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Abstract—In this paper, a federated learning (FL) based system
is investigated with non-independent and identically distributed
(non-IID) dataset, where multiple devices participate in the global
model aggregation through a limited number of sub-channels.
By analyzing weight divergence and convergence rate, a new
metric is proposed based on age-of-information (Aol), which in-
corporates latency and can provide an advanced device selection
standard. After that, device selection, sub-channel assignment
and resource allocation are jointly designed in an overall Aol
minimization problem under the maximum energy consumption
constraint. The formulated problem is decoupled into two sub-
problems. After analyzing the feasibility, the resource allocation
problem is transformed to a convex problem, and the closed-from
solution is obtained based on KKT conditions. By introducing
virtual sub-channels, device selection and sub-channel assignment
are jointly solved by a matching based algorithm. Simulation
results indicate that the proposed scheme is able to outperform
all baselines in terms of both test accuracy and sum Aol, and the
developed strategies can achieve significant improvements for all
schemes.

Index Terms—Age-of-information (Aol), device selection, fed-
erated learning (FL), resource allocation, sub-channel assignment

I. INTRODUCTION

With the rapid development of mobile applications, massive
amounts of data become available on edge devices [1]. In the
conventional edge computing/learning schemes, data should be
offloaded to a central server for processing, which consumes a
lot of wireless communication resources [2]. Moreover, some
data may contain privacy sensitive information and therefore
cannot be collected in the practical deployment [3]. In this
context, federated learning (FL), as a method of distributed
learning, was proposed by Google and considered as a promis-
ing technique [4]. In FL, a neural network is shared between
the server and all participating devices, where each device
trains the model based on local data and transmits updates (e.g.
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weights or gradients) to the server [5]. Due to the fact that the
raw data with larger size is not transmitted, FL can achieve
higher privacy and communication efficiency compared to the
conventional centralized learning (CL) [6]. However, since
the performance of FL relies on periodic transmissions, it
is necessary to design and optimize wireless communication
networks accordingly [7].

Latency, as one of the important factors in determining
the convergence time of FL [8], has been widely studied
in existing works [9]-[16]. By defining latency as the time
consumption of computation and communication, a latency
minimization problem was formulated in [9], where the global
optimal solution of resource allocation was obtained based
on the bisection method. The authors of [10] focused on
minimizing the time consumption of downlink and uplink
transmissions. In order to guarantee the convergence, a binary
convergence indicator was introduced to minimize the number
of required communication rounds [10]. In [11], FL was
considered in a cell-free massive multiple-input multiple-
output (MIMO) scenario, in which multiple access points
were introduced to play the role of relays. The formulated
training time minimization problem was solved by a successive
convex approximation based algorithm. In order to improve
the convergence rate of FL, [12] formulated a global loss
minimization problem under the maximum time consump-
tion constraint. This problem was decoupled into two sub-
problems, and the time consumption constraint was trans-
formed to a latency minimization problem. In [13], FL was
combined with edge computing for minimizing the latency,
where devices can partially offload datasets to the server and
train the global model based on the remaining data. In this
case, the latency can be further reduced due to the decrease
of local training time and the utilization of server idle time.
The authors of [14] included other techniques to improve the
efficiency of FL. Specifically, an intelligent reflecting surface
(IRS) based FL system was designed, where two different
transmission protocols, including frequency division multiple
access (FDMA) and nonorthogonal multiple access (NOMA),
were employed and compared. Some works combined latency
minimization with other objectives in order to investigate the
trade-off [15], [16]. Aiming to minimize the weighted sum of
latency and global loss, pruning rate design and bandwidth
allocation were jointly researched in [15]. With the help of
the bisection method, an algorithm was developed to find the
optimal solution. For studying the trade-off between latency
and energy consumption, FL. was considered in a vehicular
network, where each device can offload part of the data to the



server for performing edge learning [16].

Due to the fact that FL generally involves a large num-
ber of devices, device selection is commonly considered to
accommodate limited wireless resources or filter unimportant
data [17]-[23]. In [17], it was illustrated that the performance
of FL can be improved by selecting more devices in each
communication round, and then, a device selection problem
was formulated to maximize the number of selected devices in
an over-the-air computation (AirComp) based FL system. By
defining packet errors, the effect of wireless communication
was included in the derived convergence rate [18]. In this
work, device selection was achieved by solving a resource
block allocation problem, where a Hungarian algorithm was
employed to select devices based on the data size. A biased
device selection scheme was proposed in [19], in which the
server needs to estimate the local loss and select devices
with high local loss. The results showed that the proposed
device selection strategy can achieve significant improvements
compared to random selection. The contribution based device
selection was also studied in [20] and [21], where the con-
tribution was defined as the increase of test accuracy and
the decease of global loss, respectively. Specifically, on the
basis of the conventional random device selection scheme,
an additional phase was introduced to sort devices based on
their contributions [20]. In [21], the transmitted local model
updates were iteratively excluded to calculate the contribution,
which was used to generate the probability of device selection
in the next round. A reinforcement learning based algorithm
was employed in [22] to select devices for participating the
aggregation. It was indicated that the required communication
rounds can be significantly reduced by the proposed solution in
the case of non-independent and identically distributed (non-
IID) dataset. The authors of [23] focused on the long-term
optimization of FL, where device selection was investigated
under a long-term energy consumption constraint. By pointing
out that the later stage of learning is more sensitive to the
number of selected devices, an algorithm was developed to
achieve the long-term performance improvement.

Even though latency minimization and device selection have
been extensively researched in the aforementioned works, their
combination may pose new challenges. In particular, in order
to reduce the latency, some devices with high channel quality
may be consecutively selected in different communication
rounds, which usually reduces the performance of learning
and causes overfitting problems [24]-[26]. Moreover, with
non-IID dataset, selecting any device consecutively leads to
weight divergence towards a particular direction [27]. On
the other hand, existing device selection strategies depend
on either communication state or local data/model analysis.
The former leads to a loss of learning performance, while
the latter contradicts the motivation for utilizing FL, i.e., to
preserve data privacy. Therefore, a new metric is required to
balance latency and convergence performance while guiding
device selection without analyzing local data/models. In this
work, age-of-information (Aol) is introduced to explore the
trade-off between latency and convergence. Different from
the age-of-update (AoU) defined in [28] and [29], Aol in
this work is a real number related to the time consumption

of the previous communication rounds'. As a result, latency
minimization and device selection can be jointly investigated
in a formulated sum Aol minimization problem. Furthermore,
in each communication round, all devices” Aol can be directly
calculated and stored at the server, and hence, the system
feedback overhead can be efficiently suppressed. The main
contributions of this paper are listed below.

e A FL based network with non-IID dataset is studied, in
which a subset of devices is selected to participate in the
aggregation in each communication round. It is proved that
in the non-IID case, any device selection strategy will pro-
duce an error, resulting in weight divergence and affecting
the convergence rate. By revealing the error estimate with
conventional random device selection, a novel Aol based
device selection scheme is designed.

o By defining Aol as the idle time of each device, an
overall Aol minimization problem is formulated under the
constraints of maximum energy consumption and device
selection. This problem is decoupled into two sub-problems,
including an Aol minimization based sub-channel assign-
ment problem and a latency minimization based resource
allocation problem.

o The resource allocation problem is first proved to be infea-
sible under an extreme condition. Afterwards, this problem
is transformed into a convex problem, and the closed-form
solution is derived with the help of KKT conditions and the
Lambert W function. For the problem of device selection
and sub-channel assignment, a matching-based algorithm is
developed, and the properties are analyzed.

e The considered FL network is simulated with MNIST and
CIFAR-10 datasets. Simulation results indicate that the
proposed scheme can achieve the best performance in terms
of both test accuracy and sum Aol. The proposed resource
allocation solution and sub-channel assignment algorithm
are able to dynamically improve the performance under
different parameter configurations.

II. SYSTEM MODEL

Consider a FL based network with one server, N devices,
and K sub-channels, where N > K. The non-IID dataset is
employed, and all nodes are equipped with single-antennas.
The collections of all devices and sub-channels are N =
{1,2,...,N} and K ={1,2,..., K}, respectively.

A. Training Model

In each communication round, the server broadcasts a global
model to all devices, and then each device trains the received
model based on local data and transmits local models to the
server. Due to the limited number of available sub-channels,
a subset of devices are selected in round ¢ for aggregation,

INote that in [29], AoU is considered as a weight factor for device
selection and included in a global loss minimization problem. In this work,
Aol minimization is investigated as an alternative to the conventional latency
minimization problem to develop a fair device selection strategy. Furthermore,
this paper provides a closed-form solution for latency minimization, which has
advantages in terms of complexity and optimality, compared to the monotonic
optimization based solution in [29].



denoted by S;, where S; C NV. The local loss and global loss
can be respectively presented as follows:
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where w(®) is the global model in round ¢, 3,, is the number
of samples at device n, £() is a loss function, and (X, s, Yn.;)
is the ¢-th sample of device n. The local model of device n
in round ¢ can be expressed as follows:
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where ) is the learning rate. The server can update the global
model based on federated averaging (FedAvg) [4] as follows:
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B. Performance Analysis

In order to analyze the performance of the considered FL
algorithm, the following assumptions are considered [30], [31]:

Assumption 1. With respect to w, the gradient V f(w®)) of
f(w®) is uniformly Lipschitz continuous, which leads to

IVEw D, N)=VEw® N < Lw! D =w ]|, (5)
where L is the Lipschitz constant, and ||-|| is the norm operator.
Assumption 2. Global loss function F(w'")| N') satisfies the
Polyak-Lojasiewicz inequality with positive parameter i, i.e.,

(t),N)—F(w*,N)}. (6)

Since the non-IID data distribution is considered, the weight
divergence is analyzed in this subsection, where CL is included
as the benchmark [27]. The update of global models in CL is
given by

IVEWS N > 2 | F(w

b =W -

ZZVK cen7xnzayn z) (7

W
Zné/\/ﬂ"n@\/l 1

Theorem 1. In any round t, the expected weight divergence
between the considered FL and CL is bounded as follows:
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Proof: Refer to Appendix A.

It is indicated by Theorem 1 that the divergence of global
models is due to two terms. The first term ||w(?) — ch)||

is the weight divergence of the initial global model, which
is amplified by (1 + AL)". The second term can be treated
as the divergence of gradients in round ¢, which is caused
by device selection, resulting in different data sizes and data
distributions. Moreover, the effect caused by the second term
is cumulative with the number of communication rounds, since
it is amplified by (1 + AL)!~%. That is, the impact on weight
dievergence at the early stage of training is more significant.

According to [32], by defining
eV 2 vr(wt §) - VE(w N),

its effect on convergence rate can be presented.

©)

Theorem 2. In the considered FL scenario, with an arbitrary
set of devices Sy C N, the expected reduction of global loss
in round t is bounded by
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where the learning rate satisfies A = 1.

Proof: Refer to Appendix B. [ |

It is indicated by Theorem 2 that the convergence rate of the
considered FL is partially determined by E[[e(")|?]. There-
fore, in order to increase the convergence rate, E[He(t)”ﬂ
should be reduced®. Note that E[[le®||?] is caused by de-
vice selection, which can be considered as one-stage cluster
sampling without unequal sizes [33]. With random device
selection, the following theorem can be obtained.

Theorem 3. By utilizing the random device selection scheme,
the convergence rate of the considered FL framework is

decided by

o P
(11)
Proof: Refer to Appendix C. [ |

It is indicated that the expression in Theorem 3 is based on
the averaged gradients of all devices, i.e., VF(w®)  \), which
cannot be obtained due to the limitation of available sub-
channels. As mentioned in [33], by replacing VF(w(® N\
with VF(w(®) S,), the approximate ratio estimator can be
obtained as follows.

Corollary 1. By utilizing the random device selection scheme,
the approximate effect on the convergence rate is given by

R Yones, Ba||Vfn(w
Elle®] }‘< ﬁ) SK(L D

) -vF(w®,S)|”
ZnEN ﬁn)

The above theorems and corollary indicate that the conver-
gence rate of the proposed FL algorithm can be improved if

2t is worth pointing out that due to the fact that < L, (1— £) € [0, 1),
and hence, the effect of E u|e(°) [I?] diminishes with training. In other words,

the impact of error E [||e(t [I2] on convergence rate is more significant at the
later stage of training.



1) the number of selected devices K is increased;
2) the deviation from the mean of the selected device, i.e.,
[V fu(w®) = VE(wW® N,

C. Signal Model

At the local training stage, the computational time consump-
tion is given by

qep _ _1Bn
k.n Tk,nCn,

where p is the required central processing unit (CPU) cycles
to train one sample, 7 ,, € [0, 1] is the computational resource
allocation coefficient of device n assigned to sub-channel k,
and C), is the available CPU cycles at device n. Accordingly,
the computational energy consumption can be presented as
follows:
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where x is the power consumption coefficient of each CPU
cycle. At the communication stage, the local models are
transmitted to the server for aggregation. With the assigned
sub-channel &, the achievable data rate of device n is

Rk,n = B10g2(1 + Oék,nPn|h/k,n|2)7

(14)
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where B is the bandwidth of each sub-channel, oy, ,, € [0, 1] is
the power allocation coefficient, P,, is the maximum transmit
power of device n, and |hk_,n|2 is the normalized channel gain
of device n assigned to sub-channel k. Specifically, |y ,,|> =
\hien 2072, where |Rg.n|? = |gn|?nd;® is the channel gain,
o? is the variance of noise, g, ~ CN(0,1) is the small-scale
fading coefficient, n is the frequency dependent factor, d,, is
the distance between device n and the server, and « is the
path loss exponent. The time consumption for communication
can be expressed as follows:

D
,n o kav
where D is the data size of local models. It is assumed that
the data size of local models is the same for all devices.

Based on the communication time, the energy consumption
for communication is given by

cm

e (16)
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For any device n asmgned to sub-channel k, the time con-
sumption in any round is
Th.n :T,S)‘;1+Tkn, (18)

and the time consumption of this communication round is
determined by the most time-consuming device, as shown in

follows:
t
T® — %%{E :¢£731Tk)n}, (19)

ke

where 2/1,(;21
Specifically, 1/1,(;21 = 1 indicates that device n is assigned to

€ {0,1} is the sub-channel assignment indicator.

sub-channel % in round ¢, and w,(le = 0 otherwise. In this
communication round, the total energy consumption of any
device n assigned to sub-channel k is

Ekn_E + B (20)

III. PROBLEM FORMULATION

In this section, the concept of Aol [34], [35] is introduced
and an Aol minimization problem is considered. For any
device n in round ¢, the Aol can be presented as follows:
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The above equation can be rewritten as follows:

t) _ ( Zw(t)> (AS_I) + T(t)) ) (22)

Moreover, the Aol of all devices in the initial state is set to
zero, 1.e., A%O) = 0,Vn € N. The overall Aol minimization
problem can be formulated as follows:
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N
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st. Epn, <EM™VkeK,VneN, (23a)
Tk € 10,1],Vk € K,Vn € N, (23b)

agn €0,1],Vk € K,Vn € N, (23c)

Y € {01}, Yk e K,Yn e N, (23d)
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where 1, T and « are the collections of sub-channel assign-
ment indicators, computational resource allocation coefficients
and power allocation coefficients, respectively. In constraint
(23a), the maximum energy consumption E7** is included in
each communication round. The value ranges of 7 ., Qi p
and ¢,th1 are presented in constraints (23c)-(23d). Constraints
(23e) and (23f) respectively show that any sub-channel can
be occupied by one device and any device can be assigned
to at most one sub-channel. As indicated by constraint (23f)
that only part of devices are assigned to sub-channels, device
selection is integrated in the sub-channel assignment problem.
Compared to the conventional latency minimization problem,
the inclusion of Aol can efficiently reduce the idle time of
devices and thus increases the fairness of device selection. As
a result, higher accuracy of FL can be achieved.

Due to the presence of integer variables, the formulated Aol
minimization problem is difficult to transform into a convex
problem. Therefore, this problem is decoupled into two sub-
problems, including the sub-channel assignment problem and
the resource allocation problem. The sub-channel assignment
problem is presented as follows:

N
> a
n=1

st (23d), (23e), (235).

(24)

It is worth pointing out that the above problem also includes
device selection. Specifically, if any device is assigned to a
sub-channel, it is selected in this communication round. In
the resource allocation problem, the sub-channel assignment
indicator v is fixed. By removing the constant part, the



Aol minimization problem can be transformed to a latency
minimization problem as

max{Tg ,|Vn € St} (25)

min
T,

st (23a), (23b), (23c).

IV. KKT CONDITIONS BASED RESOURCE ALLOCATION

In resource allocation problem (25), the selected devices
and the corresponding sub-channels are given. Moreover, the
resource allocation coefficients of any device, i.e., 7x, and
oy.n, are independent of other devices. Therefore, problem
(25) can be further divided into K sub-problems, where the
resource allocation problem of device n assigned to sub-
channel k is given by

. Wb D
26
Ttk o + Blogy(1 + g n P |h n]?) 20
Oék nP D

L. n nC” Emdx

S KB (Tk, ) Blogy (14, Po|hien]?) ~
(26a)
0 > Tkyn < 17 (26b)
0<a. <1 (26¢)

Note that the above problem is infeasible in the extreme case,
as shown in the following.

Proposition 1. The resource allocation problem in (26) is
infeasible if the following condition is satisfied:

In(2)D > E™ B|hy ,|°. (27)

Proof: Refer to Appendix D. [ |

Moreover, problem (26) is non-convex due to the objective
function and constraint (26a). In this case, T};" is introduced
to transform the problem. From (15) and (16), the following
equation can be obtained:

i
2 k,n — 1
n=—_— 28
ay, ATIE (28)
and constraint (26¢) becomes
D

1277 <0,

(29)
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At this stage, problem (26) can be transformed as follows:
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(26b), (29).

< E™* (30a)

Note that the above problem is equivalent to problem (26).
Therefore, the optimality of the resource allocation problem
is not affected by this transformation. Problem (30) is convex
and satisfies Slater’s condition, which means KKT conditions
can be adopted to obtain the optimal solution. The Lagrangian
function of problem (30) is given by

D
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D
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where \;,Vi € {1,2,3,4,5} is the Lagrangian multiplier
for the corresponding constraint. The partial derivatives of
function (31) with respect to 7, and T,g% are

oL w5 2
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respectively. The optimal solutions 7, and TP7* should
satisfy the following equations:

1fn
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Moreover, the following conditions can be obtained:
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By analyzing the KKT conditions, the optimal solution of
problem (30) can be presented as follows:

Proposition 2. By defining the following variables:

3
[Emax P.D 2
Ay &2k | —— z ,
T BBy B Blogy (15 Pulhia )
Ao £ |hk,n|2(E7Tax - Kﬂﬁncﬁ)v (37)
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four solutions can be presented below.
1) If the following condition is satisfied
P,D
KB Cr+ <EM. (38)
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the optimal solution is

T,;"n =1,
D 39
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2) In the case that
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3) If the following inequalities hold:
D
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and
D
In(2) D270 — Ay B > 2kC3 Ao Blhi, |, (44)
the optimal solution is
Thm = 1,
X 45
{ T = Ao. “3)

4) Otherwise, the optimal solution can be obtained by solving
the following equations:

QP Bro 2T | (7 PO b2 =0,
- (46)
Tcm* 2 T T, "|2—1 — Emax _ ().,

where 7;; . € (0,1] and Ti73* € (0
Proof: Refer to Appendix E.
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Based on Tp'7*, the optimal power allocation coefficient
k can be calculated from (28), and the decoupled resource
allocation problem in (25) is solved.

V. MATCHING BASED DEVICE SELECTION AND
SUB-CHANNEL ASSIGNMENT

Since the number of devices may exceed the number of sub-
channels, a matching based algorithm is developed to jointly
solve the device selection and sub-channel assignment prob-
lem. In this case, a device is selected if it is assigned to a valid
sub-channel, which yields a feasible solution to the resource
allocation problem. To this end, N — K virtual sub-channels
are introduced in this section, where the channel gains of
all devices in virtual sub-channels are zero. As a result, the
collection of all sub-channels, including physical and virtual
sub-channels, can be denoted by M = {1,2,...,K, K +
1,...,N}L

A. Design of Matching-based Algorithm

By introducing virtual sub-channels, A" and M become two
disjoint sets with the same size, and therefore, a one-to-one
matching can be constructed, as shown in follows:

Definition 1. Given two disjoint sets N" and M, a one-to-one
matching ® is a mapping from N to M, such that

1) ®(n) e M,Vn e N, (k) e N,Vk € M;

2) |®(n)|=1,YneN, |®k)| =1,Yk € M;

3) n=2o(k)= o(n) =k

In the above definition, the details of the considered match-
ing is described. Condition /) indicates that any player in one
set is matched with one player in the other set. Condition 2)
indicates that any player is only matched with one player.
Condition 3) indicates that the matching of device n and
sub-channel k£ can be inferred from each other. The above
definition implies that the considered matching is also a swap
matching. That is, if any device intends to be matched to a
sub-channel, it should exchange with the device occupying this
sub-channel. The swap matching is defined as follows:

Definition 2. From any matching ®, a swap matching ®7., is
obtained by

op = {2\{(k,n), (k/ n/)}} U {(k/ n), (k, n/)}a
where ®(k) =n, ®(k') =n/, O (k) =n/, @7, (k') =n.

(47)

Based on the objective function of problem (24), the utility
of any device n in matching ¢ can be presented as follows:

< Z Q/J(t)) ( (t— 1)+max{z 2/J(t) Ty n}) .
kex kek

(48)
It is indicated by the above equation that the utility of any
device n is zero if this device is assigned to a physical sub-
channel. On the other hand, if a device is assigned to a
virtual sub-channel, it is not selected in this communication
round, and hence, its utility is entirely determined by other
devices. Due to the fact that each sub-channel is occupied by
one device, the utility of any sub-channel is decided by the
occupied device, i.e., Up(®) = Uy (®),Vk € M. In this
section, unselfish players are considered because the exchange
operations between devices will be strictly restricted with the
conventional selfish players. Specifically, any device assigned
to a physical sub-channel cannot be swapped with a device
assigned to a virtual sub-channel, as its utility will be increased
from zero to a positive value. As a result, a preference list can
be constructed. For any player ¢ € A'UM, it prefers matching
@Zl over matching @ if

D <; B = Up(®) + Upr (®) > Up (D7) + Uy (B7). (49)

The transformation of matching from ¥ to @Z, should be
approved by all involved players, including the exchanged
devices and the occupied sub-channels. Due to the fact that
the utility of any sub-channel is equal to the utility of the
occupied device, the approval of sub-channels can be omitted.
Furthermore, the server tends to select more devices in each
communication round, thus, it will avoid assigning any device



Algorithm 1 Matching based Algorithm

1: Initialization:

2: Randomly match all devices and sub-channels.
3: Main Loop:

4: for n € N do

5:  Device n searches device n’ € N, where n # n’.
6 if ® <; 7, Vi € N then

7: Matching @7, is approved.

8: Devices n and n’ exchange sub-channels.
9: Set & = P7,.

10:  end if

11: end for

to a physical sub-channel where it is not feasible, as defined in
Proposition 1. If all involved players agree on swap matching
@, then (n,n’) becomes a swap-blocking pair. The definition
is presented below.

Definition 3. A swap-blocking pair (n,n’) holds if and only
if the following conditions can be satisfied:

1) Un(®) + U/ (®) > Up(®},) + Uns (P7);

2) W(2)D < E™Blh; j|%,¥j € {n,n'}, if i=87(j) € K.

Based on the definition of swap-blocking pairs, the matching
based device selection and sub-channel assignment algorithm
can be proposed in Algorithm 1. During the proposed al-
gorithm, devices are sequentially selected to search for other
devices with the same sequence, where the optimal resource
allocation in Proposition 2 is adopted. If a swap-blocking pair
(n,n’) is obtained, the current matching is transformed to
®7,. If no swap-blocking pair can be constructed within a
complete cycle of the main loop, the algorithm ends and the
final matching becomes the solution of problem (24).

B. Properties Analysis

This section focuses on analyzing the properties of the
proposed algorithm, including complexity, convergence, and
stability.

1) Complexity: The complexity of the proposed algorithm
can be presented as follows:

Proposition 3. Given a number of main loops C, the computa-
tional complexity of the matching based algorithm is O(C N?).

Proof: In the worst case, each device needs to search all
other devices, and then N(N — 1) times of calculations are
implemented in one loop. With the given number of main loops
C, the complexity of the proposed algorithm approximates to
O(CN?). [ ]

2) Convergence: The convergence of the proposed algo-
rithm can be presented as follows.

Proposition 4. From any initial matching, the matching based
algorithm can always converge to a stable matching.

Proof: In the proposed algorithm, the matching can be
transformed only if a swap-blocking pair is found. Based on
the definition of swap-blocking pairs, the sum utility of all
involved players should be strictly reduced, while the utilities
of uninvolved players remain the same or decrease. Therefore,

the sum utility of all devices is strictly decreasing with
matching transformations. With the finite devices and sub-
channels, the potential matchings are also finite, and hence,
a final matching is always obtained. ]

3) Stability: The stability of the proposed algorithm can be
analyzed according to the following definition:

Definition 4. A matching is two-sided exchange-stable if and
only if there is no swap-blocking pair.

The stability of the proposed algorithm is shown below.

Proposition 5. The resulting final matching from Algorithm 1
is always two-sided exchange-stable.

Proof: Assuming that the final matching obtained by
Algorithm 1 is not two-sided exchange-stable, there exists at
least one swap-blocking pair, which can further reduce the sum
utility. This case contradicts the convergence proposition and
therefore cannot hold. This proposition can thus be proved. B

VI. SIMULATION RESULTS

In the simulation, N devices are randomly distributed within
a radius centered at the server. During the learning process, the
positions of all devices remain the same, while the small-scale
fading varies from round to round. In order to mitigate the
effect of device location on learning results, in Fig. 1 to Fig.
3, all schemes adopt the same set of generated locations. By
selecting K devices randomly without replacement, random
device selection (R-DS) is included as the benchmark for
matching based device selection (M-DS). In terms of sub-
channel assignment, the matching based sub-channel assign-
ment (M-SA) approach in [29] is incorporated to assign the
selected devices into available sub-channels, and its initial
state is regarded as random sub-channel allocation (R-SA).
Moreover, fixed resource allocation (FIX-RA) is also consid-
ered as the baseline for KKT based resource allocation (KKT-
RA), in which all devices’ computational resource allocation
coefficients and power allocation coefficients are set to 0.5.
This simulation is based on unbalanced non-IID MNIST and
CIFAR-10 datasets. That is, the devices have different data
sizes and samples from each device have the limited number
of labels. In particular, each device has one label in MNIST
dataset and five labels in CIFAR-10 dataset. For MNIST
dataset, the neural network is built with two ReLu hidden
layers (128 and 256 neurons) and a Softmax output layer. For
CIFAR-10 dataset, a multi-layer convolutional neural network
(CNN) is constructed by stacking six 3 x 3 Conv2D layers,
a ReLu layer and a Softmax output layer. Specifically, the
Conve2D layers contain two 32-filter Conv2D layers, two 64-
filter Conv2D layers, and two 128-filter Conv2D layers, where
ever two layers followed by a 2 x 2 max pooling layer and
a 0.25 dropout layer. The ReLu layer includes 128 neurons,
followed by a 0.5 dropout layer. Furthermore, the simulations
on MNIST and CIFAR-10 datasets utilize full-batch and mini-
batch, respectively, where the epoch is 1, and the batch size
for mini-batch is 128. The main parameters of the simulation
are shown in Table 1.

Fig. 1 presents the performance of FL under different
schemes and the corresponding sum Aol. In order to show



TABLE I: Table of Parameters

Number of Devices N =20
Radius of the disc 500 m
Carrier frequency f=1GHz
AWGN noise power 02 = —174 dBm
Path loss exponent a=3.76
Bandwidth for each sub-channel B =1MHz
Power consumption coefficient ko = 10728
CPU cycles for each bit of tasks =107
Model size D =1 Mbit
Learning rate (MNIST/CIFAR-10) | A = 0.01/0.001
Optimizer (MNIST/CIFAR-10) SGD/Adam
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Fig. 1: The performance of FL on MNIST dataset. K = 5,
P, =15 dBm, C}, = 0.5 GHz, and E}* = 0.1 Joule.

a stable result, each curve is an average of 10 simulations. It
is indicated by Fig. 1(a) that the proposed solution, i.e., M-DS
and M-SA with KKT-RA, can achieve the best performance,
including the fastest convergence rate and the highest test
accuracy. By comparing with i) M-DS and M-SA with FIX-RA
and ii) R-DS and M-SA with KKT-RA, it shows that in terms
of the test accuracy, the impact of utilizing Aol minimization
based device selection is significant, while the effect of optimal
resource allocation is not obvious. Moreover, by employing
M-SA and KKT-RA, the number of selected devices in each
round can be increased, and therefore, the performance of R-
DS can be improved. Fig. 1(b) shows that the proposed scheme
is able to significantly reduce the overall Aol. Furthermore, M-
SA and KKT-RA can be utilized independently or jointly to

Test Accuracy

100 150 250

—%-- Centralized Learning

—O6—M-DS, M-SA, KKT-RA, K=8
—&—R-DS, M-SA, KKT-RA, K=8
—4A—M-DS, M-SA, KKT-RA, K=4
—H—R-DS, M-SA, KKT-RA, K=4
—7—M-DS, M-SA, KKT-RA, K=2
| | | | | ——R-DS, M-SA, KKT-RA, K=2
0 100 200 300 400 500 600 700 800 900 1000

Communication Rounds

(a) Test accuracy.

6000 —O6—M-DS, M-SA, KKT-RA,

—&— R-DS, M-SA, KKT-RA,
—£—M-DS, M-SA, KKT-RA,
5000 - \ ﬁ‘ —p—R-DS, M-SA, KKT-RA,
h —F—M-DS, M-SA, KKT-RA,
m ;;w R-DS, M-SA, KKT-RA,
wr ‘ *h ‘ Y'r
Mv» {

e win

i1
A O o

I xx A= A=
IN

1
N}

1
N

=

4000 -

3000

Sum Aol (s)

2000

1000

0 100 200 300 400 500 600 700 800 900 1000
Communication Rounds

(b) Sum Aol

Fig. 2: The impact of the number of available sub-channels.
P, =15 dBm, C,, = 0.5 GHz, and E* = 0.1 Joule.

reduce the sum Aol.

The impact of the number of sub-channels is shown in
Fig. 2. It is demonstrated by Fig. 2(a) that the convergence
rate of the considered FL can be improved by increasing
the number of available sub-channels, which confirms the
conclusion in Theorem 3 and Corollary 1. Fig. 2(b) shows that
the overall Aol can be reduced when more devices are selected
in each communication round, and the proposed scheme is able
to outperform the corresponding benchmark with any available
sub-channels.

The proposed scheme is simulated with CIFAR-10 dataset,
as shown in Fig. 3. In this simulation, the maximum test
accuracy is plotted to avoid overcrowding. Due to the fact
that the data size of each device with CIFAR-10 dataset is
greater than that with MNIST dataset, KKT based resource
allocation plays a more important role in Fig. 3. It can be found
from Fig. 3(a) that the highest test accuracy of the schemes
with fixed resource allocation is 41% while the lowest test
accuracy of schemes with KKT based resource allocation is
70%. The reason is shown in Fig. 3(b). That is, with the fixed
resource allocation, some devices cannot successfully transmit
signals to the server, and hence, their Aol is monotonically
increasing. Moreover, the proposed scheme can still achieve
the best performance, where the test accuracy can be 73% and



0.8 T T T T T T

0.7

4
o

o
3

2
¥

Test Accuracy
W

o
~

0.3

—6—M-DS, M-SA, KKT-RA

—%—M-DS, M-SA, FIX-RA

—&—R-DS, M-SA, KKT-RA
R-DS, M-SA, FIX-RA

—4—R-DS, R-SA, KKT-RA

| | | . |~P—R-DS,R-SA, FIX-RA

0 100 200 300 400 500 600 700

Communication Rounds

0.24

0.1

(a) Test accuracy.

—6—M-DS, M-SA, KKT-RA
8r —%—M-DS, M-SA, FIX-RA
—5—R-DS, M-SA, KKT-RA
R-DS, M-SA, FIX-RA
—A—R-DS, R-SA, KKT-RA
—&—R-DS, R-SA, FIX-RA

300 400 500 600 700
Communication Rounds

0 100 200

(b) Sum Aol

Fig. 3: The performance of FL on CIFAR-10 dataset. K = 5,
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the overall Aol is around 7000 seconds.

The relationship between the maximum energy consumption
and the number of selected devices is presented in Fig. 4.
Basically, for all schemes, the number of selected devices can
be increased with the increasing maximum energy consump-
tion. Moreover, this figure explains why the proposed scheme
can achieve the highest test accuracy. That is, by utilizing
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the KKT based resource allocation and matching based device
selection and sub-channel assignment, the number of feasible
devices is increased. As a result, the server can select devices
from a larger subset in order to increase the convergence rate.
Furthermore, this figure confirms the conclusion in Proposition
1 that E7'®* can effect the feasibility of the resource allocation
problem.

The impact of the maximum transmit power and computa-
tional capacity is shown in Fig. 5 and Fig. 6, respectively. With
increasing transmit power or computational capacity, the time
consumption for transmission or computation would decrease,
and hence, the overall Aol would drop due to the reduction in
latency. It is worth emphasizing that the proposed scheme can
also achieve the minimal latency compared to R-DS, and the
developed KKT-RA has the ability to reduce latency. Mean-
while, the energy consumption is monotonically raising with
the transmit power and computational capacity. In terms of the
proposed scheme, it is able to achieve the minimum sum Aol,
because the KKT based resource allocation solution and the
matching based device selection and sub-channel assignment



algorithm can efficiently utilize the given energy and sub-
channels, respectively. Furthermore, it is also indicated that
the maximum transmit power and computational capacity will
not affect the number of selected devices.

VII. CONCLUSIONS

This paper investigated FL with non-IID dataset over wire-
less networks. Due to the limited number of available sub-
channels, a subset of devices is selected to participate in ag-
gregation in each communication round. Based on the analysis
of weight divergence and convergence rate, the disadvantage
of existing device selection strategies is revealed, and then
an overall Aol minimization problem is designed to establish
a new metric. It is indicated that the Aol minimization
based device selection is able to reduce the latency and
improve convergence performance without analyzing the local
data/models. According to the KKT conditions and matching
theory, the formulated Aol minimization problem is solved.
Simulation results show that the Aol minimization based
device selection scheme can improve the performance of FL
with MNIST and CIFAR-10 datasets, and the proposed solu-
tion can efficiently utilize the given energy and sub-channels.
An important direction for future research is to explore this
model in multi-antenna scenarios and perform corresponding
beamforming designs.

APPENDIX A: PROOF OF THEOREM 1

The expected weight divergence between FL and CL can
be expressed as follows:

E[[lw ) — wit|
=E[[w® - AV F(w®), )~ WO+ AV F(wb, ||| (50)
<E[|lw® ~wiQ |||V P(w), 5,) - VF(wi, V)]

By adding and subtracting VF(w(®), \), it becomes

E _Hw(t+1)
ZE[HW“’ Wéé&ll]+AE[HVF(W<“,St)—VF(w“),N)

FVF (WO, N) =T (W), ) }
),8) = VE(w®, N

<E[|lw® - (t)||}+/\E[HVF
+AJE[HVF O N = VEF(w), N ‘H (51)

t+1) ”
CCH

cen

Based on Assumption 1, the weight divergence can be trans-
formed as follows:

E[w ) —wl V)| < OALE[[w® -wl]] 52
+AE[HVF(w<t>,st)—VF(w“),N)H] .

Similarly, the weight divergence in round ¢ is given by

E[w® - wiQ| | < 1+ ADE|[w =) —wl& V|

+AE[HVF(W“—1>,st,l)—VF(w“—l),N)‘H .

(53)
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As a result, the following inequality can be obtained:

E[wD—wlG || < (1+AL) B[ Jw® - w]

+)\zt:(1+/\L)t_iE[HVF(w(i),Si)—VF(w(i),N)m ,
=1

(54)

and the proof is completed.

APPENDIX B: PROOF OF THEOREM 2

According to [36], the following inequality can be derived
with Assumption 1:

1 2
o7 HVF(W@,N)—VF(w““),N)’
(t+1),N)—F(W(t),N)+[VF(W(t),N)T(W(t)

<F(w wiHD)]

W(t+1)||2. (55)

<5 [w
From (4) and (9), the following equation can be obtained:

w®) WD) AV E(w®), S;) =) [VF(W“),N )—i—e(t)} (56)
and then (55) can be transformed as follows:

Fwt D N
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With the given learning rate \ = %, the above inequality can
be rewritten as follows:

F(w 0, N) < F(w®, ) =5 V(w452
(58)

By subtracting F'(w*) and taking expectation on both sides,
the following inequality can be obtained:

E[F(w““),/\f)—F(w*)} gE[F(w(t),N)—F(w*)} (59)
~ P E[IVEwO, A I2] + 5 E[le?]

Based on Assumption 2, the above inequality becomes

E[F(w““),/\f )—F(w*)] (60)
< (1—%) E[F(w(t),J\/)—F(w*)] +%E[He(t)||2} .
The upper bound of the convergence rate is given by
E[F(w(”l),J\/)—F(w*)}
< (1—%)21[-3 [F(w(t_l),N)—F(w*)}
+(1-5) R [let 7] + R [le®)?]
< (1—%)tE[F(w<1>,N)—F(w*)}
+%Xt:(1—%)t'E[Ie“>llﬂ , ©1)
i=1

and the proof is completed.



APPENDIX C: PROOF OF THEOREM 3

To prove this theorem, a binary variable :cgf ) is defined,
where xSf ) = 1 indicates device n is selected in round ¢,
ie, n € S :vgf) = 0 otherwise. In any communication
round ¢ with the given set of selected devices S;, the averaged
gradients VF(w("),S;) can be rewritten as follows:

Z S ﬁnvfn(w(t))
VF(wlt), 8;) = =1
Z’RGSt Bn
_  Saen BV W) 5 gs, (62)
% D onenN xn)ﬂn s,

The above equation can be considered as a ratio estimation,
where ys, is positively correlated with Zs,. The probability
of selecting device n is obtained from (%), as follows:

K
E[z® ®—1)== 63
2] = P = 1) = . (©3)
Similarly, VF(w®, ) can be rewritten as follows:
1 t _
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Hence, the following equation can be obtained:
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As a result, E [||e®||?] can be expressed as follows:
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Moreover, the following transformation can be derived:
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By defining A, £ ||8,V/fa(w®)) — 8, VF(w the

above equation can be transformed as follows:
]
TN
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The following equation can be obtained:
(69)

The variance of :ch )
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Moreover, the probability of selecting device m after selecting
device n is given by (%j), ie.,

is given by
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and then the covariance of x%)xgn) is given by
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Therefore, E [||e(t)|\2} can be rewritten as follows:
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and the proof is completed.

(73)

APPENDIX D: PROOF OF PROPOSITION 1

It is indicated by (26a) that the optimal resource allocation
coefficients 77, and «j; ,, satisfy the following condition:

g PnD

K Bn (Th . Cn < EM*. (74
B (T Cn) Blogy(1+aj,, Pallic.nl®) (7%
The following inequality can be obtained:
of P,D )
: < EPPE (75)

Blogy(1+ aj,, Pallin?)



Due to the fact that In(1 + aj , Po|hi.nl?) < o, Palhinl,
the following inequality always holds:

o, PnD In(2)D (76)
Blog,(1+ a,’;mPn|hk_,n|2) ~ Blhgal?
Therefore, the problem is infeasible if
In(2)D
> Emax 77
B|hk n|2 - n ( )

and the proof is completed.

APPENDIX E: PROOF OF PROPOSITION 2

In resource allocation problern (30) device n is assigned to

sub-channel k, and hence, 1 — #0and -7, #0
always hold. Based on (36e) and 36f), Ao =0 and )\4 =0
can be obtained. As a result, (32) and (33) can be respectively
rewritten as follows:

Tcm

—% 20 KBty nO2 + A3=0,  (78)
k,n n
and
ery D
/\1 ( cm*)2(2 BT ) _ ( ))\1 cm*2 BT (79)

In(2)As|hp |2 D 2”“”%* + | *B(T, Cm*) =0.

Based on the above equations and the conditions in (36), four
possible solutions can be presented.

1) If A3 > 0 and A5 > 0, the optimal solution can be obtained
from (36¢) and (36f) as

(80)

and

CIN*

T = . 81
hon BlOgQ(l +Pn|hk,n|2) @D

In this case, based on (36a), the following inequality holds:
P,D
Blogy (1 + Pylhen|?) —

2) If A3 = 0 and A5 > 0, (81) holds. From (78), the following
condition can be obtained:

K1 Cp + < Ep.

(82)

1
AM=————>0.
"7 2,00

n

(83)

Note that the above inequality always holds. In this case, the
following equation is obtained from (36d):

P,D

FBa (77 o)+ —EI=0, (84
HBn (Tt o)™+ Blogy (14 P hg.n|?) ®
and the expression of 7, is given by
1
1 [max P.D 2
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From (36b), the following inequality should be satisfied:
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where the inequality in (83) always holds under the above in-
equality. Moreover, A5 > 0 should be satisfied. By introducing
leﬁ* from (81), (79) can be transformed to

I(2)As|hten |2 B(1+ Py |l ] ?) [log (14 Pr Ay n|*)]?
=D|hp.n|?> + \iDP,| g |
— In(2)\ D(1+ Py |hgen|*) loge (14 Pyl hge.n ).

From (83) and (85), the above equation can be transformed to

Al o]?
Ay In(2) [l |2B(1+ Po i, 2) oy (14 P [ |2)]2
Pl 2 =In(2) (14 Py n]?) 1ogy (14 P i o [2)
" A1 In(2) By 2B (14 Pl [2) logo (14 Po e [2)]2
(88)

87)

As =

where A; is defined in (37). Inequality A5 > 0 can be

transformed as follows:
A 24P | Pk n)? > (P hien [2) In(14Py [ g n ). (89)

3) If A3 > 0 and A5 = 0, (80) holds, and the following
condition can be obtained from (79):

B|hk7n |2T,§2*

AL = > 0. (90)
In (2)D23Tﬁ?f — BT (2776 1)
The above inequality indicates that
In(2) D2 T — BT (2 QP _ >0, (O

and it can be rewritten as follows:

(1 +O‘Z,npn |hk,n|2) 111(1 +o‘lt7npn|hk,n|2 ) > az,npn“bk,n\z .
92)
It is indicated by Taylor series that this condition always holds.
From (36d), the following equation should be satisfied:

—D__
CIN*
9B q

K ﬁnC2+ Cm*
: o2

—EY =0 (93)
By defining y* = 1/T,§2* and As as in (37), (93) can be
rewritten as follows:

25V = Agy* + 1

Wiy +1/4,)2BY =1/4,

—~

where in (a), (b) and (c), the equation is multiplied by
27EY /Ay, —(2%)_%2 and In(27), respectively. At this
stage, the Lambert W function can be utilized to obtain the
closed-form solution. By defining = £ 9745 , where z > 0, the
right side of the above equation can be written as — In(x)/x,
and the minimum value, i.e., —1 /e, can be determined through



_D_ _D_
derivatives. Since —1/e < —1In(2%25)/(2425) < 0, there
exist two real value solutions, as shown in follows:

In(2B) -y =1/ dn) = Wo (ln(zm) 277 )
n(28)(—y*—1/A2)=W_, (_1n(2m) /2A§’B) .
The proof below shovs]/:)s that ontl)y one solution is feasible. Since
that —1/e < —In(2%25)/(2%27) < 0, it can be obtained that
D D

—1 < Wy(—1n(2425)/2%25) < 0, and then, the following
inequality holds:

25
2%

“1<In(2 (96)

Depending on the relationship between A, and ln(2%), dif-
ferent inequalities can be obtained, as shown in follows:

D
Teme > A2E0) e 4y > In(2F),
A271n(2§) (97)
. Asn(2B) 92
o < ————p~, if Ay <In(27).
' As—In(2F)
From (90), the following condition should be satisfied:
D D
1D(2)D2 BT@%* BTcm*(2 BTk o 1) > 0. (98)
Based on (93), the above inequality can be rewritten as
o D e
In(2)D2°"%n —AsB > 0= 5 P
Blogy(A2/In(27)) ’
99)

By combining the first inequality of (97) and (99), the follow-
ing inequality can be obtained:

D Ay In(27) (100)
D D\
Blogy(Az/In(25)) Ay —1In(27)
and this inequality can be transformed to
m(2%)/4, —1 <In (1n(2%)/A2) . (101)

Since In(2%)/A, > 0, the above inequality cannot hold. That
is, when Ay > 1n(2%), this solution contradicts condition
A1 > 0. Moreover, the second inequality of (97) also cannot
hold since Tcm* is greater than zero. As a result, the solution

based on WO(— 1n(2$)/2FDB) can be removed, and the
closed-form expression of T;"7* is given by

Ay In(27
cme 2In(27) —.(102)
AsW_1(—1In(2%28) /2425 ) +1In(27 )
Based on (36c¢), the value range of 77" is given by
D

Tom* > .
B = Blogy(1 4 Pulhgnl?)

Moreover, since A3 > 0, from (78), the following condition is
included:

1—2MKC3 > 0. (104)
From (90), this condition can be transformed to
In (2)D2BTE“% —AsB > 2603 Blhi o [P TN (105)
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4) If A3 = 0 and A5 = 0, (83), (90) and (36d) hold. In this
case, the following equations can be obtained:

D
S
9 BT

D
1 2D ) T 1 91 (77,)PC3 P =
fon (106)

#m
k,n — E
Tcm* 2 E 1 —E,I?dx = 0.

’fﬂﬂn(ﬁg,nc )*+ Fonm

The expressions of aj , and T'’* cannot be directly pre-
sented, but the above functlons can be simply solved by
utilizing numerical solvers. In this case, the value ranges of
ay, ,, and 77 should be included. This proposition is proved.
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