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Abstract—In an era increasingly affected by natural and human-4

caused disasters, the role of social media in disaster communication5

has become ever more critical. Despite substantial research on6

social media use during crises, a significant gap remains in detecting7

crisis-related misinformation. Detecting deviations in information8

is fundamental for identifying and curbing the spread of misinfor-9

mation. This study introduces a novel Information Switching Pat-10

tern Model to identify dynamic shifts in perspectives among users11

who mention each other in crisis-related narratives on social media.12

These shifts serve as evidence of crisis misinformation affecting13

user-mention network interactions. The study utilizes advanced14

natural language processing, network science, and census data to15

analyze geotagged tweets related to compound disaster events in16

Oklahoma in 2022. The impact of misinformation is revealed by17

distinct engagement patterns among various user types, such as18

bots, private organizations, non-profits, government agencies, and19

news media throughout different disaster stages. These patterns20

show how different disasters influence public sentiment, highlight21

the heightened vulnerability of mobile home communities, and22

underscore the importance of education and transportation access23

in crisis response. Understanding these engagement patterns is24

crucial for detecting misinformation and leveraging social media25

as an effective tool for risk communication during disasters.26

Index Terms—Disaster communication, social media, informa-27

tion-switching, public sentiment, misinformation detection, disa-28

ster management.29

I. INTRODUCTION AND MOTIVATION30

T
HE increasing frequency of natural, human-made, and31

technological disasters, driven by factors such as climate32

change and geopolitical shifts, poses ever-greater challenges for33

emergency management. One of the most critical tasks during34

such crises is disseminating accurate survival information to35

the public. This task becomes even more difficult when the36

crisis involves multiple threats that impact survival requirements37

differently. In the past, traditional channels like news media,38
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websites, and personal communication networks played a cen- 39

tral role in delivering this information [1]. However, in recent 40

years, social media has emerged as a dominant platform for real- 41

time information sharing, bringing with it the dual challenges of 42

rapid information sharing and the risk of misinformation [2]. 43

While scanning and correcting misinformation is a potential 44

approach, the sheer scale of information flow on social media 45

makes this task exceedingly difficult to manage in real time. 46

Consequently, ensuring the dissemination of accurate, reliable 47

information is essential to safeguard public safety, facilitate 48

effective crisis response, and foster trust between communities 49

and authorities [3]. 50

This research introduces a novel methodology for under- 51

standing and improving the flow of information during com- 52

plex crises, particularly when multiple threats impact survival 53

needs differently. It highlights that individuals, in their search 54

for survival information, often engage in various conversations 55

on social media, mentioning or replying to others in different 56

threads. In doing so, they form networks of shared information 57

as they switch between sources to find credible and relevant 58

details. These dynamic shifts in information-seeking behav- 59

ior can inadvertently spread misinformation. This may lead 60

to confusion, panic, and disruptions in emergency response, 61

potentially worsening the crisis and causing further harm [4]. 62

Understanding these information-switching patterns is therefore 63

critical. It helps enhance emergency communication strategies, 64

mitigate the spread of misinformation, and address the unique 65

challenges posed by modern-day disasters. 66

The Information Switching Pattern Model introduced in this 67

study is designed to detect and analyze dynamic shifts in user 68

behavior during crises. The model differs from existing re- 69

search on misinformation in several ways. Most prior studies 70

focus on static analysis, identifying and categorizing misin- 71

formation only after it has spread, often without considering 72

its evolving nature [5]. In contrast, this model emphasizes real 73

time detection of shifts in user perspectives within a network. 74

By analyzing changes in sentiment and user-mention patterns, 75

this model captures how information deviation evolves and 76

influences user interactions in real time. Additionally, while 77

most existing research has not considered socio-demographic 78

data, our framework integrates geotagged tweets with socioe- 79

conomic information from the U.S. Census. This integration 80

enables a more comprehensive understanding of how informa- 81

tion switching varies across specific demographic groups and 82

communities. 83
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Unlike existing approaches, which often examine misin-84

formation at the level of individual tweets or users [6], our85

framework utilizes network science to build user-mention net-86

works. This network-based analysis reveals complex patterns87

of influence and interaction that are not captured by analyz-88

ing isolated tweets. Our framework also incorporates topic89

modeling and temporal analysis to identify distinct patterns of90

information deviation across various disaster types and peak91

disaster periods. The temporal dimension provides insights into92

how misinformation related to different disasters evolves over93

time. Furthermore, the model’s detailed analysis of perspective94

shifts within user-mention networks provides a comprehensive95

view of how information switching occurs in the first place.96

Overall, the proposed framework provides a more dynamic and97

comprehensive approach to studying information deviation and98

misinformation, moving beyond the static and isolated perspec-99

tives of existing literature. This study specifically addresses the100

following research questions:101

a. What are the characteristics of online social media actors102

from diverse groups such as bots, agencies, and individuals103

who engage in a variety of risk communication topics104

during disasters?105

b. How do socio-demographic factors, such as household106

composition, gender, and race, affect the information-107

switching patterns of different social media actors during108

disasters?109

c. What is the influence mechanism of information switch-110

ing, and how does network structure shape information-111

switching patterns within online risk communication112

networks?113

II. BACKGROUND AND RELATED WORK114

Recent studies have highlighted the impact of misinformation115

on social disruption [7], democracy satisfaction [8], health be-116

haviors [9], trust in information sources [10], vaccine intent [11],117

credibility judgments [12], and public health responses during118

crises [13]. For example, during the early months of the COVID-119

19 pandemic, misinformation was linked to around 6,000 hos-120

pitalizations and 800 deaths globally [14]. In one case, a couple121

in Arizona ingested fish tank cleaner, mistakenly believing it122

would prevent COVID-19, demonstrating the real dangers of123

misinformation [15]. The economic toll of misinformation has124

also been significant, with the stock market and global economy125

suffering considerable losses [16].126

Social media platforms (SMPs) (i.e., Facebook, X (formerly127

known as Twitter), Instagram, Reddit, and LinkedIn) are virtual128

spaces where individuals and organizations connect, post and129

share content. While these platforms are primarily being used130

to maintain personal connections and promote businesses, they131

also play a significant role in risk communication [17]. However,132

automated programs known as bots complicate information133

flows on these platforms. Bots can be beneficial, disseminating134

real time information or harmful, spreading misinformation and135

breaching privacy. For example, Twitter bots can post a high136

volume of tweets on specific topics, which users may share137

without verifying the source’s accuracy or reliability [18].138

Crises inherently create a pressing need for authentic infor- 139

mation, which often results in an influx of data from various 140

sources [19]. As individuals and communities try to under- 141

stand evolving situations, social media platforms are crucial 142

for obtaining up-to-date information and comprehending the 143

changing narrative landscapes. However, this influx can cause 144

information overload and confusion, increasing the risk of mis- 145

information [20]. Thus, to better understand the overall dynam- 146

ics of information dissemination, it is essential to understand 147

how users transition between different information sources and 148

narratives and how their perspectives change. 149

As social media has become a dominant form of commu- 150

nication, its potential to both spread authentic information and 151

amplify misinformation is increasingly evident, particularly dur- 152

ing crises. SMPs function as a double-edged sword, capable 153

of rapidly disseminating crucial information or, conversely, 154

spreading misinformation, which can lead to confusion, panic, 155

and distrust [21]. Misinformation, in particular, can undermine 156

emergency response efforts and public health measures. As such, 157

understanding how users switch between information sources 158

during crises is critical for improving risk communication. In 159

this study, information switching refers to temporal shifts in 160

perspectives as social media users engage with and spread 161

information across various topics during multiple (compound) 162

hazard events. 163

Due to their widespread availability and the prevalence of 164

mobile internet access, SMPs are essential tools for risk com- 165

munication during emergencies [22]. These platforms have 166

transformed how public and private agencies, as well as crisis 167

response teams, interact with local communities during emer- 168

gencies [23]. However, the dynamic nature of information flow 169

on SMPs marked by the rapid spread of news, rumors, and 170

updates, poses challenges for ensuring accurate and coordinated 171

communication. Misinformation can spread quickly, leading to 172

panic or uncoordinated responses [24]. Moreover, the diverse 173

range of users, from individuals to official organizations, creates 174

varying perceptions and reactions to crisis-related content. To ef- 175

fectively leverage SMPs during crises, it is critical to understand 176

these dynamics and develop strategies for promoting reliable and 177

timely risk communication. 178

Despite the extensive literature on the role of SMPs in 179

risk communication, research often overlooked detailed anal- 180

yses of the information switching patterns among users during 181

crises [25], [26], [27]. Previous research has emphasized the gen- 182

eral importance of SMPs in crisis management [28], [29], [30], 183

[31], [32], but lacks a comprehensive analysis of how factors 184

such as user types (bot vs. non-bot), disaster context, content 185

type, and socioeconomic variables influence the dynamics of 186

information flow these platforms. 187

This study addresses this gap by focusing on how social 188

media users engage with, share, and respond to crisis-related 189

information. By analyzing user-mention networks that form 190

around crisis discussions, this study identifies the dynamics 191

of information switching and perspective shifts among so- 192

cial media users. Through a combination of network analy- 193

sis, topic modeling, sentiment analysis, and regression model- 194

ing, this research uncovers the factors driving changes in user 195
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engagement and perspective. These insights are crucial for de-196

veloping effective risk communication strategies.197

III. METHODOLOGY198

This study employs a multi-tiered classification framework199

for Twitter accounts, including bot detection and differentiation200

between agency and individual accounts. By integrating ma-201

chine learning models, natural language processing, and network202

analysis, we identified information-switching patterns on social203

media during various disasters.204

A. Twitter Account Classification205

We implemented a detailed classification process for Twitter206

users. Initially, we categorized users into bot and non-bot ac-207

counts. Non-bot accounts were further classified into agency ac-208

counts and individual users. Agency accounts were then divided209

into four subcategories: government/public entities, private or-210

ganizations, television or news media channels, and nonprofit211

organizations. The detailed process for user account classifi-212

cation is provided in the supplementary section, Appendix A,213

available online.214

To gain deeper insights into non-bot accounts on Twitter, we215

categorized them into two main groups: agency and individual216

accounts. This classification was based on key features, in-217

cluding profile description, followee-follower ratio, and named218

entity identification using spaCy’s named entity recognition219

(NER), an open-source natural language processing tool that220

effectively extracts named entities from text [33]. Agencies221

typically have formal profile descriptions that detail their work222

area, services, mission statement, and often include contact223

information or operating hours. In contrast, individuals tend to224

have more informal descriptions, reflecting personal details such225

as interests, hobbies, or location. Agencies generally exhibit a226

higher follower-to-followee ratio, broadcasting to larger audi-227

ences while following fewer accounts [34], whereas individuals228

typically have a more balanced or lower ratio, engaging in229

reciprocal interactions by following friends, celebrities, or other230

accounts of interest.231

Further classification of agency accounts was conducted us-232

ing profile descriptions and tweet content analysis. Agencies233

were grouped into four categories: government/public, televi-234

sion or news media, private, and non-profit organizations. Well-235

structured profile descriptions often indicated their affiliation,236

such as being a government entity, news outlet, private company,237

or non-profit. Tweet content also played a role in classification;238

for instance, government agencies primarily post updates on239

policies, public services, and emergency information, while240

news agencies focus on sharing articles and breaking news.241

Private organizations use Twitter to advertise products, share242

industry insights, or promote customer testimonials, and non-243

profits typically tweet about their activities, advocacy efforts, or244

donation appeals [35].245

B. Information Switching Pattern Model246

We used a multi-step process to examine the dynamics of247

information switching patterns among social media users during248

disasters, as outlined in Algorithm 1. This approach combined 249

network analysis, topic modeling, sentiment analysis, and the 250

tracking of sentiment shifts to understand how communication 251

networks evolve in response to ongoing events. 252

The first step involved collecting a dataset of tweets related 253

to specific disasters. Tweets were selected based on relevant 254

hashtags, keywords, and geotags associated with each event. 255

From this dataset, we constructed a user-mention network [31], 256

where nodes represent individual users and edges indicate men- 257

tions between users in tweets. This network was analyzed to 258

identify the largest connected component, ensuring a focus on a 259

coherent subset of users who were interconnected either directly 260

or indirectly. The second step involved topic modeling. Using 261

the tweets from the largest connected component, we applied 262

the Latent Dirichlet Allocation (LDA) algorithm [36] to group 263

tweets into distinct topics based on content similarity, helping 264

to identify the main themes of discussion during the disaster. 265

Next, we conducted sentiment analysis on the tweets cor- 266

responding to each topic. The analysis began with the initial 267

tweet (base tweet) on a given topic and extended to subsequent 268

tweets (follow-up tweets) related to that topic. The goal was to 269

evaluate the sentiment of these tweets and track changes over 270

time. We used the Python package vaderSentiment to quantify 271

the sentiment of each tweet, enabling us to observe how user 272

sentiment evolved after the disaster. The central focus of the 273

information-switching pattern analysis was to monitor and mea- 274

sure how users’ sentiments and perspectives shifted in response 275

to the disaster. This involved comparing the sentiment of base 276

tweets to follow-up tweets for each topic, identifying users who 277

exhibited changes in sentiment, the magnitude of these changes, 278

and the time intervals when these shifts occurred. 279

Finally, we analyzed the data to identify patterns of informa- 280

tion switching. Statistical and network analysis techniques were 281

used to quantify sentiment shifts and map these changes onto the 282

user-mention network. This analysis helped identify influential 283

users, examine different user types (individuals, agencies, bots), 284

and evaluate demographic and socio-economic characteristics 285

using geotagged locations cross-referenced with census data. 286

This approach provided valuable insights into the mechanisms 287

of information spread and the structure of communication on 288

social networks. 289

IV. DATA COLLECTION 290

A. Study Area: The State of Oklahoma 291

This study analyzed geotagged tweets from the state of Ok- 292

lahoma for the year 2020. According to FEMA’s National Risk 293

Index (NRI) [37], Oklahoma faces significant risks from eleven 294

major disasters: tornadoes, heatwaves, droughts, ice storms, hail, 295

strong winds, flooding, flash floods, lightning, hurricanes, earth- 296

quakes, and wildfires. Understanding these risks is essential for 297

policymakers and emergency responders in developing effective 298

disaster preparedness and mitigation strategies. 299

B. Twitter Data 300

We used the Twitter Academic Application Programming In- 301

terface (API) to access Twitter data from January 1 to December 302
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Algorithm 1: Information Switching Pattern Model.

Input: Geo-tagged tweets, U.S. Census data
Output: Information switching patterns, regression and machine learning model results
Begin

Collect geo-tagged tweet data using Twitter API
Perform Data Cleaning:

- Pre-process and format tweet data
- Determine sentiment score for each tweet

For each tweet
Perform reverse geo-coding to identify census tract and county
Collect socioeconomic information using U.S. Census API
Map socioeconomic data with each tweet

EndFor

Identify race and gender for each user using race-gender model
Classify users using machine learning models
Classify disaster type for each tweet using BERT model
Create timeseries/temporal plot of tweets
Identify peak periods (weekly) for each disaster type throughout the year
For each disaster type and each peak period

Perform topic modeling
Determine the optimum number of topics using coherence scores
For each optimum topic

Generate user-mention network (users as nodes, mentions as edges)
Find all connected component subgraphs of the network
For each subgraph

Sort nodes based on timestamp of tweets
Take the first node as the base node and its sentiment as the base sentiment
For each other node in the subgraph

Compute change in sentiment and change in time compared to base node
EndFor

Exclude base node and base sentiment score from dataset
EndFor

EndFor

EndFor

End

31, 2022 [38]. The data includes tweet content, user information303

(such as user IDs and screen names), engagement metrics (likes,304

retweets, and replies), timestamps, geolocation data (when avail-305

able), and metadata such as hashtags, mentions, and URLs. This306

extended time frame was chosen to capture the temporal dynam-307

ics of social media user behavior during disasters. The API’s308

full-archive search endpoint provided access to the complete309

historical record of public narratives on Twitter [39].310

We used the point radius query option with a 25-mile ra-311

dius, the highest resolution available for this method to capture312

location-based tweets. Consequently, we divided Oklahoma into313

a 17.5-mile by 17.5-mile grid (since 17.5
√

2 < 25 miles) and314

used the midpoint of each diagonal of the grid squares as the315

center of a 25-mile radius circle. Through an iterative process,316

we collected all geotagged tweets from the state. This process317

generated some duplicate tweets, which were subsequently re-318

moved. The final dataset comprised approximately 1.51 million319

tweets from 42,712 unique users. Fig. 1 shows the distribution320

of tweets across different counties in Oklahoma. We used the321

Fig. 1. Tweet density heatmap for different counties in Oklahoma.

tweet-preprocessor Python package to remove noise, i.e., char- 322

acter codes, emojis, stop words, and HTML tags from the tweets 323

to enhance data quality. After removing the noise, all tweets were 324

lemmatized and tokenized. This preprocessing step was essential 325

for subsequent analysis and enabled the identification of various 326

disaster-related tweets. 327
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C. Socioeconomic and Demographic Data328

Race and gender (GR) identification of Twitter users was329

conducted using the methodology described in [40]. The use330

of unconventional or ’fancy’ usernames on Twitter often creates331

challenges in accurately identifying real names. As a result, the332

GR classification model used in this study included an additional333

category for unidentified individuals. It is important to note that334

this GR classification model is not applicable to entities such335

as organizations, bots, and media outlets like TV stations or336

newspapers. Geo-tagged tweets provide location information in337

the form of latitude and longitude coordinates. We applied a338

reverse geocoding approach to convert these coordinates into339

census tracts using the Census API, thereby deriving meaning-340

ful geographic context. To enrich the analysis, we integrated341

socioeconomic variables from the Federal Emergency Manage-342

ment Agency (FEMA) Community Resilience Indicator Anal-343

ysis [41]. This integration allowed us to incorporate detailed344

socioeconomic context, enhancing our understanding of how345

demographic and socioeconomic factors influence information-346

switching patterns during crises.347

V. RESULTS348

In this section, we present the findings from our study,349

which cover several key analyses: user account classification,350

classification and temporal analysis of disaster-related tweets,351

topic modeling, the information switching pattern model, and352

linear regression analysis. Each subsection provides insights353

into user engagement and sentiment evolution in response to354

disaster-related content on social media, the thematic content355

of discussions during disaster peaks, and the statistical relation-356

ships between user characteristics and sentiment changes. This357

comprehensive approach sheds light on the multifaceted nature358

of public interaction with crisis communication on social media359

platforms.360

A. Twitter User Account Classification361

We considered six distinct features for bot and non-bot ac-362

count classification: profile descriptions, average tweeting rate,363

retweet count, user mention count, followee-follower ratio, and364

listed count. Using the methodology described in this study, we365

identified 78 bot accounts among the 42,712 unique users, result-366

ing in 42,634 non-bot accounts. Of these non-bot accounts, 1,714367

were classified as agency accounts, while the majority, 40,920368

accounts, were classified as individual accounts. We further369

grouped the 1,714 agency accounts into four categories: govern-370

ment/public agencies, private organizations, news and television371

channels, and nonprofit organizations. The final distribution is372

390 government agencies, 219 news and television channels,373

1,088 private organizations, and 17 nonprofit organizations.374

B. Classification and Temporal Analysis of Disaster Tweets375

Fig. 2.1 to 2.11 shows the number of geotagged tweets classi-376

fied into each disaster type using a fine-tuned BERT model on our377

dataset. Strong winds were the most frequently discussed disas-378

ter in Oklahoma, with 10,125 mentions (29.57%), while wild-379

fires were the least discussed, with only 52 mentions (0.15%).380

Each subplot title in the figure includes the total tweet count381

and the corresponding percentage for each disaster type, using 382

three distinct metrics: count of unique users tweeting about the 383

event, total number of tweets, and the number of users mentioned 384

in tweets related to the event. Significant peaks in the graphs 385

suggest periods of increased tweeting activity, corresponding 386

to actual weather events or heightened public discussion. For 387

example, the tornado graph shows a peak around week 16, 388

and the wildfire graph shows several spikes throughout the 389

year, reflecting multiple hazard events or continued discussion. 390

The hail graph exhibits a regular pattern of peaks, indicating a 391

seasonal nature to hailstorms or related discussions. In contrast, 392

the earthquake graph displays less frequent, sporadic spikes, 393

reflecting the unpredictable nature of earthquakes. Though Ok- 394

lahoma is not vulnerable to hurricanes, people tend to talk about 395

hurricanes that happened elsewhere. 396

Fig. 2.12 represents the weekly tweeting activity of different 397

user types across the year. We used Yeo-Johnson transforma- 398

tion [42] on the tweeting frequency to stabilize the variance 399

and make the data more suitable for comparison. This trans- 400

formation is beneficial for skewed distributions or groups with 401

different variances, as it normalizes the data and makes statistical 402

analysis more robust [43]. Bot accounts show consistent tweet 403

fluctuation, indicated by multiple peaks throughout the year, 404

reflecting automated posting behaviors. Individual users exhibit 405

a volatile tweeting pattern, with several peaks suggesting periods 406

of heightened activity possibly in response to personal interests 407

or major events. Government entities, newspapers, and private 408

agencies show moderate activity with occasional spikes that 409

correlate with public announcements or organizational news. In 410

contrast, nonprofit organizations show the least tweeting activity, 411

maintaining a relatively flat trend line, which implies sporadic 412

engagement on the platform. This graph provides a comparative 413

insight into the tweet frequencies of different types of users, 414

highlighting variations and potential trends in their Twitter use 415

over time. 416

C. Network Dynamics of User Mentions in Disasters 417

We analyzed the dynamics of communication within user- 418

mention networks that formed around the disaster-related dis- 419

cussions. A user-mention network is formed by mapping the 420

interactions between users who mention each other in tweets. 421

Each node in the network represents a user, and each edge 422

represents a mention (information flow) from one user to an- 423

other. The largest component of a user-mention network refers 424

to the most extensive connected subnetwork where any two 425

users are connected directly or indirectly through mentions. 426

We formed this network to understand how information flows 427

and how different types of users engage with each other dur- 428

ing disaster events. Analyzing the largest component helps us 429

identify key influencers (described as base nodes in this study) 430

and hubs that drive discussions and disseminate information 431

widely. 432

The user-mention network shown in Fig. 3(a) represents the 433

dynamics of communication within the largest connected com- 434

ponent in tornado related discussions. Central to the graph is a 435

dense cluster of nodes representing key individuals or organiza- 436

tions that play a pivotal role in the dissemination and exchange 437
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Fig. 2. Weekly Distribution of Tweet Counts. Subfigures 2.1 to 2.11 show tweeting activity for various disasters on a weekly basis, while Subfigure 2.12 illustrates
weekly tweeting activity segmented by different user types.
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Fig. 3. (a) Largest connected component in the Tornado-related user-mention
network. (b) Temporal analysis of sentiment changes in response to disaster
events.

of information. The color-coded nodes1—representing individ-438

uals, bots, government, newspapers, and nonprofits—highlight439

diverse engagement from different entity types. Among these440

nodes, few stand out due to their higher number of connections441

(known as degree), signifying their role as influencers or hubs442

within this network, potentially driving the narrative and flow443

of information. The descriptive statistics of the user-mention444

networks discussing various disasters throughout the year are445

presented in Appendix C, available online.446

D. Thematic Content Analysis During Disaster Peaks447

This section presents the thematic analysis of tweets, identify-448

ing key topics discussed during peak periods of various disasters.449

The findings from the topic model (presented in Appendix C,450

available online) reveal a wide range of themes, including water-451

related concerns, natural calamities, meteorological phenomena,452

sports, and societal critique. Water-related topics, in particular,453

cover issues such as water scarcity, the urgency of restoring water454

resources, and the impact of water on daily life. This emphasizes455

the significant focus on water availability and management,456

likely influenced by climate and water-related challenges such457

as droughts and floods in Oklahoma.458

1Please note that not all user types are present in this largest component of
the tornado related user-mention network

E. Information Switching Pattern Model 459

Using the comprehensive methodology outlined above, the 460

study generated a dataset consisting of 5,105 observations across 461

31 variables. These variables include categorical data (e.g., 462

disaster type, month, gender, race) and numerical data (e.g., 463

centrality measures, socioeconomic indicators, sentiment, time 464

deltas). Descriptive statistics for the variables used in this model 465

are provided in Tables I and II. For numerical variables, the tables 466

display the mean, standard deviation, minimum, first quartile 467

(Q1), median (Q2), third quartile (Q3), and maximum values. 468

For categorical variables, the tables show the category values, 469

counts of occurrences, and their percentage of the total. 470

The dependent variables in the information switching pattern 471

modeling are Sentiment Delta (range -2 to 2) and Time Delta 472

(range 0 to infinity). The scatter plot in Fig. 3(b) shows the 473

relationship between sentiment changes and the time elapsed 474

since different disaster events. Most sentiment changes occurred 475

within the first 30 minutes, indicating immediate public engage- 476

ment with disaster-related discussions. This engagement varies 477

by disaster type; for example, hurricanes and floods often lead 478

to positive sentiment changes, whereas droughts and wildfires 479

are associated with negative sentiment changes. This pattern 480

suggests that the nature of a disaster influences public sentiment. 481

Data points are mostly clustered around moderate changes in 482

sentiment, with fewer instances of extreme changes. The dis- 483

tinction between node types is also evident: private organizations 484

display less varied sentiment responses compared to individuals 485

and news outlets. Over time, the frequency of sentiment changes 486

diminishes, indicating a decrease in public engagement or fading 487

intensity of reactions as a disaster becomes less immediate. 488

Fig. 3(b) can also identify problematic social media users 489

by analyzing their reaction time and sentiment deviation during 490

disaster events. The x-axis in Fig. 3(b) represents Time Delta, 491

indicating how quickly a user reacts, with lower values (closer 492

to the left) showing faster responses. The y-axis represents 493

the Sentiment Delta, which measures changes in sentiment. 494

We focus on users whose sentiment deviations fall outside the 495

moderate range of (-0.5, 0.5), indicating significant deviations 496

from the original sentiment. These users react quickly but exhibit 497

highly unstable or extreme perspective changes within a short 498

amount of time. According to the analysis, the most com- 499

mon problematic users are individuals, with 266 occurrences 500

showing high deviation. This is followed by private entities 501

(110), government organizations (109), newspapers (102), and 502

nonprofits (92). 503

Several preventive measures can be implemented to address 504

the problematic social media users during disaster events. First, 505

enhancing monitoring and alert systems is crucial; setting up 506

automated tools to track rapid reactions and extreme perspective 507

deviations on social media can enable timely interventions. 508

Targeted communication strategies should also be developed to 509

manage high-risk users, such as individuals and private entities 510

who exhibit significant sentiment deviations. Providing accurate 511

and timely information can mitigate misinformation and reduce 512

sentiment extremes. Educational campaigns can inform users 513

about the impact of their posts, encouraging more responsible 514

communication. Increased moderation efforts on social media 515
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TABLE I
DESCRIPTIVE STATISTICS OF NUMERICAL VARIABLES

TABLE II
DESCRIPTIVE STATISTICS OF CATEGORICAL VARIABLES

platforms are necessary to swiftly address problematic con-516

tent, with more stringent review processes for posts from users517

showing high perspective deviations. Collaboration with various518

organizations, including private entities, government bodies,519

newspapers, and nonprofits, is essential to ensure coordinated520

responses and minimize extreme perspective shifts. Finally, es-521

tablishing feedback mechanisms for users to report problematic522

content and suggest improvements can enhance the accuracy523

and stability of information. The information-switching model524

proposed in this study can be used to identify those problematic525

users and using the socio-demographic information to find the526

causes of extreme perspective deviations to refine these preven-527

tive measures and improve future response strategies.528

In addition to identifying problematic users and implementing529

preventive measures, analyzing the demographic factors influ-530

encing sentiment changes during crises provides further insight531

into how different groups react under stress. Levene’s test [44] 532

indicated that females exhibit greater variance in sentiment 533

change compared to males during crises, with a statistic of 534

129.06 and p-value less than 0.01, thus rejecting the null hypoth- 535

esis of equal variances. An ANOVA test showed that minority 536

groups experience more significant sentiment changes during 537

compound hazards compared to other groups. The Race variable 538

had an F-statistic of 6.150 and p-value of 0.002, indicating a 539

statistically significant difference in sentiment changes across 540

racial groups. 541

1) Results of Linear Regression Analysis: Table III summa- 542

rizes the results of the linear regression analysis assessing the 543

relationship between various factors—including disaster types, 544

node types, user types, gender, race, network properties, and 545

socioeconomic variables—on sentiment delta and time delta. It 546

provides the regression coefficients and standard errors for each 547
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TABLE III
RESULTS OF THE REGRESSION MODEL

independent variable. The table also summarizes the model’s548

overall fit, including the number of observations, the F-statistic549

and its significance, the R-squared and adjusted R-squared val-550

ues, and the root mean square error (MSE). The coefficients in-551

dicate the average change in the dependent variables (sentiment552

delta and time delta) associated with each factor, controlling553

for other variables in the model. Asterisks denote the statistical554

significance of the coefficients. This table contains outcomes of555

a thorough regression analysis, including only variables with556

statistically significant influence. It is the result of multiple557

iterations and rigorous statistical testing to ensure the reliability558

of the findings. Factor collapsing was used to combine cate-559

gories and levels within variables to identify the most significant560

factors.561

2) Disaster Type and Discussion Topic: The analysis of 562

tweets related to different disasters reveals varying effects on 563

sentiment and the rate of sentiment change. Discussions related 564

to strong wind events show a decrease in sentiment variability 565

and a slower rate of sentiment change, indicating a more stable 566

public reaction. Conversely, heat waves significantly increase 567

sentiment variability and the rate of sentiment change, making 568

sentiment more variable over time. Ice storms increase sentiment 569

variability but do not affect the rate of change, reflecting an initial 570

heightened response that stabilizes. In contrast, drought-related 571

discussions increase sentiment variability and show slower rate 572

of change, indicating a diverse and sustained public response. 573

Tornado warnings increase sentiment variability, suggesting 574

intense public concern, but have minimal impact on the rate 575
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of sentiment change, indicating stable reaction timing. Discus-576

sions about heat waves also decrease sentiment variability and577

significantly slow the rate of sentiment change, implying less578

rapid shifts in sentiment as the heat wave persists. Mentions of579

wind conditions increase sentiment variability, reflecting diverse580

reactions, but do not affect the rate of change, indicating con-581

sistent emotional responses. General weather reports increase582

sentiment variability but do not alter the rate of change, suggest-583

ing a steady sentiment flow despite initial variability. Finally,584

snowfall discussions increase sentiment variability, indicating585

varied emotional responses, but have minimal effect on the rate586

of change, showing stability in sentiment evolution.587

3) Base Node Type and User Type: The base node type, the588

entity initiating the discussion (e.g., individual, nonprofit organi-589

zation), affects sentiment and timing differently. Conversations590

started by individuals significantly increase sentiment variabil-591

ity, showcasing a wide range of personal opinions and reactions.592

The rate of sentiment change also accelerates, indicating that593

while initial reactions are diverse, sentiment quickly evolves as594

the discussion progresses. This highlights the dynamic nature of595

individual-initiated discussions, marked by varied starting points596

and rapid sentiment evolution.597

Conversations begun by nonprofit organizations also increase598

sentiment variability, indicating diverse public engagement.599

However, they show a slight decrease in the rate of sentiment600

change, suggesting a more gradual evolution of public senti-601

ment following initial responses. Discussions prompted by TV602

and newspaper entities do not significantly impact sentiment603

variability but are associated with a notable decrease in the604

rate of sentiment change. This implies a more stable sentiment605

trajectory, possibly due to the perceived authority and reliability606

of these traditional media sources.607

4) User-Mention Network Properties: The analysis of net-608

work characteristics reveals their varying impacts on sentiment609

variability and the rate of sentiment change. High closeness610

centrality within a network correlates with increased sentiment611

variability, indicating that central users interact with a wider612

range of people. However, closeness centrality does not signif-613

icantly influence the rate of sentiment change, suggesting that614

central users’ sentiments vary at a consistent pace. A higher615

clustering coefficient is associated with increased sentiment616

variability, indicating that tightly knit clusters contribute to617

diverse sentiment responses. Conversely, a high clustering coef-618

ficient correlates with a decrease in the rate of sentiment change619

over time, potentially due to the reinforcing effect of closely620

connected groups maintaining consistent sentiment over longer621

periods. Greater eigenvector centrality, indicating influential622

users within the network, is linked to less sentiment variability623

but an increased rate of sentiment change, suggesting that while624

influential users have more uniform sentiment responses, their625

influence leads to quicker shifts in sentiment across the network.626

A lower average neighbor degree is tied to less sentiment627

variability and a slower rate of sentiment change, implying628

that users with less influential neighbors experience more stable629

sentiment and less dynamic shifts. Conversely, a lower average630

degree corresponds with less sentiment variability but a higher631

rate of sentiment change, indicating that less connected users632

have more stable sentiment patterns but react more quickly to 633

changes in the network. 634

A larger network diameter is associated with less sentiment 635

variability, suggesting a dilution of sentiment extremes across 636

larger network paths. However, a larger diameter also correlates 637

with a faster rate of sentiment change, possibly reflecting the 638

delayed but rapid transmission of sentiment across the network. 639

Higher network density results in decreased sentiment variabil- 640

ity, indicating more homogenous sentiment in denser networks. 641

However, network density does not significantly influence the 642

rate of sentiment change, suggesting that the density of con- 643

nections affects the range of sentiment but not the speed of its 644

evolution. 645

5) Socioeconomic Factors: The analysis of socio-demo- 646

graphic factors reveals their impacts on sentiment variability 647

and the rate of sentiment change. A higher percentile of Black 648

or Hispanic population is associated with decreased sentiment 649

variability, suggesting a more uniform sentiment response within 650

these demographic groups. However, it correlates with an in- 651

creased rate of sentiment change over time, indicating that while 652

initial responses are uniform, they become more dynamic as 653

situations progress. 654

Median household income does not significantly influence 655

sentiment variability or the rate of sentiment change, indicating 656

that income levels may not play a decisive role in how sentiment 657

evolves during a crisis within this dataset’s context. 658

The presence of mobile homes in a community is positively 659

associated with sentiment variability, highlighting the potential 660

vulnerability of populations living in mobile homes to sentiment 661

changes during disasters. Communities with significant mobile 662

homes are more likely to experience sentiment shifts. The vul- 663

nerability of mobile homes to natural disasters contributes to 664

increased sentiment variability and a higher rate of sentiment 665

change over time. 666

An increased percentile of the population without health in- 667

surance is linked to increased sentiment variability, possibly due 668

to the varied impact of health-related crises on uninsured groups. 669

However, it does not significantly affect the rate of sentiment 670

change over time. 671

Higher percentages of the population without a high school 672

education are associated with increased sentiment variability, 673

suggesting that educational attainment levels influence how 674

individuals process and react to crisis information. However, 675

there is no significant impact on the rate of sentiment change 676

over time. 677

Lack of vehicle access within households is negatively as- 678

sociated with sentiment variability, potentially reflecting the 679

impact of transportation access on crisis perception and response 680

capabilities. As vehicle access decreases, sentiment variability 681

also decreases. Households without vehicle access might rely 682

more on local support networks or community resources, leading 683

to a more unified response and less sentiment variability. In 684

contrast, households with vehicle access might have more varied 685

sentiments based on individual choices and perceptions. 686

The percentile of the population below the poverty level is 687

not significantly associated with sentiment variability but is 688

linked to an increased rate of sentiment change over time. This 689



MOMIN et al.: INFORMATION SWITCHING PATTERNS OF RISK COMMUNICATION IN SOCIAL MEDIA DURING DISASTERS 11

reflects the precarious nature of the economic conditions of these690

populations, leading to rapid shifts in sentiment in response to691

evolving crisis situations.692

VI. CONCLUSION693

This study provides a comprehensive analysis of social media694

user behaviors by categorizing users into six distinct classes695

and employing various machine learning models to explain696

their characteristics and behaviors. A novel contribution is the697

Information Switching Pattern Model, which captures changes698

in public sentiment and their rate during disasters. Supplemented699

with demographic, socioeconomic, and network property data,700

this model provides a detailed view of factors driving sentiment701

variability in crises. The study identifies significant socioeco-702

nomic variables and the role of network properties in sentiment703

dynamics. It reveals the resilience of households without vehi-704

cles, the vulnerability of communities living in mobile homes,705

and the influence of educational attainment and transportation706

access on crisis response. This research enhances our under-707

standing of social media behavior during disasters and provides708

valuable insights for policymakers and crisis communicators.709

Future studies can apply this research design in other contexts710

to validate the findings. The Information Switching Pattern711

Model can also be used in non-disaster settings, enabling the712

development of efficient, supportive, and targeted strategies to713

address challenges in various crisis situations.714

With the insights gained from this research, policymakers can715

better shape responses to build resilience in vulnerable com-716

munities. Past work has demonstrated that disaster policy has717

consistently underserved our most vulnerable populations, and718

this research is a first step in evidencing additional characteristics719

of these communities that could inform future policy efforts.720

In addition, the Information Switching Pattern Model highlights721

the weakness in information dissemination policies during crisis722

situations. Crisis communicators can use the results here as a723

basis for tackling this obstacle by modernizing communication724

structures, which is imperative to improving outcomes for af-725

fected communities.726

VII. STUDY LIMITATIONS727

While this study offers valuable insights, several limitations728

should be considered when interpreting the results, as they may729

influence the generalizability and scope of the findings. One of730

the limitations of our study is the reliance on geotagged tweets,731

which excludes a significant portion of relevant data that is732

not geotagged. The spatial specificity provided by geotagged733

tweets is crucial for linking social media activity with socio-734

demographic characteristics at the census tract level. Without735

this geo-information, it would be challenging to accurately cor-736

relate tweet content with demographic factors, thus potentially737

affecting the depth of insights into how different communities738

are impacted by different disasters. Future research could benefit739

from exploring methods to incorporate more extensive social740

media datasets or alternative approaches to enhance the integra-741

tion of social media data with socio-demographic information.742

Another challenge involves the classification of misinforma- 743

tion. While the Information Switching Pattern Model captures 744

dynamic shifts in sentiment and user interactions, accurately 745

classifying misinformation remains challenging. Not all shifts 746

in public sentiment are necessarily related to misinformation, 747

and distinguishing between legitimate changes in opinion and 748

misinformation-induced behavior requires more robust verifica- 749

tion methods. 750
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