . , 𝒙 (702) (𝑡 − 𝜏𝑚),
𝒙 (901) (𝑡 − 𝜏𝑚), 𝒙 (911) (𝑡 − 𝜏𝑚)] (16)

and outputs the time-derivatives of the three variables

¤𝒙 = [¤𝒙 (702) , ¤𝒙 (901) , ¤𝒙 (911)] . (17)

We consider an MLP with 4 layers with 100 neurons and Tanh
nonlinearity for each output element.

Hyperparameter search. As in the empirical study [9] of apply-
ing different normalization techniques to NODEs, we examined
several combinations of normalization techniques, including layer
normalization (LN) [1], weight normalization (WN) [35], and spec-
tral normalization [26]. We found the best working configuration
for this particular case study is to set each layer as

[Linear → WN → LN → Tanh] .

We have tested nine combinations of the weight penalty 𝛼 ∈
{0.1, 0.01, 0.001} and the pruning threshold 𝜌 ∈ {0.1, 0.01, 0.001}.
Through this search, we found that 𝛼 = 𝜌 = 0.01 yields the best
result. Promoting strong sparsity (larger 𝛼 and 𝜌) or weak sparsity
(smaller 𝛼 and 𝜌) resulted in degradation in forecasting accuracy.
We use this setting for our experiments.

Varying𝑚 and 𝜏𝑖 . We also vary the value of the number of de-
layed variables and the time lag (𝑚,𝜏𝑖) ∈ {(6, 12𝑖), (10, 7.2𝑖), (12, 6𝑖),
(15, 4.8𝑖), (20, 3.6𝑖)} while fixing themaximum time lag as 72minutes.
Introducing more delayed variables to the model only changes the
input layer of the MLP and the specification of the internal layers
is fixed. Fig. 10 shows the relative ℓ2 errors for varying (𝑚,𝜏𝑖) and
that increasing the number of delayed variables tends to decrease
the error up to a certain number, i.e, 12 or 15. However,𝑚 larger
than 15 resulted in degradation of prediction accuracy.

With the fixed 𝜏 and varying𝑚. We test the NDDEs with varying
number of delayed variables (i.e.,𝑚 ∈ {1, 2, 3, 4, 5, 6}) where 𝜏𝑖 = 12𝑖
(min), i.e., the time lag is defined as 12minutes. As depicted in Fig. 11,
the increase in the number of delayed variables tends to result in

2540

CIKM ’24, October 21–25, 2024, Boise, ID, USA Fan Wu, et al.

Figure 10: [Tsunami]Averaged relative ℓ2 errors (blue line) for
varying𝑚 (the number of delayed variables) and time lag 𝜏𝑖 .
The magenta area is covered by the two standard deviations.

Figure 11: [Tsunami] Averaged relative ℓ2 errors for varying
𝑚 (the number of delayed variables) and the fixed time lag
𝜏𝑖 = 12𝑖. Star marker indicates the error of ANODE results.

Table 2: [Tsunami] Performance comparisons

MODEL REL. ℓ2 ERROR MODEL SIZE

RNN 0.968 ± 0.0213 219K
LSTM 0.984 ± 0.0042 875K
GRU 0.909 ± 0.0101 656K

DAE 0.474 ± 0.0265 2,604K
VAE 0.461 ± 0.0111 3,297K

NODE 1.061 ± 0.0085 95K
ANODE 1.104 ± 0.0206 93K
NDDE (ours) 0.439 ± 0.0118 107K
LI-NDDE (ours) 0.404 ± 0.0087 163K

better performance in terms of prediction accuracy measured in
mean-squared errors.

The figure also shows the elevation time series for the same
test data considered in the experiments with NODEs. We plot the
mean of the predictions as cyan dashed lines and the two standard
deviations (as magenta areas). We use the same experimental pro-
cedure for forecasting (i.e., solving IVP with the learned NDDEs).
As opposed to the predictions made by NODEs, the predictions
made by NDDEs match well with the ground-truth trajectories and
capture the peak values and locations more accurately.

5.3 Tsunami Forecasting Performance
To evaluate, we train NDDEs with varying number of delayed
variables and varying time lags on the tsunami dataset and mea-
sure those models’ forecasting accuracy as the relative ℓ2 error:
∥𝑥𝑥𝑥 (pred) − 𝑥𝑥𝑥 ∥2/∥𝑥𝑥𝑥 ∥2, where 𝑥𝑥𝑥 (pred) and 𝑥𝑥𝑥 denote the predicted and
the ground-truth trajectories, respectively. We repeat the experi-
ments 5 times with different initialization of model parameters.

(a) Gauge 901 (𝑚 = 3) (b) Gauge 901 (𝑚 = 6)

(c) Gauge 911 (𝑚 = 3) (d) Gauge 911 (𝑚 = 6)

Figure 12: [Tsunami] Observed peak locations (horizontal
axis) and predicted peak locations (vertical axis) for elevation
time-series measured at Gauge 901 and 911.

Comparison to existing baselines. We also consider classical deep-
learning approaches for time-series modeling and the most recent
approaches in tsunami forecasting on the same dataset [20]: (1)
classical DL approaches: recurrent neural networks (RNNs), long
short term memory (LSTM) [12], and gated recurrent unit (GRU)
[4], (2) the state-of-the-art Tsunami forecasting approaches [20]:
denoising autoencoder (DAE) and variational autoencoder (VAE), (3)
a variant of the proposed method: latent-input augmented NDDEs
(LI-NDDEs). The LI-NDDEs (1) extract a latent code 𝑐𝑐𝑐 (𝑘) from
the 𝑘th data instance using a small-sized neural network and (2)
augment it to the state 𝑧𝑧𝑧 (i.e., 𝒇 ([𝒛,𝑐𝑐𝑐 (𝑘)], 𝑡 ;𝚯). We extract a hidden
feature by using an autoencoder, whose input is again the first 𝑛in
steps of the Gauge 702, and augmented the extracted latent code𝑐𝑐𝑐 to
the dynamics. The autoencoder used here has the same input/output
setting as the previously described baseline autoencoders [20], but
is in a small scale (see Table 2 for the model size).

Table 2 shows the relative ℓ2 errors obtained by using all baselines
with the best performing hyperparameters (see SM for hyperpa-
rameter settings). The results essentially show that the our models
outperforms the baseline in terms of prediction accuracy while
keeping the model size small. Fig. 12 show the predicted peak val-
ues more aligned with the ground-truth trajectories at Gauge 901
and 911. Two sets of the predictions made separately by NDDEs
with 𝑚 = 3 and 𝑚 = 6 are depicted. The NDDEs with larger 𝑚
provide better predictions for peak values.

2541

Identifying Dependence Structures by Promoting Sparsity in Continuous-time Neural Networks CIKM ’24, October 21–25, 2024, Boise, ID, USA

(a) 𝑑𝒙 (702)
𝑑𝑡

(b) 𝑑𝒙 (901)
𝑑𝑡

(c) 𝑑𝒙 (911)
𝑑𝑡

Figure 13: [Tsunami] Dependence structures of NDDE models with𝑚 = 6: the contributions from 𝒙 (702) (top), 𝒙 (901) (middle),
and 𝒙 (911) (bottom) to ¤𝒙 (702) (left), ¤𝒙 (901) (middle), and ¤𝒙 (911) (right). Contemporaneous and lagged dependence structures are
indicated by 𝑡 and {𝜏𝑖 }6𝑖=1.

5.4 Identified Dependence Structures
In Fig. 13, we report the learned dependence structure. The magni-
tude of the column norms of the weight matrices {𝑊 1

𝑗
} in the input

layer are again considered as the amount of contributions made by
the corresponding input variables. We repeat the same experiments
15 times with different initialization, obtain the column norms from
each run, and then apply the kernel density estimation based on
Scott’s factor [36] to the collected column norms.

We first focus on the plots on the diagonal of the 3×3 plot matrix.
Gauge 702 has only small contributions from the delayed variables.
The gauge observes the incoming wave and there is little reflec-
tions coming from the interior of the Sound, so it is expected that
there are only small contributions to the result. Gauges 901 and
911 have higher contributions since they do possess dependent be-
havior coming from the reflections caused by the narrowing strait.
This is especially pronounced for 901 which sits in Discovery bay
and experiences significant sloshing due to the local topography
(see Fig. 9). Next, we observe that the upper diagonal plots reveal
larger contributions where as the lower-diagonal plots do not. This
indicates that the delayed time-series of Gauge 702 causes those of
Gauge 901 and 911 in a significant way, and that delayed time-series
at Gauge 901 causes Gauge 911. The significant contributions agree
well with the spatio-temporal progression of the physical wave
itself.

The most significant delayed variables fromGauge 702 in predict-
ing Gauge 901 are the delays 𝜏2 and 𝜏5, which correspond roughly
to 24 minutes and 60 minutes of delay. Thus 30-60 minutes of the
time-series from 702 is required to predict the time-series at Gauge
911, which agrees with the prediction results from [20]: while 30
minutes of time-series from Gauge 702 was sufficient to predict the

wave height at Gauge 901, using 60 minutes improved the result
significantly.

We also use the DYNOTEARS, PCMCI+, and Rhino APIs to find
dependence structures. The first two methods produce the similar
results that the strongest dependence on Gauges 901 and 911 is from
Gauge 702 with 𝜏6, which is ∼72 min after the wave reaches the
Gauges 901 and 911, while not showing any significant dependence
from other 𝜏𝑖 , suggesting that the result do not match with the
spatio-temporal progression of the physical wave. Rhino also fails to
identify physically consistent dependence structures, e.g., missing
𝜏5-delayed effect from Gauge 702 to Gauge 901.

6 CONCLUSION
This work presents a computational framework for time-series fore-
casting and dependence structure discovery.We leverage continuous-
time neural networks with delayed variables. We adapt the score-
based structure learning algorithm to settings where these models
learn systems with delayed dynamics. We also propose a train-
ing algorithm for promoting sparse dependence structure in the
parameter space. Once trained, we prune the parameters in the in-
put layers and identify dependence structures from the remaining
parameters.

We evaluate our method on three ODE benchmark problems: the
Lorenz-96, Mackey–Glass, and Lotka–Volterra systems. We show
our method’s capabilities in accurate dynamics modeling, structure
discovery, and resiliency to additive noise and anomalies. Moreover,
we demonstrate a practical application of our method to tsunami
forecasting. Our method produces highly accurate tsunami forecast-
ing. We also identify the dependence structure of the time series
obtained from the three gauges, which are physically-consistent
and agree with the domain expert’s interpretation.

2542

CIKM ’24, October 21–25, 2024, Boise, ID, USA Fan Wu, et al.

REFERENCES
[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normaliza-

tion. In NIPS 2016 Deep Learning Symposium.
[2] Alexis Bellot, Kim Branson, and Mihaela van der Schaar. 2022. Neural graph-

ical modelling in continuous-time: consistency guarantees and algorithms. In
International Conference on Learning Representations.

[3] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. 2018.
Neural ordinary differential equations. In NeurIPS. 6572–6583.

[4] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase
representations using RNN encoder-decoder for statistical machine translation.
arXiv preprint arXiv:1406.1078 (2014).

[5] Clawpack Development Team. 2020. Clawpack software. https://doi.org/10.
17605/osf.io/kmw6h

[6] Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. 2019. Augmented neural
ODEs. NeurIPS 32 (2019).

[7] Wenbo Gong, Joel Jennings, Cheng Zhang, and Nick Pawlowski. 2023. Rhino:
Deep Causal Temporal Relationship Learning with History-dependent Noise. In
The Eleventh International Conference on Learning Representations.

[8] Clive WJ Granger. 1969. Investigating causal relations by econometric models
and cross-spectral methods. Econometrica: journal of the Econometric Society
(1969), 424–438.

[9] Julia Gusak, Larisa Markeeva, Talgat Daulbaev, Alexander Katrutsa, Andrzej
Cichocki, and Ivan Oseledets. 2020. Towards Understanding Normalization in
Neural ODEs. In ICLR Workshop.

[10] Trevor Hastie. 2009. The elements of statistical learning: data mining, inference,
and prediction. Vol. 2. Springer.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In CVPR. 770–778.

[12] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[13] Samuel I Holt, Zhaozhi Qian, and Mihaela van der Schaar. 2022. Neural Laplace:
Learning diverse classes of differential equations in the Laplace domain. In ICML.

[14] Jeehyun Hwang, Jeongwhan Choi, Hwangyong Choi, Kookjin Lee, Dongeun Lee,
and Noseong Park. 2021. Climate Modeling with Neural Diffusion Equations. In
ICDM. IEEE, 230–239.

[15] Kookjin Lee and Eric J Parish. 2021. Parameterized neural ordinary differential
equations: Applications to computational physics problems. Proceedings of the
Royal Society A 477, 2253 (2021), 20210162.

[16] Kookjin Lee, Nathaniel Trask, and Panos Stinis. 2021. Machine learning structure
preserving brackets for forecasting irreversible processes. NeurIPS 34 (2021),
5696–5707.

[17] Kookjin Lee, Nathaniel Trask, and Panos Stinis. 2021. Structure-preserving Sparse
Identification of Nonlinear Dynamics for Data-driven Modeling. arXiv preprint
arXiv:2109.05364 (2021).

[18] Randall J. LeVeque, David L. George, and Marsha J. Berger. 2011. Tsunami
modelling with adaptively refined finite volume methods. Acta Numerica 20
(2011), 211–289. https://doi.org/10.1017/S0962492911000043

[19] Randall J LeVeque, Knut Waagan, Frank I González, Donsub Rim, and Guang Lin.
2016. Generating random earthquake events for probabilistic tsunami hazard
assessment. In Global Tsunami Science: Past and Future, Volume I. Springer, 3671–
3692.

[20] Christopher M Liu, Donsub Rim, Robert Baraldi, and Randall J LeVeque. 2021.
Comparison of machine learning approaches for Tsunami forecasting from sparse

observations. Pure and Applied Geophysics 178, 12 (2021), 5129–5153.
[21] Edward N Lorenz. 1996. Predictability: A problem partly solved. In Proc. Seminar

on predictability, Vol. 1.
[22] Michael C Mackey and Leon Glass. 1977. Oscillation and chaos in physiological

control systems. Science 197, 4300 (1977), 287–289.
[23] Diego Melgar. 2016. Cascadia FakeQuakes waveform data and scenario plots.

https://doi.org/10.5281/zenodo.59943
[24] Diego Melgar. 2020. MudPy. https://doi.org/10.5281/zenodo.3703200
[25] Diego Melgar, Randall J LeVeque, Douglas S Dreger, and Richard M Allen. 2016.

Kinematic rupture scenarios and synthetic displacement data: An example appli-
cation to the Cascadia subduction zone. Journal of Geophysical Research: Solid
Earth 121, 9 (2016), 6658–6674.

[26] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. 2018.
Spectral Normalization for Generative Adversarial Networks. In ICLR.

[27] SØREN WENGEL MOGENSEN and NIELS RICHARD HANSEN. 2020. MARKOV
EQUIVALENCE OF MARGINALIZED LOCAL INDEPENDENCE GRAPHS. The
Annals of Statistics 48, 1 (2020), 539–559.

[28] Thibault Monsel, Onofrio Semeraro, Lionel Mathelin, and Guillaume Charpiat.
2023. Neural State-Dependent Delay Differential Equations. (2023).

[29] Roxana Pamfil, Nisara Sriwattanaworachai, Shaan Desai, Philip Pilgerstorfer,
Konstantinos Georgatzis, Paul Beaumont, and Bryon Aragam. 2020. Dynotears:
Structure learning from time-series data. In International Conference on Artificial
Intelligence and Statistics. PMLR, 1595–1605.

[30] Neal Parikh, Stephen Boyd, et al. 2014. Proximal algorithms. Foundations and
trends® in Optimization 1, 3 (2014), 127–239.

[31] Sunghyun Park, Kangyeol Kim, Sookyung Kim, Joonseok Lee, Junsoo Lee, Jiwoo
Lee, and Jaegul Choo. 2020. Hurricane Nowcasting with Irregular Time-step
using Neural-ODE and Video Prediction. In ICLR 2020 Workshop. https://www.
climatechange.ai/papers/iclr2020/21

[32] Adam Paszke, et al. 2019. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. In NeurIPS. https://proceedings.neurips.cc/paper/2019/hash/
bdbca288fee7f92f2bfa9f7012727740-Abstract.html

[33] Yulia Rubanova, Ricky TQ Chen, and David K Duvenaud. 2019. Latent ordinary
differential equations for irregularly-sampled time series. NeurIPS 32 (2019).

[34] Jakob Runge. 2020. Discovering contemporaneous and lagged causal relations
in autocorrelated nonlinear time series datasets. In Conference on Uncertainty in
Artificial Intelligence. PMLR, 1388–1397.

[35] Tim Salimans and Durk P Kingma. 2016. Weight normalization: A simple repa-
rameterization to accelerate training of deep neural networks. NeurIPS 29 (2016).

[36] David W Scott. 2015. Multivariate Density Estimation: Theory, Practice, and
Visualization. John Wiley & Sons.

[37] Alex Tank, Ian Covert, Nicholas Foti, Ali Shojaie, and Emily B Fox. 2021. Neural
Granger causality. IEEE Transactions on Pattern Analysis and Machine Intelligence
44, 8 (2021), 4267–4279.

[38] Markus Thill, Wolfgang Konen, and Thomas Bäck. 2020. MarkusThill/MGAB:
The Mackey-Glass Anomaly Benchmark. Version v1. 0.1. Zenodo. doi 10 (2020).

[39] Xiang-Ping Yan and Wan-Tong Li. 2006. Hopf bifurcation and global periodic
solutions in a delayed predator–prey system. Appl. Math. Comput. 177, 1 (2006),
427–445.

[40] Qunxi Zhu, Yao Guo, and Wei Lin. 2020. Neural Delay Differential Equations. In
ICLR.

[41] Qunxi Zhu, Yifei Shen, Dongsheng Li, and Wei Lin. 2022. Neural Piecewise-
Constant Delay Differential Equations. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 36. 9242–9250.

2543

https://doi.org/10.17605/osf.io/kmw6h
https://doi.org/10.17605/osf.io/kmw6h
https://doi.org/10.1017/S0962492911000043
https://doi.org/10.5281/zenodo.59943
https://doi.org/10.5281/zenodo.3703200
https://www.climatechange.ai/papers/iclr2020/21
https://www.climatechange.ai/papers/iclr2020/21
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html

	Abstract
	1 Introduction
	2 Preliminaries
	3 Proposed Method
	3.1 (Delayed) Dependence Structure
	3.2 Sparsity-promoting Objective and Pruning
	3.3 Putting All Together
	3.4 Discussion

	4 Evaluation on Systems with Known Dependence Structure
	4.1 Benchmark 1: The Lorenz-96 System
	4.2 Benchmark 2: The Mackey–Glass System
	4.3 Benchmark 3: The Lotka–Volterra System

	5 An Application to Tsunami Forecasting
	5.1 Tsunami Dataset
	5.2 Designing Model Architecture
	5.3 Tsunami Forecasting Performance
	5.4 Identified Dependence Structures

	6 Conclusion
	References

