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Abstract: Precision matrix estimation in a multivariate Gaussian model
is fundamental to network estimation. Although there exist both Bayesian
and frequentist approaches to this, it is difficult to obtain good Bayesian
and frequentist properties under the same prior–penalty dual. To bridge
this gap, our contribution is a novel prior–penalty dual that closely ap-
proximates the graphical horseshoe prior and penalty, and performs well in
both Bayesian and frequentist senses. A chief difficulty with the graphical
horseshoe prior is a lack of closed form expression of the density function,
which we overcome in this article. In terms of theory, we establish poste-
rior convergence rate of the precision matrix that matches the convergence
rate of the frequentist graphical lasso estimator, in addition to the frequen-
tist consistency of the MAP estimator at the same rate. In addition, our
results also provide theoretical justifications for previously developed ap-
proaches that have been unexplored so far, e.g. for the graphical horseshoe
prior. Computationally efficient EM and MCMC algorithms are developed
respectively for the penalized likelihood and fully Bayesian estimation prob-
lems. In numerical experiments, the horseshoe-based approaches echo their
superior theoretical properties by comprehensively outperforming the com-
peting methods. A protein–protein interaction network estimation in B-cell
lymphoma is considered to validate the proposed methodology.
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1. Introduction

High-dimensional precision matrix estimation under a multivariate normal model
is a fundamental building block for network estimation, and a common thread
connecting disparate applications such as inference on gene regulatory networks
[28], econometrics [20, 12], and neuroscience [49]. The frequentist solution to this
problem is now relatively well understood and several useful algorithms exist; see
Pourahmadi [44] for a detailed review. However, interested readers will quickly

https://mathscinet.ams.org/mathscinet/msc/msc2020.html
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discern that the Bayesian literature on this problem is still sparse, barring some
notable exceptions described in Section 1.1. The reason for this is simple: the
focus of a fully Bayesian analysis is on the entire posterior and quantification of
uncertainty using the said posterior; a problem fundamentally more demanding
computationally. Consequently, the virtues of probabilistic uncertainty quantifi-
cation notwithstanding, the Bayesian treatment to precision matrix estimation
has received relatively scant attention from practitioners. Furthermore, a penal-
ized likelihood estimate with good frequentist properties need not correspond to
good Bayesian posterior concentration properties under the corresponding prior.
A notable example of this in linear regression models is the lasso penalty [52],
and its Bayesian counterpart using the double exponential prior [42], for which
Castillo et al. [15] assert: “the LASSO is essentially non-Bayesian, in the sense
that the corresponding full posterior distribution is a useless object.” We address
this gap in the literature in the context of graphical models. Our contribution
is a novel prior–penalty dual that makes both fully Bayesian and fast penalized
likelihood estimation feasible. The key distinguishing feature of our work is that
we provide theoretical and empirical support for both Bayesian and frequentist
solutions to the problem under the same prior–penalty dual. It is shown that the
Bayesian posterior as a whole concentrates around the truth and the penalized
likelihood point estimate is consistent. To our knowledge, ours is the first work
to establish these results using continuous shrinkage priors under an arbitrary
sparsity pattern in the true precision matrix. This is at a contrast to the cur-
rent state of the art in theory that imposes additional constraints on the graph,
e.g., banded-ness or more general decomposable structures [2, 61, 37, 35]. Typi-
cally these assumptions are made for computational and theoretical tractability
rather than any intrinsic subject matter knowledge. The reason our work is
able to avoid these restrictive assumptions is because we work with continuous
“global-local” shrinkage priors and impose sparsity in a weak sense [see, e.g., 7].

The motivating data set arises from a biological application. Protein–protein
interaction networks have been found to play a crucial role in cancer [25]. One
such significant effort in this direction is “The Cancer Genome Atlas” program
[60] that has collected data from over 7,700 patients across 32 different tumor
types. From this repository, we retrieve proteomic data of 33 patients with “Lym-
phoid Neoplasm Diffuse Large B-cell Lymphoma,” which is a cancer that starts
in white blood cells and spreads to lymph nodes. Our findings are contrasted
with that of Ha et al. [25].

1.1. The current state of the art and our contributions in context

A Gaussian graphical model (GGM) remains popular as a fundamental build-
ing block for network estimation because of the ease of interpretation of the
resulting precision matrix estimate: an inferred off-diagonal zero corresponds to
conditional independence of the two corresponding nodes given the rest [see,
e.g., 32].

Among the most popular frequentist approaches for estimating GGMs are
the graphical lasso [21] and the graphical SCAD [17], which are respectively the
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graphical extensions of the lasso [52] and SCAD [18] penalties in linear models.
Similarly, the CLIME estimator of Cai et al. [11] is a graphical application
of the Dantzig penalty [13]. Fan et al. [20] propose factor-based models for
estimation of precision matrices, which are particularly attractive in financial
applications where the precision matrix of outcome variables conditioned on
some common factors being sparse is a sensible assumption. Alternatively, Callot
et al. [12] opt for a node-wise regression approach using �1 penalty for minimizing
the risk of a Markowitz portfolio. The positive definiteness of their estimate is
guaranteed asymptotically, which nevertheless remains hard to establish in finite
samples; a common issue with node-wise regression approaches. Zhang and Zou
[64] propose a new empirical loss termed the D-trace loss to avoid computing the
log determinant term in the �1 penalized loss. Under certain conditions they also
prove that the resulting estimate is identical to the CLIME estimate [11]. A ridge
type estimate for precision matrix termed ROPE is proposed by Kuismin et al.
[30], who use the squared Frobenius norm of the precision matrix as a penalty
function; see Van Wieringen and Peeters [55] for other kinds of ridge estimators.
Another distribution free version of the ridge estimate is proposed by Wang et al.
[56]. An elastic net penalty [65] is used to determine the functional connectivity
among brain regions by Ryali et al. [49]. A comprehensive theoretical treatment
for the rate of convergence of precision matrix estimates is given by Lam and
Fan [31].

The frequentist approaches listed above generally enjoy faster and more scal-
able computation, owing to being point estimates. Nevertheless, from a Bayesian
perspective, a common theme with these penalized approaches is that the pos-
terior concentration properties of the corresponding priors remain completely
unexplored. Bayesian methods for GGMs initially explored structured precision
matrices, assuming an approximate banded-structure of the underlying graph, or
more generally, a decomposable graph; see, for example, [2, 61, 35]. For arbitrary
graphs including both decomposable and non-decomposable graph structures,
the G-Wishart prior has been developed as a conjugate prior for the precision
matrix under a Gaussian framework; see, for example, [47, 48, 37, 53], and refer-
ences therein. For a comprehensive review of Bayesian methods for GGMs under
structured sparsity along with computational approaches, we refer the readers to
Banerjee et al. [1]. Moving now to Bayesian methodologies for unstructured pre-
cision matrices, the literature is relatively scant. Wang [57] proposes a Bayesian
version of the graphical lasso and uses a clever decomposition of the precision
matrix to facilitate block Gibbs sampling and to guarantee the positive definite-
ness of the resulting estimate. Banerjee and Ghosal [3] consider a similar prior
structure as the Bayesian graphical lasso, with the exception that they put a
large point-mass at zero for the off-diagonal elements of the precision matrix.
Under assumptions of sparsity, they derive posterior convergence rates in the
Frobenius norm, and also provide a Laplace approximation method for com-
puting marginal posterior probabilities of models. Spike-and-slab variants with
double exponential priors are proposed by Gan et al. [23], Wang [59]. A com-
mon issue with the spike-and-slab approach is the presence of binary indicator
variables, which typically hinder posterior exploration and the Bayesian lasso
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estimate is known to be biased for large signals [15]. Both of these issues are ad-
dressed by the graphical horseshoe estimate proposed by Li et al. [36], which is
an application of the popular global-local horseshoe prior [14] in GGMs. Li et al.
[36] provide considerable empirical evidence of superior performance over several
competing Bayesian and frequentist approaches. Nevertheless, their theoretical
results are limited to upper bounds on some Kullback–Leibler risk properties
and the bias of the resulting estimate. Consequently, whether the graphical
horseshoe posterior has correct concentration properties has remained an open
question. Similarly, its frequentist dual: the penalized likelihood estimate, also
remains unavailable, mainly because there is no closed form of the horseshoe
prior or penalty; only a normal scale mixture representation. Both of these is-
sues are resolved in the present paper. We propose a novel prior–penalty dual
that closely approximates the graphical horseshoe prior with the density being
available explicitly as well as a normal scale mixture, which has important impli-
cations in theory and in practice, and in both Bayesian and frequentist settings.
Moreover, as a corollary to one of our main results, the posterior concentration
properties of the graphical horseshoe are also established, for the first time.

1.2. Notations and preliminaries

For positive real-valued sequences {an} and {bn}, an = O(bn) means that an/bn

is bounded, and an = o(bn) means that an/bn → 0 as n → ∞; an � bn implies
that an = O(bn), and an � bn means that both an = O(bn) and bn = O(an)
hold. For a sequence of random variables {Xn}, Xn = OP (εn) means that
P(|Xn| ≤ Mεn) → 1 for some constant M > 0.

Vectors are represented in bold lowercase English or Greek letters, with corre-
sponding components denoted by non-bold letters, for example, x =
(x1, . . . , xp)T . For a vector x ∈ R

p, the Lr-norm, for 0 < r < ∞, is defined as
‖x‖r = (

∑p
i=1 |xj |r)1/r, and the L∞-norm is defined as ‖x‖∞ = max1≤j≤p |xj |.

The zero-vector is denoted by 0. Matrices are represented in bold uppercase
English or Greek letters, for example, A = ((aij)), where aij denotes the (i, j)th
entry of A. We denote the identity matrix by Ip. For a symmetric matrix A,
eig1(A) ≤ · · · ≤ eigp(A) denote the ordered eigenvalues of A, and its trace and
determinant are denoted by tr(A) and det A respectively. The Lr and L∞-norms
on p×p matrices are respectively defined as ‖A‖r = (

∑p
i=1
∑p

j=1 |aij |r)1/r, 0 <
r < ∞, and ‖A‖∞ = max1≤i,j≤p |aij |. In particular, the L2-norm, or the
Frobenius norm can be expressed as ‖A‖2 = {tr(AT A)}1/2. The Lr-operator
norm of A is defined as ‖A‖(r,r) = sup{‖Ax‖r: ‖x‖r = 1}. This gives the L1-
operator norm as ‖A‖(1,1) = max1≤j≤p

∑p
i=1 |aij |, and the L2-operator norm

as ‖A‖(2,2) = [max1≤i≤p{eigi(AT A)}]1/2, so that, for symmetric matrices,
‖A‖(2,2) = max1≤i≤p |eigi(A)|. For a symmetric p-dimensional matrix A, we
have, ‖A‖∞ ≤ ‖A‖(2,2) ≤ ‖A‖2 ≤ p‖A‖∞, and ‖A‖(2,2) ≤ ‖A‖(1,1). For a
positive definite matrix A, A1/2 denotes its unique positive square root. The
diagonal matrix with the same diagonal as a matrix A is denoted by A+, and
A− denotes the matrix A − A+. The linear space of p × p symmetric matrices
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is denoted by Mp, and M+
p ⊂ Mp is the cone of symmetric positive definite

matrices of dimension p × p.
The indicator function is denoted by 1. We denote the cardinality of a finite

set S by #S. The Hellinger distance between two probability densities f and g
is defined as h(f, g) = ‖f1/2 − g1/2‖2.

2. Formulation of the prior–penalty dual

Let X(n) = (X1, . . . , Xn)T be a random sample from a p-dimensional normal
distribution with mean 0 and a positive definite covariance matrix Σ. The cor-
responding precision matrix, or the inverse covariance matrix Ω = ((ωij)) is
defined as Ω = Σ−1. The natural estimator of Σ is S = n−1∑n

i=1 XiX
T
i . We

assume that Ω is sparse, in the sense that the number of non-zero off-diagonal
elements is small. We utilize the duality between a Bayesian prior and penalty,
where the penalized likelihood estimate is understood to correspond to the max-
imum a posteriori (MAP) estimate under a given prior. Hence, for fully Bayesian
inference on Ω, we need a suitable prior that also results in a penalty function
with good frequentist properties; a non-trivial problem even in linear models
[15]. We put independent horseshoe-like priors [6] on the off-diagonal and non-
informative priors on the diagonal elements of Ω, while restricting the prior
mass to positive definite matrices. A key benefit of the horseshoe-like prior,
which closely mimics the sparsity-inducing global-local horseshoe prior [14] is
that the prior density, and hence the penalty, is available in closed form under
the former, unlike under the latter. This allows one to study the penalty (equiv-
alently, the negative logarithm of the prior density) directly, and to establish
important properties concerning convexity (see, e.g., Lemma 4.8), which remain
much more difficult under the horseshoe prior. For the fully Bayesian model,
the element-wise prior specification induced by the horseshoe-like prior is,

π(ωij | a) = log
(
1 + a/ω2

ij

)
/
(
2πa1/2), 1 ≤ i < j ≤ p, a > 0,

ωii ∝ 1, 1 ≤ i ≤ p, (2.1)

where π(ωij | a) gives the horseshoe-like density function for ωij . The motivation
for using this density is two-fold: it has a sharp spike near zero, encoding the
Bayesian prior belief that most signals are ignorable; and it also possesses very
heavy, polynomially decaying tails, allowing for identification of signals. These
two properties closely mimic the popular horseshoe prior for sparse signals [14],
and, in fact, one achieves the same origin and tail rates for the density function
in terms of ωij as in the original horseshoe. The crucial advantage with the
horseshoe-like, then, is that there is a closed form to the density function, unlike
the horseshoe prior. Nevertheless, similar to the original horseshoe prior, the
horseshoe-like prior also admits a convenient latent variable representation as a
Gaussian scale-mixture [6]. To be precise, one can write,

ωij | νij , a ∼ N
(

0,
a

2νij

)
, π(νij) = 1 − exp(−νij)

2π1/2ν
3/2
ij

, (2.2)



Graphical horseshoe-like prior–penalty dual 7

Fig 1. Densities of local scale parameters. Left panel: π(ηij) = 1/
√

πηij(1 − exp(−1/ηij)),
where ηij = 1/νij and νij is as defined in Equation (2.2). Center panel: standard half-
Cauchy density of λij , see horseshoe prior hierarchy in Equation (2.5). Right panel: If the
local scale parameter (σij) in a normal scale mixture had an Inverse Gamma prior, σij ∼
InvGamma(1/2, 1/2).

where marginalizing over the latent νij leads to the desired π(ωij | a) identified
above. The density of ηij(= 1/νij), in comparison with commonly used densities
on the latent parameters, in normal scale mixtures, is presented in Figure 1. We
can observe the aggressive shrinkage towards zero under the horseshoe family.
For modeling valid precision matrices, we must restrict the prior mass on the
space of symmetric positive definite matrices M+

p . Combining the unrestricted
prior as in (2.1) and (2.2), along with the above restriction, leads to the joint
prior specification on Ω as,

π(Ω | ν; a)π(ν) ∝
∏

i,j:i<j

{
1 − exp(−νij)

}
ν−1

ij exp
(−νijω2

ij

a

)
1M+

p
(Ω), (2.3)

where ν = {νij}i<j . In this formulation, the latent parameters νij are component-
specific, or local, and the shared parameter a is global, situating the horseshoe-
like in the broader category of global-local priors [7]. Further details on the
induced marginal prior on Ω are presented in Appendix A. Although it is pos-
sible to put a further hyperprior on a, it is considered fixed for point estimation
approaches, and is estimated by the effective model size approach of [43] to
avoid a collapse to zero. We defer the details to Section 3.3. With the prior
specification as in (2.3), the log-posterior L thus becomes,

L ∝ n

2 log det Ω−n

2 tr(SΩ)+
∑

i,j:i<j

{
log
(
1−exp(−νij)

)
−log νij−

νijω2
ij

a

}
. (2.4)

At this point, the corresponding hierarchy of the horseshoe prior, which the
horseshoe-like closely approximates, is well worth mentioning. The horseshoe
prior [14], recognized as a state-of-the-art for sparse signal recovery [6], was
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Fig 2. Smoothed density estimates of a randomly chosen off-diagonal element based on 104

Markov chain Monte Carlo samples for the graphical horseshoe-like (dashes), the graphical
horseshoe (small dashes) and the Bayesian graphical lasso (solid) priors; providing a visual
comparison of (left) spikes near the origin, (middle) heaviness of the tails, and (right) the
induced penalty functions for p = 10.

deployed in estimating GGMs by Li et al. [36] with the following hierarchy:

ωij | λij , τ ∼ N
(
0, λ2

ijτ2), π
(
λ2

ij

)
∼ C+(0, 1), π

(
τ2) ∼ C+(0, 1), (2.5)

where C+(0, 1) denotes the standard half-Cauchy distribution. Figure 2 plots
the smoothed histogram of prior densities of a randomly chosen off-diagonal
element near the origin and at the tails for the graphical horseshoe-like along
with two of its relatives: the graphical horseshoe [36] and the Bayesian graphical
lasso [57]. The corresponding penalties, given by the negative of the logarithm
of the densities, are also shown. The key observations are: (a) the graphical
horseshoe and graphical horseshoe-like densities are very similar and (b) both
have far sharper spikes near the origin and heavier tails compared to the Laplace
priors used in the Bayesian graphical lasso, providing an intuitive basis for the
superiority of the horseshoe-family in sparse signal recovery. Extensive formal
support for these observations are available in linear models [7], but barring
some empirical evidence, the corresponding theoretical support is lacking in
graphical models.

Some comments on the desirability of a Gaussian scale mixture representation
are also in order. First, the latent mixing variables make it easier to derive fully
Bayesian computational strategies via data augmentation. A similar observation
is true for point estimates via the expectation–maximization algorithm. Second,
using a result of Barndorff-Nielsen et al. [4], it is possible to derive a precise
connection between the densities of the mixing variables and that of the resultant
mixture. In particular, if the mixing densities are regularly varying in the tails,
then so is the resultant Gaussian mixture. Since regular variation is closed under
many nonlinear transformations, the heavier tails of global-local priors impart
crucial robustness properties for estimating nonlinear, many-to-one functions
of the parameters of interest in multi-parameter problems [5], and help avoid
marginalization paradoxes of Dawid et al. [16].
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3. Estimation procedure

3.1. ECM algorithm for MAP estimation

We utilize the Gaussian mixture representation of the horseshoe-like prior with
latent scale parameters to devise an Expectation Conditional Maximization
(ECM) [39] approach to MAP estimation, building on the calculations for linear
models by Bhadra et al. [6]. For updating the elements of the precision matrix,
we use the coordinate descent technique proposed by Wang [58], which guaran-
tees the positive definiteness of the precision matrix at each update.

E Step: Following Bhadra et al. [6], we calculate the conditional expectation
of the latent variable νij , 1 ≤ i < j ≤ p, at current iteration (t) as follows:

ν
(t)
ij = E

(
νij | ω

(t)
ij , a

)
=
(

log
(

1 + a

(ω(t)
ij )2

))−1
a2

((ω(t)
ij )2 + a)((ω(t)

ij )2)
. (3.1)

CM Steps: Having updated the latent parameters in the E-Step, the coordinate
descent approach of [58] is used to update one column of the precision matrix
at a time. Without loss of generality, we present the steps for updating the
pth column. First we divide the precision matrix Ω and the sample covariance
matrix S into blocks as follows:

Ω =
[
Ω11 Ω12
ΩT

12 Ω22

]
, nS =

[
S11 S12
ST

12 S22

]
,

where, Ω11 is a matrix of dimension (p − 1) × (p − 1) of the top left block of Ω;
Ω22 is the pth diagonal element and Ω12 is a (p−1)×1 dimensional vector of the
remaining elements in the pth column. The decomposition of nS is analogous.
We define γ = Ω22 − ΩT

12Ω−1
11 Ω12 and β = Ω12. With these transformations, we

simplify (2.4) to update the pth column. We have,

log det Ω = log(γ) + c1,

tr(nSΩ) = 2ST
12β + S22γ + S22βT Ω−1

11 β + c2,

∑
i,j:i<j

ν
(t)
ij

a
· ω2

ij = βT Λ(t)β + c3,

Λ(t) = 1
a

diag
(
ν

(t)
1p , . . . , ν

(t)
p−1,p

)
,

(3.2)

where c1, c2, c3 are constants independent of β, γ. Now the log-posterior with
the transformed variables is given by,

L ∝ n

2 log(γ) − 1
2
(
2ST

12β + S22γ + S22βT Ω−1
11 β

)
− βT Λ(t)β.

Maximizing the above over β, γ gives the required update as:
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Algorithm 1 ECM algorithm for MAP estimation (GHS-LIKE-ECM)
function ECM for Graphical Horseshoe-Like penalty(Ωs, S, n, p)

Ωs = ((ωs,ij)): starting point; Ωu = ((ωu,ij)): updated precision matrix; initially set to
Ip.

nS = X(n)T X(n); N = ((Nij)): A matrix of dimension p × p which stores
E(νij | ωs,ij , a); (n, p): Sample size and number of variables respectively
while Δ = ‖Ωu − Ωs‖2 < tolerance (= 10−3) do

for j = 2 → p do
for i = 1 → (j − 1) do

Nij : = E(νij | ωs,ij , a) = (log(1 + a
(ωs,ij )2 ))−1 (a)2

((ωs,ij )2+a)((ωs,ij )2) .
end for

end for
N ← N + NT . This is required to compute Λ(t) in display (3.2); Set Ωu = Ωs

for i = 1 ← p do
Update ith column of Ωu using coordinate descent algorithm of Wang [58] de-

scribed above.
end for

end while
return Ω̂MAP = Ωu

end function

γ̂ = n

S22
, β̂ = −

(
S22Ω−1

11 + 2 · Λ(t))−1
ST

12. (3.3)

Having updated β, γ from (3.3), the pth column update of the precision matrix
for the next iteration (t + 1) becomes

Ω̂(t+1)
12 = β̂, Ω̂T (t+1)

12 = β̂T , Ω̂(t+1)
22 = γ̂ + β̂T Ω−1

11 β̂. (3.4)

We repeat the above steps for the remaining (p − 1) columns to complete the
CM Step updates for Ω, until convergence to the MAP estimator Ω̂MAP. The
procedure is summarized in Algorithm 1. The most computationally expensive
step is the required inverse of a (p − 1) × (p − 1) matrix to compute β̂ in (3.3),
which needs to be repeated for each of the p columns, giving a per iteration
complexity of O(p4) for the algorithm.

3.2. Posterior sampling for the fully Bayesian estimate

For fully Bayesian estimation, we also outline the MCMC sampling procedure.
With substitutions 2νij �→ t2

ij and a �→ τ2, the prior in (2.2) can be written with
a different hierarchy as follows:

ωij | νij , τ ∼ N
(
0, τ2/t2

ij

)
, π(tij) =

1 − exp(−t2
ij/2)

(2π)1/2t2
ij

, tij ∈ R, τ2 > 0,

where π(tij) above is known as the the slash normal density, expressed as (φ(0)−
φ(tij))/t2

ij , where φ(·) is the standard normal density [6]. Introducing a further
local latent variable rij , the density for tij can also be written as a normal scale
mixture, where the scale follows a Pareto distribution, that is,

tij | rij ∼ N (0, rij), rij ∼ Pareto(1/2).
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For efficient sampling, the above Pareto scale mixture can be represented as a
product of an exponential density and an indicator function as follows:

π(tij) = 1
2

∫ ∞

1

1
(2πrij)1/2 exp

(
−

t2
ij

2rij

)
r

−3/2
ij drij

= 1
2(2π)1/2

∫ 1

0
exp
(

−
t2
ijmij

2

)
dmij ,

that is,
π(tij , mij) = 1

2(2π)1/2 exp
(−t2

ijmij

2

)
1(0 < mij < 1).

Different choices of prior for the global scale parameter are possible, but we
consider τ ∼ C+(0, 1). Makalic and Schmidt [38] observed that: if τ2 | ξ ∼
InvGamma(1/2, 1/ξ) and ξ ∼ InvGamma(1/2,1) then marginally τ ∼ C+(0, 1).
Using this, we can write the posterior updates of τ, ξ as follows:

τ2 | ξ, X(n), Ω, {tij}i<j , {mij}i<j ∼ InvGamma
((

p(p − 1)/2 + 1
)
/2,

1/ξ +
∑

i,j:i<j

t2
ijω2

ij/2
)

,

ξ | τ ∼ InvGamma
(
1 + 1/τ2).

(3.5)

Following the remaining updates from the graphical horseshoe sampler of Li
et al. [36], the complete MCMC scheme for the graphical horseshoe-like is as
outlined in Algorithm 2. The per iteration complexity of the algorithm is O(p4).
Diagnostic plots for both the ECM and MCMC algorithms are given in Ap-
pendix C.

3.3. Estimating the global scale parameter

We adapt the technique of Piironen and Vehtari [43] for choosing a suitable
value of the global shrinkage parameter a by estimating the effective model
size. The method of Piironen and Vehtari [43] was developed in the context of
linear regression, and proceeds using a prior guess on the number of non-zero
regression coefficients. In our context, this suggests a prior guess on the number
of non-zero edges in the upper (or lower) triangle of Ω. To adapt this method,
we use the partial regressions induced by a multivariate Gaussian model, as
described next.

Consider the partial regressions induced by the multivariate Gaussian model
of Section 2, where each variable is regressed on the remaining ones. Proposition
C.5 of Lauritzen [32] yields:

Xi = X−iθ−i + εi; εi ∼ N (0, In/ωii),

for i = 1, . . . , p, where Xi ∈ R
n, the matrix X−i ∈ R

n×(p−1) is formed using the
matrix X(n) with its ith column removed, and θ−i = {−ωij/ωii}j �=i ∈ R

p−1.
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Algorithm 2 The Graphical Horseshoe-Like MCMC Sampler (GHS-LIKE-
MCMC)

function GHS-Like(S, n, burnin, nmc) � where nS = X(n)T X(n), n = sample size
Set p to be number of rows (or columns) in S
Set initial values Ω = Ip, Σ = Ip, T = 11T , M = 11T , τ = 1, where 1 is a p-

dimensional vector with all elements equal to 1, T = ((t2
ij)), M = ((mij)). sii is the ith

diagonal element of nS and S(−i)i is the ith column of nS excluding sii.
for iter = 1 to (burnin + nmc) do

for i = 1 to p do
γ ∼ Gamma(shape = n/2 + 1, rate = 2/sii) � sample γ
Ω−1

(−i)(−i) = Σ(−i)(−i) − σ(−i)iσ
′
(−i)i/σii

C = [siiΩ−1
(−i)(−i) + (diag(τ2/t(−i)i))−1]−1

β ∼ Normal(−CS(−i)i, C) � sample β

ω(−i)i = β, ωii = γ + βT Ω−1
(−i)(−i)β � variable transformation

t(−i)i ∼ Gamma(shape = 3/2, rate = m(−i)i/2 + ω2
(−i)i/2τ2) � sample t,

where t(−i)i is a vector of length (p − 1) with entries t2
ji, j �= i. Entries of t(−i)i

greater than 1015 are not updated (for numerical stability while sampling β).
m(−i)i ∼ Exponential(rate = t(−i)i/2) 1(0 < m(−i)i < 1) � sample m
Save updated Ω
Σ(−i)(−i) = Ω−1

(−i)(−i) + (Ω−1
(−i)(−i)β)(Ω−1

(−i)(−i)β)′/γ, σ(−i)i =
−(Ω−1

(−i)(−i)β)/γ, σii = 1/γ

Save updated Σ, T , M .
end for
Sample τ, ξ as in (3.5). � Sample τ, ξ

end for
Return MC samples Ω

end function

There are p such partial regressions, each corresponding to a column of X(n).
In order to use the effective model size approach of Piironen and Vehtari [43],
one needs to have a prior guess (p0) for the number of non-zero coefficients in
each regression. In our case, we consider p0 = 2 for every partial regression.
The rationale behind this consideration is a prior belief that there would be
approximately p number of non-zero terms in the off-diagonal of the true preci-
sion matrix Ω0, which amounts to roughly 2 non-zero coefficients in each partial
regression (because of the symmetry of Ω). For the sake of simplicity, we set
ωii = 1/σ2 for i = 1, . . . , p.

When the horseshoe-like prior (2.2) is imposed on the elements of θ−i, the
shrinkage estimates of the elements of θ−i can be written as, ω̄ij = (1 − κij)ω̂ij ,
where, κij is called shrinkage coefficient and ω̂ij is the ordinary least squares
(OLS) estimate of ωij . Further, under a simplifying assumption that the de-
sign matrices for the partial regressions are approximately orthogonal, one has:
κij = (1 + nσ−2a(2νij)−1)−1, where σ2 is the variance of the noise terms εi. In
the context of ith partial regression, the effective model size (as defined by Pi-
ironen and Vehtari [43]) can be written as, m

(i)
eff =

∑
j �=i(1 − κij). In order to

compute the global scale parameter a or to decide a prior for it, Piironen and
Vehtari [43] set E(m(i)

eff ) = p0, which is the expected number of non-zero ele-
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ments in θ−i. Hence, we need to find an expression for E(κij) in order to solve
for a in E(m(i)

eff ) = p0. Using the standard Jacobian technique we get the density
of κij as:

π(κij) = 1
2π1/2 κ

−3/2
ij (1 − κij)−1/2

(
na

2σ2

)−1/2{
1 − exp

(
− κij

1 − κij

na

2σ2

)}
.

After some trivial variable transforms, E(κij | a) can be written as:

E(κij | a) = 2σ

(2πna)1/2

∫ π/2

0

{
1 − exp

(
− na

2σ2 tan2 η

)}
dη. (3.6)

Hence, the consideration E(m(i)
eff ) = p0 leads to the estimating equation:

p∑
j=1
j �=i

(
1 − E(κij | a)

)
= p0. (3.7)

Note that the expression E(κij | a) as in (3.6) is independent of the indices i, j
due to the symmetry of the prior. Further, E(κij | a) depends only on the ratio
a/σ2 and hence, to uniquely solve for a, we set σ2 = 1. As a closed form ex-
pression of the integral in (3.6) is not available, we approximate the exponential
function in the integral with a high order polynomial and numerically solve for
a using (3.7) for given n and p and the prior guess that p0 = 2.

4. Theoretical properties

4.1. Posterior concentration results

In this section, we present our main result on the posterior contraction rate of
the precision matrix Ω around the true precision matrix Ω0 with respect to
the Frobenius norm under the graphical horseshoe-like prior. The technique of
our proofs uses the general theory on posterior convergence rates as outlined
in [24], which establishes the desired convergence with respect to the Hellinger
distance. However, from the perspective of a precision matrix, the Frobenius
norm is easier to interpret in comparison to the Hellinger distance. Under suit-
able assumptions on the eigenspace of the precision matrices, [3] showed that
these two distances are equivalent, and hence the same posterior contraction
rates hold with respect to the Frobenius norm as well. We assume that the true
underlying graph is sparse, so that the corresponding true precision matrix Ω0
has s non-zero off-diagonal elements. The total number of non-zero elements in
Ω0 is p + s, which gives the effective dimension of the parameter Ω0. To estab-
lish the desired posterior concentration results, we shall need to control both
the actual dimension and the effective dimension of the true precision matrix.
Overall, our theoretical analyses depend on certain assumptions on the true
precision matrix, the dimension and sparsity, and the prior space. We present
the details of these assumptions along with relevant discussions below.
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Assumption 4.1. The prior is restricted to a subspace of symmetric positive
definite matrices, M+

p (L), where

M+
p (L) =

{
Ω ∈ M+

p : 0 < L−1 ≤ eig1(Ω) ≤ · · · ≤ eigp(Ω) ≤ L < ∞
}

. (4.1)

Assumption 4.2. The actual dimension p satisfies the condition p = nb, b ∈
(0, 1), and the effective dimension p + s satisfies (p + s) log p/n = o(1).

Assumption 4.3. The true precision matrix Ω0 belongs to the parameter space
given by

U(ε0, s) =
{

Ω ∈ M+
p :

∑
1≤i �=j≤p

1(ωij �= 0) ≤ s,

0 < ε−1
0 ≤ eig1(Ω) ≤ · · · ≤ eigp(Ω) ≤ ε0 < ∞

}
.

Assumption 4.4. The bound [L−1, L] on the eigenvalues of Ω as specified in
(4.1) satisfies L > ε0, or, in other words, ε0 = cL, for some c ∈ (0, 1).

Assumption 4.5. The global shrinkage parameter a satisfies the condition,
a1/2 < n−1/2p−b1(s log p)1/2, for some sufficiently large constant b1 > 0.

The condition on the eigenvalues of Ω as specified in Assumption 4.1 is nec-
essary for arriving at the theoretical results involving the posterior convergence
rate of Ω. In this paper, we assume that L is a fixed constant, which can be
arbitrarily large, so that for practical implementation, we work with Ω ∈ M+

p as
specified in (2.3). However, this condition does not affect the practical implemen-
tation of our proposed method, and is used purely as a technical requirement,
so that we only can work with Ω and Σ that are away from singular matrices.
Beyond this, no structural assumptions such as decomposability are placed on
either Ω or Σ. Similar assumptions have been made in related works; see [37]
and [34]. Assumption 4.2 implies that the dimension grows to infinity as the
sample size n → ∞, but at a slower rate than n. Additionally, the condition on
the effective dimension ensures that the posterior convergence rate goes to zero
as n → ∞. Similar conditions are necessary in proving the contraction results in
other related works, for example, see [3, 37, 34]. Assumption 4.3 implies that the
true precision matrix Ω0 is sparse, and has eigenvalues that are bounded away
from zero or infinity. Similar conditions are common in the literature on large
precision matrix estimation problems; see, for example, [2, 3, 37, 34]; among
others. Assumption 4.4 is crucial in learning the precision matrix in a high-
dimensional framework. This condition ensures that Ω0 ∈ M+

p (L), that is, the
prior space contains the true precision matrix, which is necessary in efficient
learning of the same. Assumption 4.5 ensures that the prior puts sufficient mass
around the true zero elements in the precision matrix. The condition on the
global scale parameter a is a sufficient one, and is required to obtain the desired
posterior convergence rate. We present the main theoretical result for posterior
convergence now. A proof can be found in Section 7.
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Theorem 4.6. Let X(n) = (X1, . . . , Xn)T be a random sample from a p-
dimensional normal distribution with mean 0 and covariance matrix Σ0 = Ω−1

0 ,
where Ω0 ∈ U(ε0, s). Consider the prior specification as given by (2.3) with an
additional restriction on the prior space as outlined in Assumption 4.1. Under
the remainder of the assumptions as given in Assumptions 4.2–4.5, the posterior
distribution of Ω satisfies

E0
[
Pr
{

‖Ω − Ω0‖2 > Mεn | X(n)}]→ 0,

for εn = n−1/2(p + s)1/2(log p)1/2 and a sufficiently large constant M > 0.

Corollary 4.7. Under similar conditions as in Theorem 4.6 above, the pos-
terior distribution of Ω has the posterior convergence rate εn = n−1/2(p +
s)1/2(log p)1/2 around Ω0 with respect to the Frobenius norm under the graphical
horseshoe prior as specified in (2.5) with an additional restriction on the prior
space as outlined in Assumption 4.1.

A proof of Corollary 4.7 is in Section 7 and settles the question of posterior
concentration for the graphical horseshoe which Li et al. [36] did not address.
The posterior convergence rate above directly compares with the rate of con-
vergence of the frequentist graphical lasso estimator [46], and is identical to the
posterior convergence rates obtained by Banerjee and Ghosal [3] and Liu and
Martin [37]. However, our work is the first to address unstructured precision
matrices, apart of a mild assumption of sparsity, using computationally efficient
continuous shrinkage priors. This is at a contrast with previous theoretical anal-
yses that imposed restrictive assumptions such as decomposability.

4.2. Properties of the MAP estimator

The MAP estimator of Ω can be found by maximizing the following objective
function:

Q(Ω) = log π
(
Ω | X(n)) = �(Ω) +

∑
i,j:i<j

log π(ωij | a) + C

= n

2
(
log det Ω − tr(SΩ)

)
−
∑

i,j:i<j

pena(ωij) + C,

(4.2)

where pena(ω) = − log log(1 + a/ω2), a > 0, is the horseshoe-like penalty. We
start by proving pena(ω) is strictly concave in the following lemma, with a proof
in Section 7.

Lemma 4.8. The extended real-valued penalty function pena(x) = − log log(1+
a/x2), a > 0, is strictly concave for all x ∈ dom(pena), separately for x > 0
and x < 0.
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A direct consequence of Lemma 4.8 is as follows. Let Ω(t) be the tth iterate
of a local linear approximation (LLA) algorithm [66], that is,

Ω(t+1) = argmax
{

�(Ω) −
∑

i,j:i<j

pen′
a

(∣∣ω(t)
ij

∣∣) |ωij |
}

, t = 1, 2, . . . .

Then Theorem 1 of Zou and Li [66], together with the strict concavity of
horsehoe-like penalty function from Lemma 4.8, guarantees that the LLA al-
gorithm will satisfy an ascent property, that is, Q(Ω(t+1)) > Q(Ω(t)), and hence
the LLA algorithm will be a special case of minorize–maximize algorithms. Fur-
ther, the MAP estimate gives exactly zero off-diagonal values. The reason for
this is that the horseshoe-like penalty is non-convex (Lemma 4.8), and penal-
ized likelihood point estimates under non-convex penalties enjoy the property
of sparsity, as established by Fan and Li [19].

We now present the result on consistency of the MAP estimate using the
graphical horseshoe-like prior via an ECM algorithm, with a proof in Section 7.

Theorem 4.9. Under the conditions of Theorem 4.6, the MAP estimator of Ω,
given by Ω̂MAP is consistent, in the sense that

‖Ω̂MAP − Ω0‖2 = OP (εn),

where εn is the posterior convergence rate as defined in Theorem 4.6.

The above result guarantees that the MAP estimator also converges to the
true precision matrix Ω0 at the same rate as the posterior convergence rate
in the Frobenius norm. By triangle inequality, Theorem 4.6 and Theorem 4.9
together imply that ‖Ω − Ω̂MAP‖2 = OP (εn), so that the posterior probability
of an εn-neighborhood around the MAP estimator with respect to the Frobenius
norm converges to one. This pleasing correspondence between the fully Bayesian
and MAP estimates under the same prior–penalty dual is far from guaranteed,
in the face of possible contradictions pointed out by Castillo et al. [15] for the
lasso in linear models.

5. Numerical experiments

We compare the MAP and MCMC estimates under the horseshoe-based meth-
ods (GHS, GHS-LIKE-MCMC and GHS-LIKE-ECM) with two frequentist ap-
proaches: GLASSO, GSCAD and one Bayesian approach: the Bayesian GLASSO
(BGL). We consider two problem dimensions: (n, p) = (120, 100) and (120, 200).
For each dimension, we perform simulations under four different structures of
the true precision matrix Ω0 as in Li et al. [36] and Friedman et al. [21]. These
are: Random, Hubs, Cliques positive and Cliques negative, as detailed below.

1. Random. The off-diagonal entries of Ω0 are non-zero with probability 0.01
when p = 100 and 0.002 when p = 200. The non-zero entries are then
sampled uniformly from (−1, −0.2). A simple Erdős-Rényi model is an
example of generating a Random graph. This structure serves as a useful
test case.
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2. Hubs. The rows/columns are partitioned into K disjoint groups G1, . . . ,
GK . The off-diagonal entries ω0

ij are set to 0.25 if i �= j and i, j ∈ Gk

for k = 1, . . . , K. In our simulations we consider p/10 groups with equal
number of elements in each group. From a practical viewpoint, Hubs are
essential in protein–protein interaction networks [27, 29].

3. Cliques positive and Cliques negative. Same as Hubs, except for setting
all ω0

ij , i �= j and i, j ∈ Gk, we select 3 members within each group,
gk ⊂ Gk, and set ω0

ij = 0.75, i �= j and i, j ∈ gk for ‘Cliques positive’
and set ω0

ij = −0.45, i �= j and i, j ∈ gk for ‘Cliques negative’. In terms
of application, groups of functionally associated proteins called modules
(cliques), are responsible for cellular functions [26, 45].

For each setting of (n, p) and Ω0, we generate 50 data sets (repetitions) and
estimate the precision matrices by the methods stated above. We generate 6000
MCMC samples for all the fully Bayesian methods, with initial 1000 samples
as burn-in. All three horseshoe based methods are implemented in MATLAB,
GSCAD is as implemented by Wang [57] and GLASSO is implemented in R
package ‘glasso’ [22]. Starting points for GHS-LIKE-ECM are randomly chosen
in order to avoid getting stuck in a local minimum (see details in Appendix C)
and its global shrinkage parameter is chosen as in Section 3.3. The values of
global scale parameter hence obtained for simulations are as follows:

(i) Tables 1, 2: (n, p) = (120, 100), estimate of the global scale parameter
a = 0.0143.

(ii) Tables 3, 4: (n, p) = (120, 200), estimate of the global scale parameter
a = 0.0169.

Tuning parameters for GLASSO and GSCAD are chosen by 5-fold cross valida-
tion. Owing to the signal-adaptive credible interval length and the conservative
nature of variable selection, observed in the horseshoe prior [54], the middle
50% posterior credible intervals are used for variable selection for the Bayesian
approaches. This choice helps to reduce the number of false negatives due to
wider credible intervals [36], which is corroborated by the higher MCC values,
observed for the horseshoe-based methods in simulations (Tables 1–4). We pro-
vide results on: Stein’s loss (= tr(Ω̂Σ0) − log det(Ω̂Σ0) − p), Frobenius norm
(F norm = ‖Ω̂ − Ω0‖2), true and false positive rates for detecting non-zero off-
diagonal entries (resp., TPR and FPR), the Matthews Correlation Coefficient
(MCC), and average CPU time. Note that for the fully Bayesian estimate, our
theory concerns posterior concentration properties, and connections with con-
vergence in Frobenius norm is established in Banerjee and Ghosal [3]. However,
for the sake of completeness and comparisons with point estimation approaches,
we provide variable selection results for all approaches as well, in addition to
Stein’s loss (an empirical measure of Kullback–Leibler divergence) and F norm
that focus more directly on the entire distribution. Comparison of the estimates
by graphical horseshoe-like MCMC, under 50 vs. 100 repetitions, with Ω0 hav-
ing hub structure and (n, p) = (120, 100), is presented in Appendix D, Table 9.
As similar results were observed in other representative settings, we present our
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Table 1

Mean (sd) Stein’s loss, Frobenius norm, true positive rates and false positive rates,
Matthews Correlation Coefficient of precision matrix estimates over 50 data sets generated

by multivariate normal distributions with precision matrix Ω0 (Random and Cliques
negative structures), where n = 120 and p = 100. The precision matrix is estimated by

frequentist graphical lasso with penalized diagonal elements (GL1) and with unpenalized
diagonal elements (GL2), graphical SCAD (GSCAD), Bayesian graphical lasso (BGL), the

graphical horseshoe (GHS), graphical horseshoe-like ECM (ECM) and graphical
horseshoe-like MCMC (MCMC). The best performer in each row is shown in bold. Average

CPU time is in seconds.
Random

35 nonzero pairs out of 4950
nonzero elements ∼ −Unif(0.2, 1)

GL1 GL2 GSCAD BGL GHS ECM MCMC
Stein’s loss 5.245 6.785 5.21 42.997 2.176 3.758 2.63

(0.254) (0.464) (0.242) (0.898) (0.278) (0.282) (0.306)
F norm 3.348 4.084 3.333 3.952 1.194 2.224 2.033

(0.115) (0.143) (0.117) (0.139) (0.144) (0.108) (0.138)
TPR 0.951 0.882 0.998 0.979 0.819 0.948 0.827

(0.03) (0.038) (0.009) (0.023) (0.041) (0.032) (0.037)
FPR 0.101 0.045 0.994 0.166 0.0005 0.071 0.001

(0.013) (0.007) (0.005) (0.0007) (0.0003) (0.005) (0.001)
MCC 0.232 0.321 0.005 0.181 0.869 0.275 0.832

(0.018) (0.024) (0.001) (0.007) (0.031) (0.016) (0.037)
Avg CPU time 4.988 4.719 53.977 550.422 252.84 5.94 326.33

Cliques negative
30 nonzero pairs out of 4950

nonzero elements = −0.45
GL1 GL2 GSCAD BGL GHS ECM MCMC

Stein’s loss 4.607 7.134 4.567 42.618 1.862 3.417 2.284
(0.223) (0.529) (0.231) (0.896) (0.263) (0.251) (0.278)

F norm 2.823 3.851 2.813 3.814 1.969 2.107 2.003
(0.117) (0.138) (0.112) (0.165) (0.212) (0.124) (0.181)

TPR 1 1 1 1 0.983 1 0.992
(0) (0) (0) (0) (.024) (0) (0.019)

FPR 0.1 0.028 0.983 0.158 0.0004 0.073 0.001
(0.01) (0.006) (0.013) (0.007) (0.0003) (0.005) (0)

MCC 0.232 0.42 0.01 0.177 0.936 0.268 0.932
(0.014) (0.036) (0.003) (0.005) (0.024) (0.009) (0.03)

Avg CPU time 2.962 3.2648 24.792 550.768 253.04 5.282 325.99

simulation results (Tables 1–4) with 50 repetitions. Codes for implementing our
procedures are available at https://github.com/sagarknk/Graphical_HSL.

It can be clearly seen from Tables 1–4 that the horseshoe based methods
generally perform the best. GHS has the smallest Stein’s loss in all settings
expect in Hubs when (n, p) = (120, 100). This corroborates the finding of Li
et al. [36] that GHS results in improved Kullback–Leibler risk properties (of
which Stein’s loss is an empirical measure) when compared to prior densities
that are bounded above at the origin, e.g., BGL, and it is apparent from both
tables that BGL has the worst Stein’s loss. For GHS-LIKE-ECM and MCMC,
the measures of Stein’s loss are generally close to that of GHS, and much better
compared to the other competing methods. A similar pattern emerges in the re-
sults for F norm, with the horseshoe-based methods once again outperforming

https://github.com/sagarknk/Graphical_HSL
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Table 2

Performance measures of precision matrix estimates over 50 data sets generated by
multivariate normal distributions with precision matrix Ω0 (Hubs and Cliques positive

structures), where n = 120 and p = 100. All other abbreviations and definitions follow from
Table 1.

Hubs
90 nonzero pairs out of 4950

nonzero elements = 0.25
GL1 GL2 GSCAD BGL GHS ECM MCMC

Stein’s loss 5.255 6.328 5.213 43.042 5.101 4.22 5.121
(0.263) (0.414) (0.261) (0.802) (0.455) (0.369) (0.467)

F norm 3.018 3.432 3.003 4.295 2.544 2.415 2.574
(0.091) (0.112) (0.093) (0.156) (0.126) (0.103) (0.131)

TPR 0.995 0.986 0.998 0.995 0.872 0.985 0.846
(0.007) (0.017) (0.002) (0.008) (0.04) (0.014) (0.039)

FPR 0.101 0.045 0.983 0.186 0.003 0.062 0.003
(0.016) (0.008) (0.012) (0.007) (0.001) (0.005) (0.001)

MCC 0.373 0.523 0.016 0.27 0.85 0.458 0.832
(0.027) (0.039) (0.006) (0.006) (0.027) (0.015) (0.03)

Avg CPU time 1.739 1.76 48.54 549.196 252.94 5.811 328.659
Cliques positive

30 nonzero pairs out of 4950
nonzero elements = 0.75

GL1 GL2 GSCAD BGL GHS ECM MCMC
Stein’s loss 6.010 7.48 5.98 44.163 1.781 3.753 2.386

(0.212) (0.45) (0.21) (0.790) (0.232) (0.275) (0.281)
F norm 4.96 5.7 4.95 4.916 1.888 2.411 2.131

(0.1) (0.13) (0.107) (0.103) (0.184) (0.142) (0.177)
TPR 1 1 1 1 1 1 1

(0) (0) (0) (0) (0) (0) (0)
FPR 0.11 0.042 0.972 0.177 0.0008 0.068 0.002

(0.013) (0.0011) (0.014) (0.006) (0.005) (0.006) (0.001)
MCC 0.22 0.353 0.013 0.166 0.94 0.277 0.879

(0.013) (0.041) (0.003) (0.004) (0.031) (0.012) (0.037)
Avg CPU time 1.997 2.157 83.852 553.743 252.46 5.903 326.915

the competitors and performing similarly among themselves. It is worth noting,
however, that the fully Bayesian approaches (GHS-LIKE–MCMC and GHS)
generally result in the best statistical performance, at the expense of a consid-
erably longer computing time, making the trade-off between fully Bayesian and
penalized likelihood approaches apparent.

Coming next to variable selection results, one may expect the penalized like-
lihood approaches to really shine; since these methods produce exact zeros,
unlike the Bayesian approaches that necessitate some form of post-processing.
Nevertheless, the Bayesian approaches offer the advantage of controlling the
trade-off between TPR and FPR, by varying the width of the credible interval,
for example. With our chosen mechanism (i.e., a variable is considered not to
be selected if the middle 50% credible interval includes zero), the GHS-LIKE-
MCMC and GHS have the smallest TPR. Nevertheless, the penalized methods
also have higher FPR in general (except for GHS-LKE-ECM), which results in
lower MCC overall. In particular, the GSCAD estimate, which is not guaranteed
to be positive definite in finite samples [20], seems not to work well in general.
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Table 3

Performance measures of precision matrix estimates over 50 data sets generated by
multivariate normal distributions with precision matrix Ω0 (Random and Cliques negative
structures), where n = 120 and p = 200. All other abbreviations and definitions follow from

Table 1.
Random

29 nonzero pairs out of 19900
nonzero elements ∼ −Unif(0.2, 1)

GL1 GL2 GSCAD BGL GHS ECM MCMC
Stein’s loss 10.06 15.578 9.975 117.092 3.073 11.109 3.354

(0.4) (1.12) (0.4) (1.563) (0.305) (0.562) (0.323)
F norm 4.469 5.929 4.44 6.803 2.468 3.917 2.471

(0.151) (0.176) (0.156) (0.162) (0.137) (0.108) (0.129)
TPR 0.944 0.845 0.999 0.982 0.848 0.97 0.842

(0.036) (0.036) (0.005) (0.024) (0.038) (0.028) (0.038)
FPR 0.052 0.163 0.984 0.103 0.0001 0.066 0.000

(0.007) (0.002) (0.011) (0.003) (0.00007) (0.003) (0)
MCC 0.152 0.242 0.004 0.11 0.882 0.138 0.866

(0.011) (0.015) (0.002) (0.004) (0.029) (0.005) (0.037)
Avg CPU time 38.759 43.486 510.703 4484.22 1866.47 80.939 1879.155

Cliques negative
60 nonzero pairs out of 19900

nonzero elements = −0.45
GL1 GL2 GSCAD BGL GHS ECM MCMC

Stein’s loss 11.604 18.088 11.541 125.138 3.985 12.467 4.827
(0.401) (0.993) (0.396) (1.714) (0.403) (0.626) (0.457)

F norm 4.443 6.024 4.439 6.299 2.861 3.8 2.885
(0.088) (0.143) (0.076) (0.168) (0.209) (0.126) (0.182)

TPR 1 1 1 1 .975 1 0.983
(0) (0) (0) (0) (.173) (0) (0.014)

FPR 0.066 0.016 0.998 0.099 0.0002 0.084 0.000
(0.004) (0.002) (0.005) (0.002) (0.0001) (0.003) (0)

MCC 0.202 0.395 0.006 0.164 0.944 0.178 0.949
(0.006) (0.027) (0.001) (0.002) (0.16) (0.003) (0.02)

Avg CPU time 32.936 36.49 548.26 4492.67 1876.96 70.683 1927.943

Additional numerical results investigating the choice of starting values for the
GHS-LIKE-ECM algorithm is given in Appendix C. Performance measures cor-
responding to precision matrix estimates, estimated using the Bayesian structure
learning framework of Mohammadi and Wit [40], are presented in Appendix D,
Table 8. Except for the true positive rate in some cases, poor performance is
observed in all other metrics.

6. Protein–protein interaction network in B-cell lymphoma

We analyze Reverse Phase Protein Array (RPPA) data of 33 patients with
lymphoid neoplasm “Diffuse Large B-cell Lymphoma” to infer the protein inter-
action network. The data set consists of protein expressions for 67 genes across
12 pathways for all patients. As in simulations, we use 50% posterior credible
intervals for variable selection in GHS, BGL and GHS-LIKE-MCMC. The es-
timated sparsity (% of zero elements) and number of non zeros in the lower
triangle of the estimates are given in Table 5. The estimate of the global shrink-
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Table 4

Performance measures of precision matrix estimates over 50 data sets generated by
multivariate normal distributions with precision matrix Ω0 (Hubs and Cliques positive

structures), where n = 120 and p = 200. All other abbreviations and definitions follow from
Table 1.

Hubs
180 nonzero pairs out of 19900

nonzero elements = 0.25
GL1 GL2 GSCAD BGL GHS ECM MCMC

Stein’s loss 12.407 15.243 12.331 123 11.692 12.825 12.355
(0.491) (0.819) (0.465) (1.31) (0.781) (0.623) (0.772)

F norm 4.594 5.3 4.583 7.129 3.763 4.209 3.868
(0.01) (0.152) (0.084) (0.16) (0.132) (0.107) (0.127)

TPR 0.99 0.976 1 0.991 0.779 0.986 0.792
(0.007) (0.137) (0) (0.006) (0.034) (0.009) (0.034)

FPR 0.065 0.024 0.999 0.119 0.001 0.066 0.002
(0.005) (0.006) (0.001) (0.003) (0.0003) (0.003) (0)

MCC 0.336 0.515 0.01 0.248 0.82 0.332 0.804
(0.015) (0.043) (0.003) (0.003) (0.024) (0.006) (0.025)

Avg CPU time 17.847 19.917 517.33 4499.30 1870.57 74.808 1902.72
Cliques positive

60 nonzero pairs out of 19900
nonzero elements = 0.75

GL1 GL2 GSCAD BGL GHS ECM MCMC
Stein’s loss 14.523 17.262 14.477 126.487 3.797 13.512 4.951

(0.339) (0.692) (0.333) (1.41) (0.35) (0.522) (0.410)
F norm 7.59 8.553 7.596 7.936 2.733 4.248 3.009

(0.1) (0.115) (0.091) (0.109) (0.181) (0.142) (0.177)
TPR 1 1 1 1 1 1 1

(0) (0) (0) (0) (0) (0) (0)
FPR 0.065 0.024 0.991 0.115 0.0004 0.08 0.001

(0.005) (0.004) (0.007) (0.002) (0.0001) (0.002) (0)
MCC 0.205 0.335 0.01 0.15 0.959 0.184 0.899

(0.007) (0.028) (0.002) (0.002) (0.19) (0.003) (0.022)
Avg CPU time 23.768 25.3 880.46 4497.97 1872.55 80.652 1929.587

Table 5

Percentage of zeros (% Sparsity) and number of non-zero entries (NNZ) in the lower
triangle of the precision matrix estimate of RPPA data for the competing approaches.

MCMC ECM GHS BGL GL1 GL2 GSCAD
% Sparsity 95.66 88.6 91.59 73.72 69.88 73.67 9.05 × 10−4

NNZ 96 252 186 581 666 582 2209

age parameter for GHS-LIKE-ECM corresponding to (n, p) = (33, 67), as found
via solving equation (3.7) is a = 0.0519. We note that the GHS-LIKE-MCMC
gives the sparsest estimate, almost 4% sparser than the GHS. This is consistent
with prior studies that found robust gene networks are typically sparse [33].
As in the simulations, GSCAD performs the worst. To compare with a prior
analysis of the same data set, we use the PRECISE framework of Ha et al. [25].
This method can infer directed edges, but we ignore the directionality since we
are interested in interactions and not causation. The proportions of edges in the
estimates that ‘agree’ (inferred by the estimate and the PRECISE framework)
and ‘do not agree’ (inferred by the estimate, but not by the PRECISE frame-
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Table 6

Proportion of edges that ‘agree’ (AE) and ‘do not agree’ (NE) with the edges inferred using
the PRECISE framework.

MCMC ECM GHS BGL GL1 GL2 GSCAD
AE 0.275 0.412 0.325 0.575 0.638 0.6 1
NE 0.034 0.101 0.074 0.247 0.284 0.247 0.984

work), are presented in Table 6. Protein networks realized from the estimates
are presented in Figure 3. It can be seen that the GHS-LIKE-MCMC has the
sparsest estimate among the methods that allow for interaction across all pro-
teins, unlike the PRECISE framework that ignores interactions among proteins
in different pathways, which may not be biologically justifiable.

7. Proofs of main results

7.1. Proof of Theorem 4.6

We use the general theory of posterior convergence rate as outlined in The-
orem 2.1 of [24]. We also refer to several auxiliary lemmas from Appendix B
throughout the proof. We need to show the following:

(i) the prior concentration rate of Kullback–Leibler ε2
n-neighborhoods is at

least exp(−cnε2
n) for some constant c > 0,

(ii) for a suitably chosen sieve of densities Pn, the εn-metric entropy of Pn is
bounded by a constant multiple of nε2

n,
(iii) the probability of the complement of the above sieve is exponentially small,

that is, Π(Pc
n) ≤ exp(−c′nε2

n), for some constant c′ > 0.

The above three parts together give the posterior convergence rate εn with
respect to the Hellinger distance on the space of densities of the precision ma-
trix. Owing to the intrinsic relationship between the Hellinger distance and the
Frobenius distance for precision matrices as given by Lemma A.1 of [3], we get
the desired posterior convergence rate.

(i) Prior concentration We first define B(pΩ0 , εn), the ε2
n-neighborhoods of

the true density in the Kullback–Leibler sense. For

K(p1, p2) =
∫

p1 log(p1/p2), V (p1, p2) =
∫

p1 log2(p1/p2),

this is defined as B(pΩ0 , εn) = {pΩ: K(pΩ0 , pΩ) ≤ ε2
n, V (pΩ0 , pΩ) ≤ ε2

n}. For
Ω0 ∈ U(ε0, s), Ω ∈ M+

p (L), let d1, . . . , dp denote the eigenvalues of
Ω−1/2

0 ΩΩ−1/2
0 . Then, using Lemma B.1, we have,

K(pΩ0 , pΩ) = −1
2

p∑
i=1

log di − 1
2

n∑
i=1

(1 − di),

V (pΩ0 , pΩ) = 1
2

n∑
i=1

(1 − di)2 + K(pΩ0 , pΩ)2. (7.1)
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Fig 3. (a), (b), (c) and (d) correspond to RPPA networks for GHS-LIKE-ECM, GHS-LIKE-
MCMC, GHS and PRECISE. The nodes are numbered from 1 to 67, which are proteins. The
map between node numbers and protein names is given in the Appendix E, Table 10.

Note that
∑n

i=1(1−di)2 = ‖Ip −Ω−1/2
0 ΩΩ−1/2

0 ‖2
2, so that, when the expression

‖Ip − Ω−1/2
0 ΩΩ−1/2

0 ‖2
2 is small, we have, max1≤i≤p |1 − di| < 1; see [3]. This

gives, using (7.1),

K(pΩ0 , pΩ) = −1
2

p∑
i=1

log di − 1
2

n∑
i=1

(1 − di) �
n∑

i=1
(1 − di)2,

V (pΩ0 , pΩ) �
n∑

i=1
(1 − di)2.
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Observe that,
n∑

i=1
(1 − di)2 = ‖Ip − Ω−1/2

0 ΩΩ−1/2
0 ‖2

2 = ‖Ω−1/2
0 (Ω − Ω0)Ω−1/2

0 ‖2
2

≤ ‖Ω−1
0 ‖2

2‖Ω − Ω0‖2
2 ≤ ε−2

0 ‖Ω − Ω0‖2
2.

Hence, for a sufficiently small constant c1 > 0, we have,

Π
(
B(p0, εn)

)
≥ Π{‖Ω − Ω0‖2 ≤ c1εn} ≥ Π{‖Ω − Ω0‖∞ ≤ c1εn/p}.

The proposed prior on Ω has a bounded spectral norm. However, such a con-
straint can only increase the prior concentration, since Ω0 ∈ U(ε0, s), ε0 < L.
Hence, we may pretend component-wise independence of the elements of Ω,
so that the above expression can be simplified as products of marginal prior
probabilities. We have,

Π(‖Ω − Ω0‖∞ ≤ c1εn/p) � (c1εn/p)(p+s)
∏

{(i,j):ωij,0=0}
π(|ωij | ≤ c1εn/p)

≥ (c1εn/p)(p+s) min
{(i,j):ωij,0=0}

{
π(|ωij | ≤ c1εn/p)

}(p
2)−s

.

Note that, from equation (B.1) in Lemma B.2, we have, for all 1 ≤ i, j ≤ p,

{
π(|ωij | ≤ c1εn/p)

}(p
2)−s ≥

{
1 − p−b′

1
}(p

2)−s → 1.

Thus, Π(‖Ω − Ω0‖∞ ≤ c1εn/p) � (c1εn/p)(p+s). The prior concentration rate
condition thus gives, (p + s)(log p + log(1/εn)) � nε2

n, so as to yield εn =
n−1/2(p + s)1/2(log n)1/2.

(ii) Choosing the sieve and controlling metric entropy We now care-
fully choose a sieve in the space of prior densities to control its Hellinger metric
entropy. Consider the sieve Pn such that the maximum number of elements of
Ω exceeding δn = εn/pν , ν > 0 is at most r̄n, and the absolute values of the
entries of Ω are at most B. Formally, the sieve is thus given by,

Pn =
{

Ω ∈ M+
p (L):

∑
j,k

1l(|ωjk| > δn) ≤ r̄n, ‖Ω‖∞ ≤ B

}
,

where δn = εn/pν and some sufficiently large B > 0. We shall choose B in such
a way that the metric entropy condition is satisfied. Note that, for Ω1, Ω2 ∈
M+

p (L), ‖Ω1 −Ω2‖2
2 ≤ p2‖Ω1 −Ω2‖2

∞, so that, if ‖Ω1 −Ω2‖2
∞ ≤ ε2

n/p2ν , where
ν is such that B ≤ pν−1, we have, ‖Ω1 − Ω2‖2

2 ≤ ε2
n/p2(ν−1). The εn/pν-metric

entropy w.r.t. the L∞-norm is given by

log

⎧⎨
⎩
(

Bpν

εn

)p r̄n∑
j=1

(
Bpν

εn

)j((p
2
)

j

)⎫⎬
⎭
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= log
{(

Bpν

εn

)p}
+ log

⎧⎨
⎩

r̄n∑
j=1

(
Bpν

εn

)j((p
2
)

j

)⎫⎬
⎭

≤ log
{(

Bpν

εn

)p}
+ log

{
r̄n

(
Bpν

εn

)r̄n
(

p +
(

p
2
)

r̄n

)}

� (r̄n + p)
(
log p + log B + log(1/εn)

)
.

Choosing r̄n ∼ k1nε2
n/ log n, k1 > 0, and B ∼ k2nε2

n, k2 > 0, the above metric
entropy is bounded by a constant multiple of nε2

n. Since ‖Ω1‖(2,2) ≤ p‖Ω1‖∞ ≤
pB ≤ pν , and h2(p1, p2) ≤ p2‖Ω1‖2

(2,2)‖Ω1 − Ω2‖2
∞, the εn-metric entropy with

respect to the Hellinger distance is also bounded by a constant multiple of nε2
n.

Thus, the rate εn obtained via the prior concentration rate calculation satisfies
the metric entropy condition as well.

(iii) Controlling probability of the complement of the sieve The task
of controlling the probability of the complement of the sieve can further be
divided into two sub-parts. Note that,

Π
(
Pc

n

)
≤ Π(N ≥ r̄n + 1) + Π(‖Ω‖∞ > B).

We will calculate the probabilities in the right-hand side of the above display
under an unconstrained case, and then take care of the truncation used in the
prior for Ω, given by Ω ∈ M+

p (L), by finding a suitable lower bound for the
event {0 < L−1 < ‖Ω‖(2,2) < L < ∞}. Let us denote the prior under the
unconstrained case by Π∗.

Define N = #{(i, j): |ωij | > δn}. Note that, N ∼ Bin(p∗
n, νn), p∗

n =
(

p
2
)
, νn =

Pr(|ωij | > δn). Using results on bounding the Binomial CDF as in [50], we have,

Π∗(N ≥ r̄n + 1) ≤ 1 − Φ
{(

2p∗
nH
[
νn, r̄n/p∗

n

])1/2}
≤ (2π)−1/2(2p∗

nH
[
νn, r̄n/p∗

n

])−1/2 exp
{

−p∗
nH
[
νn, r̄n/p∗

n

]}
,

where

p∗
nH
[
νn, r̄n/p∗

n

]
= r̄n log

(
r̄n

p∗
nνn

)
+
(
p∗

n − r̄n

)
log
(

p∗
n − r̄n

p∗
n − p∗

nνn

)
.

It suffices to prove that p∗
nH[νn, r̄n/p∗

n] ≥ O(nε2
n). We have,

p∗
nH
[
νn, r̄n/p∗

n

]
≈ r̄n log

(
r̄n

pnνn

)
+
(
p2

n − r̄n

)
log
(

p2
n − r̄n

p2
n − p2

nνn

)
.

For the first term on the RHS above, we have, r̄n log{r̄n/(pnνn)} ≥ r̄n log r̄n +
b′

1r̄n log pn, since νn ≤ p
−b′

1
n vide (B.1) in Lemma B.2. Note that r̄n log p ∼

r̄n log n � nε2
n, so as to get r̄n log{r̄n/(pnνn)} ≥ nε2

n. For the second term, we
have, (p2

n − r̄n) log{(p2
n − r̄n)/(p2

n − p2
nνn)} � r̄n(1 − r̄n/p2

n) = o(nε2
n). Hence,

we get, p∗
nH[νn, r̄n/p∗

n] ≥ O(nε2
n), which implies,

Π∗(N ≥ r̄n + 1) ≤ exp
{

−C ′nε2
n

}
, (7.2)
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for some C ′ > 0. From (B.2) in Lemma B.2, for the choice of B ∼ k2nε2
n as

outlined in the metric entropy condition above, we have,

Π∗(‖Ω‖∞ > B) ≤ 2p2 exp
(
−k2nε2

n

)
. (7.3)

Combining equations (7.2) and (7.3), we get, for a suitable constant c3 > 0,

Π∗(N ≥ r̄n + 1) + Π∗(‖Ω‖∞ > B) � exp
(
−c3nε2

n

)
. (7.4)

Combining (7.4) and (B.5), we get, for a suitable constant c4 > 0,

Π
(
Pc

n

)
= Π∗(Pc

n)
Π(Ω ∈ M+

p (L))
� exp

(
−c3nε2

n

)
L−p exp

(
C ′

1p
)

= exp
(
−c3nε2

n − p log L + C ′
1p
)

� exp
(
−c4nε2

n

)
.

Hence, the complement of the chosen sieve has exponentially small prior prob-
ability. Thus, εn = n−1/2(p + s)1/2(log n)1/2 is the posterior convergence rate
and the result is established.

7.2. Proof of Corollary 4.7

The proof of this result is exactly similar to that of Theorem 4.6. The proof
of the latter relies on Lemma B.2 and Lemma B.5 that are specific to the
graphical horseshoe-like prior, and the corollaries given by Corollary B.3 and
Corollary B.6 are respectively their counterparts corresponding to the graphical
horseshoe prior. The utilization of the general lemma on Kullback–Leibler dis-
tance computations as outlined in Lemma B.1 remains identical in the present
case.

7.3. Proof of Lemma 4.8

We will prove concavity by proving the second derivative is negative. By direct
calculations:
d2

dx2

(
pena(x)

)
= d2

dx2

(
− log log

(
1+ a

x2

))
=−2a((a + 3x2) log(1 + a/x2) − 2a)

x2(a + x2)2(log2(1 + a/x2))
.

(7.5)
Since the denominator of the RHS in (7.5) is always positive, we can investigate
the sign of the double derivative of the above penalty function by considering
only the numerator, and furthermore as a > 0, we need the following to hold to
prove concavity: (

a + 3x2) log
(
1 + a/x2)− 2a ≥ 0. (7.6)

Substituting log(1 + a/x2) by z, so that x2 = a/(exp(z) − 1), we have z ≥ 0,
and the RHS of (7.6) is given by,
(
a + 3x2) log

(
1 + a/x2)− 2a =

(
a + 3a

exp(z) − 1

)
z − 2a
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= a

(
3z + (z − 2)(exp(z) − 1)

exp(z) − 1

)

> a

(
z(1 + z)

exp(z) − 1

)
> 0, since exp(z) > 1 + z.

This proves the (strict) concavity of the graphical horseshoe-like penalty func-
tion.

7.4. Proof of Theorem 4.9

Consider the MAP estimator of the precision matrix corresponding to the graph-
ical horseshoe-like prior Ω̂MAP as outlined in Section 4.2. Define Δ = ((δij)) =
Ω − Ω0 such that ‖Δ‖2 = Mεn, M > 0 is a large constant. Here, Ω0 = ((ωij,0))
is the true precision matrix. The true covariance matrix is Σ0 = ((σij,0)), and
the natural estimator of the covariance is S = ((sij)). Consider Q(Ω) as defined
in (4.2). If we can show that for some small ε > 0,

P

(
sup

‖Δ‖2=Mεn

Q(Ω0 + Δ) < Q(Ω0)
)

≥ 1 − ε,

then there exists a local maximizer Ω̂ such that ‖Ω̂ − Ω0‖2 = OP (εn). We have,

Q(Ω) = l(Ω) −
∑
i<j

pen(ωij) = n

2 log det(Ω) − n

2 tr(SΩ) −
∑
i<j

pen(ωij)

= n

2

{
log det(Ω) − tr(SΩ) − 2

n

∑
i<j

pen(ωij)
}

= n

2 h(Ω), say.

Let us denote as (2/n) pen(ωij) as pn(ωij). This gives,

h(Ω0 + Δ) − h(Ω) = log det(Ω0 + Δ) − tr
(
S(Ω0 + Δ)

)
− log det(Ω0)

+ tr(SΩ0) −
∑
i<j

{
pn(ωij,0 + δij) − pn(ωij,0)

}
. (7.7)

By Taylor’s series expansion of logarithm of the determinant of a matrix, we
have,

log det(Ω0 + Δ) − log det(Ω0)

= tr(Σ0Δ) − vec(Δ)T

[∫ 1

0
(1 − ν)(Ω0 + νΔ)−1 ⊗ (Ω0 + νΔ)−1 dν

]
vec(Δ).

Plugging the above in (7.7), we have the expression for h(Ω0 + Δ) − h(Ω) as

tr
[
(Σ0 − S)Δ

]
− vec(Δ)T

[∫ 1

0
(1 − ν)(Ω0 + νΔ)−1 ⊗ (Ω0 + νΔ)−1 dν

]
vec(Δ)

−
∑
i<j

{
pn(ωij,0 + δij) − pn(ωij,0)

}
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= I + II + III, say. (7.8)

We shall now separately bound the three terms I, II, and III. For bounding I,
we have,

∣∣tr[(Σ0 − S)Δ
]∣∣ ≤

∣∣∣∣∑
i �=j

(σij,0 − sij)δij

∣∣∣∣+
∣∣∣∣∑

i

(σii,0 − sii)δii

∣∣∣∣. (7.9)

Using Boole’s inequality and Lemma B.7, we have, with probability tending to
one,

max
i �=j

|sij − σij,0| ≤ C1

(
log p

n

)1/2

.

Hence, the first term in the RHS of (7.9) is bounded by C1(log p/n)1/2‖Δ−‖1. By
Cauchy-Schwarz inequality and Lemma B.7, we have, with probability tending
to one,
∣∣∣∣∑

i

(σii,0 − sii)δii

∣∣∣∣ ≤
{∑

i

(σii,0 − sii)2
}1/2

‖Δ+‖2

≤ p1/2 max
1≤i≤p

|sii − σii,0|‖Δ+‖2

≤ C2

(
p log p

n

)1/2

‖Δ+‖2 ≤ C2

(
(p + s) log p

n

)1/2

‖Δ+‖2.

Thus, combining the bounds above, with probability approaching one, a bound
for expression I is,

I ≤ C1

(
log p

n

)1/2

‖Δ−‖1 + C2

(
(p + s) log p

n

)1/2

‖Δ+‖2. (7.10)

Now we proceed to find suitable bounds for expression II. Note that II is
upper bounded by the negative of the minimum of

vec(Δ)T

[∫ 1

0
(1 − ν)(Ω0 + νΔ)−1 ⊗ (Ω0 + νΔ)−1 dν

]
vec(Δ).

Using the result that min‖x‖2=1 xT Ax = eig1(A), we have,

min
{

vec(Δ)T

[∫ 1

0
(1 − ν)(Ω0 + νΔ)−1 ⊗ (Ω0 + νΔ)−1 dν

]
vec(Δ)

}

= ‖Δ‖2
2 eig1

[∫ 1

0
(1 − ν)(Ω0 + νΔ)−1 ⊗ (Ω0 + νΔ)−1 dν

]

≥ ‖Δ‖2
2

∫ 1

0
(1 − ν)eig2

1(Ω0 + νΔ)−1dν ≥ 1
2‖Δ‖2

2 min
0≤ν≤1

eig2
1(Ω0 + νΔ)−1

≥ 1
2 min

{
eig2

1(Ω0 + Δ)−1: ‖Δ‖2 ≤ Mεn

}
.



Graphical horseshoe-like prior–penalty dual 29

Note that, eig2
1(Ω0 +Δ)−1 = eig−2

p (Ω0 +Δ) ≥ (‖Ω0‖(2,2) +‖Δ‖(2,2))−2 ≥ ε2
0/2,

with probability tending to one. The last inequality follows from the fact that
‖Δ‖(2,2) ≤ ‖Δ‖2 = o(1). Hence, with probability tending to one, we have the
bound for expression II as

II ≤ −1
4ε2

0‖Δ‖2
2. (7.11)

Finally, we proceed to find suitable bounds for expression III. Let us denote
the set S = {(i, j): ωij,0 = 0, i < j}. This set comprises of the indices in the
uppper triangle of the true precision matrix that are exactly equal to zero.
The complement of S consists of the indices with non-zero entries in the uppper
triangle of the same. We can partition expression III (without the negative sign)
as∑

i<j

{
pn(ωij,0 + δij) − pn(ωij,0)

}
=
∑

(i,j)∈S

{
pn(ωij,0 + δij) − pn(ωij,0)

}
+

∑
(i,j)∈Sc

{
pn(ωij,0 + δij) − pn(ωij,0)

}

=
∑

(i,j)∈S

{
pn(δij) − pn(0)

}
+

∑
(i,j)∈Sc

{
pn(ωij,0 + δij) − pn(ωij,0)

}

>
M ′

n
+

∑
(i,j)∈Sc

{
pn(ωij,0 + δij) − pn(ωij,0)

}
.

The last inequality follows from the fact that pen(θ) → −∞ as |θ| → 0, and
hence the first term in the above expression is larger than M ′/n for some large
M ′ > 0. This implies:∑

i<j

{
pn(ωij,0 + δij) − pn(ωij,0)

}
>

∑
(i,j)∈Sc

{
pn(ωij,0 + δij) − pn(ωij,0)

}
.

By Taylor’s series expansion of pn(ωij + δij) around ωij,0(�= 0), we have,

pn(ωij + δij) − pn(ωij,0) = δijp′
n(ωij,0) + 1

2δ2
ijp′′

n(ωij,0)
(
1 + o(1)

)
.

Since −x ≤ |x|, we can write,

−
∑

(i,j)∈Sc

{
pn(ωij,0 + δij) − pn(ωij,0)

}

≤ max
{

|p′
n(ωij,0)|

} ∑
(i,j)∈Sc

|δij | + 1
2 max

{
|p′′

n(ωij,0)|
} ∑

(i,j)∈Sc

δ2
ij

(
1 + o(1)

)

≤ max
{

|p′
n(ωij,0)|

}
‖Δ−1‖1 + 1

2 max
{

|p′′
n(ωij,0)|

}
‖Δ−‖2

2
(
1 + o(1)

)
≤ s1/2 max

{
|p′

n(ωij,0)|
}

‖Δ‖2 + 1
2 max

{
|p′′

n(ωij,0)|
}

‖Δ‖2
2
(
1 + o(1)

)
. (7.12)
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Now, note that,

|p′
n(ωij,0)| = 2

n
|pen′(ωij,0)| = 2

n

2a/|ωij,0|3

(1 + a

ω2
ij,0

) log(1 + a

ω2
ij,0

)
.

Since (1+x) log(1+x) > x for x > −1, x �= 0, we have, |p′
n(ωij,0)| < 4/(n|ωij,0|).

We now arrive at a suitable bound for the double derivative of the penalty. Note
that, for θ �= 0,

pen′′(θ) = −
2a{(a + 3θ2) log(1 + a

θ2 ) − 2a}

θ6(1 + a

θ2 )2 log2(1 + a

θ2 )

≤ −
2a{(a + 3θ2

0) log(1 + a

θ2
0

) − 2a}

θ6(1 + a

θ2 )2 log2(1 + a

θ2 )
,

where θ0 = arg maxθ{−(a + 3θ2) log(1 + a/θ2)} = (ak)1/2, k = {exp(z0) −
1}−1, z0 ≈ 1.0356. Hence,

|pen′′(θ)| ≤
2a|(a + 3θ2

0) log(1 + a

θ2
0

) − 2a|

θ6(1 + a

θ2 )2 log2(1 + a

θ2 )

≤
2a|(a + 3θ2

0) log(1 + a

θ2
0

) − 2a|

θ6 a2

θ4

=
2|(a + 3θ2

0) log(1 + a

θ2
0

) − 2a|

aθ2

=
2|(a + 3ak) log(1 + a

ak
) − 2a|

aθ2 ≈ C3

θ2 ,

where C3 > 0 is a constant not depending on n or a. This gives,

|p′′
n(ωij,0)| = 2

n
|pen′′(ωij,0)| <

2C3

n min(i,j)∈Sc ω2
ij,0

.

Thus, expression III can be bounded as follows:

III ≤ s1/2‖Δ‖2
4

n min(i,j)∈Sc |ωij,0| + C3

n min(i,j)∈Sc ω2
ij,0

‖Δ‖2
2
(
1 + o(1)

)
. (7.13)

Combining Equations (7.10), (7.11), and (7.13), we have, with probability tend-
ing to one,

Q(Ω0 + Δ) − Q(Ω0)
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≤ C1

(
log p

n

)1/2

‖Δ−‖1 + C2

(
(p + s) log p

n

)1/2

‖Δ+‖2 − 1
4ε2

0‖Δ‖2
2

+ s1/2‖Δ‖2
4

n min(i,j)∈Sc |ωij,0| + C3

n min(i,j)∈Sc ω2
ij,0

‖Δ‖2
2
(
1 + o(1)

)

≤ C1

(
(p + s) log p

n

)1/2

‖Δ‖2 + C2

(
(p + s) log p

n

)1/2

‖Δ‖2 − 1
4ε2

0‖Δ‖2
2

+ s1/2‖Δ‖2
4

n min(i,j)∈Sc |ωij,0| + C3

n min(i,j)∈Sc ω2
ij,0

‖Δ‖2
2
(
1 + o(1)

)

≤ ‖Δ‖2
2

{
C1

(
(p + s) log p

n

)1/2

‖Δ‖−1
2 + C2

(
(p + s) log p

n

)1/2

‖Δ‖−1
2 − 1

4ε2
0

+ (p + s)1/2‖Δ‖−1
2

4
n min(i,j)∈Sc |ωij,0| + C3

n min(i,j)∈Sc ω2
ij,0

(
1 + o(1)

)}

= ‖Δ‖2
2

{
C1

M
+ C2

M
− 1

4ε2
0 + 4

(n log p)1/2 min(i,j)∈Sc |ωij,0|

+ C3

n min(i,j)∈Sc ω2
ij,0

(
1 + o(1)

)}
< 0,

for M sufficiently large, and owing to the fact that the last two terms inside
the bracket in the above display are o(1) as min(i,j)∈Sc |ωij,0| are bounded away
from zero. This completes the proof.

8. Concluding remarks

Our main contribution in this paper is twofold: first, we propose a fully analytical
prior–penalty dual termed the graphical horseshoe-like for inference in graphical
models, and second, we provide the first ever optimality results for both the
frequentist point estimate as well as the fully Bayesian posterior. Consequently,
we also establish the first Bayesian optimality results for the graphical horseshoe
prior of Li et al. [36]. Our simulation studies clearly establish that the family
of horseshoe based priors perform the best among state-of-the-art competitors
across a wide range of data generating mechanisms, and suggest a potential
trade-off between computational burden and statistical performance vis-à-vis
penalized likelihood and fully Bayesian procedures. Our analysis of the RPPA
data establishes the proposed approach as an effective regularizer of a gene
interaction network; useful for identifying the key interactions in the disease
etiology of cancer.

Although we focus on the estimation of Ω, two other important aspects of
network inference are edge selection and the associated uncertainty quantifica-
tion. Here we use posterior credible intervals for edge selection, but it might
be interesting to incorporate other methods that have been proposed for vari-
able selection with shrinkage priors, such as 2-means [8] or shrinkage factor
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thresholding [51], with appropriate modifications. On a related note, it will be
interesting to establish the Bayes risk and the oracle under 0 − 1 loss and we
conjecture that global-local shrinkage priors will attain such oracular risk with
suitable assumptions on the prior tails and the global shrinkage parameter. Fi-
nally, it will be worth investigating whether one can extend the methods for
generalized linear models, e.g. graphical models with exponential families as
node-conditional distributions [63]. It has been shown that while restricting the
response distribution to natural exponential families with quadratic variance
functions, shrinkage estimators enjoy certain optimality properties [62], and it
remains to be settled whether similar properties hold true for graphical models
as well.

Appendix A: The marginal graphical horseshoe-like prior and
implications for estimation algorithms

The graphical horseshoe-like prior on the individual off-diagonal elements ωij

has a nice Gaussian scale mixture representation as outlined in Section 2. How-
ever, the marginal prior on these elements are not horseshoe-like, owing to the
positive definite constraint on the precision matrix Ω. In this section, we argue
that the hierarchical representation based on the scale-mixtures induces the pro-
posed marginal prior on Ω and all the related marginal and conditional distribu-
tions are proper. Alongside this, we also argue that the intractable normalizing
constant in the marginal prior of Ω does not affect the conditional expectation
calculations for executing the expectation conditional maximization steps in our
computations.

The marginal prior on Ω given the global scale parameter a can be written
as,

π(Ω | a) = C(a)−1
∏
i<j

π(ωij | a)1M+
p

(Ω), (A.1)

where C(a) is the normalizing constant depending on a. Using the Gaussian
scale-mixture representation, we have a hierarchical representation of the above
prior as,

π(Ω | ν, a) = C(ν, a)−1
∏
i<j

π(ωij | νi,j , a)1M+
p

(Ω), (A.2)

where C(ν, a) is an intractable constant depending on ν and a. The prior on ν
is,

π(ν) ∝ C(ν, a)
∏
i<j

π(νij) = C2(a)−1C(ν, a)
∏
i<j

π(νij), (A.3)

where C2(a) is a constant such that

C2(a) =
∫

C(ν, a)
∏
i<j

π(νij) dν.
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The constant C(a) in (A.1) is finite because,

C(a) =
∫ ∏

i<j

π(ωij | a)1M+
p

(Ω) d(ωij)i≤j < 2K

∫ ∏
i<j

π(ωij | a) d(ωij)i<j < ∞,

where K < ∞ is such that |ωii| < K, (i = 1, . . . , p), since Ω is restricted to be
positive definite and hence the diagonal elements are finite. Also,

C(ν, a) =
∫ ∏

i<j

π(ωij | νi,j , a)1lM+
p

(Ω) d(ωij)i≤j

< 2K

∫ ∏
i<j

π(ωij | νi,j , a) d(ωij)i<j < ∞.

The induced marginal prior on Ω based on the hierarchical representation as in
(A.2) and (A.3) is,

π∗(Ω | a) = C2(a)−1
∏
i<j

π(ωij | a)1M+
p

(Ω).

Since
∫

π(Ω | a) dΩ =
∫

π∗(Ω | a) dΩ = 1, it immediately implies that C(a) =
C2(a). Thus, the intractable constant C(ν, a) in (A.2) and (A.3) cancels out in
the hierarchical representation, so as to arrive at the induced marginal prior
(A.1). The above results also establish that the priors π(Ω | a), π(Ω | ν, a), and
π(ν) are proper.

We now show that it suffices to consider the component-wise scale-mixture
representation of the horseshoe-like prior to find the conditional expectation of
the latent parameters νij in the expectation step (see equation (3.1)) of the
expectation conditional maximization algorithm. The conditional distribution
of ν given Ω and a can be written as,

π(ν | Ω, a) = π(Ω, ν | a)
π(Ω | a) = π(Ω | ν, a)π(ν)

π(Ω | a)

=
∏

i<j π(ωij | νij , a)
∏

i<j π(νij)1M+
p

(Ω)∏
i<j π(ωij | a)1M+

p
(Ω) .

This gives,

π(νij | Ω, a) = π(ωij | νij , a)π(νij)
π(ωij | a) 1M+

p
(Ω).

Thus, the expectation step (3.1) holds given that the conditional maximization
step produces positive definite estimates of Ω in each iteration.

Appendix B: Auxiliary lemmas

Lemma B.1. Let pk denote the density of a Nd(0, Σk) random variable, k =
1, 2. Denote the corresponding precision matrices by Ωk = Σ−1

k , k = 1, 2. Then,

Ep1

{
log p1

p2
(X)

}
= 1

2
{

log det Ω1 − log det Ω2 + tr
(
Ω−1

1 Ω2
)

− d
}

,
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Varp1

{
log p1

p2
(X)

}
= 1

2 tr
{(

Ω−1/2
1 Ω2Ω−1/2

1 − Id

)2}
.

Proof. Let us define A = Ω−1/2
1 Ω2Ω−1/2. Note that, for a random variable

Z ∼ Nd(0, Σ), we have,

E
(
ZT ΛZ

)
= tr(ΛΣ), Var

(
ZT ΛZ

)
= 2 tr(ΛΣΛΣ).

Then, for X ∼ Nd(0, Σ1),

Ep1

{
log p1

p2
(X)

}
= 1

2
{

log det Ω1 − log det Ω2 + Ep1

(
XT (Ω2 − Ω1)X

)}
= 1

2
{

log det Ω1 − log det Ω2 + tr
[
(Ω2 − Ω1)Σ1

]}
= 1

2
{

log det Ω1 − log det Ω2 + tr
(
Ω−1

1 Ω2
)

− d
}

.

Also,

Varp1

{
log p1

p2
(X)

}
= Ep1

[
log p1

p2
(X) − Ep1

{
log p1

p2
(X)

}]2

= 1
4Ep1

{
XT (Ω2 − Ω1)X − Ep1

(
XT (Ω2 − Ω1)X

)}2

= 1
4 Varp1

{
XT (Ω2 − Ω1)X

}
= 1

42 tr
{

(Ω2 − Ω1)Ω−1
1 (Ω2 − Ω1)Ω−1

1
}

= 1
2 tr
{(

Ω−1/2
1 Ω2Ω−1/2

1 − Id

)2}
.

Lemma B.2. Consider the horseshoe-like prior π(θ | a). Then, for the global
shrinkage parameter a satisfying the condition a1/2 < n−1/2p−b1(s log p)1/2 for
some sufficiently large constant b1 > 0, and a constant ν > 0, we have,

1 −
∫ εn/pν

−εn/pν

π(θ | a) dθ ≤ p−b′
1 , (B.1)

for some constants ν, b′
1 > 0. Additionally, for some sufficiently large constant

B ∼ b2nε2
n, if the global scale parameter satisfies the condition a/B2 < p−2b3

for some constant b3 > 0, we have,

− log
(∫

|θ|>B

π(θ | a) dθ

)
� B. (B.2)

Proof. We have,

1 −
∫ εn/pν

−εn/pν

π(θ | a) dθ =
∫

|θ|>εn/pν

π(θ | a) dθ
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=
∫

|θ|>εn/pν

1
2πa1/2 log

(
1 + a

θ2

)
dθ

= 2
∫ ∞

εn/pν

1
2πa1/2 log

(
1 + a

θ2

)
dθ

≤
∫ ∞

εn/pν

1
πa1/2

a

θ2 dθ = 2
π

a1/2pν

εn
.

Note that, for a1/2 < n−1/2p−b1(s log p)1/2, the right hand side of the display
above is bounded by p−b′

1 , for 0 < b′
1 ≤ b1 − ν. This proves the first part of the

lemma. For the second part, note that,
∫

|θ|>B

π(θ | a) dθ ≤ 2
π

a1/2

B
.

Hence, for the condition a1/2/B < p−b3 , we have,∫
|θ|>B

π(θ | a) dθ � p−b3 = exp(−b3 log p) � exp
(
−b2nε2

n

)
,

which implies that, for B ∼ b2nε2
n,

− log
(∫

|θ|>B

π(θ | a) dθ

)
� B.

This completes the proof.

Corollary B.3. The above lemma holds true under the same conditions on the
global shrinkage parameter for the horseshoe prior as well.

Proof. Note that the prior density of the horseshoe prior satisfies

pHS(θ | a) <
2

a1/2(2π)3/2 log
(

1 + 2a

θ2

)
, (B.3)

which implies that, retracing the steps in the proof of Lemma B.2 above,
∫

|θ|>t

pHS(θ | a) dθ � a1/2

t
. (B.4)

The result thus follows immediately.

We now present the Gershgorin Circle Theorem [10], that will be required in
the proof of our main result on posterior convergence rate. The actual theorem
holds for complex matrices, but we only need the result for real matrices.

Theorem B.4 (Gershgorin Circle Theorem for real matrices). Let A = ((aij)) be
a p-dimensional real-valued matrix with real eigenvalues. Define Ri =

∑
j �=i |aij |,
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i = 1, . . . , p, the row sums of the absolute entries of A excluding the diagonal
element. Then, each eigenvalue of A is in at least one of the disks

Di(A) = {z: |z − aii| ≤ Ri}, 1 ≤ i ≤ p.

Equivalently, the p eigenvalues of A are contained in the region in the real plane
determined by

D(A) =
p⋃

i=1
Di(A).

Proof. The eigenvalue equation for A is given by Ax = λx, where λ is an
eigenvalue of A and x = (x1, . . . , xp)T ∈ R

p is the corresponding non-zero
eigenvector. Let us consider 1 ≤ m ≤ p such that |xm| = ‖x‖∞. Then, the
above eigenvalue equation implies that,

∑p
j=1 amjxj = λxm. Rearranging the

terms, we get,
∑

j �=m amjxj = (λ − amm)xm, which implies that,

|λ − amm||xm| =
∣∣∣∣∑
j �=m

amjxj

∣∣∣∣ ≤
∑
j �=m

|amj ||xj | ≤ |xm|
∑
j �=m

|amj |.

Hence, for any eigenvalue λ of A, we have, |λ−amm| ≤
∑

j �=m |amj |. Thus, each
of the p eigenvalues of A must lie in at least one of the disks Di(A) as defined
in the theorem above. This completes the proof.

Lemma B.5. For the graphical horseshoe-like prior (2.2), under the assumption
that the global scale parameter satisfies the condition a1/2 < L−1n−1/2p−(2+u) ×
(s log p)1/2, u > 0, the prior probability owing to the constraint Ω ∈ M+

p (L) has
the lower bound

Π
(
Ω ∈ M+

p (L)
)
� Lp exp

(
−C ′

1p
)
, (B.5)

for some suitable constant C ′
1 > 0.

Proof. We shall use the Gershgorin Circle theorem presented in Theorem B.4.
Each of the eigenvalues of Ω, given by eig1(Ω) ≤ · · · ≤ eigp(Ω), lies in the
interval

⋃p
j=1[ωjj ∓

∑p
k=1,k �=j |ωkj |]. This implies,

Π
(
Ω ∈ M+

p (L)
)

≥ Π
(

min
j

(
ωjj −

p∑
k=1,k �=j

|ωkj |
)

> 0, Ω ∈ M+
p (L)

)
.

For the constraint that minj(ωjj −
∑p

k=1,k �=j |ωkj |) > 0,

eigp(Ω) = ‖Ω‖(2,2) ≤ ‖Ω‖(1,1) = max
j

(
ωjj +

p∑
k=1,k �=j

|ωkj |
)

≤ 2 max
j

ωjj ,

and,

eig1(Ω) ≥ min
j

(
ωjj −

p∑
k=1,k �=j

|ωkj |
)

.
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Thus,

Π
(
Ω ∈ M+

p (L)
)

≥ Π
(

L−1 ≤ min
j

(
ωjj −

p∑
k=1,k �=j

|ωkj |
)

≤ 2 max
j

ωjj ≤ L

)

≥ Π
(

L−1 ≤ min
j

(
ωjj − L−1) ≤ 2 max

j
ωjj ≤ L | max

k �=j
|ωkj |

< (Lp)−1
)

Π
(

max
k �=j

|ωkj | < (Lp)−1
)

= Π
(

L−1 ≤ min
j

(
ωjj − L−1) ≤ 2 max

j
ωjj ≤ L

)
Π
(

max
k �=j

|ωkj | < (Lp)−1
)

.

(B.6)

Note that,

Π
{

L−1 ≤ min
j

(
ωjj − L−1) ≤ 2 max

j
ωjj ≤ L

}
≥ Π

(
2L−1 ≤ ωjj ≤ L/2, 1 ≤ j ≤ p

)
=

p∏
j=1

Π
(
2L−1 ≤ ωjj ≤ L/2

)
∼ Lp. (B.7)

Also, from (B.1) in Lemma B.2, we get,

Π
(

max
k �=j

|ωkj | < (Lp)−1
)

=
∏
k �=j

{
1 − Π

(
|ωkj | > (Lp)−1)}

≥
(
1 − C0a1/2Lp

)p2

≥ exp
(
−C1a1/2Lp3)

≥ exp
(
−C ′

1p
)
. (B.8)

The last inequality follows from the fact that a1/2 <L−1n−1/2p−(2+u)(s log p)1/2,
u > 0, and that s log p = O(n). Therefore, combining (B.6), (B.7) and (B.8), we
get, Π(Ω ∈ M+

p (L)) � Lp exp(−C ′
1p), thus completing the proof.

Corollary B.6. The above lemma holds true for the graphical horseshoe prior
as well under the same conditions on the global shrinkage parameter.

Proof. The proof of this result is exactly similar to that of Lemma B.5. The
lower bound on the off-diagonal entries follows immediately from Corollary B.3.
The rest of the arguments remain intact.

Lemma B.7 (Lemma A.3 in Bickel and Levina [9]). Let Zi
iid∼ Np(0, Σ),

eigp(Σ) ≤ ε0 < ∞. Then, if Σ = ((σij)),

Pr
[∣∣∣∣∣

n∑
i=1

ZijZik − σjk

∣∣∣∣∣ ≥ nt

]
≤ c1 exp

(
−c2nt2), |t| ≤ δ,

where c1, c2 and δ depend on ε0 only.
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Appendix C: Diagnostics: choice of starting values for the ECM
algorithm and trace plots for the ECM and MCMC
algorithms

Since the likelihood surface under the GHS-Like prior is likely highly multi-
modal, and the ECM algorithm is only guaranteed to find a local mode, we
provide additional numerical results investigating the effect of starting values
on the estimates. Given a true precision matrix Ω0 and (n, p) = (50, 100) we
generate 50 data sets, and perform estimation with 1, 10, 20 and 50 randomly
chosen starting points. The accuracy measures of these estimates are repre-
sented as 1*, 10*, 20* and 50* in the Table 7. In general, we observe that the
estimates from 50 different starting points perform the best in terms of Stein’s
loss, Frobenius norm, and TPR; while being slightly worse in terms of FPR and
MCC.

In the presence of a highly multimodal likelihood surface, it is safe to believe
that true signal which might be missed for any given starting point. Hence

Table 7

Mean (sd) Stein’s loss, Frobenius norm, true positive rates and false positive rates,
Matthews Correlation Coefficient of precision matrix estimates for GHS-LIKE-ECM over
50 data sets with p = 100 and n = 50. The best performer in each row is shown in bold.

Average CPU time is in seconds.
Random Hubs

nonzero pairs 35/4950 90/4950
nonzero elements ∼ −Unif(0.2, 1) 0.25
p = 100, n = 50 1* 10* 20* 50* 1* 10* 20* 50*
Stein’s loss 9.624 8.503 8.196 8.302 12.563 10.494 10.408 10.268

(0.915) (0.801) (0.749) (0.749) (0.83) (0.885) (0.831) (0.81)
F norm 3.674 3.344 3.286 3.279 4.166 3.672 3.645 3.616

(0.237) (0.191) (0.191) (0.178) (0.197) (0.188) (0.171) (0.174)
TPR 0.703 0.816 0.814 0.825 0.551 0.756 0.766 0.772

(0.044) (0.042) (0.046) (0.039) (0.049) (0.053) (0.054) (0.053)
FPR 0.021 0.054 0.058 0.063 0.015 0.038 0.041 0.044

(0.002) (0.004) (0.004) (0.005) (0.002) (0.004) (0.004) (0.004)
MCC 0.329 0.271 0.26 0.253 0.464 0.435 0.426 0.419

(0.024) (0.014) (0.013) (0.011) (0.034) (0.027) (0.025) (0.023)
Avg CPU time 6.735 · · · · · · · · · 5.378 · · · · · · · · ·

Cliques negative Cliques positive
nonzero pairs 30/4950 30/4950
nonzero elements -0.45 0.75
p = 100, n = 50 1* 10* 20* 50* 1* 10* 20* 50*
Stein’s loss 9.149 7.417 7.276 7.289 13.896 9.156 8.719 8.65

(0.774) (0.673) (0.673) (0.67) (1.032) (0.83) (0.822) (0.848)
F norm 3.746 3.231 3.18 3.174 5.453 4.178 3.995 3.974

(0.265) (0.263) (0.215) (0.255) (0.245) (0.241) (0.268) (0.261)
TPR 0.911 0.995 0.999 1 0.741 0.997 0.997 0.997

(0.029) (0.012) (0.005) (0) (0.048) (0.001) (0.01) (0.01)
FPR 0.021 0.053 0.058 0.064 0.023 0.051 0.055 0.059

(0.002) (0.004) (0.005) (0.005) (0.002) (0.003) (0.004) (0.005)
MCC 0.433 0.312 0.3 0.287 0.344 0.318 0.308 0.298

(0.016) (0.013) (0.012) (0.011) (0.024) (0.009) (0.01) (0.01)
Avg CPU time 5.08 · · · · · · · · · 5.088 · · · · · · · · ·
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Fig 4. Top and bottom panels show the plot of log-likelihood (LLH) vs. Iterations when the
precision matrix was estimated for a representative data set using GHS-LIKE-ECM and GHS-
LIKE-MCMC procedures respectively, for ‘Hubs’ structure when n = 120, p = 100. The inset
plot in the bottom panel shows the zoomed-in version of the plot for the last 3000 samples.

averaging across different starting values leads to an improvement in terms of
most metrics and this what we choose to follow in our examples. Nevertheless, it
is reassuring to see the final results are not too sensitive to the choice of starting
values.

Further, Figure 4 shows a sample trace plot of log-likelihood when the preci-
sion matrix was estimated for a representative data set using GHS-LIKE-ECM
and GHS-LIKE-MCMC. It is apparent that convergence to a local maximum (for
ECM) and to the stationary distribution (for MCMC) occur relatively quickly.
Similar behavior was observed in all other settings.

Appendix D: Additional simulation results

Performance measures of precision matrix estimates, estimated using Bayesian
structure learning framework of Mohammadi and Wit [40], is presented in Ta-
ble 8. Comparison between performance measures of precision matrix estimates,
estimated using graphical horseshoe-like MCMC, for a representative simulation
setting, over 50 and 100 replications, is presented in Table 9.
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Table 8. Mean (sd) Stein’s loss, Frobenius norm, true positive rates and false positive rates, Matthews Correlation Coefficient of precision matrix
estimates over 50 data sets generated by multivariate normal distributions with precision matrix Ω0. The precision matrix is estimated Bayesian
structure learning framework of Mohammadi and Wit [40], using the R-package BDgraph [41]. Average CPU time is in seconds.

n = 120, p = 100 n = 120, p = 200
Structure of Ω0 Structure of Ω0

Hubs Random Cliques pos. Cliques neg. Hubs Random Cliques pos. Cliques neg.
Stein’s loss 12.227 10.119 9.58 9.255 142.629 139.66 142.537 148.101

(0.965) (1.053) (0.893) (0.788) (1.744) (2.746) (2.423) (2.407)
F norm 5.138 4.816 4.708 4.778 9.599 10.278 10.71 9.643

(0.264) (0.313) (0.3) (0.295) (0.253) (0.339) (0.412) (0.307)
TPR 0.954 0.943 0.998 0.973 0.754 0.819 0.864 0.784

(0.018) (0.038) (0.008) (0.029) (0.03) (0.071) (0.05) (0.043)
FPR 0.218 0.193 0.195 0.183 0.124 0.123 0.117 0.113

(0.007) (0.007) (0.005) (0.006) (0.002) (0.001) (0.002) (0.002)
MCC 0.233 0.158 0.156 0.157 0.178 0.08 0.126 0.116

(0.008) (0.008) (0.003) (0.007) (0.009) (0.008) (0.009) (0.008)
Avg CPU time 44.942 50.749 37.634 33.605 222.083 251.553 241.138 226.941
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Table 9

Mean (sd) Stein’s loss, Frobenius norm, true positive rates and false positive rates, Matthews
Correlation Coefficient of precision matrix estimates over 50 data sets (50 replications) and

100 data sets (100 replications) generated by multivariate normal distributions with
precision matrix Ω0 (Hub structure), where n = 120 and p = 100. The precision matrix is

estimated by graphical horseshoe-like MCMC. Average CPU time is in seconds.
50 replications 100 replications

Stein’s loss 5.121 5.12
(0.467) (0.493)

F norm 2.574 2.576
(0.131) (0.134)

TPR 0.846 0.84
(0.039) (0.04)

FPR 0.003 0.003
(0.001) (0.001)

MCC 0.832 0.826
(0.03) (0.031)

Avg CPU time 328.659 327.53

Appendix E: Additional details on the proteomics data

Table 10 provides the map between the node numbers and protein names in
Figure 3.
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Table 10. Map between node numbers and protein names in Figure 3.
1 BAK1 11 MYH11 21 PCNA 31 TP53 41 ATK1S1 51 MAPK14 61 MTOR

2 BAX 12 RAB11A,
RAB11B 22 FOXM1 32 RAD50 42 TSC2 52 RPS6KA1 62 RPS6

3 BID 13 CTNNB1 23 CDH1 33 RAD51 43 INPP4B 53 YBX1 63 RB1
4 BCL2L11 14 GADPH 24 CLDN7 34 XRCC1 44 PTEN 54 EGFR 64 ESR1
5 CASP7 15 RBM15 25 TP53BP1 35 FN1 45 ARAF 55 ERBB2 65 PGR
6 BAD 16 CDK1 26 ATM 36 CDH2 46 JUN 56 ERBB3 66 AR
7 BCL2 17 CCNB1 27 CHEK1 37 COL6A1 47 RAF1 57 SHC1 67 GATA3
8 BCL2L1 18 CCNE1 28 CHEK2 38 SERPINE1 48 MAPK8 58 SRC

9 BIRC2 19 CCNE2 29 XRCC5 39 ATK1, ATK2,
ATK3 49 MAPK1,

MAPK3 59 EIF4EBP1

10 CAV1 20 CDKN1B 30 MRE11A 40 GKS3A,
GKS3B 50 MAP2K1 60 RPS6KB1
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