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Abstract—Acquiring downlink channel state information (CSI)
is crucial for optimizing performance in massive Multiple Input
Multiple Output (MIMO) systems operating under Frequency-
Division Duplexing (FDD). Most cellular wireless communication
systems employ codebook-based precoder designs, which offer
advantages such as simpler, more efficient feedback mechanisms
and reduced feedback overhead. Common codebook-based ap-
proaches include Type II and eType II precoding methods defined
in the 3GPP standards. Feedback in these systems is typically
standardized per subband (SB), allowing user equipment (UE)
to select the optimal precoder from the codebook for each SB,
thereby reducing feedback overhead. However, this subband-
level feedback resolution may not suffice for frequency-selective
channels. This paper addresses this issue by introducing an
uplink CSI-assisted precoder upsampling module deployed at the
gNodeB. This module upsamples SB-level precoders to resource
block (RB)-level precoders, acting as a plug-in compatible with
existing gNodeB or base stations.

Index Terms—Type II precoding, eType II precoding, precoder
upsampling, massive MIMO, CSI recovery.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) technology
significantly enhances spectrum and energy efficiency in
wireless systems. However, it requires precise downlink (DL)
channel state information (CSI) acquisition at the base station
or gNodeB (gNB). In frequency-division duplexing (FDD)
systems, DL CSI acquisition relies on user equipment (UE)
feedback, which can be costly due to the large number of
channel coefficients. Efficient compressive CSI feedback is
crucial to conserve uplink (UL) bandwidth and UE power,
enabling the practical deployment of massive MIMO in FDD
networks. CSI feedback can be explicit or implicit.

In explicit CSI feedback, the DL CSI is compressed on
the UE side by exploiting its sparsity in the beam and delay
domains and then recovered by the gNB. A prominent explicit
framework is the deep autoencoder, as demonstrated in [1],
which includes an encoder at the UE and a decoder at the
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gNB. Various autoencoder models, such as those presented
in [2]–[8], have shown superior CSI recovery or lightweight
designs. Recent approaches have utilized underlying channel
correlation to improve DL CSI recovery at base stations,
leveraging previous CSI [2], [9], CSI of nearby UEs [10],
and UL CSI [11]–[13]. Considering practical sparse pilot
placement, SRCsiNet [14] has been proposed as a DL CSI
upsampling module to handle aliasing effects in the delay
domain for high delay-spread (DS) DL CSIs.

In implicit CSI feedback, instead of feeding back the DL
CSI, the UE selects a precoder from a codebook based on the
estimated DL CSI and sends the precoder matrix indicator
(PMI) to the gNB. Current cellular systems adopt codebook-
based approaches such as Type II [15] and eType II [16].
To reduce UL feedback overhead, precoders are selected and
fed back for each subband (SB). However, the aliasing issue
becomes more severe due to SB-level precoder feedback.
As illustrated in Figure 1, operators aim to find a precoder
upsampler to map SB-level precoders to RB-level ones (i.e.,
SB2RB), achieving higher DL throughput. However, due to
limited SB-level feedback resolution, interpolating missing
RB-level precoders is challenging.

Our primary objective is to address the undersampling
issue caused by SB-level precoder feedback in Type II/eType
II feedback of the existing cellular network standards. We
introduce an SB2RB precoder upsampling methodology uti-
lizing UL CSI to design a bandpass filter that mitigates
the undersampling problem. We develop a physics-inspired
deep learning architecture that leverages UL CSI for effective
aliasing suppression and acts as a plug-in module compatible
with current codebook-based approaches. Additionally, we
design a switch to determine whether to apply or bypass the
proposed network to reduce complexity. Our key contributions
are as follows:

• We establish a deep learning framework, SRPNet, con-
sisting of three modules: precoder initial upsampling,
UL-CSI-assisted bandpass-filter design, and upsampling
refinement modules. This framework effectively mitigates
aliasing due to SB-level feedback.

• Compared to interpolation, SRPNet has higher complex-
ity. For most precoders of low-DS DL CSIs, interpolation
suffices to recover RB-level precoders from SB-level
ones. Thus, a PDP-based switch is designed to decide
when to apply SRPNet for complexity reduction.
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Fig. 1. Illustration of the proposed precoder upsampling approach and the
considered FDD system.

II. SYSTEM MODEL

A. Downlink Transmission in FDD System
In the system setup, a gNB equipped with Na antennas

establishes communication with a single-antenna UE. The
downlink transmission employs a precoding technique to op-
timize the signal’s transmission over the wireless channel.
Considering the f -th RB, the signal received on the UE side
can be expressed as a linear combination of the transmitted
symbols and noise. Mathematically, the received signal yf can
be represented as:

yf = hH
f wfsf + nf .

Where hf ∈ CNa×1 represents the channel matrix correspond-
ing to the f -th RB, wf denotes the precoding vector applied
by the gNB, sf is the symbol transmitted over the f-th RB,
and nf accounts for the additive noise. The precoding vector
wf optimizes signal transmission by matching the channel.

B. Codebook Based Precoder Design
The idea of codebook-based precoder is to determine the

precoder at UE side from codebooks and feedback to gNB
for the following downlink transmission. There are shared
codebooks between gNB and UEs. UEs estimate DL CSI
from pilots, and then feedback precoder matrix indicator (PMI)
and layer indicator (LI) to gNB. Common codebook-based
precoding in modern FDD system include Type I, Type II
and eType II [15]–[17] precoding, which will be introduced
below in a high-level manner (for simplicity, we consider one
polarization only):
1) Type I/Type II Precoding

Type I precoding exploits the spatial diversity provided by
multiple transmit antennas to enhance communication perfor-
mance. The UE selects a beam and a co-phase coefficient from
an oversampled set of beam directions as the Type I precoder.
The Type I precoder for the f -th SB can be expressed as:

wf = argmaxw∈Ωl
{|hH

f w|}, f = 1, ..., N3. (1)

Where Ωl is the codebook containing oversampled beams
corresponding to the l-th layer, and N3 is the number of SBs
in BWP. Then the UE acknowledges the selected precoder
by feeding back the beam index (i.e., PMI) and the layer l.
For the Type II precoder, designed for the multi-user MIMO
(MU-MIMO) use case, it provides more flexibility in choosing

multiple beams and the degree of freedom to combine the
selected beams to match DL CSI. The selected Type II
precoder for the f -th SB can be expressed as:

wf =
L∑

i=1

αf,iwf,i/L.

where wf,i is the i-th selected oversampled beam, and αf,i

is the complex combining coefficient in the f -th SB. Note
that, to reduce the feedback overhead, both Type I and Type
II precoders are fed back per SB.
2) eType II Precoding

The eType II precoder is a more efficient feedback method
compared to Type I and Type II precoders. Figure 2 reveals the
differences between Type II and eType II precoding. In Figure
2(a), it can be seen that the UE designs the Type II precoder
for each SB independently. Considering the high correlation of
the spatial structures of channels for SBs in a BWP, the eType
II precoder design allows the gNB to enable UEs to jointly
select L wideband beams and feedback the precoder for all
SBs in the entire BWP, a process called spatial compression.

To further reduce the feedback overhead, the eType II
precoder performs frequency-domain compression. It first
transforms the SB-level precoders into delay-domain ones.
According to the principles of radiology and propagation loss,
the delay-domain beam combining coefficients are truncated
by retaining only the first Mv delay taps. To further compress
in the delay domain, due to the sparsity of the truncated delay-
domain coefficients, the coefficients can be compressed by a
factor of R, feeding back only the significant delay taps and
their positions shown in the left part of Figure 3.

C. Problem Formulation
Given the restriction of uplink feedback overhead, all types

of codebook-based precoder feedback can only be conducted
per SB. For some frequency-selective channels (e.g., outdoor
channels with large delay spread), such a low feedback rate
cannot fully exploit the channel diversity provided by the pre-
coder. Without modifying the current specification, operators
seek a non-linear mapping function fΘ(·) to upsample the SB-
level precoders to RB-level ones, thereby better exploiting the
channel gain via a finer-resolution precoder in the frequency
domain. The loss function can be expressed as follows:

Θ = argmaxΘ

NRB∑
f=0

|hH
f fΘ(w⌊f/NRBpSB⌋)|. (2)

where Θ represents the trainable parameters of the learning-
based upsampler, wf is the precoder for the f -th SB, and⌊
f/NRBpSB

⌋
is a floor operation to transform from RB index

to SB index. NRBpSB is a system parameter that determines
the number of RBs in an SB.

III. TYPE II/ETYPEII BASED PRECODER UPSAMPLING

A. General Architecture
We propose a lightweight network deployed at the gNB that

acts as a plug-in module, providing precoder upsampling from
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Fig. 2. The comparison between (a) Type II and (b) eType II Precoder.

SB-level to RB-level. This architecture is compatible with
existing modern cellular systems, such as 5G-NR. Figure 4
provides a high-level illustration of the proposed architecture,
SRPNet. This network can effectively recover undersampled
channels by exploiting the DFT shifting invariance property.
Due to the UL/DL path reciprocity, the network can signif-
icantly suppress the aliasing effects caused by sub-Nyquist
sampling. The details can be found in [14].

B. Modified Type II/eType II precoding
We discovered that the selected precoders according to Eq.

1 may lose multipath delay information. To maintain the signal
structure of DL CSIs in Type II/eType II precoder design, we
modify the precoder design criterion as follows:

wf = argminw

∥∥∥∥∥ hf∥∥hf

∥∥
2

−w

∥∥∥∥∥
2

(3)

This criterion ensures that the Type II/eType II precoder is
close to the normalized DL CSI and preserves the phase
information. Note that this criterion does not apply to the Type
I precoder, as it lacks the degrees of freedom in choosing
beams and combining coefficients.

For the eType II precoder, there is a critical problem to
be solved. In the eType II precoder, to reduce the feedback
overhead, as illustrated in the left part of Figure 3, truncation
is performed, leaving the remaining delay components zero
except for the first Mv delay taps. This truncation in the
delay domain seems reasonable for most low-delay spread
(DS) channels but performs poorly in capturing the high-
delay components for precoders of high DS channels. Once
the truncation is done on the UE side, it is impossible to
recover on the gNB side. In the proposed approach, we
replace the delay-domain truncation with frequency-domain
downsampling. As illustrated in the right part of Figure 3,
we uniformly sample Mv precoders in the RB domain and
then transform them into the delay domain. We find that this
modification preserves all the multipath information but might
mistake low-delay components for high-delay ones due to sub-
Nyquist sampling in the frequency domain, leading to aliasing
effects. However, these aliasing effects can be alleviated by the
following precoder upsampling module, SRPNet.
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C. Precoder Upsampler, SRPNet
With the aid of delay domain sparsity, we introduce a

lightweight neural network (NN), called the super-resolution
precoder network (SRPNet), to suppress the aliasing effect due
to sub-Nyquist sampling.
1) Architecture

This network consists of three modules: 1) bandpass filter
(BPF) Design Module, 2) Initial Precoder Upsampling Mod-
ule, and 3) Precoder Refinement Module, as illustrated in
Figure 4.

• BPF Design Module: To obtain the delay profile of
precoders, leveraging UL/DL multipath reciprocity, we
feed the delay profile of the UL CSI into a convolutional
network to infer a BPF that suppresses aliasing delay
taps and preserves the true delay peaks of initial RB-level
precoders in the delay domain.

• Initial Precoder Upsampling Module: We feed the
modified Type II/eType II SB-level precoders to generate
RB-level aliased precoders as initial precoders. These
precoders may suffer severe aliasing effects but preserve
all the true delay peaks at the same time.
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Fig. 4. The model design of the SRPNet. It consits of three modules: 1) BPF
Design Module, 2) Initial Precoder Upsampling Module, and 3) Precoder
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• Precoder Refinement Module: First, we perform
element-wise multiplication of the BPF and the RB-level
aliased precoders. This guides the BPF Design Module
to design a BPF instead of a confusing matrix1. This
opens up part of the black box of the NN. Then, we
perform BD-domain and AF-domain refinement using
convolutional NNs and shortcuts to generate the estimated
RB-level precoders.

Lastly, we design the network with fully convolutional
layers for scalability to any size of the input (i.e., different
array sizes and bandwidths). For practical deployment consid-
erations, SRPNet may not always be necessary for different
scenarios such as low-DS DL CSIs. In the next section, we
provide a PDP-based switch to determine when to utilize
SRPNet.

IV. UL-CSI/SSB ASSISTED SWITCH FOR
LOW-COMPLEXITY PRECODER UPSAMPLING

This section aims to provide a bridge for the proposed
approach to practical cellular systems. We describe a PDP-
based switch to help the system decide when to use simple
linear interpolation or SRPNet to upsample SB-level precoders
to RB-level.

Even with the design of an extremely lightweight and
flexible network for precoder upsampling, Table ?? shows that
SRPNet still leads to much higher computational complexity
compared to linear interpolation. Given that for most channels
with low delay spread (DS), linear interpolation can provide
good enough precoder upsampling. Therefore, in this section,
we propose several options to switch between SRPNet and
linear interpolation.

1If the BPF Design Module does not give a BPF, the aliasing peaks that
are not suppressed will confuse the rest of the network.

A. PDP-based Switch
The key to determining whether to use SRPNet lies in

evaluating how frequently the CSI varies with different RBs,
which can be inferred from its delay profile. Although the
gNB does not have the power delay profile (PDP) of DL CSI,
it can still infer it from the PDP correlation between UL and
DL CSIs.
1) Threshold-based Switch

Assume we have RB-level PDP from UL CSI or SSB
PDP ∈ CNRB . We make a decision s (i.e., s = 1 means uti-
lization of SRPNet and vice versa) by applying the following
measures, m, to trigger the switch on or off:

s =

{
1, m ≥ thres,

0, otherwise.

• Maximum Excess Delay: the delay difference between
significant multipath components.

• Mean Excess Delay: the mean delay weighted by its PDP.
• Root-Mean-Square (RMS) DS

2) Learning-based Switch
We also train a learning-based switch with a single-layer

NN, which can be represented as:

s = fswitch(PDP) = Sigmoid(fTPDP+ b),

by maximizing the gain-minus-cost metric G − λ · C, where
G = s·NG(WSRPNet,H)+(1−s)·NG(WITP,H) and C = s·
CSRPNet+(1−s)·CITP. Here, NG(·) is the function to evaluate
the average normalized gain between the precoders and DL
CSIs. CSRPNet and CITP are the computational complexities of
SRPNet and linear interpolation, respectively. The ratio CSRPNet

CITP

is roughly 1000. λ is a hyperparameter that determines the
weight between computational cost and performance. In the
test stage, we round s to determine the final outcome.

V. EXPERIMENTAL EVALUATIONS

A. Experiment Setup
Tests were focused on outdoor channels using the widely

used channel model software, QuaDriGa. The simulator con-
siders a gNB with a 128-element uniform linear array (ULA)
serving single-antenna UEs, with half-wavelength uniform
spacing. 2000 UEs are uniformly distributed in the cell cov-
erage, which is a rectangular region of size 250m × 300m.
The scenario features given in 3GPP TR 38.901 UMa were
followed, using NRB = 96 resource blocks (RBs) with a 20
MHz bandwidth part. The normalized gain

g =

NRB∑
f=1

|hH
f w|

|hf | · |w|

was used to assess performance.
For DL-based models, we conducted training with a batch

size of 32 for 1500 epochs, starting with a learning rate of
0.001 and setting an early stop criterion if the validation
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loss did not improve for 100 epochs. We generated the
outdoor datasets using the QuaDRiGa channel simulators. We
considered 16 transmission time intervals (TTIs) for each of
the 2000 UEs. In total, the dataset consists of 32,000 channels.
We used one-tenth of the channels for testing and validation,
respectively. The remaining four-fifths of the channels were
used for training.

To evaluate the degree of aliasing, it is common to use DS
as a performance metric. A channel with a larger DS tends
to suffer from aliasing effects more severely since it contains
more high-delay multipaths. We clustered all the 3200 test CSI
data into 3 clusters according to their RMS DS: low (smaller
than 500 ns), medium (between 500 ns and 1000 ns), and
high DS (larger than 1000 ns). The low, medium, and high
DS clusters have 883, 1221, and 1095 test cases, respectively.

B. Applying SRPNet to SB-level Type II Precoder
Figure 5 shows the capacity improvement ratio of precoders

after applying SRPNet at different SNRs for low and high
DS CSIs. Apparently, SRPNet improves capacity significantly
especially for low SNRs. In addition, we can find that the
benefit of the SRPNet becomes more obvious in high DS CSIs.
That is because aliasing effect occurs for high DS CSIs with
higher probability and SRPNet can effectively upsample SB-
level precoders to RB-level ones even if aliasing effects exist.

C. Applying SRPNet to SB-level eType II Precoder
Figure 6 demonstrates the normalized gain of Type II and

eType II precoders before and after being applied SRPNet
with different settings. Different points in a curve represent
different configurations. For Type II precoders, we consider
four different numbers of SBs (N3 = 3, 6, 12, 24) representing
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different frequency downsampling rates (from 96 RBs). For
each curve of the eType II precoder, the anchor points from
right to left represent R = 2, 4, 8, 16, and so on.

We observe a significant performance gap between the
eType II precoder (Mv = 24) with and without SRPNet
upsampling for high DS scenarios. Additionally, SRPNet-
based eType II precoders outperform Type II and SRPNet-
based Type II precoders, especially for low UL feedback
overhead. This demonstrates the higher efficiency of the eType
II precoder compared to Type II precoders after applying
SRPNet. However, we also find that eType II precoders do
not perform better even with R = 1. This is because eType II
precoders find a common set of L beams for all SBs, which
may not be optimal for each SB, leading to a performance
bound.

D. Applying PDP-based Switch for Complexity Reduction
Figure 7 shows the normalized gain after applying the

proposed PDP-based switches and a random switch for com-
putational complexity reduction of precoder upsampling. We
compare our proposed switches (Threshold-based Switches
and Learning-based Switch) with a baseline random switch,
which randomly chooses to utilize SRPNet or interpolation.
The curve of the random switch is generated by setting differ-
ent probabilities p to choose SRPNet (p = 1 for the rightmost
point). It forms a straight line since both the normalized
gain and complexity are linear combinations of the outcomes
of SRPNet and interpolation. We find that all the proposed
switches perform better than the random switch, indicating
that the PDP of UL CSI or SSB is beneficial for making the
binary decision.

Among these rule-based switches, the one relying on max-
imum excess delay performs the best since maximum excess



0.875

0.88

0.885

0.89

0.895

0.9

0.905

0.91

0.915

0.92

0.925

0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 180.00

N
o

rm
al

iz
ed

 G
ai

n

Complexity per antenna (K)

All Samples

Learning-based UL-CSI-Switch (threshold = 0.5) UL-CSI-Switch (Maximum Excess Delay)

UL-CSI-Switch (Mean Excess Delay) UL-CSI-Switch (RMS DS)

UL-CSI-Switch (Mean Excess Delay + RMS DS/2) Random Switch

Fig. 7. Normalized gain after applying the proposed PDP-based switches
and random switch for computational complexity reduction of precoder
upsampling.

delay is more direct and can better reflect when aliasing
occurs (i.e., when the largest delay of significant paths exceeds
the Nyquist measurable delay). The curve of the learning-
based switch is built by training the model with different
λ = 1 × 10−5, 5 × 10−5, . . . , 1 × 10−3. The learning-based
approach performs the best among all the proposed switches
and also has the lowest complexity. However, we still face the
challenge of finding a mapping from choosing λ to achieving
the desired complexity.

VI. CONCLUSIONS

Acquiring accurate DL CSI is crucial for optimizing the
performance of massive MIMO systems in FDD. Existing
cellular systems use codebook-based precoder designs, such
as Type II and eType II, which simplify feedback mechanisms
and reduce overhead. However, feedback standardized per SB
often falls short for frequency-selective channels. To address
this issue, we introduced SRPNet, an uplink CSI-assisted
precoder upsampling module deployed at the gNodeB. SRPNet
enhances SB-level precoders to RB-level precoders and is
compatible with existing base stations. Our results demon-
strated SRPNet’s effectiveness in improving normalized gain,
particularly in high DS scenarios. Additionally, we proposed
a PDP-based switch to intelligently choose between SRPNet
and linear interpolation, reducing computational complexity.
Our findings showed that the proposed switches, especially
the learning-based switch, outperformed random switches
and achieved better performance with lower complexity. In
summary, SRPNet and the PDP-based switch offer a robust
solution for enhancing downlink CSI acquisition in massive
MIMO systems. These advancements significantly improve
the efficiency and performance of modern cellular networks,
particularly in scenarios with high-frequency selectivity.
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