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Information Switching Patterns of Risk
Communication in Social Media During Disasters

Khondhaker Al Momin ¥, Arif Mohaimin Sadri

Abstract—In an era increasingly affected by natural and human-
caused disasters, the role of social media in disaster communication
has become ever more critical. Despite substantial research on
social media use during crises, a significant gap remains in detecting
crisis-related misinformation. Detecting deviations in information
is fundamental for identifying and curbing the spread of misinfor-
mation. This study introduces a novel Information Switching Pat-
tern Model to identify dynamic shifts in perspectives among users
who mention each other in crisis-related narratives on social media.
These shifts serve as evidence of crisis misinformation affecting
user-mention network interactions. The study utilizes advanced
natural language processing, network science, and census data to
analyze geotagged tweets related to compound disaster events in
Oklahoma in 2022. The impact of misinformation is revealed by
distinct engagement patterns among various user types, such as
bots, private organizations, non-profits, government agencies, and
news media throughout different disaster stages. These patterns
show how different disasters influence public sentiment, highlight
the heightened vulnerability of mobile home communities, and
underscore the importance of education and transportation access
in crisis response. Understanding these engagement patterns is
crucial for detecting misinformation and leveraging social media
as an effective tool for risk communication during disasters.

Index Terms—Disaster communication, social media, informa-
tion-switching, public sentiment, misinformation detection, disa-
ster management.

I. INTRODUCTION AND MOTIVATION

HE increasing frequency of natural, human-made, and
T technological disasters, driven by factors such as climate
change and geopolitical shifts, poses ever-greater challenges for
emergency management. One of the most critical tasks during
such crises is disseminating accurate survival information to
the public. This task becomes even more difficult when the
crisis involves multiple threats that impact survival requirements

differently. In the past, traditional channels like news media,
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websites, and personal communication networks played a cen-
tral role in delivering this information [1]. However, in recent
years, social media has emerged as a dominant platform for real-
time information sharing, bringing with it the dual challenges of
rapid information sharing and the risk of misinformation [2].
While scanning and correcting misinformation is a potential
approach, the sheer scale of information flow on social media
makes this task exceedingly difficult to manage in real time.
Consequently, ensuring the dissemination of accurate, reliable
information is essential to safeguard public safety, facilitate
effective crisis response, and foster trust between communities
and authorities [3].

This research introduces a novel methodology for under-
standing and improving the flow of information during com-
plex crises, particularly when multiple threats impact survival
needs differently. It highlights that individuals, in their search
for survival information, often engage in various conversations
on social media, mentioning or replying to others in different
threads. In doing so, they form networks of shared information
as they switch between sources to find credible and relevant
details. These dynamic shifts in information-seeking behav-
ior can inadvertently spread misinformation. This may lead
to confusion, panic, and disruptions in emergency response,
potentially worsening the crisis and causing further harm [4].
Understanding these information-switching patterns is therefore
critical. It helps enhance emergency communication strategies,
mitigate the spread of misinformation, and address the unique
challenges posed by modern-day disasters.

The Information Switching Pattern Model introduced in this
study is designed to detect and analyze dynamic shifts in user
behavior during crises. The model differs from existing re-
search on misinformation in several ways. Most prior studies
focus on static analysis, identifying and categorizing misin-
formation only after it has spread, often without considering
its evolving nature [5]. In contrast, this model emphasizes real
time detection of shifts in user perspectives within a network.
By analyzing changes in sentiment and user-mention patterns,
this model captures how information deviation evolves and
influences user interactions in real time. Additionally, while
most existing research has not considered socio-demographic
data, our framework integrates geotagged tweets with socioe-
conomic information from the U.S. Census. This integration
enables a more comprehensive understanding of how informa-
tion switching varies across specific demographic groups and
communities.
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Unlike existing approaches, which often examine misin-
formation at the level of individual tweets or users [6], our
framework utilizes network science to build user-mention net-
works. This network-based analysis reveals complex patterns
of influence and interaction that are not captured by analyz-
ing isolated tweets. Our framework also incorporates topic
modeling and temporal analysis to identify distinct patterns of
information deviation across various disaster types and peak
disaster periods. The temporal dimension provides insights into
how misinformation related to different disasters evolves over
time. Furthermore, the model’s detailed analysis of perspective
shifts within user-mention networks provides a comprehensive
view of how information switching occurs in the first place.
Overall, the proposed framework provides a more dynamic and
comprehensive approach to studying information deviation and
misinformation, moving beyond the static and isolated perspec-
tives of existing literature. This study specifically addresses the
following research questions:

a. What are the characteristics of online social media actors
from diverse groups such as bots, agencies, and individuals
who engage in a variety of risk communication topics
during disasters?

b. How do socio-demographic factors, such as household
composition, gender, and race, affect the information-
switching patterns of different social media actors during
disasters?

c. What is the influence mechanism of information switch-
ing, and how does network structure shape information-
switching patterns within online risk communication
networks?

II. BACKGROUND AND RELATED WORK

Recent studies have highlighted the impact of misinformation
on social disruption [7], democracy satisfaction [8], health be-
haviors [9], trust in information sources [10], vaccine intent [11],
credibility judgments [12], and public health responses during
crises [13]. For example, during the early months of the COVID-
19 pandemic, misinformation was linked to around 6,000 hos-
pitalizations and 800 deaths globally [14]. In one case, a couple
in Arizona ingested fish tank cleaner, mistakenly believing it
would prevent COVID-19, demonstrating the real dangers of
misinformation [15]. The economic toll of misinformation has
also been significant, with the stock market and global economy
suffering considerable losses [16].

Social media platforms (SMPs) (i.e., Facebook, X (formerly
known as Twitter), Instagram, Reddit, and LinkedIn) are virtual
spaces where individuals and organizations connect, post and
share content. While these platforms are primarily being used
to maintain personal connections and promote businesses, they
also play a significant role in risk communication [17]. However,
automated programs known as bots complicate information
flows on these platforms. Bots can be beneficial, disseminating
real time information or harmful, spreading misinformation and
breaching privacy. For example, Twitter bots can post a high
volume of tweets on specific topics, which users may share
without verifying the source’s accuracy or reliability [18].
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Crises inherently create a pressing need for authentic infor-
mation, which often results in an influx of data from various
sources [19]. As individuals and communities try to under-
stand evolving situations, social media platforms are crucial
for obtaining up-to-date information and comprehending the
changing narrative landscapes. However, this influx can cause
information overload and confusion, increasing the risk of mis-
information [20]. Thus, to better understand the overall dynam-
ics of information dissemination, it is essential to understand
how users transition between different information sources and
narratives and how their perspectives change.

As social media has become a dominant form of commu-
nication, its potential to both spread authentic information and
amplify misinformation is increasingly evident, particularly dur-
ing crises. SMPs function as a double-edged sword, capable
of rapidly disseminating crucial information or, conversely,
spreading misinformation, which can lead to confusion, panic,
and distrust [21]. Misinformation, in particular, can undermine
emergency response efforts and public health measures. As such,
understanding how users switch between information sources
during crises is critical for improving risk communication. In
this study, information switching refers to temporal shifts in
perspectives as social media users engage with and spread
information across various topics during multiple (compound)
hazard events.

Due to their widespread availability and the prevalence of
mobile internet access, SMPs are essential tools for risk com-
munication during emergencies [22]. These platforms have
transformed how public and private agencies, as well as crisis
response teams, interact with local communities during emer-
gencies [23]. However, the dynamic nature of information flow
on SMPs marked by the rapid spread of news, rumors, and
updates, poses challenges for ensuring accurate and coordinated
communication. Misinformation can spread quickly, leading to
panic or uncoordinated responses [24]. Moreover, the diverse
range of users, from individuals to official organizations, creates
varying perceptions and reactions to crisis-related content. To ef-
fectively leverage SMPs during crises, it is critical to understand
these dynamics and develop strategies for promoting reliable and
timely risk communication.

Despite the extensive literature on the role of SMPs in
risk communication, research often overlooked detailed anal-
yses of the information switching patterns among users during
crises [25],[26], [27]. Previous research has emphasized the gen-
eral importance of SMPs in crisis management [28], [29], [30],
[31], [32], but lacks a comprehensive analysis of how factors
such as user types (bot vs. non-bot), disaster context, content
type, and socioeconomic variables influence the dynamics of
information flow these platforms.

This study addresses this gap by focusing on how social
media users engage with, share, and respond to crisis-related
information. By analyzing user-mention networks that form
around crisis discussions, this study identifies the dynamics
of information switching and perspective shifts among so-
cial media users. Through a combination of network analy-
sis, topic modeling, sentiment analysis, and regression model-
ing, this research uncovers the factors driving changes in user
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engagement and perspective. These insights are crucial for de-
veloping effective risk communication strategies.

III. METHODOLOGY

This study employs a multi-tiered classification framework
for Twitter accounts, including bot detection and differentiation
between agency and individual accounts. By integrating ma-
chine learning models, natural language processing, and network
analysis, we identified information-switching patterns on social
media during various disasters.

A. Twitter Account Classification

We implemented a detailed classification process for Twitter
users. Initially, we categorized users into bot and non-bot ac-
counts. Non-bot accounts were further classified into agency ac-
counts and individual users. Agency accounts were then divided
into four subcategories: government/public entities, private or-
ganizations, television or news media channels, and nonprofit
organizations. The detailed process for user account classifi-
cation is provided in the supplementary section, Appendix A,
available online.

To gain deeper insights into non-bot accounts on Twitter, we
categorized them into two main groups: agency and individual
accounts. This classification was based on key features, in-
cluding profile description, followee-follower ratio, and named
entity identification using spaCy’s named entity recognition
(NER), an open-source natural language processing tool that
effectively extracts named entities from text [33]. Agencies
typically have formal profile descriptions that detail their work
area, services, mission statement, and often include contact
information or operating hours. In contrast, individuals tend to
have more informal descriptions, reflecting personal details such
as interests, hobbies, or location. Agencies generally exhibit a
higher follower-to-followee ratio, broadcasting to larger audi-
ences while following fewer accounts [34], whereas individuals
typically have a more balanced or lower ratio, engaging in
reciprocal interactions by following friends, celebrities, or other
accounts of interest.

Further classification of agency accounts was conducted us-
ing profile descriptions and tweet content analysis. Agencies
were grouped into four categories: government/public, televi-
sion or news media, private, and non-profit organizations. Well-
structured profile descriptions often indicated their affiliation,
such as being a government entity, news outlet, private company,
or non-profit. Tweet content also played a role in classification;
for instance, government agencies primarily post updates on
policies, public services, and emergency information, while
news agencies focus on sharing articles and breaking news.
Private organizations use Twitter to advertise products, share
industry insights, or promote customer testimonials, and non-
profits typically tweet about their activities, advocacy efforts, or
donation appeals [35].

B. Information Switching Pattern Model

We used a multi-step process to examine the dynamics of
information switching patterns among social media users during

disasters, as outlined in Algorithm 1. This approach combined
network analysis, topic modeling, sentiment analysis, and the
tracking of sentiment shifts to understand how communication
networks evolve in response to ongoing events.

The first step involved collecting a dataset of tweets related
to specific disasters. Tweets were selected based on relevant
hashtags, keywords, and geotags associated with each event.
From this dataset, we constructed a user-mention network [31],
where nodes represent individual users and edges indicate men-
tions between users in tweets. This network was analyzed to
identify the largest connected component, ensuring a focus on a
coherent subset of users who were interconnected either directly
or indirectly. The second step involved topic modeling. Using
the tweets from the largest connected component, we applied
the Latent Dirichlet Allocation (LDA) algorithm [36] to group
tweets into distinct topics based on content similarity, helping
to identify the main themes of discussion during the disaster.

Next, we conducted sentiment analysis on the tweets cor-
responding to each topic. The analysis began with the initial
tweet (base tweet) on a given topic and extended to subsequent
tweets (follow-up tweets) related to that topic. The goal was to
evaluate the sentiment of these tweets and track changes over
time. We used the Python package vaderSentiment to quantify
the sentiment of each tweet, enabling us to observe how user
sentiment evolved after the disaster. The central focus of the
information-switching pattern analysis was to monitor and mea-
sure how users’ sentiments and perspectives shifted in response
to the disaster. This involved comparing the sentiment of base
tweets to follow-up tweets for each topic, identifying users who
exhibited changes in sentiment, the magnitude of these changes,
and the time intervals when these shifts occurred.

Finally, we analyzed the data to identify patterns of informa-
tion switching. Statistical and network analysis techniques were
used to quantify sentiment shifts and map these changes onto the
user-mention network. This analysis helped identify influential
users, examine different user types (individuals, agencies, bots),
and evaluate demographic and socio-economic characteristics
using geotagged locations cross-referenced with census data.
This approach provided valuable insights into the mechanisms
of information spread and the structure of communication on
social networks.

IV. DATA COLLECTION

A. Study Area: The State of Oklahoma

This study analyzed geotagged tweets from the state of Ok-
lahoma for the year 2020. According to FEMA’s National Risk
Index (NRI) [37], Oklahoma faces significant risks from eleven
major disasters: tornadoes, heatwaves, droughts, ice storms, hail,
strong winds, flooding, flash floods, lightning, hurricanes, earth-
quakes, and wildfires. Understanding these risks is essential for
policymakers and emergency responders in developing effective
disaster preparedness and mitigation strategies.

B. Twitter Data

We used the Twitter Academic Application Programming In-
terface (API) to access Twitter data from January 1 to December
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Algorithm 1: Information Switching Pattern Model.

Input: Geo-tagged tweets, U.S. Census data

Output: Information switching patterns, regression and machine learning model results

Begin
Collect geo-tagged tweet data using Twitter API
Perform Data Cleaning:

- Pre-process and format tweet data

- Determine sentiment score for each tweet
For each tweet

Perform reverse geo-coding to identify census tract and county

Collect socioeconomic information using U.S. Census API
Map socioeconomic data with each tweet
EndFor

Identify race and gender for each user using race-gender model

Classify users using machine learning models
Classify disaster type for each tweet using BERT model
Create timeseries/temporal plot of tweets

Identify peak periods (weekly) for each disaster type throughout the year

For each disaster type and each peak period
Perform topic modeling

Determine the optimum number of topics using coherence scores

For each optimum topic

Generate user-mention network (users as nodes, mentions as edges)

Find all connected component subgraphs of the network
For each subgraph
Sort nodes based on timestamp of tweets

Take the first node as the base node and its sentiment as the base sentiment

For each other node in the subgraph

Compute change in sentiment and change in time compared to base node

EndFor

Exclude base node and base sentiment score from dataset

EndFor
EndFor
EndFor
End

31,2022 [38]. The data includes tweet content, user information
(such as user IDs and screen names), engagement metrics (likes,
retweets, and replies), timestamps, geolocation data (when avail-
able), and metadata such as hashtags, mentions, and URLSs. This
extended time frame was chosen to capture the temporal dynam-
ics of social media user behavior during disasters. The API’s
full-archive search endpoint provided access to the complete
historical record of public narratives on Twitter [39].

We used the point radius query option with a 25-mile ra-
dius, the highest resolution available for this method to capture
location-based tweets. Consequently, we divided Oklahoma into
a 17.5-mile by 17.5-mile grid (since 17.5v/2 < 25 miles) and
used the midpoint of each diagonal of the grid squares as the
center of a 25-mile radius circle. Through an iterative process,
we collected all geotagged tweets from the state. This process
generated some duplicate tweets, which were subsequently re-
moved. The final dataset comprised approximately 1.51 million
tweets from 42,712 unique users. Fig. 1 shows the distribution
of tweets across different counties in Oklahoma. We used the

N Tweet Density over County &5
{0-3735 3
[ 3736 - 10432 I B
. 10433 - 23484 ! | - =
23485 - 119953 T 4
. 119954 - 348170 N
¥ t L 7
Data Source: ~ Y - =)
B ). \ .—1 _
z v, [ ey
0 25 50 100 Miles tos =
Lubpock 2
Fig. 1. Tweet density heatmap for different counties in Oklahoma.

tweet-preprocessor Python package to remove noise, i.e., char-
acter codes, emojis, stop words, and HTML tags from the tweets
to enhance data quality. After removing the noise, all tweets were
lemmatized and tokenized. This preprocessing step was essential
for subsequent analysis and enabled the identification of various
disaster-related tweets.
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C. Socioeconomic and Demographic Data

Race and gender (GR) identification of Twitter users was
conducted using the methodology described in [40]. The use
of unconventional or ’fancy’ usernames on Twitter often creates
challenges in accurately identifying real names. As a result, the
GR classification model used in this study included an additional
category for unidentified individuals. It is important to note that
this GR classification model is not applicable to entities such
as organizations, bots, and media outlets like TV stations or
newspapers. Geo-tagged tweets provide location information in
the form of latitude and longitude coordinates. We applied a
reverse geocoding approach to convert these coordinates into
census tracts using the Census API, thereby deriving meaning-
ful geographic context. To enrich the analysis, we integrated
socioeconomic variables from the Federal Emergency Manage-
ment Agency (FEMA) Community Resilience Indicator Anal-
ysis [41]. This integration allowed us to incorporate detailed
socioeconomic context, enhancing our understanding of how
demographic and socioeconomic factors influence information-
switching patterns during crises.

V. RESULTS

In this section, we present the findings from our study,
which cover several key analyses: user account classification,
classification and temporal analysis of disaster-related tweets,
topic modeling, the information switching pattern model, and
linear regression analysis. Each subsection provides insights
into user engagement and sentiment evolution in response to
disaster-related content on social media, the thematic content
of discussions during disaster peaks, and the statistical relation-
ships between user characteristics and sentiment changes. This
comprehensive approach sheds light on the multifaceted nature
of public interaction with crisis communication on social media
platforms.

A. Twitter User Account Classification

We considered six distinct features for bot and non-bot ac-
count classification: profile descriptions, average tweeting rate,
retweet count, user mention count, followee-follower ratio, and
listed count. Using the methodology described in this study, we
identified 78 bot accounts among the 42,712 unique users, result-
ing in 42,634 non-bot accounts. Of these non-bot accounts, 1,714
were classified as agency accounts, while the majority, 40,920
accounts, were classified as individual accounts. We further
grouped the 1,714 agency accounts into four categories: govern-
ment/public agencies, private organizations, news and television
channels, and nonprofit organizations. The final distribution is
390 government agencies, 219 news and television channels,
1,088 private organizations, and 17 nonprofit organizations.

B. Classification and Temporal Analysis of Disaster Tweets

Fig. 2.1 to 2.11 shows the number of geotagged tweets classi-
fied into each disaster type using a fine-tuned BERT model on our
dataset. Strong winds were the most frequently discussed disas-
ter in Oklahoma, with 10,125 mentions (29.57%), while wild-
fires were the least discussed, with only 52 mentions (0.15%).
Each subplot title in the figure includes the total tweet count

and the corresponding percentage for each disaster type, using
three distinct metrics: count of unique users tweeting about the
event, total number of tweets, and the number of users mentioned
in tweets related to the event. Significant peaks in the graphs
suggest periods of increased tweeting activity, corresponding
to actual weather events or heightened public discussion. For
example, the tornado graph shows a peak around week 16,
and the wildfire graph shows several spikes throughout the
year, reflecting multiple hazard events or continued discussion.
The hail graph exhibits a regular pattern of peaks, indicating a
seasonal nature to hailstorms or related discussions. In contrast,
the earthquake graph displays less frequent, sporadic spikes,
reflecting the unpredictable nature of earthquakes. Though Ok-
lahoma is not vulnerable to hurricanes, people tend to talk about
hurricanes that happened elsewhere.

Fig. 2.12 represents the weekly tweeting activity of different
user types across the year. We used Yeo-Johnson transforma-
tion [42] on the tweeting frequency to stabilize the variance
and make the data more suitable for comparison. This trans-
formation is beneficial for skewed distributions or groups with
different variances, as it normalizes the data and makes statistical
analysis more robust [43]. Bot accounts show consistent tweet
fluctuation, indicated by multiple peaks throughout the year,
reflecting automated posting behaviors. Individual users exhibit
avolatile tweeting pattern, with several peaks suggesting periods
of heightened activity possibly in response to personal interests
or major events. Government entities, newspapers, and private
agencies show moderate activity with occasional spikes that
correlate with public announcements or organizational news. In
contrast, nonprofit organizations show the least tweeting activity,
maintaining a relatively flat trend line, which implies sporadic
engagement on the platform. This graph provides a comparative
insight into the tweet frequencies of different types of users,
highlighting variations and potential trends in their Twitter use
over time.

C. Network Dynamics of User Mentions in Disasters

We analyzed the dynamics of communication within user-
mention networks that formed around the disaster-related dis-
cussions. A user-mention network is formed by mapping the
interactions between users who mention each other in tweets.
Each node in the network represents a user, and each edge
represents a mention (information flow) from one user to an-
other. The largest component of a user-mention network refers
to the most extensive connected subnetwork where any two
users are connected directly or indirectly through mentions.
We formed this network to understand how information flows
and how different types of users engage with each other dur-
ing disaster events. Analyzing the largest component helps us
identify key influencers (described as base nodes in this study)
and hubs that drive discussions and disseminate information
widely.

The user-mention network shown in Fig. 3(a) represents the
dynamics of communication within the largest connected com-
ponent in tornado related discussions. Central to the graph is a
dense cluster of nodes representing key individuals or organiza-
tions that play a pivotal role in the dissemination and exchange
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Fig. 3. (a) Largest connected component in the Tornado-related user-mention
network. (b) Temporal analysis of sentiment changes in response to disaster
events.

of information. The color-coded nodes' —representing individ-
uals, bots, government, newspapers, and nonprofits—highlight
diverse engagement from different entity types. Among these
nodes, few stand out due to their higher number of connections
(known as degree), signifying their role as influencers or hubs
within this network, potentially driving the narrative and flow
of information. The descriptive statistics of the user-mention
networks discussing various disasters throughout the year are
presented in Appendix C, available online.

D. Thematic Content Analysis During Disaster Peaks

This section presents the thematic analysis of tweets, identify-
ing key topics discussed during peak periods of various disasters.
The findings from the topic model (presented in Appendix C,
available online) reveal a wide range of themes, including water-
related concerns, natural calamities, meteorological phenomena,
sports, and societal critique. Water-related topics, in particular,
cover issues such as water scarcity, the urgency of restoring water
resources, and the impact of water on daily life. This emphasizes
the significant focus on water availability and management,
likely influenced by climate and water-related challenges such
as droughts and floods in Oklahoma.

IPlease note that not all user types are present in this largest component of
the tornado related user-mention network

E. Information Switching Pattern Model

Using the comprehensive methodology outlined above, the
study generated a dataset consisting of 5,105 observations across
31 variables. These variables include categorical data (e.g.,
disaster type, month, gender, race) and numerical data (e.g.,
centrality measures, socioeconomic indicators, sentiment, time
deltas). Descriptive statistics for the variables used in this model
are provided in Tables I and II. For numerical variables, the tables
display the mean, standard deviation, minimum, first quartile
(Q1), median (Q2), third quartile (Q3), and maximum values.
For categorical variables, the tables show the category values,
counts of occurrences, and their percentage of the total.

The dependent variables in the information switching pattern
modeling are Sentiment Delta (range -2 to 2) and Time Delta
(range O to infinity). The scatter plot in Fig. 3(b) shows the
relationship between sentiment changes and the time elapsed
since different disaster events. Most sentiment changes occurred
within the first 30 minutes, indicating immediate public engage-
ment with disaster-related discussions. This engagement varies
by disaster type; for example, hurricanes and floods often lead
to positive sentiment changes, whereas droughts and wildfires
are associated with negative sentiment changes. This pattern
suggests that the nature of a disaster influences public sentiment.
Data points are mostly clustered around moderate changes in
sentiment, with fewer instances of extreme changes. The dis-
tinction between node types is also evident: private organizations
display less varied sentiment responses compared to individuals
and news outlets. Over time, the frequency of sentiment changes
diminishes, indicating a decrease in public engagement or fading
intensity of reactions as a disaster becomes less immediate.

Fig. 3(b) can also identify problematic social media users
by analyzing their reaction time and sentiment deviation during
disaster events. The x-axis in Fig. 3(b) represents Time Delta,
indicating how quickly a user reacts, with lower values (closer
to the left) showing faster responses. The y-axis represents
the Sentiment Delta, which measures changes in sentiment.
We focus on users whose sentiment deviations fall outside the
moderate range of (-0.5, 0.5), indicating significant deviations
from the original sentiment. These users react quickly but exhibit
highly unstable or extreme perspective changes within a short
amount of time. According to the analysis, the most com-
mon problematic users are individuals, with 266 occurrences
showing high deviation. This is followed by private entities
(110), government organizations (109), newspapers (102), and
nonprofits (92).

Several preventive measures can be implemented to address
the problematic social media users during disaster events. First,
enhancing monitoring and alert systems is crucial; setting up
automated tools to track rapid reactions and extreme perspective
deviations on social media can enable timely interventions.
Targeted communication strategies should also be developed to
manage high-risk users, such as individuals and private entities
who exhibit significant sentiment deviations. Providing accurate
and timely information can mitigate misinformation and reduce
sentiment extremes. Educational campaigns can inform users
about the impact of their posts, encouraging more responsible
communication. Increased moderation efforts on social media
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TABLE I
DESCRIPTIVE STATISTICS OF NUMERICAL VARIABLES

Numerical Variable Mean Standard Minimum  1st Quartile 2nd Quartile 3rd Quartile Maximum
Deviation Q1) (Q2) (Q3)
Sentiment Delta -0.015 0.379 -1.822 -0.129 -0.002 0.123 1.839
Time Delta 17.858 53.128 0 0.068 0.140 1.845 309.289
Degree Centrality 0.521 0.394 0.008 0.143 0.533 0.667 1
Betweenness Centrality 0.143 0.338 0 0 0.005 0.109 1
Closeness Centrality 0.700 0.063 0 0.667 0.707 0.750 1
Clustering Coefficient 0.005 0.063 0 0 0 0 1
Eigenvector Centrality 0.207 0.267 0 0.050 0.707 0.707 0.707
Average Neighbor Degree 6.098 11.909 1 2 25 7 81
Average Degree 1.491 0.355 1 1.333 1.500 1.778 2.571
Network Radius 1.396 1.318 1 1 1 2 6
Network Diameter 2475 1.589 1 2 2 2 9
Network Density 0.522 0.336 0.018 0.222 0.500 0.667 1
Mobile Homes 70.921 150.823 0 23 83 207 2156
Median Household Income 61843 23249 32045 46978 61146 63750 250001
Unemployed Labor Force 1085 586 70 971 1094 1203 2974
Households with Children 682 446 1 396 639 724 2573
Population 65 and Older (percentile) 18.059 6.916 3 15.851 17.892 20.352 32.963
Black or Hispanic Population (percentile) 6.521 6.015 0 1418 4.358 7.489 81.593
Single Parent Households (percentile) 17.426 9.266 1 14.918 18.236 19.175 80.793
Married couple Household (percentile) 40.579 15.186 10.933 34.041 41.135 48.548 82.021
Population without Health Insurance (percentile) 19.130 8.033 0.748 12.320 14.054 18.995 31.440
Population without High School Education (percentile) 8.507 4.466 1 3.965 5.853 9.369 26.113
Households without a Vehicle (percentile) 6.479 3.775 0 4913 7.619 7.692 36
Population Below Poverty Level (percentile) 16.453 9.400 1.041 7.608 15.966 19.694 44.289
TABLE I
DESCRIPTIVE STATISTICS OF CATEGORICAL VARIABLES

Categorical Variable Value Count | Percentage | Categorical Variable Value Count | Percentage
Strong Wind 1615 31.64% Wind Warnings 90 1.76%

Heat Wave 878 17.20% Election Commentary 55 1.08%

Ice Storm 707 13.85% Wildfire Updates 49 0.96%

Drought 684 13.40% Oklahoma Flooding 35 0.69%

Lightning 493 9.66% | Discussion Topic Severe Weather Watch 15 0.29%

Disaster Type Tornado 324 6.35% Hail Alerts 14 0.27%
Flooding 208 4.07% Oklahoma Earthquakes 14 0.27%

Hurricane 130 2.55% Severe Flooding Reports 10 0.20%

Hail 35 0.69% Female 1001 19.61%

Wildfire 17 0.33% | Gender Male 501 9.82%

Earthquake 14 0.27% Unidentified 3271 64.19%

Tornado Warnings 639 12.52% Unidentified 3271 64.19%

Heat Wave Discussions 581 11.38% White 1587 31.09%

Wind Conditions 567 11.11% Race Asian 148 2.90%

Weather Reports 497 9.74% Hispanic 87 1.70%

Snowfall Reports 389 7.62% Black 4 0.08%

Living Cost & Inflation 256 5.02% American Indian 2 0.04%

Miscellaneous 292 5.72% Individual 2101 41.16%

Hurricane Concerns 127 2.49% Private Agencies 819 16.04%

Water and Daily Needs 223 4.37% Govt. Agencies 775 15.18%

Heavy Snow and Ice 183 3.58% User Type TV & Newspaper 720 14.10%

Discussion Topic Restoring Water Resources 179 3.51% Non-Profit Organizations 689 13.50%
Staying Safe in Changing Weather 164 3.22% Bot 1 0.02%

Water Concerns 150 2.94% Individual 2275 44.56%

Thunderstorm Discussion 141 2.76% Non-Profit Organizations 735 14.40%

Urgent Water Needs 132 2.58% TV & Newspaper 707 13.87%

OKC Thunder Games 95 1.86% Base Node Type Private Agencies 703 13.85%

Winter Storm Updates 91 1.78% Govt. Agencies 679 13.30%

Bot 1 0.02%

platforms are necessary to swiftly address problematic con-
tent, with more stringent review processes for posts from users
showing high perspective deviations. Collaboration with various
organizations, including private entities, government bodies,
newspapers, and nonprofits, is essential to ensure coordinated
responses and minimize extreme perspective shifts. Finally, es-
tablishing feedback mechanisms for users to report problematic
content and suggest improvements can enhance the accuracy
and stability of information. The information-switching model
proposed in this study can be used to identify those problematic
users and using the socio-demographic information to find the
causes of extreme perspective deviations to refine these preven-
tive measures and improve future response strategies.

In addition to identifying problematic users and implementing
preventive measures, analyzing the demographic factors influ-
encing sentiment changes during crises provides further insight

into how different groups react under stress. Levene’s test [44]
indicated that females exhibit greater variance in sentiment
change compared to males during crises, with a statistic of
129.06 and p-value less than 0.01, thus rejecting the null hypoth-
esis of equal variances. An ANOVA test showed that minority
groups experience more significant sentiment changes during
compound hazards compared to other groups. The Race variable
had an F-statistic of 6.150 and p-value of 0.002, indicating a
statistically significant difference in sentiment changes across
racial groups.

1) Results of Linear Regression Analysis: Table III summa-
rizes the results of the linear regression analysis assessing the
relationship between various factors—including disaster types,
node types, user types, gender, race, network properties, and
socioeconomic variables—on sentiment delta and time delta. It
provides the regression coefficients and standard errors for each
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TABLE III
RESULTS OF THE REGRESSION MODEL

Dependent Variable Sentiment Delta Time Delta
No. Observations: 5105 5105
F (32, 5071): 29.24 45.13
Prob (F-statistic): 0.0000 0.0000
R-squared: 0.170 0.227
Adj. R-squared: 0.165 0.222
Root MSE: 0.248 0.151
Sentiment Delta Time Delta

Variables Coefficient  Standard Error  Coefficient  Standard Error

Strong Wind -0.138%** 0.025 -0.021%%* 0.011

Disaster Type Heat Wave 0.089%** 0.029 0.053%** 0.013

Ice Storm 0.063#%#%* 0.024 -0.011 0.010

Drought 0.456%*%* 0.028 -0.030%* 0.012

Tornado Warnings 0.14 1% 0.036 0.012 0.016

) ) ) Heat Wave Discussions -0.079%* 0.037 -0.071%%* 0.016

Discussion Topic Wind Conditions 0.218 0.032 -0.0019 0.014

Oklahoma Weather Reports 0.178%*%%* 0.035 0.012 0.015

Snowfall Reports 0.052%#%#%* 0.025 0.0084 0.011

Individual 0.046%#* 0.016 0.026%%* 0.007

Base Node Type Non-Profit Organizations 0.048##* 0.016 -0.012%* 0.007

TV & Newspaper 0.038 0.013 -0.015%** 0.006

Individual 0.005°%#* 0.030 0.0327%* 0.013

User Type Private Agencies -0.022 0.032 -0.039%** 0.014

Gender Female 0.015 0.017 0.018%** 0.007

Male -0.013 0.024 0.008 0.010

White -0.042 0.047 0.030 0.020

Race Asian -0.059* 0.036 0.013 0.016

Other -0.060* 0.031 -0.007 0.013

Closeness Centrality 0.388 % 0.086 -0.030 0.037

Clustering Coefficient 0.308%** 0.096 -0.083** 0.042

Eigenvector Centrality -0.500%** 0.080 0.076%* 0.035

Network Properties Average Neighbor Degree -1.127%%% 0.056 -0.066%#* 0.025

Average Degree -0.598%%* 0.196 0.216%* 0.085

Network Diameter -0.175%%* 0.052 0.297#%% 0.023

Network Density -0.443%%* 0.123 0.016 0.054

Black or Hispanic Population (percentile) -0.101 0.065 -0.084#** 0.028

Median Household Income 0.074 0.133 0.023 0.058

Mobile Homes 0.316%#* 0.075 0.038 0.032

Socio-Economic Population without Health Insurance (percentile) 0.122%%* 0.060 -0.029 0.026

Population without High School Education (percentile) 0.083* 0.046 0.018 0.020

Households without a Vehicle (percentile) -0.134%* 0.062 -0.067** 0.027

Population Below Poverty Level (percentile) -0.064 0.042 0.064%#%#%* 0.018

Constant 0.526%%* 0.182 -0.074 0.079

Note: ##% p < 0.01, ** p <0.05, * p <O0.1. Sentiment delta was modeled using absolute values.

independent variable. The table also summarizes the model’s
overall fit, including the number of observations, the F-statistic
and its significance, the R-squared and adjusted R-squared val-
ues, and the root mean square error (MSE). The coefficients in-
dicate the average change in the dependent variables (sentiment
delta and time delta) associated with each factor, controlling
for other variables in the model. Asterisks denote the statistical
significance of the coefficients. This table contains outcomes of
a thorough regression analysis, including only variables with
statistically significant influence. It is the result of multiple
iterations and rigorous statistical testing to ensure the reliability
of the findings. Factor collapsing was used to combine cate-
gories and levels within variables to identify the most significant
factors.

2) Disaster Type and Discussion Topic: The analysis of
tweets related to different disasters reveals varying effects on
sentiment and the rate of sentiment change. Discussions related
to strong wind events show a decrease in sentiment variability
and a slower rate of sentiment change, indicating a more stable
public reaction. Conversely, heat waves significantly increase
sentiment variability and the rate of sentiment change, making
sentiment more variable over time. Ice storms increase sentiment
variability but do not affect the rate of change, reflecting an initial
heightened response that stabilizes. In contrast, drought-related
discussions increase sentiment variability and show slower rate
of change, indicating a diverse and sustained public response.

Tornado warnings increase sentiment variability, suggesting
intense public concern, but have minimal impact on the rate
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of sentiment change, indicating stable reaction timing. Discus-
sions about heat waves also decrease sentiment variability and
significantly slow the rate of sentiment change, implying less
rapid shifts in sentiment as the heat wave persists. Mentions of
wind conditions increase sentiment variability, reflecting diverse
reactions, but do not affect the rate of change, indicating con-
sistent emotional responses. General weather reports increase
sentiment variability but do not alter the rate of change, suggest-
ing a steady sentiment flow despite initial variability. Finally,
snowfall discussions increase sentiment variability, indicating
varied emotional responses, but have minimal effect on the rate
of change, showing stability in sentiment evolution.

3) Base Node Type and User Type: The base node type, the
entity initiating the discussion (e.g., individual, nonprofit organi-
zation), affects sentiment and timing differently. Conversations
started by individuals significantly increase sentiment variabil-
ity, showcasing a wide range of personal opinions and reactions.
The rate of sentiment change also accelerates, indicating that
while initial reactions are diverse, sentiment quickly evolves as
the discussion progresses. This highlights the dynamic nature of
individual-initiated discussions, marked by varied starting points
and rapid sentiment evolution.

Conversations begun by nonprofit organizations also increase
sentiment variability, indicating diverse public engagement.
However, they show a slight decrease in the rate of sentiment
change, suggesting a more gradual evolution of public senti-
ment following initial responses. Discussions prompted by TV
and newspaper entities do not significantly impact sentiment
variability but are associated with a notable decrease in the
rate of sentiment change. This implies a more stable sentiment
trajectory, possibly due to the perceived authority and reliability
of these traditional media sources.

4) User-Mention Network Properties: The analysis of net-
work characteristics reveals their varying impacts on sentiment
variability and the rate of sentiment change. High closeness
centrality within a network correlates with increased sentiment
variability, indicating that central users interact with a wider
range of people. However, closeness centrality does not signif-
icantly influence the rate of sentiment change, suggesting that
central users’ sentiments vary at a consistent pace. A higher
clustering coefficient is associated with increased sentiment
variability, indicating that tightly knit clusters contribute to
diverse sentiment responses. Conversely, a high clustering coef-
ficient correlates with a decrease in the rate of sentiment change
over time, potentially due to the reinforcing effect of closely
connected groups maintaining consistent sentiment over longer
periods. Greater eigenvector centrality, indicating influential
users within the network, is linked to less sentiment variability
but an increased rate of sentiment change, suggesting that while
influential users have more uniform sentiment responses, their
influence leads to quicker shifts in sentiment across the network.

A lower average neighbor degree is tied to less sentiment
variability and a slower rate of sentiment change, implying
that users with less influential neighbors experience more stable
sentiment and less dynamic shifts. Conversely, a lower average
degree corresponds with less sentiment variability but a higher
rate of sentiment change, indicating that less connected users

IEEE TRANSACTIONS ON BIG DATA, VOL. 0, NO. 0, 2024

have more stable sentiment patterns but react more quickly to
changes in the network.

A larger network diameter is associated with less sentiment
variability, suggesting a dilution of sentiment extremes across
larger network paths. However, a larger diameter also correlates
with a faster rate of sentiment change, possibly reflecting the
delayed but rapid transmission of sentiment across the network.
Higher network density results in decreased sentiment variabil-
ity, indicating more homogenous sentiment in denser networks.
However, network density does not significantly influence the
rate of sentiment change, suggesting that the density of con-
nections affects the range of sentiment but not the speed of its
evolution.

5) Socioeconomic Factors: The analysis of socio-demo-
graphic factors reveals their impacts on sentiment variability
and the rate of sentiment change. A higher percentile of Black
or Hispanic population is associated with decreased sentiment
variability, suggesting a more uniform sentiment response within
these demographic groups. However, it correlates with an in-
creased rate of sentiment change over time, indicating that while
initial responses are uniform, they become more dynamic as
situations progress.

Median household income does not significantly influence
sentiment variability or the rate of sentiment change, indicating
that income levels may not play a decisive role in how sentiment
evolves during a crisis within this dataset’s context.

The presence of mobile homes in a community is positively
associated with sentiment variability, highlighting the potential
vulnerability of populations living in mobile homes to sentiment
changes during disasters. Communities with significant mobile
homes are more likely to experience sentiment shifts. The vul-
nerability of mobile homes to natural disasters contributes to
increased sentiment variability and a higher rate of sentiment
change over time.

An increased percentile of the population without health in-
surance is linked to increased sentiment variability, possibly due
to the varied impact of health-related crises on uninsured groups.
However, it does not significantly affect the rate of sentiment
change over time.

Higher percentages of the population without a high school
education are associated with increased sentiment variability,
suggesting that educational attainment levels influence how
individuals process and react to crisis information. However,
there is no significant impact on the rate of sentiment change
over time.

Lack of vehicle access within households is negatively as-
sociated with sentiment variability, potentially reflecting the
impact of transportation access on crisis perception and response
capabilities. As vehicle access decreases, sentiment variability
also decreases. Households without vehicle access might rely
more on local support networks or community resources, leading
to a more unified response and less sentiment variability. In
contrast, households with vehicle access might have more varied
sentiments based on individual choices and perceptions.

The percentile of the population below the poverty level is
not significantly associated with sentiment variability but is
linked to an increased rate of sentiment change over time. This
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reflects the precarious nature of the economic conditions of these
populations, leading to rapid shifts in sentiment in response to
evolving crisis situations.

VI. CONCLUSION

This study provides a comprehensive analysis of social media
user behaviors by categorizing users into six distinct classes
and employing various machine learning models to explain
their characteristics and behaviors. A novel contribution is the
Information Switching Pattern Model, which captures changes
in public sentiment and their rate during disasters. Supplemented
with demographic, socioeconomic, and network property data,
this model provides a detailed view of factors driving sentiment
variability in crises. The study identifies significant socioeco-
nomic variables and the role of network properties in sentiment
dynamics. It reveals the resilience of households without vehi-
cles, the vulnerability of communities living in mobile homes,
and the influence of educational attainment and transportation
access on crisis response. This research enhances our under-
standing of social media behavior during disasters and provides
valuable insights for policymakers and crisis communicators.
Future studies can apply this research design in other contexts
to validate the findings. The Information Switching Pattern
Model can also be used in non-disaster settings, enabling the
development of efficient, supportive, and targeted strategies to
address challenges in various crisis situations.

With the insights gained from this research, policymakers can
better shape responses to build resilience in vulnerable com-
munities. Past work has demonstrated that disaster policy has
consistently underserved our most vulnerable populations, and
this researchis a first step in evidencing additional characteristics
of these communities that could inform future policy efforts.
In addition, the Information Switching Pattern Model highlights
the weakness in information dissemination policies during crisis
situations. Crisis communicators can use the results here as a
basis for tackling this obstacle by modernizing communication
structures, which is imperative to improving outcomes for af-
fected communities.

VII. STUDY LIMITATIONS

While this study offers valuable insights, several limitations
should be considered when interpreting the results, as they may
influence the generalizability and scope of the findings. One of
the limitations of our study is the reliance on geotagged tweets,
which excludes a significant portion of relevant data that is
not geotagged. The spatial specificity provided by geotagged
tweets is crucial for linking social media activity with socio-
demographic characteristics at the census tract level. Without
this geo-information, it would be challenging to accurately cor-
relate tweet content with demographic factors, thus potentially
affecting the depth of insights into how different communities
are impacted by different disasters. Future research could benefit
from exploring methods to incorporate more extensive social
media datasets or alternative approaches to enhance the integra-
tion of social media data with socio-demographic information.

Another challenge involves the classification of misinforma-
tion. While the Information Switching Pattern Model captures
dynamic shifts in sentiment and user interactions, accurately
classifying misinformation remains challenging. Not all shifts
in public sentiment are necessarily related to misinformation,
and distinguishing between legitimate changes in opinion and
misinformation-induced behavior requires more robust verifica-
tion methods.
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