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Abstract—Acquiring downlink channel state information (CSI)
at the base station is vital for optimizing performance in
massive Multiple input multiple output (MIMO) Frequency-
Division Duplexing (FDD) systems. While deep learning architec-
tures have been successful in facilitating UE-side CSI feedback
and gNB-side recovery, the undersampling issue prior to CSI
feedback is often overlooked. This issue, which arises from low
density pilot placement in current standards, results in significant
aliasing effects in outdoor channels and consequently limits
CSI recovery performance. The main objective of this work
is to solve this issue by introducing a new CSI upsampling
framework at the gNB as a post-processing solution to address
the gaps caused by undersampling. Leveraging the physical
principles of discrete Fourier transform shifting theorem and
multipath reciprocity, our framework effectively uses uplink CSI
to mitigate aliasing effects. We further develop a learning-based
method that integrates the proposed algorithm with the Iterative
Shrinkage-Thresholding Algorithm Net (ISTA-Net) architecture,
enhancing our approach for non-uniform sampling recovery.
Our numerical results show that both our rule-based and deep
learning upsampling methods significantly outperform traditional
interpolation techniques or multiple state-of-the-art approaches
by 8-13 dB and 2-10 dB, respectively, in terms of normalized
mean square error.

Index Terms—Deep unfolding, CSI upsampling, massive
MIMO, CSI recovery.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) technolo-
gies form a cornerstone of modern wireless communications,
significantly enhancing both spectral and energy efficiency (SE
and EE) at the base station, or gNodeB (gNB) [1], [2]. In
frequency-division duplexing (FDD) systems, effective MIMO
transmitters hinge on accurate downlink (DL) channel state
information (CSI) acquisition at the gNB. Reliable DL CSI
acquisition is crucial in massive MIMO to ensure optimal
precoding and improved SE. However, acquiring DL CSI at
FDD transmitters faces notable challenges due to feedback
constraints.
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Unlike time-division duplex (TDD) systems, FDD systems
generally cannot rely on channel reciprocity between the
uplink (UL) and downlink (DL), necessitating CSI acquisition
through feedback from user equipment (UE). This dependency
on UE feedback introduces substantial overhead, as the feed-
back must convey a large volume of MIMO CSI coefficients,
which is costly in terms of UL bandwidth and power con-
sumption. To alleviate these burdens, efficient compressive
feedback mechanisms are essential. Cellular CSI typically has
a limited delay spread, which can be exploited for efficient
CSI compression and recovery. One promising approach is
to apply a deep autoencoder framework, as demonstrated in
[3], which includes an encoder at the UE and a decoder at
the serving gNB. Other related works have shown superior
CSI recovery or lightweight design using various autoencoder
models, including [4]–[7].

In addition to autoencoders, recent studies have leveraged
underlying channel correlations to enhance DL CSI recovery at
base stations (BSs), incorporating information from previous
CSI [4], [8], CSI of nearby UEs [9], and UL CSI [10]–
[12]. These methods leverage the inherent spatial and temporal
correlation [4], [8] in wireless channels to improve estimation
accuracy of CSI and reduce feedback payload. Furthermore,
some works on deep learning-based CSI compressive feedback
architectures have focused on reducing model complexity
and storage requirements to enable practical and low-cost
deployment [5], [7]. Despite these advances, achieving reliable
DL CSI recovery with minimal feedback overhead remains a
major challenge in massive MIMO FDD systems, motivating
continued efforts to investigate efficient compression and re-
covery solutions.

An underlying assumption of many compressive feedback
models is that the system employs dense pilot placement,
enabling accurate full-CSI recovery at the UE from high-
quality feedback. However, since the 5G standard’s CSI ref-
erence signals (CSI-RS) are primarily designed for subband-
level feedback, the CSI-RS placement is one element per one
or two resource blocks (RBs), incapable of capturing the full
granularity of the CSI structure at the subcarrier level [13],
[14]. Recovering DL CSI at the subcarrier level requires an
impractically high density CSI-RS placement to capture high-
frequency variations caused by large-delay multipath compo-
nents, which are particularly prominent in outdoor scenarios.
Without sufficient CSI-RS density, aliasing can occur during
the interpolation process, distorting the recovered CSI. This
aliasing problem is a significant obstacle to effective DL CSI
recovery, as illustrated below.



A. Aliasing Issue in Interpolation
From a signal processing standpoint, undersampling leads to

an irreversible loss of high-frequency variations, resulting in
the aliasing effect in sub-Nyquist signal recovery. Similarly
by reversing time and frequency, when the CSI frequency
sampling rate is less than twice the largest multipath delays
of a CSI, delay domain aliasing occurs. In this case, mul-
tipaths with delays exceeding the measurable delay become
ambiguous for the receiver (UE). The UE cannot recover these
multipath components correctly, even with upsampling.

To relate this to practical values, consider various subcarrier
spacings: with a 30 kHz spacing and CSI-RS placement every
1 RB (360 kHz frequency separation), the largest measurable
delay is 1.39µs. As subcarrier spacing increases to 60 kHz
or 120 kHz—often used for mmWave or FR2 bands—the
measurable delays reduce substantially. For a 60 kHz sub-
carrier spacing, the largest measurable delay is 0.694µs at
1 RB density, reducing to 0.347µs at 120 kHz spacing. At
120 kHz spacing with every 2 RBs for CSI-RS placement, the
measurable delay drops to 0.174µs.

Studies show that in sub-6 GHz bands, delay spreads can
exceed 1µs [15], [16]. Moreover, in about 20% of NLoS
Urban Macro channel realizations, delay spreads surpass 1µs
[17]. Such delay spreads exceed the measurable limits, particu-
larly in mmWave bands, where dense multipath reflections are
common [18]. This results in unavoidable aliasing under such
conditions, emphasizing the need for advanced upsampling
techniques to reconstruct subcarrier-level CSI from RB-level
CSI-RS in 5G NR environments

Fig. 1. The empirical delay spread CDF of 10,000 NLoS Urban Macro
channel realizations according to the 3D channel model of 5G NR.

Traditional methods for sub-Nyquist signal recovery in-
clude non-uniform sampling [19], compressive sensing [20],
[21], and iterative shrinkage-thresholding algorithm (ISTA)
[22]–[24]. While effective under certain conditions, these ap-
proaches assume signal sparsity in a specific domain and may
struggle with uniform sampling. Thus, researchers are focusing
on deep learning approaches for sub-Nyquist upsampling from
uniform samples.

One promising approach is inspired by the super-resolution
(SR) techniques for computer vision, which enhance resolu-
tion by interpolating low-resolution images [25]. Techniques

like the Super-Resolution Convolutional Neural Network (SR-
CNN) [26] and hybrid CNN-transformer models [27] have
improved image quality. Although SR methods increase data
resolution, they rely on structural priors (edges, textures) that
are absent in the random CSI data patterns, making them
unsuitable for direct application. Some research in commu-
nications uses deep learning to recover the beam response
map from sparse beam responses, reducing beam search costs
in mmWave [28]–[30]. However, these methods assume a
reasonably high sampling rate in the beam domain to reflect
the true directional power distribution effectively.

While deep learning models in image processing leverage
extensive prior information, CSI data lacks such patterns,
complicating training. To address this, we propose exploiting
UL CSI and leveraging multipath reciprocity to counteract
aliasing from undersampling in DL CSI recovery.

B. Contributions
This paper addresses the critical problem of aliasing in CSI

feedback caused by low-density CSI-RS pilot placement in
current cellular standards. We introduce a novel CSI upsam-
pling framework utilizing UL CSI to mitigate aliasing effects
and enhance DL CSI recovery. Our main contributions are as
follows:

• UL Masking Technique: We develop a low-complexity,
rule-based method using the Discrete Fourier Transform
(DFT) shifting theorem and multipath reciprocity to de-
sign a bandpass filter that suppresses aliasing peaks in
the CSI spectrum.

• SRCsiNet Framework: We propose a deep learning
architecture, SRCsiNet, that extends the UL Masking
concept by leveraging the DFT shifting theorem and
multipath reciprocity for enhanced CSI upsampling and
aliasing suppression.

• End-to-End Alias Suppression Training: A SRCsiNet
model is trained in an end-to-end manner with a non-
aliasing selection map module to generate an adaptive
bandpass filter used in the beam-delay domain within
a CSI attention and refinement module for improved
aliasing suppression.

• Hybrid Integration with ISTA-Net for Non-Uniform
Sampling Recovery: To enhance resilience against non-
uniform sampling, we propose a hybrid CSI upsam-
pling approach combining SRCsiNet with the ISTA-Net
architecture, enabling efficient aliasing suppression and
improved CSI recovery in sparse sampling scenarios.

These contributions bridge critical gaps in the current state
of CSI feedback frameworks, paving the way for more accurate
and resource-efficient CSI recovery in massive MIMO FDD
systems.

II. SYSTEM MODEL

A. DL CSI Preprocessing
We consider a single-cell MIMO FDD link where a gNB

with Na antennas serves a plurality of single-antenna UEs.
Following 3GPP technical specifications, sparse pilot symbols



(i.e., CSI-RS) are uniformly distributed in the frequency
domain for DL channel acquisition. Assume each subband
contains Nf subcarriers with a spacing of ∆f and a pilot
spacing of DRS subcarriers. Adjacent CSI-RSs are separated
by DRS ·∆f Hz.

We denote hi ∈ CMf×1 as the reference-signal (RS) CSI of
the i-th antenna at gNB at Mf pilot (CSI-RS) positions. Let the
superscript (·)H denote the conjugate transpose. By collecting
the CSI of each gNB, an RS CSI matrix HRS relates to the
full DL CSI matrix H ∈ CNa×Nf via:

HRS = HQDRS =
[
h1 h2 · · · hNa

]H ∈ CNa×Mf ,

where

QDRS = [e1, e1+DRS , . . . , e1+(Mf−1)DRS ] ∈ CNf×Mf

is a downsampling matrix with pilot rate DRS, and ei ∈ CNf

is the i-th column vector of an identity matrix of size Nf .

B. DL CSI Feedback
Autoencoder has shown successes for CSI compression.

An encoder at UE compresses its estimated DL CSI based
on reference signals for UL feedback and a decoder at gNB
recovers the CSI according to the feedback from UE. Before
compression and after recovery, some works [3], [31] may or
may not transform CSI into the domain with sparse features as
pre-processing, which usually only pose slight impact. Many
have exploited convolutional and fully connected layers to
compress and recover the RS CSI via

Encoder: q = fen(HRS +N),

Decoder: ĤRS = fde(q).

We note that the size of the codeword q ∈ C
NaMf

CR for UL
feedback is determined by a specific compression ratio CR.
We can evaluate the feedback loss by the NMSE of the RS
CSI:

LossFB(ĤRS,HRS) =
D∑

d=1

∥∥∥ĤRS,d −HRS,d

∥∥∥2
F∥∥HRS,d

∥∥2
F

,

where subscript d denotes the d-th random test.

C. Aliasing Issue
Fig. 2 demonstrates the block diagram of a practical explicit

CSI feedback framework. Since UE can only acquire HRS,
gNB needs to upsample ĤRS the actual full DL CSI, denoted
as H after CSI encoding and decoding for precoder design.
Thus, our primary interest shifts towards the total discrepancy
between the actual full DL CSI, H, and the estimated full DL
CSI, denoted as Ĥ. The discrepancy is given as follows:

Loss = NMSE(Ĥ,H) =
D∑

d=1

∥∥∥Ĥd −Hd

∥∥∥2
F

∥Hd∥2F
,

Ĥ = f↑(fde(fen(HRS +N))),
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Fig. 2. Block diagram of explicit CSI feedback frameworks. Previous deep
learning works on CSI feedbacks neglected the necessity of upsampling RS
CSI to full DL CSI or assumed that UE is able to acquire full DL CSI, which
is not practical. This work aims to design a CSI upsampler that leverages
uplink channels and side information against the aliasing issue.

Fig. 3. Illustration of the total discrepancy related to losses at different stages.
∆1, ∆2 and ∆3 denote the distortions from channel estimation at UE side,
feedback from UE to gNB, and upsampling, respectively.

where f↑(·) is the upsampling operation and Ĥ ∈ CNa×Nf is
the estimated DL CSI after upsampling/interpolation.

As shown in Fig. 3, the total discrepancy in recovering the
full DL CSI, denoted as Loss, arises from three main factors:
channel estimation (CE) noise N, feedback loss LossFB, and
upsampling/interpolation loss Loss↑. The CE loss, resulting
from imperfect CE at the UE side, has been effectively
addressed by rule-based methods like Least Square (LS) and
MMSE estimation [32], as well as advanced learning-based
denoising networks [33], [34]. Feedback loss, due to limited
CSI feedback, has been extensively explored in existing CSI
feedback frameworks [3], [11]. However, there has been less
focus on upsampling loss. This loss occurs when interpolating
full DL CSIs from a limited number of known estimated RS
CSIs. While feedback loss LossFB is typically predominant
in indoor propagation channels, the insufficient density of
current CSI-RS placements means that upsampling loss Loss↑
becomes a significant challenge in recovering DL CSIs with
large delay spread (i.e., fast-varying in frequency domain).

Prior research often assumes adequate pilot density in the
frequency domain for all types of channels. However, the
density of pilot placement in CSI-RS, as specified in cellular



network standards [35], falls short for outdoor scenarios,
particularly for channels with a high delay spread. This leads
to a significant issue: the RS CSI matrix, HRS, may experience
aliasing due to downsampling, rendering it impossible to
accurately recover the full DL CSI, H. Let us define the
pilot sample rate in frequency as SF and the maximum delay
tap as ∆tmax seconds. If 1

2SF
≤ ∆tmax, the channels captured

from CSI-RS are considered to be aliased signals. Generally,
recovering aliased signals (i.e., aliased downsampled (DS)
CSI) to their original form (i.e., full CSI) is not feasible.

To give some realistic examples, based on the highest
density of placement of CSI-RS, which is 1 per 12 subcarriers
of 15 kHz, the frequency sampling interval is 180 kHz.
According to the Nyquist theorem, the maximum measurable
delay is half the inverse of the frequency interval, i.e.,

1
2·180 kHz = 2.778 microseconds. Consequently, any path
delay greater than the maximum measurable delay will wrap
around into the low delay region (i.e., so-called aliasing
effect). Specifically, once the delay spread exceeds 1.4
microseconds, aliasing effects are inevitable regardless of the
mean excess delay. If the mean excess delay is significant,
aliasing can also occur even if the delay spread is less than
1000 nanoseconds. In practical field tests [15], [16], some
research findings corroborate our points by demonstrating that,
in the sub-6 GHz band, the delay spread of some measured
channels can exceed 1000 nanoseconds. Additionally,
according to the 3D channel model study for 5G NR
[17], the delay spread of about 20% of NLoS Urban Macro
channels is greater than 1 microsecond, as illustrated in Fig. 1.

However, if the DS signals satisfy certain constraints, we
may recover the full CSI with aids of side information,
which will be introduced in the following sections. Previous
studies often assume an overly idealistic approach to up-
sampling/interpolation, which can be a critical operation in
channels with a large delay spread, and results in a bottleneck
in reducing the total discrepancy1. To enhance the overall
performance, our focus should shift to improving this critical
operation rather than the other two.

III. UL-CSI AIDED UPSAMPLIGN WITH ALIASING
SUPPRESSION

A. CSI Upsampling with Side Information
For an arbitrary channel H ∈ CNa×Nf in frequency domain

and its DS version HRS = HQDRS ∈ CNa×Mf by a factor
of DRS. If we upsample the HRS by inserting DRS − 1
zeros between any two consecutive samples along frequency
domain, we have

HDS[:, j] =

{
H[:, j], ∀j ∈ ΨRS,

0, ∀j /∈ ΨRS,
(1)

where ΨRS = {0, DRS, ..., (Mf − 1)DRS} is a downsampling
index set. Note that HDS consists of the entries of HRS at

1As the three operations (estimation, feedback, and interpolation) are
sequential, the one causing the largest loss becomes the bottleneck in reducing
the total discrepancy. This operation is termed the critical operation.

frequencies with pilots and zeros elsewhere. By DFT/IDFT
transformation, the full and DS DL CSI in beam-delay (BD)
domain can be obtained as follows:

HBD = FABHFFD ∈ CNa×Nf ,

HDS,BD = FABHDSFFD ∈ CNa×Nf , (2)

where FAB ∈ CNa×Na and FFD ∈ CNf×Nf are DFT and
IDFT transformation matrices, respectively. The subscripts AB
and FD denote the transformation from antenna/frequency to
beam/delay domains, respectively. Note that we use subscript
BD, AD, AF to denote CSI in beam-delay, angle-delay, and
angle-frequency domains, respectively. We use no subscript to
denote CSI in the orignal domain which is antenna-frequency
domain.

Given the DFT shifting theorem [36], when a time-domain
signal is uniformly downsampled by a factor of DRS, its
frequency representation is folded DRS times. Applying this
concept, when we uniformly downsample H and subsequently
perform an DFT/IDFT transformations in antenna and fre-
quency domains, respectively, we obtain HDS,BD, which rep-
resents HBD folded in the delay domain. It is important to
note that this folding occurs regardless of whether the matrix
is in the antenna or beam domain, as the downsampling is not
performed in the antenna domain. This results in the following
relationship between the full and downsampled DL CSIs:

HDS,BD[i, j] =
HBD[i, j] +HBD[i, j +Mf ]+

...+HBD[i, j +Mf (DRS − 1)]

DRS
, ∀0 ≤ j < Mf

HDS,BD[i,mod(j,Mf )], otherwise

.
(3)

Note that HDS,BD is periodic in the delay domain with a period
of Mf = Nf/DRS. If HBD[i, j] ̸= 0 for any j > Mf ,
we can say that the aliasing effect occurs and it cannot be
recovered to the original version H in general cases since
we can only measure HDS,BD, the sum of the multipaths.
However, since HDS,BD is periodic in the delay domain with a
period of Mf , which matches the wrapped-around effect due
to downsampling, the IDFT transformation unwraps the delay
bins of HBD to the original delay positions. Thus, H can be
recovered if HBD[i, j] in the delay domain satisfies the two
requirements shown below:

• Bin Isolation Property: for any non-zero HDS,BD[i, j]
in Eq.(3), only one from the DRS aliased copies
HBD[i, j],HBD[i, j+Nf/DRS], ...,HBD[i, j+Nf (DRS −
1)/DRS] is non-zero. Namely, the delay bins (i.e.,
HBD[i, j], j > Mf ) and the low-delay bin (i.e.,
HBD[i, j], j ≤ Mf ) are isolated after wrapped-around in
its DS version. If the bin isolation property holds, each
non-zero DS signal HDS,BD[i, j] in delay domain maps
to a scaled unique delay bin in the original signal (i.e.,
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Fig. 4. Illustration of CSI upsampling with side information. (A) shows
the original CSI magnitude in delay domain. (B) demonstrates the CSIRS
CSI magnitude in delay domain when DRS = 2. We can find that the high
negative delay peak wraps around (R = 1) into the low delay region, leading
aliasing effect. (C) shows the DS CSI magnitude in delay domain by inserting
zero inbetween samples of CSIRS CSI in frequency domain. The green curve
represents an ideal binary bandpass filter Φ to be the side information. (D)
is the resulting DL CSI magnitude in delay domain after applying the binary
bandpass filter Φ.

HDS,BD[i, j] = HBD[i, nk]/DRS). Note that nk can only
be j, j +Mf ,..., or j + (DRS − 1)Mf .

• Knowledge of bin locations: we have the perfect knowl-
edge map Φ ∈ CNa×Nf with ones at the positions with
non-zero values in the the full CSI matrix HBD[i, j] and
zeros elsewhere.

Fig. 4 shows a simple illustration for the single antenna case
with the intermediate results of the proposed CSI upsampling
approach using the bin location information. If the full CSI
matrix HBD satisfies the above two requirements, HBD can be
ideally obtained by

ĤBD = DRSΦ ◦HDS,BD ≈ HBD.

Note that ◦ denotes the element-wise product operation. Φ
acts like a bandpass filter in BD domain. Although the two
requirements are ideal, they lead us to a rationale to deal with
aliasing problems. That is, to deal with sparse signals, we can
suppress aliasing peaks with the knowledge of the non-zero bin
locations as a bandpass filter. In practice, DL CSI is somehow
sparse so that a quasi bin isolation property can hold. As for
the knowledge of bin locations of DL CSI, we can estimate it
according to UL CSI at base stations.

B. Multipath Reciprocity
Typically, acquiring the exact delay bin location information

without the original DL CSI, denoted as HBD, is challenging.
However, in communications systems, the magnitudes of DL
CSI in the BD domain HBD is often closely correlated with

𝛼ଶ, 𝜏ଶ,𝜙ଶ,𝜃ଶ

Fig. 5. Illustration of multipath reciprocity between UL and DL propagation
channels.
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Fig. 6. Comparison of SRS and CSI-RS placement density.

the magnitudes of UL CSI in BD domain HUL,BD, which
is readily available at base stations. Although DL and UL
CSIs do not exhibit full correlation in FDD wireless systems,
as illustrated in Fig. 5, they often share similar large-scale
multipath geometries (i.e., since the paths from/to gNB are
bidirectional, the delays and angles UL/DL paths should be
nearly identical to each other). This multipath reciprocity
results in comparable delay and angle profiles, a finding
supported by field tests and mathematical analysis [37]–[39].
Therefore, UL CSI in the BD domain is typically considered
a reliable estimate for the AD profiles of DL CSI. Owing to
the relatively high pilot placement density in UL CSI, there
are no aliasing effects, allowing for the design of a bandpass
filter to mitigate aliasing effects in DL CSIs.

In modern communication systems, as depicted in Fig. 6,
the pilot placement density in the frequency domain of the
Sounding Reference Signal (SRS) is much higher (every two
subcarriers) compared to that of CSI-RS (every 12 subcar-
riers). Consequently, the maximum non-aliasing delay (i.e.,
measurable delay) of UL CSI is approximately six times
greater than that of DL CSI, virtually eliminating aliasing
effects in UL CSIs. Based on the principle of multipath
reciprocity, this work proposes designing the bandpass filter
Φ using UL CSI information.



C. UL Masking: UL-Assisted CSI Upsampling with Aliasing
Suppression

Assume that we have perfect UL CSI HUL. According to
the multipath reciprocity between UL and DL CSIs, we can
design a two-dimensional bandpass filter based on the UL CSI
magnitude in BD domains as follows:

ΦUL[i, j] =

{
0, |HUL,BD[i, j]| < T,

1, |HUL,BD[i, j]| ≥ T,

HUL,BD = FABHULFFD ∈ CNa×Nf ,

where we set T = R ·
√
P and P is the average power of

HUL,BD. We next can estimate the BD domain DL CSI by

ĤBD = ΦUL ◦HDS,BD.

Leveraging multipath reciprocity, the filter can suppress
aliased copies if we establish an appropriate threshold T to
define the pass band/region in the delay and angle domains.
In practice, we perform a line search over all possible R
values in the training dataset before using the chosen R
for inference in real time. An adaptive tracking algorithm
could be employed to smooth or predict R for improving
filter design. However, finding a universal hard threshold T
for all types of CSI remains challenging due to imperfect
multipath reciprocity. Applying a “soft” threshold map offers
more flexibility, allowing partial dependency on multipath
components. Inspired by this insight, in the following section,
we explore the use of a deep learning model to design a soft
bandpass filter based on UL CSI.

IV. PHYSIC-INSPIRED AI-DRIVEN ALIASING
SUPPRESSION

Previous works [7], [9], [40] have been successfully applied
to in CSI compression and recovery. Enough pilot sampling
rate was usually assumed. In fact, following the 3GPP 5G
NR standard [35], UEs estimate the channels from CSI-RS
and send channel state feedback. However, the frequency
density of CSI-RS is not sufficient to capture the fast channel
variation along frequency domain. Even if a perfect CSI
feedback is achieved, the aliasing loss due to downsampling
is theoretically not possible to be recovered.

A. Model Architecture
There are plenty of successful network architecture which

can enhance image details while maintaining visual fidelity
after SR operation. In a sense of information theory, the model
learns prior information from the training data to fill the
information gap between the target and desired images. There
are lots of common features in images such as facial features,
colors textures, edges and shapes. For example, as long as the
deep learning model can recognize a specific patch as a face, it
can largely lower the uncertainty to upsample the LR images
since there exists nothing else except facial features. However,
unlike SR task in computer vision, the details of CSIs are
random and difficult to learn as prior information stored in the

deep learning model. To fill the information gap, we propose to
utilize UL CSI information by exploiting multipath reciprocity
against aliasing effects due to an insufficient pilot sampling
rate.

This section introduces a general learning framework
designed to effectively upsample LR tensors into SR
equivalents. This process is akin to the SR challenge in
computer vision, where numerous successful networks [26],
[27], [41] have been developed to enhance image details
while preserving visual fidelity after SR operation. From the
perspective of information theory , the model employs prior
knowledge obtained from training data to fill the gap between
actual and desired images. Certain image features, including
facial characteristics, colors, textures, edges, and shapes, are
common across various images. These features are retained
as prior knowledge within the model, ready to be utilized as
necessary to aid in image processing tasks. For instance, if
a deep learning model identifies a particular segment as part
of a face, it significantly reduces the uncertainty involved in
upscaling LR images, since the expected features are confined
to those associated with faces.

However, unlike the SR task in computer vision, the in-
tricacies of CSI are random and challenging to learn as
pre-existing information within a deep learning model. To
overcome this information gap, we propose leveraging UL
CSI data, exploiting the principle of multipath reciprocity to
counteract the aliasing effects stemming from an inadequate
pilot sampling rate. Fig. 7 gives a high-level understanding of
the proposed architecture. This framework is designed to be
deployed at base stations and consists of three modules: a)
non-aliasing selection map generation, b) true peak recovery,
and c) CSI attention and refinement which are described in
detail as follows:

1) True Peak Recovery
This module aims to upsample LR DL CSIs by inserting

zeros and transform them into the beam and delay domains.
By doing so, we can have a DL CSI map in BD domain which
is periodic in delay domain. According to the DFT shifting
invariance property, we can map the aliasing delay bins to
its original positions by inserting D − 1 zeros in between
samples. On the other hand, this will also lead to more false
peaks in the repetition map at the false delay positions. To
implement, we basically follow Eqs. (1) and (2) to generate the
desired repetition map HBD,DS. We describe these operations
as a linear function fTPR(·) such that HBD,DS = fTPR(HRS).

2) Non-aliasing Selection Map Generation (Bandpass Filter
Design)

This module aims to generate a bandpass filter in the BD
domain which can suppress aliasing peaks at wrong delay
positions. Regarding the multipath reciprocity, we can reply
on UL CSI to infer where the true peaks are. Instead of
using a rule-based approach mentioned in the previous section,
we adopt a neural network to design a bandpass filter. We
first transform the HR UL CSI into BD domain as HBD,UL
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Fig. 8. Network architecture of SRCsiNet. It consists of three modules: 1)
Non-aliasing selection map generation, 2) True peak generation and 3) CSI
attention and refinement.

with the same size of the matrix HBD,DS to be filtered. We
then feed HBD,UL into three convolutional layers with two
ReLU activations at the outputs of the first two convolutional
layers. We then utilize a sigmoid function as the last activation
function to output the bandpass filter ΦUL since it perfectly
matches the soft filtering purpose (i.e., model cannot only yield
zeros to suppress aliasing delay positions and ones elsewhere,
but also yield values between 0 and 1 to represent the model
uncertainty and provide flexibility). We called it as Bandpass
Filter Design (BFD) Block. For brevity, we can express the

output of the branch of the model as

ΦUL = fBFD(HUL). (4)

3) CSI Attention and Refinement
This module aims to filter out the aliasing peaks and do

refinement to generate the final DL CSI estimates which can
be expressed as Ĥ = fAR(ΦUL ◦HBD,DS). The function fAR(·)
aims to further refine and smooth the filtered result which
may have some artifacts due to the imperfect bandpass filter
ΦUL and the overlapped delay bins in HBD,DS. We apply two
residual blocks with SRCNN block [26] as the backbone to
refine the estimate first in BD domain and then in AF domain.

B. Loss Function Design
This network aims to minimize the upsampling loss Loss↑

which is defined as

Loss↑(ΘBFD,ΘAR) =
1

D

D∑
d

∥∥∥Ĥd −Hd

∥∥∥2
F
,

=
1

D

D∑
d

∥∥fAR(ΦUL,d ◦HBD,DS)−Hd

∥∥2
F
,

=
1

D

D∑
d

∥∥fAR(fBFD(HUL,d) ◦HBD,DS)−Hd

∥∥2
F
,

where ΘBFD and ΘAR are trainable parameters of the functions
fBFD(·) and fAR(·), respectively. It is important to mention
that minimizing the MSE loss plays a crucial role in guiding
the non-aliasing selection map generation module to design
a high-quality bandpass filter. The output of the true peak
recovery module may contain true peaks but can also include
aliasing peaks. Without a well-designed bandpass filter, the
upper part of SRCsiNet may pass a significant amount of
irrelevant and ambiguous information—such as aliasing peaks
that resemble true peaks but have incorrect delay positions—to
the CSI attention and refinement module, leading to a higher
MSE loss. Therefore, to effectively minimize MSE loss, it is
essential to have a high-quality bandpass filter.

C. Limitations and Failure Scenarios
As mentioned in Section III.A, the full DL CSI H can

be recovered if HBD satisfies two requirements: bin sparsity
and knowledge of bin locations. Low sparsity tends to cause
overlapped delay bins, which cannot be separated. Even if
channel sparsity is high but the magnitude correlation is low,
the proposed approaches would generate a poor-quality mask
that cannot correctly mitigate aliasing delay bins. Yet, con-
sidering the propagation model and path reciprocity, the two
requirements are true for most cases. If the two requirements
are not met, in fact, there is little else one can do from
information theoretic perspective.



V. EFFICIENT CHANNEL STATE FEEDBACK WITH
ALIASING SUPPRESSION FROM NON-UNIFORM

SAMPLING

The true delay position information can significantly im-
prove the CSI recovery for high-delay scenarios. In the per-
spective of the information theory, if we can increase the
mutual information between the input and the desired output,
we can further improve the CSI recovery accuracy.

According to the 3GPP 5G-NR standards [35], the primary
and secondary synchronization signals (PSS and SSS) play
crucial roles in cell identification and frame synchronization,
appearing periodically every 25 subframes (approximately
25ms) and spanning 64-128 subcarriers in bandwidth. Beyond
these primary functions, as depicted in Fig. 9, UEs can also
utilize PSS and SSS to estimate DL CSI, treating these
signals as virtual pilots for DL CSI acquisition. Furthermore,
the Physical Broadcast Channel (PBCH), instrumental for
broadcasting system information and aiding UEs in network
access, also contributes to DL CSI estimation by UEs, acting
as additional virtual pilots. This dense placement of virtual
pilots (SSS, PSS, and PBCH) aids in detecting multipath
effects with large delays, which CSI-RS might miss, despite
the mismatch in bandwidth coverage with the bandwidth part
(BWP) designated for UEs.

In an ideal scenario, combining the channels from sparse
uniform pilots (CSI-RS) with those from dense virtual pilots
would enable us to harness the strengths of both pilot types,
leading to more accurate CSI recovery. However, the effec-
tiveness of our proposed architecture, SRCsiNet, hinges on
maintaining a uniform sampling relationship between input
and output to exploit the Inverse Discrete Fourier Transform
(IDFT) shifting invariance property.

This section will introduce the integration of a compres-
sive sensing-based deep learning model into SRCsiNet, to
address the challenges posed by a non-uniform pilot setup
while effectively employing a bandpass filter. We will begin
by outlining the compressive sensing-based CSI upsampling
method, followed by an introduction to a novel framework,
SRISTA-Net.

A. Compressive sensing based CSI upsampling
As illustrated in Fig. 9, considering the extra subcarrier-level

DL CSIs, we can express the non-uniform RS CSI, termed as
LR DL CSI for simplicity, as

HLR[i, j] =

{
H[i, j], ∀j ∈ ΨP ,

0, ∀j /∈ ΨP ,
(5)

where ΨP = ΨRS∪Ψex is the union of ΨRS and Ψex = {I, I+
1, ..., I + P − 1} with I being the smallest subcarrier index
in SSS, PSS or PBCH. Ψex is the index set of the consecutive
pilots with size of P . We can reformulate the LR DL CSI
based on the full AD DL CSI as

HLR = HI[:,ΦP] = HFFDF
H
FDI[:,ΦP] (6)
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Fig. 9. Illustration of virtual pilots (i.e., PBCH, SSS and PSS) and non-
uniform RS CSI. With the sparse uniform pilots (CSI-RS) and the dense
virtual pilots, we can have an effective non-uniform DL CSI.

where F̃FD = FFD[:,ΦP] ∈ CNf×|ΦP| is the trimmed DFT
transformation matrix.

Mathematically, the goal of compressive sensing reconstruc-
tion is to infer the original signal x ∈ CN from a low-
dimensional measurement y = Φx ∈ CM , where M ≪ N .
By transposing Eq.(6), we have an exact projection of the
problem of interest to a compressive sensing reconstruction
problem (i.e., y = HLR[i, :]

T , Φ = F̃T
FD, x = HAD[i, :]

T

where i = 1, ..., Na). This inversion is typically ill-posed
problem. However, it can be solved by compressive sensing re-
construction since the sparsity of the original CSIs regularizes
the possible outputs.

B. ISTA-Net Framework
Previous works have proposed a deep unfolding approach

called ISTA-Net [23]. The basic idea of ISTA-Net is to map the
previous Iterative Soft-Thresholding Algorithm (ISTA) [22]
approach updating steps to a deep learning network. This
architecture consists of a fixed number of phases, each of the
phase performs one iteration in classic ISTA algorithm.

Fig. 10 shows the deep learning network of the ISTA-
Net. For each phase in ISTA-Net, it consists of two modules,
namely the r(k) module and the x(k) module. The following
items describe the operation in k-th phase as follows:

• r(k) Module: This aims to produce the intermediate result
which is the same as the ISTA algorithm. This step is to

optimize the channel fidelity
∥∥∥F̃T

FDx
(k−1) −HLR[i, :]

T
∥∥∥2
2
.

To maintain the ISTA architecture while increasing the
channel similarity, a trainable step size ρ(k) to vary
across different phases is adopted so that the output of
this module with input x(k−1) for i-th antenna can be
represented as:



r(k) = x(k−1) − ρ(k)F̃FD(F̃
T
FDx

(k−1) −HLR[i, :]
T ). (7)

• x(k) Module: It aims to compute x(k) according to the
intermediate result r(k), which is given by

x(k) = F̃ (k)(soft(F (k)(rk), θ(k))), (8)

where a pair of functions F (k) and F̃ (k) which are inverse
of each other such that F̃ (k)(F (k)(·)) = I(·) with I(·)
being an identity function. Such a constraint on F (k) and
F̃ (k) is called symmetry constraint.

C. SRISTA-Net Framework
The ISTA-Net can deal with non-uniform sampling but

cannot exploit side information. Thus, in this subsection, we
propose a new framework which combines ISTA-Net and the
proposed SRCsiNet for exploiting the advantages of the two
networks, which is termed as SRISTA-Net.

Fig. 11 shows the deep learning network of the proposed
network SRISTA-Net. We incorporate the SRCsiNet features
into ISTA-Net by appending an additional block, Reciprocity
Assisting (RA) Block, before the r(k) module. This block aims
to suppress the aliasing effects of the input x(k−1) prior to
solving the proximal mapping by applying the UL CSI assisted
bandpass filter according to multipath reciprocity. We feed
the magnitude of UL CSI HUL,BD in the BD domain into
two convolutional layers with ReLU and sigmoid functions,
respectively, to obtain a bandpass filter ΦUL.

Intuitively, for early phases, the model tends to heavily rely
on UL CSI information and vice versa. Therefore, we design
a weight matrix W(k) ∈ CNa×Nf to adjust the dependency to
the UL CSI at the k-th phase. We can rewrite the output of
RA block as

R(k)(r(k),HUL,BD) = W(k) ◦ΦUL ◦ r(k)BD + (1−W(k)) ◦ r(k)BD ,
(9)

where r
(k)
BD is the r(k) after transformation to BD domain. We

then feed the output into the x(k) module in ISTA-Net for
minimizing the L1-norm constraints.

D. Loss Function Design
Given the training data pair {(HLR,HUL,BD,H)}Dd=1,

SRISTA-Net first transform HLR into its AD version HLR,AD
as input and feed in the UL CSI information HUL,BD in each
phase to generate the output x(K)

d . Note that Hd, x(k)
d and r

(k)
d

are all in the AF domain. To reduce the discrepancy between
Hd and x(K)d while maintaining the symmetry constraint
F̃ (k)(F (k)(·)) = I(·), ∀k = 1, ...,K , we design the following
loss function:

Lall(Θ) = Ldiscrepancy + γLsymmetry, (10)

Ldiscrepancy =
D∑

d=1

∥∥∥x(K)
d −Hd

∥∥∥2
2
, (11)

Lsymmetry =
D∑

d=1

K∑
k=1

∥∥∥F̃ (k)(F (k)(q
(k)
d ))− q

(k)
d

∥∥∥2
2
, (12)

where q
(k)
d = R(k)(r(k),HUL,BD) is the output of the RA

block at the k-th phase. D, K and γ are the total number of
training data size, the total number of SRISTA-Net phases,
and the regularization parameter, respectively. In this paper,
we follow the original manuscript of ISTA-Net for the value
of γ = 0.01.

E. Initialization
Like traditional iterative compressive sensing reconstruc-

tion, the proposed approach requires an initialization denoted
by x(0) as illustrated in Fig. 11. From Eq.(6), we know
HLR[i, :]

T = F̃T
FDHAD[i, :]

T , ∀i = 1, ..., Na. We take the LS
solution to this problem for initialization such that

x(0) = F̃∗
FD(F̃

T
FDF̃

∗
FD)

−1HT
LR (13)

To clarify the complex operations of SRISTA-Net, Alg. 1
shows the pseudo code of SRISTA-Net Framework.

Algorithm 1 SRISTA-Net Framework
Require: HLR, HUL,BD, K, γ
Ensure: Recovered DL CSI x(K) in AD domain

1: Initialize: x(0) = F̃∗
FD(F̃

T
FDF̃

∗
FD)

−1HT
LR

2: for k = 1 to K do
3: ISTA-Net r Module:
4: r(k) = x(k−1) − ρ(k)F̃FD(F̃

T
FDx

(k−1) −HT
LR)

5: RA Block:
6: ΦUL = fBFD(HUL,BD)
7: W(k) = Sigmoid(W1 ∗

MaxPool(RuLU(Conv2D(RuLU(Conv2D((HUL,BD)))))))

8: r
(k)
BD = FBAx

(k−1)

9: r(k) = FH
BA(W

(k) ◦ΦUL ◦ r(k)BD + (1−W(k)) ◦ r(k)BD )
10: ISTA-Net x Module:
11: x(k) = F̃ (k)(soft(F (k)(r(k)), θ(k)))
12: end for
13: Loss Function:
14: Lall(Θ) = Ldiscrepancy + γLsymmetry

15: Ldiscrepancy =
∑D

d=1 ∥x
(K)
d −Hd∥22

16: Lsymmetry =
∑D

d=1

∑K
k=1 ∥F̃ (k)(F (k)(q

(k)
d ))− q

(k)
d ∥22

VI. EXPERIMENTAL EVALUATIONS

A. Experiment Setup
Tests were focused on outdoor channels using widely used

channel model software, QuaDriGa. The simulator considers
a gNB with an 8 × 4 UPA and 32-element ULA serving
single-antenna UEs, respectively, with half-wavelength uni-
form spacing. 2000 UEs uniformly distribute in the cell
coverage which is rectangular region with size of 250(m)×
300 (m). The scenario features given in 3GPP TR 38.901
UMa were followed, using Nf = 667 subcarriers with 15K-
Hz spacing and Mf = 55 pilots with a downsampling ratio of
DRS = 12 as a common setting if not specified and assuming
precise CSI estimates at the UEs. The NMSE metric was used
to assess performance.

For DL-based models, we conducted training with a batch
size of 32 for 1500 epochs, starting with a learning rate
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Fig. 11. Network architecture of SRISTA-Net. For the construction of W(k), we employ a pair of 2D convolutional layers followed by max pooling operations.
This approach is designed to refine the output, focusing it more acutely on specific segments of the side information. Subsequently, integrating a sigmoid layer
as the terminal activation mechanism compels W(k) to execute a binary fusion of the processed and unprocessed outcomes, specifically between ΦUL ◦ r(k)BD
and r

(k)
BD . As for the generation of ΦUL, we apply BFD block in Eq. 4 mentioned in the previous section.

of 0.001 and setting an early stop criterion that validation
loss does not improve for 100 epochs. We generated the
outdoor datasets using QuaDRiGa channel simulators [42].
We consider 16 TTIs for each out of 2000 UEs. In total, the
dataset consists of 32,000 channels. We used one-tenth of the
channels for testing and validation, respectively. The remaining
four-fifths channels are for training.

For the ease to evaluate the degree of aliasing, it is common
to use delay spread as a performance metric. A channel
with larger delay spread tends to suffer aliasing effects more
severely since it contains more high-delay multipaths. We
cluster all the 3200 test CSI data into 3 clusters according to
their RMS delay spread: low (smaller than 500 ns), medium
(inbetween 500 ns and 1000 ns), high-delay spread (larger than
1000 ns). The low, medium and high delay spread clusters have
883, 1221 and 1095 test cases and are denoted as CL1, CL2
and CL3, respectively.

B. UL Assisted Bandpass Filter Design for Anti-aliasing
Fig. 12 displays the NMSE performance of the UL masking

method at various R levels compared to traditional interpo-
lation across different CSI-RS placement densities. At a high

CSI-RS density (DRS = 3), the performance disparity between
these approaches is minimal, notable mainly in the complete
test dataset and CL1. However, a typical DRS value, being
either 12 or 24, introduces a more significant aliasing effect.
For DRS = 12, the performance divergence becomes more
pronounced, as the NMSE metrics show effective mitigation
of aliasing effects, particularly in the high-delay-spread cluster,
CL3.

In Fig. 13, the NMSE performance of the UL masking
approach at varying R levels for DRS = 3, 6, 12 is depicted.
This figure reveals the sensitivity of the proposed method
to the choice of the UL masking parameter R. In cases of
CSI with intense aliasing effects, a higher R is necessary to
effectively suppress the aliasing copies. Conversely, a large R
might be excessively aggressive for channels with a low delay
spread, potentially compromising the integrity of the actual
delay peaks.

C. SRCsiNet
In addition to the two upsampling approaches mentioned in

the previous subsection, we compare them with the proposed
learning-based SRCsiNet and SR network, SRCNN [26] and
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Fig. 12. NMSE performance of the proposed UL-assisted anti-aliasing
and traditional linear interpolation for different CSI-RS placement densities
(DRS = 3, 12).

a deep unfolding framework, ISTA-Net [23]. Fig. 14 shows
the NMSE performance of these alternatives for complete
dataset and the three clusters. We can discover that ISTA-
Net performs better than UL masking approach in CL1 due
to the advantage of unfolding compressive sensing approach
but performs poorly in CL3. That is because ISTA-Net does
not introduce side information for dealing the aliasing effect.
Clearly, by introducing UL CSI and providing flexibility in
designing the bandpass filter, the overall performance can be
improved by approximately 8 dB, which is significant. Fig.
15 shows the visualization of SRCsiNet. We can find that
the bandpass filter design can effectively suppress the aliasing
peaks and retain the delicate detail of the true peaks at the
same time.

D. End-to-end CSI Recovery
In this subsection, we would like to demonstrate the im-

portance of optimizing upsampling discrepancy for improving
the overall performance. Table I shows the NMSE performance
from the end-to-end, feedback, and upsampling operation for
SRISTA-Net, Interpolation and ISTA-Net. End-to-end NMSE
performance would be bounded by either feedback loss or
upsampling discrepancy. Yet, we can first discover that the
end-to-end performance is generally bounded by upsampling
loss in the considered UMa channels. This means that up-
sampling loss plays an critical role for improving the overall
performance. Lastly, we can also find that the end-to-end
NMSE performance improvement is about 6-10 dB as com-
pared to other upsampling approaches without introducing UL
CSI information.

E. Solving Overfitting problem
The SRISTA-Net architecture, necessitating 0.2 million pa-

rameters, faces a significant challenge due to its size relative
to the training data, often leading to overfitting issues. This

subsection highlights the effectiveness of Data Augmentation
(DA) in our approach. Table II presents the NMSE per-
formance for varying numbers of virtual pilots, comparing
scenarios before and after implementing DA. A major hurdle
in deploying learning-based models at gNB is the acquisition
of real CSI data. In our experiments, the training of the
deep learning model utilized less than 30,000 data points.
We observed that overfitting becomes a significant issue when
relying solely on the original training dataset. To counter this
issue, we implemented circular shifting, as suggested by [43],
on the original training data in the angle domain, effectively
doubling the training dataset size. This augmentation was
found to markedly enhance NMSE performance, demonstrat-
ing the benefits of increased training data.

F. Temporal Sensitivity of SRISTA-Net
SRISTA-Net significantly surpasses other alternatives in

NMSE performance. However, it is important to note that
previous experiments were conducted under the assumption
that both CSI-RS and virtual pilots are present within the
same time slot2. Table III details the NMSE performance of
SRISTA-Net, accounting for varying time gaps between CSI-
RS and virtual pilots, alongside different counts of virtual
pilots. Given the 10 ms periodicity of PBCH, PSS, and SSS,
the maximum theoretical time difference between CSI-RS and
virtual pilots is limited to under 5 ms. Our findings reveal
that SRISTA-Net’s performance is highly susceptible to even
minimal time differences, such as 5 ms. Interestingly, the
NMSE performance in scenarios with a 5-ms gap is observed
to be inferior compared to cases without any virtual pilots. In
conclusion, when CSI-RS and virtual pilots coexist in the same
time slot, leveraging the additional information is beneficial.
Otherwise, it is preferable to upscale the DL CSI without
incorporating data from virtual pilots.

G. Complexity, Storage Requirements and Short Summary
Table IV outlines the complexity and storage requirements

of all previously mentioned approaches. It is observed that
while SRISTA-Net and ISTA-Net have similar model sizes
and required similar complexities, SRISTA-Net significantly
surpasses ISTA-Net in terms of performance. However, this
comparison also highlights a drawback of deep unfolding
methods. Due to the recursive application of convolutional
operations on full-size data, these models exhibit higher com-
plexity relative to others. Fortunately, the upsampling module
in these models is implemented at the gNB. Considering
the demands of future AI-enhanced cellular systems, a gNB
equipped with multiple GPUs is envisioned, enabling real-
time operation of such complex models. Nonetheless, there is
an ongoing need to reduce the complexity of deep unfolding
approaches, potentially through techniques like pruning [44],
[45] or other methods of model size reduction.

Last but not least, to facilitate readers’ understanding of our
contributions, we provide Table V to highlight the key features

2It’s assumed here that the CSI remains constant within the same time slot
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DRS = 3

Fig. 13. NMSE performance of the proposed UL-assisted anti-aliasing for different CSI-RS placement densities (DRS = 12, 6, 3). We can clearly know that
the optimal selection of the threshold level R varies with the aliasing effects. For the channels with strong aliasing effects, we require a larger R to suppress
aliasing copies.

TABLE I
THE END-TO-END NMSE PERFORMANCE OF SRISTA-NET, INTERPOLATION AND ISTA-NET FOR DIFFERENT NUMBERS OF VIRTUAL PILOTS UNDER

COMPRESSION RATIO IS 4.

P = 0 P = 64 P = 128
DualNet-MP + SRISTA-Net DualNet-MP + SRISTA-Net DualNet-MP + SRISTA-Net

ALL CL1 CL2 CL3 ALL CL1 CL2 CL3 ALL CL1 CL2 CL3
Loss -12.8 -16.2 -12.5 -9.8 Loss -15.5 -19.4 -15.8 -11.9 Loss -17.5 -21.6 -17.9 -13.7
LossFB -14.5 -16.7 -13.6 -12.6 LossFB -19.6 -23.2 -19.7 -16.3 LossFB -22.2 -26.2 -22.7 -18.6
Loss↑ -17.2 -24.5 -18.0 -12.6 Loss↑ -17.6 -22.3 -18.7 -13.4 Loss↑ -19.4 -24.0 -20.1 -15.3

DualNet-MP + Interpolation DualNet-MP + Interpolation DualNet-MP + Interpolation
ALL CL1 CL2 CL3 ALL CL1 CL2 CL3 ALL CL1 CL2 CL3

Loss -2.7 -8.3 -1.9 0.7 Loss -3.2 -8.9 -2.3 0.2 Loss -3.6 -9.4 -2.8 -0.1
LossFB -14.5 -16.7 -13.6 -12.6 LossFB -19.6 -23.2 -19.7 -16.3 LossFB -22.2 -26.2 -22.7 -18.6
Loss↑ -2.7 -8.6 -1.9 0.7 Loss↑ -3.2 -9.0 -2.3 0.3 Loss↑ -3.6 -9.5 -2.8 -0.1

DualNet-MP + ISTA-Net DualNet-MP + ISTA-Net DualNet-MP + ISTA-Net
ALL CL1 CL2 CL3 ALL CL1 CL2 CL3 ALL CL1 CL2 CL3

Loss -6.7 -13.5 -8.1 -1.9 Loss -13.3 -18.3 -14.2 -9.0 Loss -14.3 -19.5 -15.4 -10.0
LossFB -14.5 -16.7 -13.6 -12.6 LossFB -19.6 -23.2 -19.7 -16.36 LossFB -22.2 -26.2 -22.7 -18.6
Loss↑ -7.2 -15.8 -9.1 -2.1 Loss↑ -14.5 -20.5 -15.9 -9.9 Loss↑ -15.3 -20.8 -16.5 -10.8
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Fig. 14. NMSE performance of the learning based UL-assisted framework,
SRCsiNet, and the alternatives in comparison for different clusters (i.e., all
all samples and the samples with low, medium, large delay spread).

TABLE II
NMSE PERFORMANCE OF THE SRISTA-NET WITH AND WITHOUT DATA

AUGMENTATION (DA).

P Method ALL CL1 CL2 CL3

0 SRISTA-Net -14.62 -21.34 -15.41 -10.12
SRISTA-Net + DA -16.88 -23.15 -17.73 -12.43

256 SRISTA-Net -17.20 -22.48 -18.34 -12.83
SRISTA-Net + DA -20.55 -23.89 -20.81 -17.18

TABLE III
NMSE PERFORNACE OF SRISTA-NET FOR DIFFERENT TIME

DIFFERENCES BETWEEN CSI-RS AND VIRTUAL PILOTS.

P = 64
Time

Difference ALL CL1 CL2 CL3

0ms -17.6 -22.3 -18.7 -13.4
5ms -13.6 -15.0 -14.1 -11.2

10ms -9.2 -10.1 -9.5 -7.4
One-shot

P=0 -17.2 -24.5 -18.0 -12.6

P = 128
Time

Difference ALL CL1 CL2 CL3

0ms -19.40 -24.0 -20.1 -15.3
5ms -11.7 -12.5 -11.9 -10.3

10ms -6.2 -6.6 -6.3 -5.5
One-shot

P=0 -17.2 -24.5 -18.0 -12.6

of the proposed approaches compared to previous rule-based
and learning-based upsamplers.

VII. CONCLUSIONS

The proposed methods in this study present significant
advancements in the recovery of downlink channel state infor-
mation (CSI) in massive MIMO Frequency-Division Duplex-
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Fig. 15. Visual illustration of the results of the SRCsiNet. For the limited space, these examples only show the first 128 delay taps (we have 660 delay taps
in the experiment). Since DRS = 12, HDS,BD is periodic in every 55 delay taps. We can know from the examples that the bandpass filter works very well
since it can capture very delicate details which are belong to true peaks (denoted by blue color circles) and suppress the aliasing peaks effectively (highlighted
by red circles).

TABLE IV
STORAGE (PARA: MODEL PARAMETERS) AND COMPLEXITY (FLOPS)

COMPARISON.

PARA FLOPs
Interpolation 0 109K
UL Masking 0 206K
SRCNN 63K 55.5M
ISTA-Net 196K 2G
SRCsiNet 7K 3.1M
SRISTA-Net 215K 2.01G

ing (FDD) systems, particularly addressing the issue of CSI
undersampling caused by low-density pilot placement in mod-
ern cellular systems. The novel CSI upsampling framework,
SRCsiNet, leverages the Discrete Fourier Transform (DFT)
shifting theorem and multipath reciprocity, utilizing uplink
(UL) CSI to effectively mitigate aliasing effects—a challenge
that is particularly pronounced in high delay spread scenarios.
The integration of this framework with the Iterative Shrinkage-
Thresholding Algorithm Net (ISTA-Net), SRISTA-Net, further
enhances the system’s ability to handle non-uniform sampling,
which is required for incorporating more side information for
performance enhancement. The results demonstrate substantial
benefits, with the proposed rule-based and deep learning meth-
ods outperforming traditional interpolation techniques and
state-of-the-art approaches by 8-13 dB and 2-10 dB in terms
of normalized mean square error, respectively. These findings
highlight the robustness and effectiveness of the proposed
methods, which not only provide superior CSI recovery but
also maintain simplicity and efficiency, making them highly
practical for deployment in modern communication systems.
This work represents a significant step forward in addressing
the challenges of CSI acquisition in massive MIMO FDD
systems, setting a new benchmark for performance and relia-
bility in wireless communications. For future researchers, it is
important to address the issue of channel aging to build upon
our work. In practical systems, the time lag between channel
estimation and precoder execution at the UE and gNB sides,
respectively, leads to outdated precoder relative to the current

channel conditions. It is crucial to consider developing a joint
framework that integrates both CSI upsampling and prediction
to mitigate this issue effectively.

APPENDIX

To clarify the symbols to understand the problem formula-
tion and equation better, we provide a summary of notations
in Table VI.
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TABLE VI
NOTATION SUMMARY

Notation Description
General Notations

Na Number of antennas at gNB
Nf Number of subcarriers in each subband
∆f Subcarrier spacing
DRS Pilot (CSI-RS) spacing in subcarriers
SF Pilot sample rate in frequency
Mf Number of pilots (CSI-RS) in a BWP
Nf Number of subcarriers in a BWP
(·)H Conjugate transpose
∥·∥F Frobenius norm
◦ Element-wise product operation
ei i-th column vector of an identity matrix of size Nf

QDRS Downsampling matrix with pilot rate DRS
ΨRS Downsampling index set
∆tmax Maximum delay tap
D Number of random tests
N Channel estimation noise
Φ Binary map for non-zero bin locations of HBD

Channel State Information (CSI) Matrices
hi RS CSI of the i-th antenna at gNB
H Full DL CSI matrix
HRS RS CSI matrix
ĤRS Estimated RS CSI
HDS DS CSI matrix
HBD Full DL CSI in BD domain

HDS,BD DS CSI in BD domain
Ĥ Estimated DL CSI after upsampling

HUL Full UL CSI matrix
HUL,BD Full UL CSI matrix in BD domain

Transformations and Functions
FAB DFT matrix for antenna to beam domain
FFD IDFT matrix for frequency to delay domain
fen(·) Encoder function
fde(·) Decoder function
f↑(·) Upsampling operation
fTPR(·) True Peak Recovery function
fBFD(·) Bandpass Filter Design function
fAR(·) CSI Attention and Refinement function

Feedback and Loss Functions
q Codeword for UL feedback
CR Compression ratio

LossFB Feedback loss
Loss↑ Upsampling loss

Ldiscrepancy Discrepancy loss
Lsymmetry Symmetry loss

Lall Total loss
Compressive Sensing and ISTA-Net

F̃FD Trimmed DFT transformation matrix
ρ(k) Trainable step size in ISTA-Net
F(k) Function in ISTA-Net
F̃(k) Inverse function in ISTA-Net
r(k) Intermediate result in ISTA-Net
x(k) Result in ISTA-Net
R(k) Reciprocity assisting function in SRISTA-Net
W(k) Weight matrix in SRISTA-Net
ΦUL Bandpass filter generated using UL CSI
HLR Low-resolution DL CSI
H̃LR Low-resolution CSI in AD domain
I Identity matrix
ΦP Pilot index set




