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Grasses dominate agriculturally and ecologically. One hypoth-
esized driver of this dominance is grasses’ facility for grain
dispersal and rapid seedling establishment. Dispersal and
establishment are aided by the awned lemma - a modified bract
associated with grass flowers. Awns have diverse forms, many
proposed functions, and have been gained and lost repeatedly
in grass evolution. Here we hypothesize that the evolution of
awn emergence is underpinned by deep conservation of
developmental genes. Awns are likely homologous to leaf
blades. Because leaf blades are essential, every grass species
likely has a latent developmental program available for awn
development. This developmental program may be repeatedly
reactivated in lemmas, resulting in the frequent appearance of
awns. Because awns are inessential, they can be lost and
modified without dire consequences to fitness, resulting in the
frequent loss and diversity of awns. Replicated awn evolution
reveals how developmental conservation can potentiate the
evolution of diversity. Awns also present a powerful opportunity
to dissect mechanisms of leaf development.
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An organ produced by a meristem has vast potential for
final form. Yet the same morphologies, such as succulent
leaves and petal spurs, have repeatedly evolved [1]. This
replicated evolution is often portrayed as natural selec-
tion driving adaptation to particular environments,
constrained by development. However, deep conserva-
tion of developmental genes can also drive diversity and
enable rather than constrain morphological evolution [2].
For example, soldier caste ants have evolved many times
in divergent lineages, likely facilitated by a deeply
conserved developmental program [3]. Here, we discuss
a case in plants where replicated evolution and the evo-
lution of morphological diversity may be facilitated rather
than constrained by developmental conservation — the
grass awn.

Awns have evolved many times in the grasses and vary
extensively in form and hypothesized function [4,5].
Awns are, most frequently, distal bristle-like extensions
of lemmas — outer protective organs of grass flowers
(Figure la). Although not always adaptive, awns can
have diverse roles, including in herbivore protection,
diaspore dispersal, seed germination, and seed matu-
ration [4—6]. For example, awns in wheat and barley
contribute photosynthate to developing grains, thus
boosting grain weight and potentially enhancing seed-
ling survival [5,6]. Indeed, awns’ roles in enhancing
seedling survival and grass dispersal may have been
important in the evolution of grass dominance, and in
the origins of cereal agriculture in the fertile crescent
[7,8]. In Oryza sativa (rice), awns were lost in many
cultivars under domestication and crop improvement,
but have re-emerged in the evolution of weediness
[9,10]. Awn development and evolution is therefore of
both evolutionary and agronomic interest.

Despite variation in form and function and a complex
evolutionary history, awns likely have simple develop-
mental origins. Awned lemmas are homologous to
leaves and are likely modified bracts [11,12]. Struc-
turally, they are similar to grass leaves, with three
morphologically and genetically distinct compartments
from their base to tip: the lemma, the lemma/awn
boundary, and the awn [12]. The base of the lemma is
likely homologous to the grass leaf sheath, and the awn
to the grass leaf blade (Figure 1a). In this case, an
awnless lemma lacks a blade domain. Although awnless
lemmas are common, there are no reported grass
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Awns are likely homologous to leaf blades and have a complex evolutionary history in the grasses. (a) Awns are distal bristle-like extensions of the lemma,
which is a modified bract that subtends the grass flower. Lemmas and vegetative leaves are serial homologs and can be divided into three compartments
along the proximal-distal axis. (b—c) Cartoons representing vegetative leaf (left) and awned lemma (right) domains along the (b) proximal-distal and (c)
medial-lateral axes. (d) Relationships and divergence times of species are discussed in the text. Awn presence, absence, and length varies over both

shallow and deep evolutionary timescales.

species entirely lacking blade domains in vegetative
leaves [13]. This suggests conservation of a blade
developmental program across the grasses. This
conserved “blade” developmental program may have
been repeatedly suppressed and re-activated, thus
driving the repeated gain and loss of awns. The sup-
pression and activation of a blade domain could occur
through many mechanisms, including changes in gene
expression over the course of development. Once an
awn emerges, selection could then act to shape awn
form and diversify awn function. Importantly, our hy-
pothesis for awn emergence does not require an awn to
have any particular function. Therefore, we do not
discuss awn function here and refer to the reader to
reviews on the subject [4—6].

Our developmental hypothesis for awn emergence leads
to many predictions, three of which are: (1) leaf
patterning genes should have pleiotropic mutant phe-
notypes, impacting vegetative leaves and awned
lemmas; (2) awn loss should be reversible as the blade
developmental network is essential; (3) genetic net-
works controlling awn development should be
conserved. Here, we evaluate the evidence in support of
replicated awn evolution through suppression and
reactivation of a blade domain, and discuss the recent
literature in light of predictions arising from
our hypothesis.

Leaf patterning mutants can have
pleiotropic vegetative leaf and lemma
phenotypes

Leaves have distinct, genetically defined domains across
3 axes: abaxial-adaxial, medial-lateral, and proximal-
distal (Figure 1b—c). Differential growth and cell fate
determination in these domains define the shape and
function of the leaf [14]. If awned lemmas are homol-
ogous to grass leaves, we would expect mutations in
genes essential for patterning of these domains to
impact the awned lemma development. Although
lemmas are often overlooked in studies focused on
vegetative leaves, and vegetative leaf phenotypes are
not often carefully assessed in studies focused on awns,
there are leaf patterning mutants with reported
lemma phenotypes.

There are three domains along the medial-lateral axis in
grass leaves: a central domain encompassing the midrib;
lateral domains; and marginal domains (Figure 1c) [14].
WUSCHEL-LIKE-HOMFEOBOX (WOX) genes are
essential in defining the lateral and marginal domains
and regulate lateral outgrowth [14—16]. WOX mutants
in maize (narrowsheatfr1/2), barley (narrow leafed dwarfl),
and rice (narrow leaf 2 and 3), all have very narrow leaves,
lacking marginal and lateral domains [17—19]. In barley
and rice WOX mutants, lemmas are also narrow, consis-
tent with our prediction. Interestingly, the narrow
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lemmas of barley and rice WOX mutants still form mar-
ginal tissue [17,19]. This suggests that although WOX
function in medial-lateral patterning is broadly
conserved, lemmas do not rely entirely upon WOX
function to define their margins.

In the central domain, WOX-independent differentia-
tion of the midrib is crucial for structural support of the
leaf blade. Orthologs of the YABBY transcription factor
DROOPING LEAF (DL) control the formation of the
blade midrib in brachypodium, maize, and rice [20—22].
Our hypothesis predicts that DL mutants will also have
awn defects. Maize DI mutants have no reported
lemma phenotype [20]. This may be because awn
development is suppressed and, like the leaf sheath, the
lemma does not rely upon D/, activity. However, DL
mutants in rice and brachypodium lack awns [22,23],
suggesting that narrow awns require central domain, and
particularly midrib, identity. In barley, awns are wider
and have more veins, and DL mutants have shorter awns
with narrower midribs [24]. Lemmas in these barley DL
mutants resemble maize and rice D/, leaf blade mutants,
where the central midrib vein resembles lateral veins
[20,21,24]. Taken together, pleiotropic DL phenotypes
support conservation of gene function in medial-lateral
patterning in leaves and lemmas.

Proximal-distal patterning in the leaf results in the
specification of the proximal sheath, the middle sheath/
blade boundary where the ligule and auricles form, and
the distal blade (Figure 1b) [25]. Our hypothesis pre-
dicts that mutations in sheath development genes will
affect the base of the lemma, and mutations in blade
development genes will affect the awn. The BLADE ON
PETIOLE (BOP) genes promote sheath development
and suppress blade development [26,27]. In rice, triple
BOP mutants fail to develop sheaths in vegetative
leaves. Consistent with a loss of blade suppression, some
normally awnless lemmas also form awn-like bristles in
these mutants. More commonly, these triple BOP mu-
tants develop leaf-like lemmas with distinct sheath,
ligule, and blade tissues [27]. The retention of the
lemma base in these bop mutants suggests that, at least
in rice, there are additional genes specifically involved in
the promotion of lemma base formation that can
compensate for the loss of BOP gene function. In barley
and brachypodium, there are two BOP orthologs,
unicutmed (cul4) and laxatum-a (lax-a). Uniculme4 has a
disrupted leaf sheath/blade boundary, indicative of a
proximal-distal patterning defect, but has no described
lemma phenotype [28]. Conversely, laxatum-a (lax-a) has
no reported leaf phenotype but has narrower lemmas
with thickened awn bases [29], indicative of a lemma
proximal-distal patterning defect. In brachypodium,
double cul4/lax-a mutants have severe defects, with
spikelets replaced by leaf-like organs reminiscent of the
rice triple BOP mutant [27,30]. These mutant pheno-
types suggest that core proximal-distal patterning genes
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have conserved roles in leaves and lemmas, consistent
with our prediction.

Abaxial-adaxial patterning defines distinct epidermal
surfaces and drives laminar outgrowth. In rice, the
abaxial-adaxial patterning mutants skootlessl (SHL1), shi2,
shoot orgamzation 1 (SHOI), and SHOZ/SHL4 all have
thread-like vegetative leaves [31,32]. SHL2, SHOZ, and
SHOI encode orthologues of (1) RNA-dependent RNA
polymerase 6, (2) ARGONAUTE 7 and (3) DICER-like
4, respectively; all essential for tasi-RNA biosynthesis.
tasi-RINAs mediate adaxial-abaxial patterning by repres-
sing auxin response factor (ARF) function [31,32]. In
normally awnless domesticated rice varieties, mutations
in SHL1, SHOI, and 2 and the ARF gene ETTINZ trigger
awn formation [23,31,32], suggesting that disrupting
abaxial-adaxial patterning releases awn growth repres-
sion. In nondomesticated awned rice cultivars, weak
SHOZ2 mutants, including rod-like lemma (ROL) and RNAi
knockdowns of SHOZ have normal awns but radialized
lemma bodies, reminiscent of the thread-like leaves of
stronger mutants [31,33,34]. These phenotypes suggest
that the proximal lemma and distal awn in rice differ in
their abaxial-adaxial patterning. Analysis of these abaxial-
adaxial mutants in rice is again consistent with the pre-
diction that vegetative leaf patterning genes have pleio-
tropic effects on lemma development.

Awn presence varies over shallow and deep
evolutionary timescales

There are no described grass species that lack vegetative
leaf blades, but there are many species with normal
vegetative leaves and no awns [13]. This indicates that,
even in species lacking awns, there is a functional blade
developmental program (i.e. gene loss has not occurred).
This is in contrast to other instances of trait loss, like the
loss of roots in the Lemnaceae, where morphological loss
is accompanied by gene loss, and is likely irreversible
[35]. Thus, if a conserved, latent leaf blade develop-
mental program is driving awn evolution, then we expect
awn loss to be reversible. Indeed, there are frequent
gains and losses of awns across the grass family [5,36],
suggesting that the blade developmental program can be
easily suppressed and reactivated in the lemma driving
the evolution of morphological variation.

Awn presence and absence also variy over shallower
evolutionary timescales, both within species and under
domestication. In hexaploid wheat, where awned and
unawned varietals are both cultivated, the transcriptional
repressor gene AWN LENGTH INHIBITOR 1 (ALll)
underpins the Bl locus that negatively regulates awn
development [37,38]. Variation in AL/ expression levels
and copy-number is correlated with variation in awn
length, suggesting variation in AL// might underlie awn
length variation [37,38]. Identifying the downstream
targets of ALI1 could help identify blade-promoting
genes, which have remained elusive. Awn morphology
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Table 1

Awn genes and mutants.

Subfamily Species Gene name or mutant name Gene ID Protein family Ref.
Pooideae Barley calcaroides a (cal-a) UNKNOWN Unknown [52]
Pooideae Barley calcaroides b (cal-b) UNKNOWN Unknown [52]
Pooideae Barley Calcaroides-C (Cal-C) UNKNOWN Unknown [52]
Pooideae Barley HOODED (BARLEY KNOX3) (KAP1/BKN3) HORVU.MOREX.r2.4HG0282910 KNOX [53]
Pooideae Barley ROUGH AWN 1 (RAW1) HORVU5Hr1G086520.6 LOG1 [54]
Pooideae Barley LAXATUM-A (LAX-A) MLOC_61451.6 BOP [29]
Pooideae Barley SHORT AWN 2 (LKS2) MLOC_54434.1 SRS (SHI) [39]
Pooideae Barley MADS-BOX TF 1 (MADS1) HORVU4Hr1G067680 MADS BOX [24]
Pooideae Barley APETALAZ2 (AP2) HORVU2Hr1G113880.23 AP2/ERF [55]
Pooideae Barley awnless1 (lks1) UNKNOWN Unknown [56]
Pooideae Wheat DROOPING LEAF (DL) TraesCS2A02G275600 YABBY [45]
Pooideae Wheat TEOSINTE BRANCHED 1/CYCLOIDEA/PCF (TCP4/10) TraesCS6A02G23380; TraesCS2B02G392900 TCP [43]
Pooideae Wheat WHEAT FRIZZY PANICLE (WFZP) TraesCS2A01G116900; TraesCS2D01G118200 AP2/ERF [45]
Pooideae Wheat AWN LENGTH INHIBITOR 1 (B1/ALI1) TraesCS5A02G542800 C2H2 zinc finger [37,38]
Pooideae Wheat Tipped2 (B2) UNKNOWN Unknown [57]
Pooideae Brachypodium AWNLESS1 (AWL1); BdDL Bradi1g69900 YABBY [22,58]
Oryzoideae Rice AWN-1 (REDUCED AWN ELONGATION 1) (AN-1/RAE1) 0s04g0350700 bHLH [47]
Oryzoideae Rice DROOPING LEAF (DL) LOC_0Os02g15230 YABBY [23]
Oryzoideae Rice ETTIN2 (ETTIN2) 0Os01g0670800 ARF [23]
Oryzoideae Rice REDUCED AWN ELONGATION 3 (RAE3) 0Os0690695900 E3 ubiquitin ligase [49]
Oryzoideae Rice EPIDERMAL PATTERNING FACTOR LIKE 2 (EPFL2) LOC_0s02g51950 EPFL [59]
Oryzoideae Rice LONG AND BARBED AWN1 (LABA1/AN-2) LOC_0s04g43840 LOG1 [46,60]
Oryzoideae Rice REDUCED AWN ELONGATION 2 (RAE2/GAD1/EPFL1) LOC_0Os08g37890 EPFL [10,44]
Oryzoideae Rice SHOOTLESS1 (SHO1) LOC_0Os04g43050 DICER-like 4 [31]
Oryzoideae Rice SHOOT ORGANISATION2 (SHO2/SHL4) LOC_0Os03g33650 ARGONAUTE (AGO) 7 [32]
Oryzoideae Rice shoot organization 3 (SHO3) UNKNOWN Unknown [32]
Oryzoideae Rice SUPER PISTIL1 (SPP1) UNKNOWN Unknown [61]
Oryzoideae Rice TONGARI-BOUSHI1 (TOB1) 0s0490536300 YABBY [62]
Oryzoideae Rice WAVY LEAF1 (WAF1) LOC_0Os07g06970 HEN1 [63]
Oryzoideae Rice AWNLESS1 (AWN1) LOC_0Os06g46030 ALOG [41]
Oryzoideae Rice GRAIN LENGTH AND AWN 1 (GLA1) LOC_0s05g02500 MAPK phosphatase [64]
Oryzoideae Rice SHOOTLESS2 (ROD-LIKE LEMMA) (SHL2/ROL) LOC_0Os01g34350 RNA-dependent RNA polymerase [34]
Oryzoideae Rice BLADE ON PETIOLE (BOP) LOC_0Os01g72020; LOC_Os11g04600 BOP [27]
Andropogoneae Sorghum AWNLESS1 (AWN1) Sobic.003G421300 ALOG [41]
Andropogoneae Sorghum DOMINANT AWN INHIBITION (DAI) Sobic003G421300 ALOG [42]
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also varies in undomesticated grasses. In Mucrostegium
vimeum, which is broadly distributed across eastern North
America, short-awned variants are more common at
higher latitudes, long-awned variants at lower latitudes,
suggesting an adaptive advantage of awns at high tem-
peratures, of no awns at low temperatures, or both, as has
been suggested for both barley and wheat [6,39,40].
Similarly, twisted geniculate awns are strongly associated
with savannah and grassland, straight awns with wetlands
in the tropical grass genera T/hemeda and Heteropogon [36].
This evolutionary lability in awn presence and
morphology may be because awns are expendable for
plant survival, and the conserved blade gene regulatory
network can be modulated specifically in developing in-
florescences to drive awn morphological diversification.

Some awn initiation and patterning genes
are conserved across grass subfamilies

In light of awned lemmas’ homology to vegetative leaves,
we predict that mutations in the same groups of genes
will be responsible for the replicated gains and losses of
awns across the grasses. Two parallel pathways regulate
awn elongation in rice, one involving ETTIN, and the
other DL [23]. Consistent with our prediction, both
pathways are repeatedly implicated in awn elongation
(Table 1) [22,24,39,41—44]. For example, in Sorghum
bicolor (sorghum), the ALOG transcriptional repressor
AWNI1 drives awn loss, likely through repressing D/, and
SHORT AWN2 (1.KS2) [41,42]. In rice, which is distantly
related to sorghum, mutants in an AWNI homolog have
long awns, demonstrating conserved AWNI function
across species [41]. In wheat, the B1 locus responsible for
awn suppression does not contain any known awn genes
but does repress REGULATOR OF AWN EL.ONGATIONZ
(RAEZ2) and 1.KS2, which are awn elongation genes in rice
and barley, respectively [39,43,44]. Similarly, WHEAT
FRIZZY PANICLE (WFZP), which promotes awn elon-
gation, regulates the conserved awn genes DL, LONG
AND BARBED AWNI (LABAI) and RAEI [45—47]. In
barley, MADSI regulates HoDI. and HoSHI activity thus
influencing awn elongation, differing from its role in rice
in which it regulates floral organ identity [24,48]. In rice,
although RAFEI, RAFZ, and RAE3 have all had different
histories of selection under domestication in Africa and
Asia, their functions in regulating awn elongation are
likely conserved across Oryza species [44,47,49,50].
Lastly, although not awn-specific, genes involved in
prickle formation on awns are also deeply conserved
[46,51]. These examples of conserved gene regulatory
networks are consistent with our predictions. As awn
genes are identified in species spanning grass diversity, it
is likely that we will find significant conservation along-
side species-specific modulation of the core awn/blade
gene regulatory network linked to morpholog-
ical diversity.

Viewing the development and genetic regulation of
understudied organs through the lens of homology is a
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powerful approach to provide novel insight into their
evolution and development. Here, we reveal significant
support for the hypothesis that grass awns have been
gained and lost through repeated suppression and reac-
tivation of the blade gene regulatory network in lemmas.
Awns are therefore an excellent example of morphological
diversity arising because of (rather than in spite of)
developmental conservation, providing a developmental
mechanism underlying morphological innovation. Impor-
tantly, variation in awn morphology was likely possible
because awns, unlike leaves, are not essential for survival,
enabling diversification through stage-specific modula-
tion of the blade gene regulatory network.
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