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Abstract—In this paper, a federated learning (FL) based system
is investigated with non-independent and identically distributed
(non-IID) dataset, where multiple devices participate in the global
model aggregation through a limited number of sub-channels.
By analyzing weight divergence and convergence rate, a new
metric is proposed based on age-of-information (AoI), which in-
corporates latency and can provide an advanced device selection
standard. After that, device selection, sub-channel assignment
and resource allocation are jointly designed in an overall AoI
minimization problem under the maximum energy consumption
constraint. The formulated problem is decoupled into two sub-
problems. After analyzing the feasibility, the resource allocation
problem is transformed to a convex problem, and the closed-from
solution is obtained based on KKT conditions. By introducing
virtual sub-channels, device selection and sub-channel assignment
are jointly solved by a matching based algorithm. Simulation
results indicate that the proposed scheme is able to outperform
all baselines in terms of both test accuracy and sum AoI, and the
developed strategies can achieve significant improvements for all
schemes.

Index Terms—Age-of-information (AoI), device selection, fed-
erated learning (FL), resource allocation, sub-channel assignment

I. INTRODUCTION

With the rapid development of mobile applications, massive

amounts of data become available on edge devices [1]. In the

conventional edge computing/learning schemes, data should be

offloaded to a central server for processing, which consumes a

lot of wireless communication resources [2]. Moreover, some

data may contain privacy sensitive information and therefore

cannot be collected in the practical deployment [3]. In this

context, federated learning (FL), as a method of distributed

learning, was proposed by Google and considered as a promis-

ing technique [4]. In FL, a neural network is shared between

the server and all participating devices, where each device

trains the model based on local data and transmits updates (e.g.
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weights or gradients) to the server [5]. Due to the fact that the

raw data with larger size is not transmitted, FL can achieve

higher privacy and communication efficiency compared to the

conventional centralized learning (CL) [6]. However, since

the performance of FL relies on periodic transmissions, it

is necessary to design and optimize wireless communication

networks accordingly [7].

Latency, as one of the important factors in determining

the convergence time of FL [8], has been widely studied

in existing works [9]–[16]. By defining latency as the time

consumption of computation and communication, a latency

minimization problem was formulated in [9], where the global

optimal solution of resource allocation was obtained based

on the bisection method. The authors of [10] focused on

minimizing the time consumption of downlink and uplink

transmissions. In order to guarantee the convergence, a binary

convergence indicator was introduced to minimize the number

of required communication rounds [10]. In [11], FL was

considered in a cell-free massive multiple-input multiple-

output (MIMO) scenario, in which multiple access points

were introduced to play the role of relays. The formulated

training time minimization problem was solved by a successive

convex approximation based algorithm. In order to improve

the convergence rate of FL, [12] formulated a global loss

minimization problem under the maximum time consump-

tion constraint. This problem was decoupled into two sub-

problems, and the time consumption constraint was trans-

formed to a latency minimization problem. In [13], FL was

combined with edge computing for minimizing the latency,

where devices can partially offload datasets to the server and

train the global model based on the remaining data. In this

case, the latency can be further reduced due to the decrease

of local training time and the utilization of server idle time.

The authors of [14] included other techniques to improve the

efficiency of FL. Specifically, an intelligent reflecting surface

(IRS) based FL system was designed, where two different

transmission protocols, including frequency division multiple

access (FDMA) and nonorthogonal multiple access (NOMA),

were employed and compared. Some works combined latency

minimization with other objectives in order to investigate the

trade-off [15], [16]. Aiming to minimize the weighted sum of

latency and global loss, pruning rate design and bandwidth

allocation were jointly researched in [15]. With the help of

the bisection method, an algorithm was developed to find the

optimal solution. For studying the trade-off between latency

and energy consumption, FL was considered in a vehicular

network, where each device can offload part of the data to the
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server for performing edge learning [16].

Due to the fact that FL generally involves a large num-

ber of devices, device selection is commonly considered to

accommodate limited wireless resources or filter unimportant

data [17]–[23]. In [17], it was illustrated that the performance

of FL can be improved by selecting more devices in each

communication round, and then, a device selection problem

was formulated to maximize the number of selected devices in

an over-the-air computation (AirComp) based FL system. By

defining packet errors, the effect of wireless communication

was included in the derived convergence rate [18]. In this

work, device selection was achieved by solving a resource

block allocation problem, where a Hungarian algorithm was

employed to select devices based on the data size. A biased

device selection scheme was proposed in [19], in which the

server needs to estimate the local loss and select devices

with high local loss. The results showed that the proposed

device selection strategy can achieve significant improvements

compared to random selection. The contribution based device

selection was also studied in [20] and [21], where the con-

tribution was defined as the increase of test accuracy and

the decease of global loss, respectively. Specifically, on the

basis of the conventional random device selection scheme,

an additional phase was introduced to sort devices based on

their contributions [20]. In [21], the transmitted local model

updates were iteratively excluded to calculate the contribution,

which was used to generate the probability of device selection

in the next round. A reinforcement learning based algorithm

was employed in [22] to select devices for participating the

aggregation. It was indicated that the required communication

rounds can be significantly reduced by the proposed solution in

the case of non-independent and identically distributed (non-

IID) dataset. The authors of [23] focused on the long-term

optimization of FL, where device selection was investigated

under a long-term energy consumption constraint. By pointing

out that the later stage of learning is more sensitive to the

number of selected devices, an algorithm was developed to

achieve the long-term performance improvement.

Even though latency minimization and device selection have

been extensively researched in the aforementioned works, their

combination may pose new challenges. In particular, in order

to reduce the latency, some devices with high channel quality

may be consecutively selected in different communication

rounds, which usually reduces the performance of learning

and causes overfitting problems [24]–[26]. Moreover, with

non-IID dataset, selecting any device consecutively leads to

weight divergence towards a particular direction [27]. On

the other hand, existing device selection strategies depend

on either communication state or local data/model analysis.

The former leads to a loss of learning performance, while

the latter contradicts the motivation for utilizing FL, i.e., to

preserve data privacy. Therefore, a new metric is required to

balance latency and convergence performance while guiding

device selection without analyzing local data/models. In this

work, age-of-information (AoI) is introduced to explore the

trade-off between latency and convergence. Different from

the age-of-update (AoU) defined in [28] and [29], AoI in

this work is a real number related to the time consumption

of the previous communication rounds1. As a result, latency

minimization and device selection can be jointly investigated

in a formulated sum AoI minimization problem. Furthermore,

in each communication round, all devices’ AoI can be directly

calculated and stored at the server, and hence, the system

feedback overhead can be efficiently suppressed. The main

contributions of this paper are listed below.

• A FL based network with non-IID dataset is studied, in

which a subset of devices is selected to participate in the

aggregation in each communication round. It is proved that

in the non-IID case, any device selection strategy will pro-

duce an error, resulting in weight divergence and affecting

the convergence rate. By revealing the error estimate with

conventional random device selection, a novel AoI based

device selection scheme is designed.

• By defining AoI as the idle time of each device, an

overall AoI minimization problem is formulated under the

constraints of maximum energy consumption and device

selection. This problem is decoupled into two sub-problems,

including an AoI minimization based sub-channel assign-

ment problem and a latency minimization based resource

allocation problem.

• The resource allocation problem is first proved to be infea-

sible under an extreme condition. Afterwards, this problem

is transformed into a convex problem, and the closed-form

solution is derived with the help of KKT conditions and the

Lambert W function. For the problem of device selection

and sub-channel assignment, a matching-based algorithm is

developed, and the properties are analyzed.

• The considered FL network is simulated with MNIST and

CIFAR-10 datasets. Simulation results indicate that the

proposed scheme can achieve the best performance in terms

of both test accuracy and sum AoI. The proposed resource

allocation solution and sub-channel assignment algorithm

are able to dynamically improve the performance under

different parameter configurations.

II. SYSTEM MODEL

Consider a FL based network with one server, N devices,

and K sub-channels, where N ≥ K . The non-IID dataset is

employed, and all nodes are equipped with single-antennas.

The collections of all devices and sub-channels are N =
{1, 2, . . . , N} and K = {1, 2, . . . ,K}, respectively.

A. Training Model

In each communication round, the server broadcasts a global

model to all devices, and then each device trains the received

model based on local data and transmits local models to the

server. Due to the limited number of available sub-channels,

a subset of devices are selected in round t for aggregation,

1Note that in [29], AoU is considered as a weight factor for device
selection and included in a global loss minimization problem. In this work,
AoI minimization is investigated as an alternative to the conventional latency
minimization problem to develop a fair device selection strategy. Furthermore,
this paper provides a closed-form solution for latency minimization, which has
advantages in terms of complexity and optimality, compared to the monotonic
optimization based solution in [29].



3

denoted by St, where St ⊆ N . The local loss and global loss

can be respectively presented as follows:

fn(w
(t)) =

1

βn

βn
∑

i=1

ℓ(w(t);xn,i, yn,i), (1)

and

F (w(t),St) =
∑

n∈St

βn
∑

n∈St
βn

fn(w
(t))

=

∑

n∈St

∑βn

i=1 ℓ(w
(t);xn,i, yn,i)

∑

n∈St
βn

, (2)

where w
(t) is the global model in round t, βn is the number

of samples at device n, ℓ(·) is a loss function, and (xn,i, yn,i)
is the i-th sample of device n. The local model of device n
in round t can be expressed as follows:

w
(t)
n = w

(t) −
λ

βn

βn
∑

i=1

∇ℓ(w(t);xn,i, yn,i), (3)

where λ is the learning rate. The server can update the global

model based on federated averaging (FedAvg) [4] as follows:

w
(t+1) =

∑

n∈St
βnw

(t)
n

∑

n∈St
βn

= w
(t) − λ∇F (w(t),St). (4)

B. Performance Analysis

In order to analyze the performance of the considered FL

algorithm, the following assumptions are considered [30], [31]:

Assumption 1. With respect to w, the gradient ∇f(w(t)) of

f(w(t)) is uniformly Lipschitz continuous, which leads to

‖∇F (w(t−1),N )−∇F (w(t),N )‖ ≤ L‖w(t−1)−w
(t)‖, (5)

where L is the Lipschitz constant, and ‖·‖ is the norm operator.

Assumption 2. Global loss function F (w(t),N ) satisfies the

Polyak-Lojasiewicz inequality with positive parameter µ, i.e.,

‖∇F (w(t),N )‖2 ≥ 2µ
[

F (w(t),N )− F (w∗,N )
]

. (6)

Since the non-IID data distribution is considered, the weight

divergence is analyzed in this subsection, where CL is included

as the benchmark [27]. The update of global models in CL is

given by

w
(t+1)
cen = w

(t)
cen −

λ
∑

n∈Nβn

∑

n∈N

βn
∑

i=1

∇ℓ(w(t)
cen;xn,i, yn,i). (7)

Theorem 1. In any round t, the expected weight divergence

between the considered FL and CL is bounded as follows:

E

[

‖w(t+1)−w
(t+1)
cen ‖

]

≤(1+λL)tE
[

‖w(1)−w
(1)
cen‖

]

(8)

+λ

t
∑

i=1

(1+λL)t−i
E

[∥

∥

∥∇F (w(i),Si)−∇F (w(i),N )
∥

∥

∥

]

.

Proof: Refer to Appendix A.

It is indicated by Theorem 1 that the divergence of global

models is due to two terms. The first term ‖w(1) − w
(1)
cen‖

is the weight divergence of the initial global model, which

is amplified by (1 + λL)t. The second term can be treated

as the divergence of gradients in round i, which is caused

by device selection, resulting in different data sizes and data

distributions. Moreover, the effect caused by the second term

is cumulative with the number of communication rounds, since

it is amplified by (1 + λL)t−i. That is, the impact on weight

dievergence at the early stage of training is more significant.

According to [32], by defining

e
(t) , ∇F (w(t),St)−∇F (w(t),N ), (9)

its effect on convergence rate can be presented.

Theorem 2. In the considered FL scenario, with an arbitrary

set of devices St ⊆ N , the expected reduction of global loss

in round t is bounded by

E

[

F (w(t+1),N )−F (w∗)
]

≤
(

1−
µ

L

)t

E

[

F (w(1),N )−F (w∗)
]

+
1

2L

t
∑

i=1

(

1−
µ

L

)t−i

E

[

‖e(i)‖2
]

, (10)

where the learning rate satisfies λ = 1
L

.

Proof: Refer to Appendix B.

It is indicated by Theorem 2 that the convergence rate of the

considered FL is partially determined by E
[

‖e(t)‖2
]

. There-

fore, in order to increase the convergence rate, E
[

‖e(t)‖2
]

should be reduced2. Note that E
[

‖e(t)‖2
]

is caused by de-

vice selection, which can be considered as one-stage cluster

sampling without unequal sizes [33]. With random device

selection, the following theorem can be obtained.

Theorem 3. By utilizing the random device selection scheme,

the convergence rate of the considered FL framework is

decided by

E

[

‖e(t)‖2
]

=

(

1−
K

N

)
∑

n∈Nβ2
n

∥

∥∇fn(w
(t))−∇F (w(t),N )

∥

∥

2

K(N−1)( 1
N

∑

n∈N βn)2
.

(11)

Proof: Refer to Appendix C.

It is indicated that the expression in Theorem 3 is based on

the averaged gradients of all devices, i.e., ∇F (w(t),N ), which

cannot be obtained due to the limitation of available sub-

channels. As mentioned in [33], by replacing ∇F (w(t),N )
with ∇F (w(t),St), the approximate ratio estimator can be

obtained as follows.

Corollary 1. By utilizing the random device selection scheme,

the approximate effect on the convergence rate is given by

E

[

‖e(t)‖2
]

=

(

1−
K

N

)

∑

n∈St
β2
n

∥

∥∇fn(w
(t))−∇F (w(t),St)

∥

∥

2

K(K−1)( 1
N

∑

n∈N βn)2
.

(12)

The above theorems and corollary indicate that the conver-

gence rate of the proposed FL algorithm can be improved if

2It is worth pointing out that due to the fact that µ ≤ L, (1− µ

L
) ∈ [0, 1),

and hence, the effect of E
[

‖e(t)‖2
]

diminishes with training. In other words,

the impact of error E
[

‖e(t)‖2
]

on convergence rate is more significant at the
later stage of training.
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1) the number of selected devices K is increased;

2) the deviation from the mean of the selected device, i.e.,
∥

∥∇fn(w
(t))−∇F (w(t),N )

∥

∥, is decreased.

C. Signal Model

At the local training stage, the computational time consump-

tion is given by

T cp
k,n =

µβn

τk,nCn

, (13)

where µ is the required central processing unit (CPU) cycles

to train one sample, τk,n ∈ [0, 1] is the computational resource

allocation coefficient of device n assigned to sub-channel k,

and Cn is the available CPU cycles at device n. Accordingly,

the computational energy consumption can be presented as

follows:

Ecp
k,n = κµβn(τk,nCn)

2, (14)

where κ is the power consumption coefficient of each CPU

cycle. At the communication stage, the local models are

transmitted to the server for aggregation. With the assigned

sub-channel k, the achievable data rate of device n is

Rk,n = B log2(1 + αk,nPn|hk,n|
2), (15)

where B is the bandwidth of each sub-channel, αk,n ∈ [0, 1] is

the power allocation coefficient, Pn is the maximum transmit

power of device n, and |hk,n|2 is the normalized channel gain

of device n assigned to sub-channel k. Specifically, |hk,n|2 =
|ĥk,n|2σ−2, where |ĥk,n|2 = |gn|2ηd−α

n is the channel gain,

σ2 is the variance of noise, gn ∼ CN (0, 1) is the small-scale

fading coefficient, η is the frequency dependent factor, dn is

the distance between device n and the server, and α is the

path loss exponent. The time consumption for communication

can be expressed as follows:

T cm
k,n =

D

Rk,n

, (16)

where D is the data size of local models. It is assumed that

the data size of local models is the same for all devices.

Based on the communication time, the energy consumption

for communication is given by

Ecm
k,n = αk,nPnT

cm
k,n. (17)

For any device n assigned to sub-channel k, the time con-

sumption in any round is

Tk,n = T cp
k,n + T cm

k,n, (18)

and the time consumption of this communication round is

determined by the most time-consuming device, as shown in

follows:

T (t) = max
n∈N

{

∑

k∈K

ψ
(t)
k,nTk,n

}

, (19)

where ψ
(t)
k,n ∈ {0, 1} is the sub-channel assignment indicator.

Specifically, ψ
(t)
k,n = 1 indicates that device n is assigned to

sub-channel k in round t, and ψ
(t)
k,n = 0 otherwise. In this

communication round, the total energy consumption of any

device n assigned to sub-channel k is

Ek,n = Ecp
k,n + Ecm

k,n. (20)

III. PROBLEM FORMULATION

In this section, the concept of AoI [34], [35] is introduced

and an AoI minimization problem is considered. For any

device n in round t, the AoI can be presented as follows:

A(t)
n =

{

A
(t−1)
n + T (t), if

∑K

k=1 ψ
(t)
k,n = 0,

0, if
∑K

k=1 ψ
(t)
k,n = 1.

(21)

The above equation can be rewritten as follows:

A(t)
n =

(

1−
K
∑

k=1

ψ
(t)
k,n

)

(

A(t−1)
n + T (t)

)

. (22)

Moreover, the AoI of all devices in the initial state is set to

zero, i.e., A
(0)
n = 0, ∀n ∈ N . The overall AoI minimization

problem can be formulated as follows:

min
ψ,τ ,α

N
∑

n=1

A(t)
n (23)

s.t. Ek,n ≤ Emax
n , ∀k ∈ K, ∀n ∈ N , (23a)

τk,n ∈ [0, 1], ∀k ∈ K, ∀n ∈ N , (23b)

αk,n ∈ [0, 1], ∀k ∈ K, ∀n ∈ N , (23c)

ψ
(t)
k,n ∈ {0, 1}, ∀k ∈ K, ∀n ∈ N , (23d)
∑

n∈N
ψ
(t)
k,n = 1, ∀k ∈ K, (23e)

∑

k∈K
ψ
(t)
k,n ∈ {0, 1}, ∀n ∈ N , (23f)

where ψ, τ and α are the collections of sub-channel assign-

ment indicators, computational resource allocation coefficients

and power allocation coefficients, respectively. In constraint

(23a), the maximum energy consumption Emax
n is included in

each communication round. The value ranges of τk,n, αk,n

and ψ
(t)
k,n are presented in constraints (23c)-(23d). Constraints

(23e) and (23f) respectively show that any sub-channel can

be occupied by one device and any device can be assigned

to at most one sub-channel. As indicated by constraint (23f)

that only part of devices are assigned to sub-channels, device

selection is integrated in the sub-channel assignment problem.

Compared to the conventional latency minimization problem,

the inclusion of AoI can efficiently reduce the idle time of

devices and thus increases the fairness of device selection. As

a result, higher accuracy of FL can be achieved.

Due to the presence of integer variables, the formulated AoI

minimization problem is difficult to transform into a convex

problem. Therefore, this problem is decoupled into two sub-

problems, including the sub-channel assignment problem and

the resource allocation problem. The sub-channel assignment

problem is presented as follows:

min
ψ

N
∑

n=1

A(t)
n (24)

s.t. (23d), (23e), (23f).

It is worth pointing out that the above problem also includes

device selection. Specifically, if any device is assigned to a

sub-channel, it is selected in this communication round. In

the resource allocation problem, the sub-channel assignment

indicator ψ is fixed. By removing the constant part, the
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AoI minimization problem can be transformed to a latency

minimization problem as

min
τ ,α

max{Tk,n|∀n ∈ St} (25)

s.t. (23a), (23b), (23c).

IV. KKT CONDITIONS BASED RESOURCE ALLOCATION

In resource allocation problem (25), the selected devices

and the corresponding sub-channels are given. Moreover, the

resource allocation coefficients of any device, i.e., τk,n and

αk,n, are independent of other devices. Therefore, problem

(25) can be further divided into K sub-problems, where the

resource allocation problem of device n assigned to sub-

channel k is given by

min
τk,n,αk,n

µβn

τk,nCn

+
D

B log2(1 + αk,nPn|hk,n|2)
(26)

s.t. κµβn(τk,nCn)
2+

αk,nPnD

B log2(1+αk,nPn|hk,n|2)
≤Emax

n ,

(26a)

0 ≤ τk,n ≤ 1, (26b)

0 ≤ αk,n ≤ 1. (26c)

Note that the above problem is infeasible in the extreme case,

as shown in the following.

Proposition 1. The resource allocation problem in (26) is

infeasible if the following condition is satisfied:

ln(2)D ≥ Emax
n B|hk,n|

2. (27)

Proof: Refer to Appendix D.

Moreover, problem (26) is non-convex due to the objective

function and constraint (26a). In this case, T cm
k,n is introduced

to transform the problem. From (15) and (16), the following

equation can be obtained:

αk,n =
2

D
BTcm

k,n − 1

Pn|hk,n|2
, (28)

and constraint (26c) becomes






1− 2
D

BTcm

k,n ≤ 0,

2
D

BTcm

k,n − 1− Pn|hk,n|2 ≤ 0.

(29)

At this stage, problem (26) can be transformed as follows:

min
τk,n,T

cm

k,n

µβn

τk,nCn

+ T cm
k,n (30)

s.t. κµβn(τk,nCn)
2+T cm

k,n

2
D

BTcm

k,n −1

|hk,n|2
≤ Emax

n , (30a)

(26b), (29).

Note that the above problem is equivalent to problem (26).

Therefore, the optimality of the resource allocation problem

is not affected by this transformation. Problem (30) is convex

and satisfies Slater’s condition, which means KKT conditions

can be adopted to obtain the optimal solution. The Lagrangian

function of problem (30) is given by

L=
µβn

τk,nCn

+T cm
k,n+λ1



κµβn(τk,nCn)
2+T cm

k,n

2
D

BTcm

k,n−1

|hk,n|2
−Emax

n





+ λ2(−τk,n) + λ3(τk,n − 1) + λ4(1− 2
D

BTcm

k,n )

+ λ5(2
D

BTcm

k,n − 1− Pn|hk,n|
2), (31)

where λi, ∀i ∈ {1, 2, 3, 4, 5} is the Lagrangian multiplier

for the corresponding constraint. The partial derivatives of

function (31) with respect to τk,n and T cm
k,n are

∂L

∂τk,n
= −

µβn

(τk,n)2Cn

+ 2λ1κµβnτk,nC
2
n − λ2 + λ3, (32)

and

∂L

∂T cm
k,n

= λ1





2
D

BTcm∗

k,n − 1

|hk,n|2
−

ln(2)D2
D

BTcm∗

k,n

B|hk,n|2T cm∗
k,n



 (33)

+
ln(2)λ4D2

D
BTcm∗

k,n

B(T cm∗
k,n )2

−
ln(2)λ5D2

D
BTcm∗

k,n

B(T cm∗
k,n )2

+ 1,

respectively. The optimal solutions τ∗k,n and T cm∗
k,n should

satisfy the following equations:

−
µβn

(τ∗k,n)
2Cn

+ 2λ1κµβnτ
∗
k,nC

2
n − λ2 + λ3=0, (34)

and

λ1B(T cm∗
k,n )2(2

D
BTcm∗

k,n −1)−ln(2)λ1DT cm∗
k,n 2

D
BTcm∗

k,n (35)

+ln(2)(λ4−λ5)|hk,n|
2D2

D
BTcm∗

k,n +|hk,n|
2B(T cm∗

k,n )2=0.

Moreover, the following conditions can be obtained:






















































































κµβn(τk,nCn)
2+T cm∗

k,n

2
D

BTcm∗

k,n −1

|hk,n|2
−Emax

n ≤0,

−τ∗k,n≤0, τ∗k,n−1≤0,

1−2
D

BTcm∗

k,n ≤0, 2
D

BTcm∗

k,n −Pn|hk,n|
2−1≤0,

λ1



κµβn(τ
∗
k,nCn)

2+T cm∗
k,n

2
D

BTcm∗

k,n −1

|hk,n|2
−Emax

n



=0,

λ2τ
∗
k,n=0, λ3(τ

∗
k,n−1)=0,

λ4[1−2
D

BTcm∗

k,n ]=0, λ5[2
D

BTcm∗

k,n −Pn|hk,n|
2−1]=0,

λi≥0, ∀i ∈ {1, 2, 3, 4, 5}.

(36a)

(36b)

(36c)

(36d)

(36e)

(36f)

(36g)

By analyzing the KKT conditions, the optimal solution of

problem (30) can be presented as follows:

Proposition 2. By defining the following variables:


































A1 , 2κ

[

Emax
n

κµβn

−
PnD

κµβnB log2(1+Pn|hk,n|2)

]
3

2

,

A2 , |hk,n|2(Emax
n − κµβnC

2
n),

A0 , −
A2 ln(2

D
B )

A2W−1(−ln(2
D

A2B )/2
D

A2B )+ln(2
D
B )

,

(37)

four solutions can be presented below.

1) If the following condition is satisfied

κµβnC
2
n+

PnD

B log2(1 + Pn|hk,n|2)
≤Emax

n , (38)
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the optimal solution is







τ∗k,n = 1,

T cm∗
k,n =

D

B log2(1 + Pn|hk,n|2)
.

(39)

2) In the case that

0 < Emax
n −

PnD

B log2(1+Pn|hk,n|2)
≤ κµβnC

2
n, (40)

and

A1|hk,n|
2+Pn|hk,n|

2 > (1+Pn|hk,n|
2) ln(1+Pn|hk,n|

2), (41)

the optimal solution is


















τ∗k,n =
1

Cn

[

Emax
n

κµβn

−
PnD

κµβnB log2(1 + Pn|hk,n|2)

]
1

2

,

T cm∗
k,n =

D

B log2(1 + Pn|hk,n|2)
.

(42)

3) If the following inequalities hold:

A0 ≥
D

B log2(1 + Pn|hk,n|2)
, (43)

and

ln(2)D2
D

A0B −A2B > 2κC3
nA0B|hk,n|

2, (44)

the optimal solution is

{

τ∗k,n = 1,

T cm∗
k,n = A0.

(45)

4) Otherwise, the optimal solution can be obtained by solving

the following equations:











2
D

BTcm∗

k,n −1− ln(2)D
BT cm∗

k,n

2
D

BTcm∗

k,n +2κ(τ∗k,n)
3C3

n|hk,n|2=0,

κµβn(τ
∗
k,nCn)

2+T cm∗
k,n

2

D
BTcm∗

k,n −1
|hk,n|2

−Emax
n = 0.

(46)

where τ∗k,n ∈ (0, 1] and T cm∗
k,n ∈ (0, D

B log
2
(1+Pn|hk,n|2)

].

Proof: Refer to Appendix E.

Based on T cm∗
k,n , the optimal power allocation coefficient

α∗
k,n can be calculated from (28), and the decoupled resource

allocation problem in (25) is solved.

V. MATCHING BASED DEVICE SELECTION AND

SUB-CHANNEL ASSIGNMENT

Since the number of devices may exceed the number of sub-

channels, a matching based algorithm is developed to jointly

solve the device selection and sub-channel assignment prob-

lem. In this case, a device is selected if it is assigned to a valid

sub-channel, which yields a feasible solution to the resource

allocation problem. To this end, N−K virtual sub-channels

are introduced in this section, where the channel gains of

all devices in virtual sub-channels are zero. As a result, the

collection of all sub-channels, including physical and virtual

sub-channels, can be denoted by M = {1, 2, . . . ,K,K +
1, . . . , N}.

A. Design of Matching-based Algorithm

By introducing virtual sub-channels, N and M become two

disjoint sets with the same size, and therefore, a one-to-one

matching can be constructed, as shown in follows:

Definition 1. Given two disjoint sets N and M, a one-to-one

matching Φ is a mapping from N to M, such that

1) Φ(n) ∈ M, ∀n ∈ N , Φ(k) ∈ N , ∀k ∈ M;

2) |Φ(n)| = 1, ∀n ∈ N , |Φ(k)| = 1, ∀k ∈ M;

3) n = Φ(k) ⇒ Φ(n) = k.

In the above definition, the details of the considered match-

ing is described. Condition 1) indicates that any player in one

set is matched with one player in the other set. Condition 2)

indicates that any player is only matched with one player.

Condition 3) indicates that the matching of device n and

sub-channel k can be inferred from each other. The above

definition implies that the considered matching is also a swap

matching. That is, if any device intends to be matched to a

sub-channel, it should exchange with the device occupying this

sub-channel. The swap matching is defined as follows:

Definition 2. From any matching Φ, a swap matching Φn
n′ is

obtained by

Φn
n′ = {Φ\{(k, n), (k′, n′)}} ∪ {(k′, n), (k, n′)}, (47)

where Φ(k) = n, Φ(k′) = n′, Φn
n′(k) = n′, Φn

n′(k′) = n.

Based on the objective function of problem (24), the utility

of any device n in matching Φ can be presented as follows:

Un(Φ) =

(

1−
∑

k∈K

ψ
(t)
k,n

)(

A(t−1)
n +max

n∈N

{

∑

k∈K

ψ
(t)
k,nTk,n

})

.

(48)

It is indicated by the above equation that the utility of any

device n is zero if this device is assigned to a physical sub-

channel. On the other hand, if a device is assigned to a

virtual sub-channel, it is not selected in this communication

round, and hence, its utility is entirely determined by other

devices. Due to the fact that each sub-channel is occupied by

one device, the utility of any sub-channel is decided by the

occupied device, i.e., Uk(Φ) = UΦ(k)(Φ), ∀k ∈ M. In this

section, unselfish players are considered because the exchange

operations between devices will be strictly restricted with the

conventional selfish players. Specifically, any device assigned

to a physical sub-channel cannot be swapped with a device

assigned to a virtual sub-channel, as its utility will be increased

from zero to a positive value. As a result, a preference list can

be constructed. For any player i ∈ N ∪M, it prefers matching

Φn′

n over matching Φ if

Φ ≺i Φ
n
n′ ⇔ Un(Φ) +Un′(Φ) > Un(Φ

n
n′) + Un′(Φn

n′). (49)

The transformation of matching from Ψ to Φn′

n should be

approved by all involved players, including the exchanged

devices and the occupied sub-channels. Due to the fact that

the utility of any sub-channel is equal to the utility of the

occupied device, the approval of sub-channels can be omitted.

Furthermore, the server tends to select more devices in each

communication round, thus, it will avoid assigning any device
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Algorithm 1 Matching based Algorithm

1: Initialization:

2: Randomly match all devices and sub-channels.

3: Main Loop:

4: for n ∈ N do

5: Device n searches device n′ ∈ N , where n 6= n′.

6: if Φ ≺i Φ
n
n′ , ∀i ∈ N then

7: Matching Φn
n′ is approved.

8: Devices n and n′ exchange sub-channels.

9: Set Φ = Φn
n′ .

10: end if

11: end for

to a physical sub-channel where it is not feasible, as defined in

Proposition 1. If all involved players agree on swap matching

Φn′

n , then (n, n′) becomes a swap-blocking pair. The definition

is presented below.

Definition 3. A swap-blocking pair (n, n′) holds if and only

if the following conditions can be satisfied:

1) Un(Φ) + Un′(Φ) > Un(Φ
n
n′) + Un′(Φn

n′);
2) ln(2)D < Emax

j B|hi,j |2, ∀j ∈ {n, n′}, if i=Φn
n′(j) ∈ K.

Based on the definition of swap-blocking pairs, the matching

based device selection and sub-channel assignment algorithm

can be proposed in Algorithm 1. During the proposed al-

gorithm, devices are sequentially selected to search for other

devices with the same sequence, where the optimal resource

allocation in Proposition 2 is adopted. If a swap-blocking pair

(n, n′) is obtained, the current matching is transformed to

Φn
n′ . If no swap-blocking pair can be constructed within a

complete cycle of the main loop, the algorithm ends and the

final matching becomes the solution of problem (24).

B. Properties Analysis

This section focuses on analyzing the properties of the

proposed algorithm, including complexity, convergence, and

stability.

1) Complexity: The complexity of the proposed algorithm

can be presented as follows:

Proposition 3. Given a number of main loops C, the computa-

tional complexity of the matching based algorithm is O(CN2).
Proof: In the worst case, each device needs to search all

other devices, and then N(N − 1) times of calculations are

implemented in one loop. With the given number of main loops

C, the complexity of the proposed algorithm approximates to

O(CN2).

2) Convergence: The convergence of the proposed algo-

rithm can be presented as follows.

Proposition 4. From any initial matching, the matching based

algorithm can always converge to a stable matching.

Proof: In the proposed algorithm, the matching can be

transformed only if a swap-blocking pair is found. Based on

the definition of swap-blocking pairs, the sum utility of all

involved players should be strictly reduced, while the utilities

of uninvolved players remain the same or decrease. Therefore,

the sum utility of all devices is strictly decreasing with

matching transformations. With the finite devices and sub-

channels, the potential matchings are also finite, and hence,

a final matching is always obtained.

3) Stability: The stability of the proposed algorithm can be

analyzed according to the following definition:

Definition 4. A matching is two-sided exchange-stable if and

only if there is no swap-blocking pair.

The stability of the proposed algorithm is shown below.

Proposition 5. The resulting final matching from Algorithm 1

is always two-sided exchange-stable.

Proof: Assuming that the final matching obtained by

Algorithm 1 is not two-sided exchange-stable, there exists at

least one swap-blocking pair, which can further reduce the sum

utility. This case contradicts the convergence proposition and

therefore cannot hold. This proposition can thus be proved.

VI. SIMULATION RESULTS

In the simulation, N devices are randomly distributed within

a radius centered at the server. During the learning process, the

positions of all devices remain the same, while the small-scale

fading varies from round to round. In order to mitigate the

effect of device location on learning results, in Fig. 1 to Fig.

3, all schemes adopt the same set of generated locations. By

selecting K devices randomly without replacement, random

device selection (R-DS) is included as the benchmark for

matching based device selection (M-DS). In terms of sub-

channel assignment, the matching based sub-channel assign-

ment (M-SA) approach in [29] is incorporated to assign the

selected devices into available sub-channels, and its initial

state is regarded as random sub-channel allocation (R-SA).

Moreover, fixed resource allocation (FIX-RA) is also consid-

ered as the baseline for KKT based resource allocation (KKT-

RA), in which all devices’ computational resource allocation

coefficients and power allocation coefficients are set to 0.5.

This simulation is based on unbalanced non-IID MNIST and

CIFAR-10 datasets. That is, the devices have different data

sizes and samples from each device have the limited number

of labels. In particular, each device has one label in MNIST

dataset and five labels in CIFAR-10 dataset. For MNIST

dataset, the neural network is built with two ReLu hidden

layers (128 and 256 neurons) and a Softmax output layer. For

CIFAR-10 dataset, a multi-layer convolutional neural network

(CNN) is constructed by stacking six 3 × 3 Conv2D layers,

a ReLu layer and a Softmax output layer. Specifically, the

Conve2D layers contain two 32-filter Conv2D layers, two 64-

filter Conv2D layers, and two 128-filter Conv2D layers, where

ever two layers followed by a 2 × 2 max pooling layer and

a 0.25 dropout layer. The ReLu layer includes 128 neurons,

followed by a 0.5 dropout layer. Furthermore, the simulations

on MNIST and CIFAR-10 datasets utilize full-batch and mini-

batch, respectively, where the epoch is 1, and the batch size

for mini-batch is 128. The main parameters of the simulation

are shown in Table I.

Fig. 1 presents the performance of FL under different

schemes and the corresponding sum AoI. In order to show
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TABLE I: Table of Parameters

Number of Devices N = 20
Radius of the disc 500 m

Carrier frequency f = 1 GHz

AWGN noise power σ2 = −174 dBm

Path loss exponent a = 3.76
Bandwidth for each sub-channel B = 1 MHz

Power consumption coefficient κ0 = 10−28

CPU cycles for each bit of tasks µ = 107

Model size D = 1 Mbit

Learning rate (MNIST/CIFAR-10) λ = 0.01/0.001
Optimizer (MNIST/CIFAR-10) SGD/Adam
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Fig. 1: The performance of FL on MNIST dataset. K = 5,

Pt = 15 dBm, Cn = 0.5 GHz, and Emax
n = 0.1 Joule.

a stable result, each curve is an average of 10 simulations. It

is indicated by Fig. 1(a) that the proposed solution, i.e., M-DS

and M-SA with KKT-RA, can achieve the best performance,

including the fastest convergence rate and the highest test

accuracy. By comparing with i) M-DS and M-SA with FIX-RA

and ii) R-DS and M-SA with KKT-RA, it shows that in terms

of the test accuracy, the impact of utilizing AoI minimization

based device selection is significant, while the effect of optimal

resource allocation is not obvious. Moreover, by employing

M-SA and KKT-RA, the number of selected devices in each

round can be increased, and therefore, the performance of R-

DS can be improved. Fig. 1(b) shows that the proposed scheme

is able to significantly reduce the overall AoI. Furthermore, M-

SA and KKT-RA can be utilized independently or jointly to
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Fig. 2: The impact of the number of available sub-channels.

Pt = 15 dBm, Cn = 0.5 GHz, and Emax
n = 0.1 Joule.

reduce the sum AoI.

The impact of the number of sub-channels is shown in

Fig. 2. It is demonstrated by Fig. 2(a) that the convergence

rate of the considered FL can be improved by increasing

the number of available sub-channels, which confirms the

conclusion in Theorem 3 and Corollary 1. Fig. 2(b) shows that

the overall AoI can be reduced when more devices are selected

in each communication round, and the proposed scheme is able

to outperform the corresponding benchmark with any available

sub-channels.

The proposed scheme is simulated with CIFAR-10 dataset,

as shown in Fig. 3. In this simulation, the maximum test

accuracy is plotted to avoid overcrowding. Due to the fact

that the data size of each device with CIFAR-10 dataset is

greater than that with MNIST dataset, KKT based resource

allocation plays a more important role in Fig. 3. It can be found

from Fig. 3(a) that the highest test accuracy of the schemes

with fixed resource allocation is 41% while the lowest test

accuracy of schemes with KKT based resource allocation is

70%. The reason is shown in Fig. 3(b). That is, with the fixed

resource allocation, some devices cannot successfully transmit

signals to the server, and hence, their AoI is monotonically

increasing. Moreover, the proposed scheme can still achieve

the best performance, where the test accuracy can be 73% and
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Fig. 3: The performance of FL on CIFAR-10 dataset. K = 5,

Pt = 15 dBm, Cn = 0.5 GHz, and Emax
n = 0.2 Joule.
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Fig. 4: The number of selected devices versus the maximum

energy. K = 5, Pt = 15 dBm, and Cn = 0.5 GHz.

the overall AoI is around 7000 seconds.

The relationship between the maximum energy consumption

and the number of selected devices is presented in Fig. 4.

Basically, for all schemes, the number of selected devices can

be increased with the increasing maximum energy consump-

tion. Moreover, this figure explains why the proposed scheme

can achieve the highest test accuracy. That is, by utilizing
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Fig. 5: The impact of the maximum transmit power. K = 5,

Cn = 0.5 GHz, and Emax
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Fig. 6: The impact of the computational capacity. K = 5,

Pt = 15 dBm, and Emax
n = 0.1 Joule.

the KKT based resource allocation and matching based device

selection and sub-channel assignment, the number of feasible

devices is increased. As a result, the server can select devices

from a larger subset in order to increase the convergence rate.

Furthermore, this figure confirms the conclusion in Proposition

1 that Emax
n can effect the feasibility of the resource allocation

problem.

The impact of the maximum transmit power and computa-

tional capacity is shown in Fig. 5 and Fig. 6, respectively. With

increasing transmit power or computational capacity, the time

consumption for transmission or computation would decrease,

and hence, the overall AoI would drop due to the reduction in

latency. It is worth emphasizing that the proposed scheme can

also achieve the minimal latency compared to R-DS, and the

developed KKT-RA has the ability to reduce latency. Mean-

while, the energy consumption is monotonically raising with

the transmit power and computational capacity. In terms of the

proposed scheme, it is able to achieve the minimum sum AoI,

because the KKT based resource allocation solution and the

matching based device selection and sub-channel assignment
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algorithm can efficiently utilize the given energy and sub-

channels, respectively. Furthermore, it is also indicated that

the maximum transmit power and computational capacity will

not affect the number of selected devices.

VII. CONCLUSIONS

This paper investigated FL with non-IID dataset over wire-

less networks. Due to the limited number of available sub-

channels, a subset of devices is selected to participate in ag-

gregation in each communication round. Based on the analysis

of weight divergence and convergence rate, the disadvantage

of existing device selection strategies is revealed, and then

an overall AoI minimization problem is designed to establish

a new metric. It is indicated that the AoI minimization

based device selection is able to reduce the latency and

improve convergence performance without analyzing the local

data/models. According to the KKT conditions and matching

theory, the formulated AoI minimization problem is solved.

Simulation results show that the AoI minimization based

device selection scheme can improve the performance of FL

with MNIST and CIFAR-10 datasets, and the proposed solu-

tion can efficiently utilize the given energy and sub-channels.

An important direction for future research is to explore this

model in multi-antenna scenarios and perform corresponding

beamforming designs.

APPENDIX A: PROOF OF THEOREM 1

The expected weight divergence between FL and CL can

be expressed as follows:

E

[

‖w(t+1) −w
(t+1)
cen ‖

]

=E

[∥

∥

∥w
(t)−λ∇F (w(t),St)−w

(t)
cen+λ∇F (w(t)

cen,N )
∥

∥

∥

]

(50)

≤E

[

‖w(t)−w
(t)
cen‖

]

+λE
[∥

∥

∥∇F (w(t),St)−∇F (w(t)
cen,N )

∥

∥

∥

]

.

By adding and subtracting ∇F (w(t),N ), it becomes

E

[

‖w(t+1) −w
(t+1)
cen ‖

]

=E

[

‖w(t)−w
(t)
cen‖

]

+λE
[∥

∥

∥
∇F (w(t),St)−∇F (w(t),N )

+∇F (w(t),N )−∇F (w(t)
cen,N )

∥

∥

∥

]

≤E

[

‖w(t)−w
(t)
cen‖

]

+λE
[∥

∥

∥∇F (w(t),St)−∇F (w(t),N )
∥

∥

∥

]

+λE
[∥

∥

∥
∇F (w(t),N )−∇F (w(t)

cen,N )
∥

∥

∥

]

. (51)

Based on Assumption 1, the weight divergence can be trans-

formed as follows:

E

[

‖w(t+1)−w
(t+1)
cen ‖

]

≤(1+λL)E
[

‖w(t)−w
(t)
cen‖

]

(52)

+λE
[∥

∥

∥∇F (w(t),St)−∇F (w(t),N )
∥

∥

∥

]

.

Similarly, the weight divergence in round t is given by

E

[

‖w(t)−w
(t)
cen‖

]

≤(1+λL)E
[

‖w(t−1)−w
(t−1)
cen ‖

]

(53)

+λE
[∥

∥

∥∇F (w(t−1),St−1)−∇F (w(t−1),N )
∥

∥

∥

]

.

As a result, the following inequality can be obtained:

E

[

‖w(t+1)−w
(t+1)
cen ‖

]

≤(1+λL)tE
[

‖w(1)−w
(1)
cen‖

]

(54)

+λ
t

∑

i=1

(1+λL)t−i
E

[∥

∥

∥
∇F (w(i),Si)−∇F (w(i),N )

∥

∥

∥

]

,

and the proof is completed.

APPENDIX B: PROOF OF THEOREM 2

According to [36], the following inequality can be derived

with Assumption 1:

1

2L

∥

∥

∥∇F (w(t),N )−∇F (w(t+1),N )
∥

∥

∥

2

≤F (w(t+1),N )−F (w(t),N )+[∇F (w(t),N )⊤(w(t)−w
(t+1))]

≤
L

2
‖w(t)−w

(t+1)‖2. (55)

From (4) and (9), the following equation can be obtained:

w
(t)−w

(t+1)=λ∇F (w(t),St)=λ
[

∇F (w(t),N )+e
(t)
]

,(56)

and then (55) can be transformed as follows:

F (w(t+1),N )

≤F (w(t),N )− λ∇F (w(t),N )⊤
[

∇F (w(t),N ) + e
(t)
]

+
λ2L

2

∥

∥

∥∇F (w(t),N ) + e
(t)
∥

∥

∥

2

(57)

=F (w(t),N )−λ‖∇F (w(t),N )‖2−λ∇F (w(t),N )⊤e(t)

+
λ2L

2

[

‖∇F (w(t),N )‖2+‖e(t)‖2+2∇F (w(t),N )⊤e(t)
]

.

With the given learning rate λ = 1
L

, the above inequality can

be rewritten as follows:

F (w(t+1),N )≤F (w(t),N )−
1

2L
‖∇F (w(t),N )‖2+

1

2L
‖e(t)‖2.

(58)

By subtracting F (w∗) and taking expectation on both sides,

the following inequality can be obtained:

E

[

F (w(t+1),N )−F (w∗)
]

≤E

[

F (w(t),N )−F (w∗)
]

(59)

−
1

2L
E

[

‖∇F (w(t),N )‖2
]

+
1

2L
E

[

‖e(t)‖2
]

.

Based on Assumption 2, the above inequality becomes

E

[

F (w(t+1),N )−F (w∗)
]

(60)

≤
(

1−
µ

L

)

E

[

F (w(t),N )−F (w∗)
]

+
1

2L
E

[

‖e(t)‖2
]

.

The upper bound of the convergence rate is given by

E

[

F (w(t+1),N )−F (w∗)
]

≤
(

1−
µ

L

)2

E

[

F (w(t−1),N )−F (w∗)
]

+
(

1−
µ

L

) 1

2L
E

[

‖e(t−1)‖2
]

+
1

2L
E

[

‖e(t)‖2
]

≤
(

1−
µ

L

)t

E

[

F (w(1),N )−F (w∗)
]

+
1

2L

t
∑

i=1

(

1−
µ

L

)t−i

E

[

‖e(i)‖2
]

, (61)

and the proof is completed.
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APPENDIX C: PROOF OF THEOREM 3

To prove this theorem, a binary variable x
(t)
n is defined,

where x
(t)
n = 1 indicates device n is selected in round t,

i.e., n ∈ St; x
(t)
n = 0 otherwise. In any communication

round t with the given set of selected devices St, the averaged

gradients ∇F (w(t),St) can be rewritten as follows:

∇F (w(t),St) =

∑

n∈St
βn∇fn(w

(t))
∑

n∈St
βn

=
1
K

∑

n∈N x
(t)
n βn∇fn(w

(t))

1
K

∑

n∈N x
(t)
n βn

,
ȳSt

x̄St

. (62)

The above equation can be considered as a ratio estimation,

where ȳSt
is positively correlated with x̄St

. The probability

of selecting device n is obtained from
(

N
K

)

, as follows:

E[x(t)
n ] = P (x(t)

n = 1) =
K

N
. (63)

Similarly, ∇F (w(t),N ) can be rewritten as follows:

∇F (w(t),N ) =
1
N

∑

n∈N βn∇fn(w
(t))

1
N

∑

n∈N βn

,
ȳN
x̄N

. (64)

Hence, the following equation can be obtained:

∥

∥

∥∇F (w(t),St)−∇F (w(t),N )
∥

∥

∥

=

∥

∥

∥

∥

ȳSt

x̄St

−
ȳN
x̄N

∥

∥

∥

∥

=
1

x̄St

∥

∥

∥

∥

ȳSt
− x̄St

ȳN
x̄N

∥

∥

∥

∥

. (65)

As a result, E
[

‖e(t)‖2
]

can be expressed as follows:

E

[

‖e(t)‖2
]

= E

[

∥

∥

∥∇F (w(t),St)−∇F (w(t),N )
∥

∥

∥

2
]

=
1

( 1
N

∑

n∈Nβn)2
E

[

∥

∥

∥

∥

ȳSt
− x̄St

ȳN
x̄N

∥

∥

∥

∥

2
]

. (66)

Moreover, the following transformation can be derived:

E

[

∥

∥

∥

∥

ȳSt
−x̄St

ȳN
x̄N

∥

∥

∥

∥

2
]

=E

[

∥

∥

∥

∥

ȳSt
−x̄St

ȳN
x̄N

−ȳN+
ȳN
x̄N

x̄N

∥

∥

∥

∥

2
]

=E

[

(∥

∥

∥

∥

ȳSt
− x̄St

ȳN
x̄N

∥

∥

∥

∥

− E

[∥

∥

∥

∥

ȳSt
− x̄St

ȳN
x̄N

∥

∥

∥

∥

])2
]

=V

[∥

∥

∥

∥

ȳSt
− x̄St

ȳN
x̄N

∥

∥

∥

∥

]

=V

[

1

K

∑

n∈N

x(t)
n βn

∥

∥

∥∇fn(w
(t))−∇F (w(t),N )

∥

∥

∥

]

. (67)

By defining An ,
∥

∥βn∇fn(w
(t))− βn∇F (w(t),N )

∥

∥, the

above equation can be transformed as follows:

V

[∥

∥

∥

∥

ȳSt
− x̄St

ȳN
x̄N

∥

∥

∥

∥

]

=
1

K2
Cov

(

∑

n∈N

x(t)
n An,

∑

m∈N

x(t)
m Am

)

=
1

K2

∑

n∈N

∑

m∈N

AnAmCov
(

x(t)
n x(t)

m

)

(68)

=
1

K2





∑

n∈N

A2
nV(x

(t)
n )+

∑

n∈N

∑

m∈N ,m 6=n

AnAmCov
(

x(t)
n x(t)

m

)



 .

The following equation can be obtained:

E[(x(t)
n )2] =

K

N
. (69)

The variance of x
(t)
n is given by

V(x(t)
n ) = E

[

(x(t)
n )2

]

−
(

E

[

x(t)
n

])2

=
K

N

(

1−
K

N

)

. (70)

Moreover, the probability of selecting device m after selecting

device n is given by
(

N−1
K−1

)

, i.e.,

E

[

x(t)
n x(t)

m

]

=

(

K − 1

N − 1

)(

K

N

)

, (71)

and then the covariance of x
(t)
n x

(t)
m is given by

Cov
(

x(t)
n x(t)

m

)

= E

[

x(t)
n x(t)

m

]

− E

[

x(t)
n

]

E

[

x(t)
m

]

= −
1

N − 1

(

1−
K

N

)(

K

N

)

. (72)

Therefore, E
[

‖e(t)‖2
]

can be rewritten as follows:

E

[

‖e(t)‖2
]

=

(

1−
K

N

)

(N−1)
∑

n∈NA2
n−

∑

n∈N

∑

m∈N ,m 6=nAnAm

KN(N−1)( 1
N

∑

n∈Nβn)2

=

(

1−
K

N

)

(N−1)
∑

n∈NA2
n−

∥

∥

∑

n∈NAn

∥

∥

2
+
∑

n∈NA2
n

KN(N−1)( 1
N

∑

n∈Nβn)2

=

(

1−
K

N

)

N
∑

n∈NA2
n−

∥

∥

∑

n∈NAn

∥

∥

2

KN(N−1)( 1
N

∑

n∈Nβn)2

=

(

1−
K

N

)
∑

n∈Nβ2
n

∥

∥∇fn(w
(t))−∇F (w(t),N )

∥

∥

2

K(N−1)( 1
N

∑

n∈Nβn)2
, (73)

and the proof is completed.

APPENDIX D: PROOF OF PROPOSITION 1

It is indicated by (26a) that the optimal resource allocation

coefficients τ∗k,n and α∗
k,n satisfy the following condition:

κµβn(τ
∗
k,nCn)

2+
α∗
k,nPnD

B log2(1+α∗
k,nPn|hk,n|2)

≤ Emax
n . (74)

The following inequality can be obtained:

α∗
k,nPnD

B log2(1 + α∗
k,nPn|hk,n|2)

< Emax
n . (75)
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Due to the fact that ln(1 + α∗
k,nPn|hk,n|2) ≤ α∗

k,nPn|hk,n|2,

the following inequality always holds:

α∗
k,nPnD

B log2(1 + α∗
k,nPn|hk,n|2)

≥
ln(2)D

B|hk,n|2
. (76)

Therefore, the problem is infeasible if

ln(2)D

B|hk,n|2
≥ Emax

n , (77)

and the proof is completed.

APPENDIX E: PROOF OF PROPOSITION 2

In resource allocation problem (30), device n is assigned to

sub-channel k, and hence, 1 − 2
D

BTcm∗

k,n 6= 0 and −τ∗k,n 6= 0
always hold. Based on (36e) and (36f), λ2 = 0 and λ4 = 0
can be obtained. As a result, (32) and (33) can be respectively

rewritten as follows:

−
µβn

(τ∗k,n)
2Cn

+ 2λ1κµβnτ
∗
k,nC

2
n + λ3=0, (78)

and

λ1B(T cm∗
k,n )2(2

D
BTcm∗

k,n − 1)− ln(2)λ1DT cm∗
k,n 2

D
BTcm∗

k,n (79)

− ln(2)λ5|hk,n|
2D2

D
BTcm∗

k,n + |hk,n|
2B(T cm∗

k,n )2 = 0.

Based on the above equations and the conditions in (36), four

possible solutions can be presented.

1) If λ3 > 0 and λ5 > 0, the optimal solution can be obtained

from (36e) and (36f) as

τ∗k,n = 1, (80)

and

T cm∗
k,n =

D

B log2(1 + Pn|hk,n|2)
. (81)

In this case, based on (36a), the following inequality holds:

κµβnC
2
n+

PnD

B log2(1 + Pn|hk,n|2)
≤Emax

n . (82)

2) If λ3 = 0 and λ5 > 0, (81) holds. From (78), the following

condition can be obtained:

λ1 =
1

2κ(τ∗k,n)
3C3

n

> 0. (83)

Note that the above inequality always holds. In this case, the

following equation is obtained from (36d):

κµβn(τ
∗
k,nCn)

2+
PnD

B log2(1+Pn|hk,n|2)
−Emax

n =0, (84)

and the expression of τ∗k,n is given by

τ∗k,n =
1

Cn

[

Emax
n

κµβn

−
PnD

κµβnB log2(1+Pn|hk,n|2)

]
1

2

. (85)

From (36b), the following inequality should be satisfied:

0 < Emax
n −

PnD

B log2(1+Pn|hk,n|2)
≤ κµβnC

2
n, (86)

where the inequality in (83) always holds under the above in-

equality. Moreover, λ5 > 0 should be satisfied. By introducing

T cm∗
k,n from (81), (79) can be transformed to

ln(2)λ5|hk,n|
2B(1+Pn|hk,n|

2)[log2(1+Pn|hk,n|
2)]2

=D|hk,n|
2 + λ1DPn|hk,n|

2

− ln(2)λ1D(1+Pn|hk,n|
2) log2(1+Pn|hk,n|

2). (87)

From (83) and (85), the above equation can be transformed to

λ5=
A1|hk,n|2

A1 ln(2)|hk,n|2B(1+Pn|hk,n|2)[log2(1+Pn|hk,n|2)]2

+
Pn|hk,n|2−ln(2)(1+Pn|hk,n|2) log2(1+Pn|hk,n|2)

A1 ln(2)|hk,n|2B(1+Pn|hk,n|2)[log2(1+Pn|hk,n|2)]2
,

(88)

where A1 is defined in (37). Inequality λ5 > 0 can be

transformed as follows:

A1|hk,n|
2+Pn|hk,n|

2 > (1+Pn|hk,n|
2) ln(1+Pn|hk,n|

2). (89)

3) If λ3 > 0 and λ5 = 0, (80) holds, and the following

condition can be obtained from (79):

λ1 =
B|hk,n|2T cm∗

k,n

ln(2)D2
D

BTcm∗

k,n −BT cm∗
k,n (2

D
BTcm∗

k,n −1)

> 0. (90)

The above inequality indicates that

ln(2)D2
D

BTcm∗

k,n −BT cm∗
k,n (2

D
BTcm∗

k,n − 1) > 0, (91)

and it can be rewritten as follows:

(1+α∗
k,nPn|hk,n|2) ln(1+α∗

k,nPn|hk,n|2) > α∗
k,nPn|hk,n|2 .

(92)

It is indicated by Taylor series that this condition always holds.

From (36d), the following equation should be satisfied:

κµβnC
2
n + T cm∗

k,n

2
D

BTcm∗

k,n − 1

|hk,n|2
− Emax

n = 0. (93)

By defining y∗ , 1/T cm∗
k,n and A2 as in (37), (93) can be

rewritten as follows:

2
D
B
y∗

=A2y
∗ + 1

(a)
⇒(y∗ + 1/A2)2

−D
B
y∗

=1/A2

(b)
⇒

(

−y∗−
1

A2

)

(2
D
B )

(−y∗− 1

A2
)
=−

(2
D
B )

− 1

A2

A2

(c)
⇒ ln(2

D
B )

(

−y∗−
1

A2

)

eln(2
D
B )(−y∗− 1

A
)=−

ln(2
D
B )(2

D
B )−

1

A2

A2

⇒ ln(2
D
B )

(

−y∗−
1

A2

)

eln(2
D
B )(−y∗− 1

A2
)=−

ln(2
D

A2B )

2
D

A2B

, (94)

where in (a), (b) and (c), the equation is multiplied by

2−
D
B
y∗

/A2, −(2
D
B )

− 1

A2 and ln(2
D
B ), respectively. At this

stage, the Lambert W function can be utilized to obtain the

closed-form solution. By defining x , 2
D

A2B , where x > 0, the

right side of the above equation can be written as − ln(x)/x,

and the minimum value, i.e., −1/e, can be determined through
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derivatives. Since −1/e ≤ − ln(2
D

A2B )/(2
D

A2B ) < 0, there

exist two real value solutions, as shown in follows:






ln(2
D
B )(−y∗−1/A2)=W0

(

−ln(2
D

A2B )/2
D

A2B

)

,

ln(2
D
B )(−y∗−1/A2)=W−1

(

−ln(2
D

A2B )/2
D

A2B

)

.
(95)

The proof below shows that only one solution is feasible. Since

that −1/e ≤ − ln(2
D

A2B )/(2
D

A2B ) < 0, it can be obtained that

−1 ≤ W0(− ln(2
D

A2B )/2
D

A2B ) < 0, and then, the following

inequality holds:

−1 ≤ ln(2
D
B )

(

−y∗ −
1

A2

)

< 0. (96)

Depending on the relationship between A2 and ln(2
D
B ), dif-

ferent inequalities can be obtained, as shown in follows:










T cm∗
k,n ≥ A2 ln(2

D
B )

A2−ln(2
D
B )

, if A2 > ln(2
D
B ),

T cm∗
k,n ≤ A2 ln(2

D
B )

A2−ln(2
D
B )

, if A2 < ln(2
D
B ).

(97)

From (90), the following condition should be satisfied:

ln(2)D2
D

BTcm∗

k,n −BT cm∗
k,n (2

D
BTcm∗

k,n − 1) > 0. (98)

Based on (93), the above inequality can be rewritten as

ln(2)D2
D

BTcm∗

k,n −A2B > 0 ⇒
D

B log2(A2/ ln(2
D
B ))

> T cm∗
k,n .

(99)

By combining the first inequality of (97) and (99), the follow-

ing inequality can be obtained:

D

B log2(A2/ ln(2
D
B ))

>
A2 ln(2

D
B )

A2 − ln(2
D
B )

, (100)

and this inequality can be transformed to

ln(2
D
B )/A2 − 1 < ln

(

ln(2
D
B )/A2

)

. (101)

Since ln(2
D
B )/A2 > 0, the above inequality cannot hold. That

is, when A2 > ln(2
D
B ), this solution contradicts condition

λ1 > 0. Moreover, the second inequality of (97) also cannot

hold since T cm∗
k,n is greater than zero. As a result, the solution

based on W0(− ln(2
D

A2B )/2
D

A2B ) can be removed, and the

closed-form expression of T cm∗
k,n is given by

T cm∗
k,n =−

A2 ln(2
D
B )

A2W−1(− ln(2
D

A2B )/2
D

A2B )+ln(2
D
B )

. (102)

Based on (36c), the value range of T cm∗
k,n is given by

T cm∗
k,n ≥

D

B log2(1 + Pn|hk,n|2)
. (103)

Moreover, since λ3 > 0, from (78), the following condition is

included:

1− 2λ1κC
3
n > 0. (104)

From (90), this condition can be transformed to

ln(2)D2
D

BTcm∗

k,n −A2B > 2κC3
nB|hk,n|

2T cm∗
k,n . (105)

4) If λ3 = 0 and λ5 = 0, (83), (90) and (36d) hold. In this

case, the following equations can be obtained:










2
D

BTcm∗

k,n −1− ln(2)D
BT cm∗

k,n

2
D

BTcm∗

k,n +2κ(τ∗k,n)
3C3

n|hk,n|2=0,

κµβn(τ
∗
k,nCn)

2+T cm∗
k,n

2

D
BTcm∗

k,n −1
|hk,n|2

−Emax
n = 0.

(106)

The expressions of α∗
k,n and T cm∗

k,n cannot be directly pre-

sented, but the above functions can be simply solved by

utilizing numerical solvers. In this case, the value ranges of

α∗
k,n and T cm∗

k,n should be included. This proposition is proved.
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