

Information Switching Patterns of Risk Communication in Social Media During Disasters

Khondhaker Al Momin¹, Arif Mohaimin Sadri¹, Kristin Olofsson², K.K. Muraleetharan¹, and Hugh Gladwin¹

Abstract—In an era increasingly affected by natural and human-caused disasters, the role of social media in disaster communication has become ever more critical. Despite substantial research on social media use during crises, a significant gap remains in detecting crisis-related misinformation. Detecting deviations in information is fundamental for identifying and curbing the spread of misinformation. This study introduces a novel *Information Switching Pattern Model* to identify dynamic shifts in perspectives among users who mention each other in crisis-related narratives on social media. These shifts serve as evidence of crisis misinformation affecting user-mention network interactions. The study utilizes advanced natural language processing, network science, and census data to analyze geotagged tweets related to compound disaster events in Oklahoma in 2022. The impact of misinformation is revealed by distinct engagement patterns among various user types, such as bots, private organizations, non-profits, government agencies, and news media throughout different disaster stages. These patterns show how different disasters influence public sentiment, highlight the heightened vulnerability of mobile home communities, and underscore the importance of education and transportation access in crisis response. Understanding these engagement patterns is crucial for detecting misinformation and leveraging social media as an effective tool for risk communication during disasters.

Index Terms—Disaster communication, social media, information-switching, public sentiment, misinformation detection, disaster management.

I. INTRODUCTION AND MOTIVATION

THE increasing frequency of natural, human-made, and technological disasters, driven by factors such as climate change and geopolitical shifts, poses ever-greater challenges for emergency management. One of the most critical tasks during such crises is disseminating accurate survival information to the public. This task becomes even more difficult when the crisis involves multiple threats that impact survival requirements differently. In the past, traditional channels like news media,

websites, and personal communication networks played a central role in delivering this information [1]. However, in recent years, social media has emerged as a dominant platform for real-time information sharing, bringing with it the dual challenges of rapid information sharing and the risk of misinformation [2]. While scanning and correcting misinformation is a potential approach, the sheer scale of information flow on social media makes this task exceedingly difficult to manage in real time. Consequently, ensuring the dissemination of accurate, reliable information is essential to safeguard public safety, facilitate effective crisis response, and foster trust between communities and authorities [3].

This research introduces a novel methodology for understanding and improving the flow of information during complex crises, particularly when multiple threats impact survival needs differently. It highlights that individuals, in their search for survival information, often engage in various conversations on social media, mentioning or replying to others in different threads. In doing so, they form networks of shared information as they switch between sources to find credible and relevant details. These dynamic shifts in information-seeking behavior can inadvertently spread misinformation. This may lead to confusion, panic, and disruptions in emergency response, potentially worsening the crisis and causing further harm [4]. Understanding these information-switching patterns is therefore critical. It helps enhance emergency communication strategies, mitigate the spread of misinformation, and address the unique challenges posed by modern-day disasters.

The *Information Switching Pattern Model* introduced in this study is designed to detect and analyze dynamic shifts in user behavior during crises. The model differs from existing research on misinformation in several ways. Most prior studies focus on static analysis, identifying and categorizing misinformation only after it has spread, often without considering its evolving nature [5]. In contrast, this model emphasizes real time detection of shifts in user perspectives within a network. By analyzing changes in sentiment and user-mention patterns, this model captures how information deviation evolves and influences user interactions in real time. Additionally, while most existing research has not considered socio-demographic data, our framework integrates geotagged tweets with socioeconomic information from the U.S. Census. This integration enables a more comprehensive understanding of how information switching varies across specific demographic groups and communities.

Received 14 July 2024; revised 27 September 2024; accepted 10 October 2024. Recommended for acceptance by Special Issue On Big Data Analytics in Complex Social Information Networks. (Corresponding author: Khondhaker Al Momin.)

Khondhaker Al Momin, Arif Mohaimin Sadri, and K.K. Muraleetharan are with the School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, OK 73019 USA (e-mail: momin@ou.edu).

Kristin Olofsson is with the Department of Political Science, Colorado State University, Fort Collins, CO 80523 USA.

Hugh Gladwin is with the Department of Global and Sociocultural Studies, Florida International University, Miami, FL 33199 USA.

This article has supplementary downloadable material available at <https://doi.org/10.1109/TBDA.2024.3524828>, provided by the authors.

Digital Object Identifier 10.1109/TBDA.2024.3524828

Unlike existing approaches, which often examine misinformation at the level of individual tweets or users [6], our framework utilizes network science to build user-mention networks. This network-based analysis reveals complex patterns of influence and interaction that are not captured by analyzing isolated tweets. Our framework also incorporates topic modeling and temporal analysis to identify distinct patterns of information deviation across various disaster types and peak disaster periods. The temporal dimension provides insights into how misinformation related to different disasters evolves over time. Furthermore, the model's detailed analysis of perspective shifts within user-mention networks provides a comprehensive view of how information switching occurs in the first place. Overall, the proposed framework provides a more dynamic and comprehensive approach to studying information deviation and misinformation, moving beyond the static and isolated perspectives of existing literature. This study specifically addresses the following research questions:

- a. *What are the characteristics of online social media actors from diverse groups such as bots, agencies, and individuals who engage in a variety of risk communication topics during disasters?*
- b. *How do socio-demographic factors, such as household composition, gender, and race, affect the information-switching patterns of different social media actors during disasters?*
- c. *What is the influence mechanism of information switching, and how does network structure shape information-switching patterns within online risk communication networks?*

II. BACKGROUND AND RELATED WORK

Recent studies have highlighted the impact of misinformation on social disruption [7], democracy satisfaction [8], health behaviors [9], trust in information sources [10], vaccine intent [11], credibility judgments [12], and public health responses during crises [13]. For example, during the early months of the COVID-19 pandemic, misinformation was linked to around 6,000 hospitalizations and 800 deaths globally [14]. In one case, a couple in Arizona ingested fish tank cleaner, mistakenly believing it would prevent COVID-19, demonstrating the real dangers of misinformation [15]. The economic toll of misinformation has also been significant, with the stock market and global economy suffering considerable losses [16].

Social media platforms (SMPs) (i.e., Facebook, X (formerly known as Twitter), Instagram, Reddit, and LinkedIn) are virtual spaces where individuals and organizations connect, post and share content. While these platforms are primarily being used to maintain personal connections and promote businesses, they also play a significant role in risk communication [17]. However, automated programs known as bots complicate information flows on these platforms. Bots can be beneficial, disseminating real time information or harmful, spreading misinformation and breaching privacy. For example, Twitter bots can post a high volume of tweets on specific topics, which users may share without verifying the source's accuracy or reliability [18].

Crises inherently create a pressing need for authentic information, which often results in an influx of data from various sources [19]. As individuals and communities try to understand evolving situations, social media platforms are crucial for obtaining up-to-date information and comprehending the changing narrative landscapes. However, this influx can cause information overload and confusion, increasing the risk of misinformation [20]. Thus, to better understand the overall dynamics of information dissemination, it is essential to understand how users transition between different information sources and narratives and how their perspectives change.

As social media has become a dominant form of communication, its potential to both spread authentic information and amplify misinformation is increasingly evident, particularly during crises. SMPs function as a double-edged sword, capable of rapidly disseminating crucial information or, conversely, spreading misinformation, which can lead to confusion, panic, and distrust [21]. Misinformation, in particular, can undermine emergency response efforts and public health measures. As such, understanding how users switch between information sources during crises is critical for improving risk communication. In this study, information switching refers to temporal shifts in perspectives as social media users engage with and spread information across various topics during multiple (compound) hazard events.

Due to their widespread availability and the prevalence of mobile internet access, SMPs are essential tools for risk communication during emergencies [22]. These platforms have transformed how public and private agencies, as well as crisis response teams, interact with local communities during emergencies [23]. However, the dynamic nature of information flow on SMPs marked by the rapid spread of news, rumors, and updates, poses challenges for ensuring accurate and coordinated communication. Misinformation can spread quickly, leading to panic or uncoordinated responses [24]. Moreover, the diverse range of users, from individuals to official organizations, creates varying perceptions and reactions to crisis-related content. To effectively leverage SMPs during crises, it is critical to understand these dynamics and develop strategies for promoting reliable and timely risk communication.

Despite the extensive literature on the role of SMPs in risk communication, research often overlooked detailed analyses of the information switching patterns among users during crises [25], [26], [27]. Previous research has emphasized the general importance of SMPs in crisis management [28], [29], [30], [31], [32], but lacks a comprehensive analysis of how factors such as user types (bot vs. non-bot), disaster context, content type, and socioeconomic variables influence the dynamics of information flow these platforms.

This study addresses this gap by focusing on how social media users engage with, share, and respond to crisis-related information. By analyzing user-mention networks that form around crisis discussions, this study identifies the dynamics of information switching and perspective shifts among social media users. Through a combination of network analysis, topic modeling, sentiment analysis, and regression modeling, this research uncovers the factors driving changes in user

196 engagement and perspective. These insights are crucial for de-
197 veloping effective risk communication strategies.

198 III. METHODOLOGY

199 This study employs a multi-tiered classification framework
200 for Twitter accounts, including bot detection and differentiation
201 between agency and individual accounts. By integrating ma-
202 chine learning models, natural language processing, and network
203 analysis, we identified information-switching patterns on social
204 media during various disasters.

205 A. Twitter Account Classification

206 We implemented a detailed classification process for Twitter
207 users. Initially, we categorized users into bot and non-bot ac-
208 counts. Non-bot accounts were further classified into agency ac-
209 counts and individual users. Agency accounts were then divided
210 into four subcategories: government/public entities, private or-
211 ganizations, television or news media channels, and nonprofit
212 organizations. The detailed process for user account classifi-
213 cation is provided in the supplementary section, Appendix A,
214 available online.

215 To gain deeper insights into non-bot accounts on Twitter, we
216 categorized them into two main groups: agency and individual
217 accounts. This classification was based on key features, in-
218 cluding profile description, followee-follower ratio, and named
219 entity identification using spaCy's named entity recognition
220 (NER), an open-source natural language processing tool that
221 effectively extracts named entities from text [33]. Agencies
222 typically have formal profile descriptions that detail their work
223 area, services, mission statement, and often include contact
224 information or operating hours. In contrast, individuals tend to
225 have more informal descriptions, reflecting personal details such
226 as interests, hobbies, or location. Agencies generally exhibit a
227 higher follower-to-followee ratio, broadcasting to larger audi-
228 ences while following fewer accounts [34], whereas individuals
229 typically have a more balanced or lower ratio, engaging in
230 reciprocal interactions by following friends, celebrities, or other
231 accounts of interest.

232 Further classification of agency accounts was conducted us-
233 ing profile descriptions and tweet content analysis. Agencies
234 were grouped into four categories: government/public, televi-
235 sion or news media, private, and non-profit organizations. Well-
236 structured profile descriptions often indicated their affiliation,
237 such as being a government entity, news outlet, private company,
238 or non-profit. Tweet content also played a role in classification;
239 for instance, government agencies primarily post updates on
240 policies, public services, and emergency information, while
241 news agencies focus on sharing articles and breaking news.
242 Private organizations use Twitter to advertise products, share
243 industry insights, or promote customer testimonials, and non-
244 profits typically tweet about their activities, advocacy efforts, or
245 donation appeals [35].

246 B. Information Switching Pattern Model

247 We used a multi-step process to examine the dynamics of
248 information switching patterns among social media users during

249 disasters, as outlined in Algorithm 1. This approach combined
250 network analysis, topic modeling, sentiment analysis, and the
251 tracking of sentiment shifts to understand how communication
252 networks evolve in response to ongoing events.

253 The first step involved collecting a dataset of tweets related
254 to specific disasters. Tweets were selected based on relevant
255 hashtags, keywords, and geotags associated with each event.
256 From this dataset, we constructed a user-mention network [31],
257 where nodes represent individual users and edges indicate men-
258 tions between users in tweets. This network was analyzed to
259 identify the largest connected component, ensuring a focus on a
260 coherent subset of users who were interconnected either directly
261 or indirectly. The second step involved topic modeling. Using
262 the tweets from the largest connected component, we applied
263 the Latent Dirichlet Allocation (LDA) algorithm [36] to group
264 tweets into distinct topics based on content similarity, helping
265 to identify the main themes of discussion during the disaster.

266 Next, we conducted sentiment analysis on the tweets cor-
267 responding to each topic. The analysis began with the initial
268 tweet (base tweet) on a given topic and extended to subsequent
269 tweets (follow-up tweets) related to that topic. The goal was to
270 evaluate the sentiment of these tweets and track changes over
271 time. We used the Python package *vaderSentiment* to quantify
272 the sentiment of each tweet, enabling us to observe how user
273 sentiment evolved after the disaster. The central focus of the
274 information-switching pattern analysis was to monitor and mea-
275 sure how users' sentiments and perspectives shifted in response
276 to the disaster. This involved comparing the sentiment of base
277 tweets to follow-up tweets for each topic, identifying users who
278 exhibited changes in sentiment, the magnitude of these changes,
279 and the time intervals when these shifts occurred.

280 Finally, we analyzed the data to identify patterns of informa-
281 tion switching. Statistical and network analysis techniques were
282 used to quantify sentiment shifts and map these changes onto the
283 user-mention network. This analysis helped identify influential
284 users, examine different user types (individuals, agencies, bots),
285 and evaluate demographic and socio-economic characteristics
286 using geotagged locations cross-referenced with census data.
287 This approach provided valuable insights into the mechanisms
288 of information spread and the structure of communication on
289 social networks.

290 IV. DATA COLLECTION

291 A. Study Area: The State of Oklahoma

292 This study analyzed geotagged tweets from the state of Ok-
293 lahoma for the year 2020. According to FEMA's National Risk
294 Index (NRI) [37], Oklahoma faces significant risks from eleven
295 major disasters: tornadoes, heatwaves, droughts, ice storms, hail,
296 strong winds, flooding, flash floods, lightning, hurricanes, earth-
297 quakes, and wildfires. Understanding these risks is essential for
298 policymakers and emergency responders in developing effective
299 disaster preparedness and mitigation strategies.

300 B. Twitter Data

301 We used the Twitter Academic Application Programming In-
302 terface (API) to access Twitter data from January 1 to December

328 C. Socioeconomic and Demographic Data

329 Race and gender (GR) identification of Twitter users was
 330 conducted using the methodology described in [40]. The use
 331 of unconventional or 'fancy' usernames on Twitter often creates
 332 challenges in accurately identifying real names. As a result, the
 333 GR classification model used in this study included an additional
 334 category for unidentified individuals. It is important to note that
 335 this GR classification model is not applicable to entities such
 336 as organizations, bots, and media outlets like TV stations or
 337 newspapers. Geo-tagged tweets provide location information in
 338 the form of latitude and longitude coordinates. We applied a
 339 reverse geocoding approach to convert these coordinates into
 340 census tracts using the Census API, thereby deriving meaning-
 341 ful geographic context. To enrich the analysis, we integrated
 342 socioeconomic variables from the Federal Emergency Manage-
 343 ment Agency (FEMA) Community Resilience Indicator Anal-
 344 ysis [41]. This integration allowed us to incorporate detailed
 345 socioeconomic context, enhancing our understanding of how
 346 demographic and socioeconomic factors influence informa-
 347 tion switching patterns during crises.

348 V. RESULTS

349 In this section, we present the findings from our study,
 350 which cover several key analyses: user account classification,
 351 classification and temporal analysis of disaster-related tweets,
 352 topic modeling, the information switching pattern model, and
 353 linear regression analysis. Each subsection provides insights
 354 into user engagement and sentiment evolution in response to
 355 disaster-related content on social media, the thematic content
 356 of discussions during disaster peaks, and the statistical relation-
 357 ships between user characteristics and sentiment changes. This
 358 comprehensive approach sheds light on the multifaceted nature
 359 of public interaction with crisis communication on social media
 360 platforms.

361 A. Twitter User Account Classification

362 We considered six distinct features for bot and non-bot ac-
 363 count classification: profile descriptions, average tweeting rate,
 364 retweet count, user mention count, followee-follower ratio, and
 365 listed count. Using the methodology described in this study, we
 366 identified 78 bot accounts among the 42,712 unique users, result-
 367 ing in 42,634 non-bot accounts. Of these non-bot accounts, 1,714
 368 were classified as agency accounts, while the majority, 40,920
 369 accounts, were classified as individual accounts. We further
 370 grouped the 1,714 agency accounts into four categories: govern-
 371 ment/public agencies, private organizations, news and television
 372 channels, and nonprofit organizations. The final distribution is
 373 390 government agencies, 219 news and television channels,
 374 1,088 private organizations, and 17 nonprofit organizations.

375 B. Classification and Temporal Analysis of Disaster Tweets

376 Fig. 2.1 to 2.11 shows the number of geotagged tweets classi-
 377 fied into each disaster type using a fine-tuned BERT model on our
 378 dataset. Strong winds were the most frequently discussed disas-
 379 ter in Oklahoma, with 10,125 mentions (29.57%), while wild-
 380 fires were the least discussed, with only 52 mentions (0.15%).
 381 Each subplot title in the figure includes the total tweet count

382 and the corresponding percentage for each disaster type, using
 383 three distinct metrics: count of unique users tweeting about the
 384 event, total number of tweets, and the number of users mentioned
 385 in tweets related to the event. Significant peaks in the graphs
 386 suggest periods of increased tweeting activity, corresponding
 387 to actual weather events or heightened public discussion. For
 388 example, the tornado graph shows a peak around week 16,
 389 and the wildfire graph shows several spikes throughout the
 390 year, reflecting multiple hazard events or continued discussion.
 391 The hail graph exhibits a regular pattern of peaks, indicating a
 392 seasonal nature to hailstorms or related discussions. In contrast,
 393 the earthquake graph displays less frequent, sporadic spikes,
 394 reflecting the unpredictable nature of earthquakes. Though Ok-
 395 lahoma is not vulnerable to hurricanes, people tend to talk about
 396 hurricanes that happened elsewhere.

397 Fig. 2.12 represents the weekly tweeting activity of different
 398 user types across the year. We used Yeo-Johnson transforma-
 399 tion [42] on the tweeting frequency to stabilize the variance
 400 and make the data more suitable for comparison. This trans-
 401 formation is beneficial for skewed distributions or groups with
 402 different variances, as it normalizes the data and makes statistical
 403 analysis more robust [43]. Bot accounts show consistent tweet
 404 fluctuation, indicated by multiple peaks throughout the year,
 405 reflecting automated posting behaviors. Individual users exhibit
 406 a volatile tweeting pattern, with several peaks suggesting periods
 407 of heightened activity possibly in response to personal interests
 408 or major events. Government entities, newspapers, and private
 409 agencies show moderate activity with occasional spikes that
 410 correlate with public announcements or organizational news. In
 411 contrast, nonprofit organizations show the least tweeting activity,
 412 maintaining a relatively flat trend line, which implies sporadic
 413 engagement on the platform. This graph provides a comparative
 414 insight into the tweet frequencies of different types of users,
 415 highlighting variations and potential trends in their Twitter use
 416 over time.

417 C. Network Dynamics of User Mentions in Disasters

418 We analyzed the dynamics of communication within user-
 419 mention networks that formed around the disaster-related dis-
 420 cussions. A user-mention network is formed by mapping the
 421 interactions between users who mention each other in tweets.
 422 Each node in the network represents a user, and each edge
 423 represents a mention (information flow) from one user to an-
 424 other. The largest component of a user-mention network refers
 425 to the most extensive connected subnetwork where any two
 426 users are connected directly or indirectly through mentions.
 427 We formed this network to understand how information flows
 428 and how different types of users engage with each other during
 429 disaster events. Analyzing the largest component helps us
 430 identify key influencers (described as base nodes in this study)
 431 and hubs that drive discussions and disseminate information
 432 widely.

433 The user-mention network shown in Fig. 3(a) represents the
 434 dynamics of communication within the largest connected com-
 435 ponent in tornado related discussions. Central to the graph is a
 436 dense cluster of nodes representing key individuals or organiza-
 437 tions that play a pivotal role in the dissemination and exchange

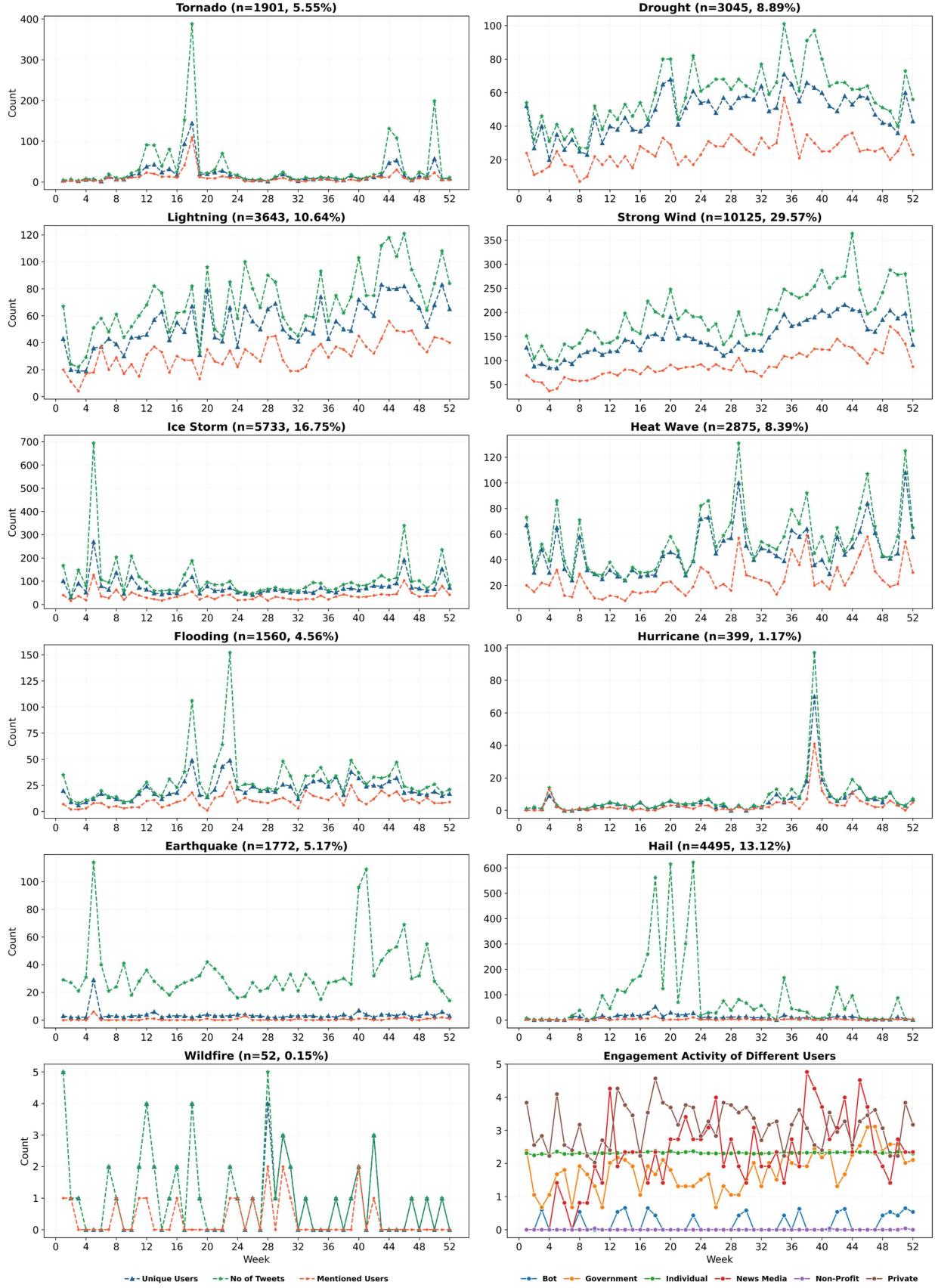


Fig. 2. Weekly Distribution of Tweet Counts. Subfigures 2.1 to 2.11 show tweeting activity for various disasters on a weekly basis, while Subfigure 2.12 illustrates weekly tweeting activity segmented by different user types.

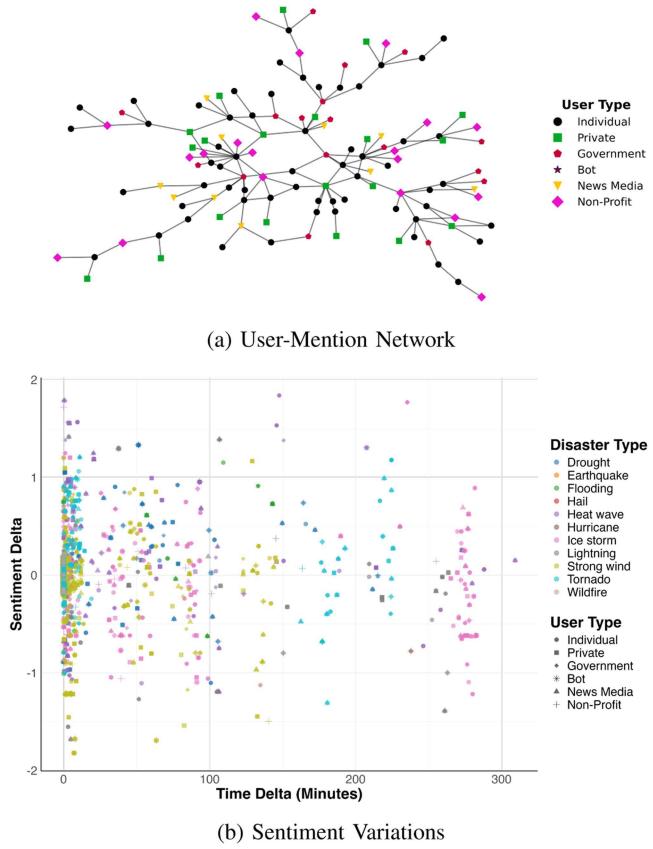


Fig. 3. (a) Largest connected component in the Tornado-related user-mention network. (b) Temporal analysis of sentiment changes in response to disaster events.

of information. The color-coded nodes¹—representing individuals, bots, government, newspapers, and nonprofits—highlight diverse engagement from different entity types. Among these nodes, few stand out due to their higher number of connections (known as degree), signifying their role as influencers or hubs within this network, potentially driving the narrative and flow of information. The descriptive statistics of the user-mention networks discussing various disasters throughout the year are presented in Appendix C, available online.

D. Thematic Content Analysis During Disaster Peaks

This section presents the thematic analysis of tweets, identifying key topics discussed during peak periods of various disasters. The findings from the topic model (presented in Appendix C, available online) reveal a wide range of themes, including water-related concerns, natural calamities, meteorological phenomena, sports, and societal critique. Water-related topics, in particular, cover issues such as water scarcity, the urgency of restoring water resources, and the impact of water on daily life. This emphasizes the significant focus on water availability and management, likely influenced by climate and water-related challenges such as droughts and floods in Oklahoma.

¹Please note that not all user types are present in this largest component of the tornado related user-mention network

E. Information Switching Pattern Model

459

Using the comprehensive methodology outlined above, the study generated a dataset consisting of 5,105 observations across 31 variables. These variables include categorical data (e.g., disaster type, month, gender, race) and numerical data (e.g., centrality measures, socioeconomic indicators, sentiment, time deltas). Descriptive statistics for the variables used in this model are provided in Tables I and II. For numerical variables, the tables display the mean, standard deviation, minimum, first quartile (Q1), median (Q2), third quartile (Q3), and maximum values. For categorical variables, the tables show the category values, counts of occurrences, and their percentage of the total.

The dependent variables in the information switching pattern modeling are *Sentiment Delta* (range -2 to 2) and *Time Delta* (range 0 to infinity). The scatter plot in Fig. 3(b) shows the relationship between sentiment changes and the time elapsed since different disaster events. Most sentiment changes occurred within the first 30 minutes, indicating immediate public engagement with disaster-related discussions. This engagement varies by disaster type; for example, hurricanes and floods often lead to positive sentiment changes, whereas droughts and wildfires are associated with negative sentiment changes. This pattern suggests that the nature of a disaster influences public sentiment. Data points are mostly clustered around moderate changes in sentiment, with fewer instances of extreme changes. The distinction between node types is also evident: private organizations display less varied sentiment responses compared to individuals and news outlets. Over time, the frequency of sentiment changes diminishes, indicating a decrease in public engagement or fading intensity of reactions as a disaster becomes less immediate.

Fig. 3(b) can also identify problematic social media users by analyzing their reaction time and sentiment deviation during disaster events. The *x*-axis in Fig. 3(b) represents Time Delta, indicating how quickly a user reacts, with lower values (closer to the left) showing faster responses. The *y*-axis represents the Sentiment Delta, which measures changes in sentiment. We focus on users whose sentiment deviations fall outside the moderate range of (-0.5, 0.5), indicating significant deviations from the original sentiment. These users react quickly but exhibit highly unstable or extreme perspective changes within a short amount of time. According to the analysis, the most common problematic users are individuals, with 266 occurrences showing high deviation. This is followed by private entities (110), government organizations (109), newspapers (102), and nonprofits (92).

Several preventive measures can be implemented to address the problematic social media users during disaster events. First, enhancing monitoring and alert systems is crucial; setting up automated tools to track rapid reactions and extreme perspective deviations on social media can enable timely interventions. Targeted communication strategies should also be developed to manage high-risk users, such as individuals and private entities who exhibit significant sentiment deviations. Providing accurate and timely information can mitigate misinformation and reduce sentiment extremes. Educational campaigns can inform users about the impact of their posts, encouraging more responsible communication. Increased moderation efforts on social media

TABLE I
DESCRIPTIVE STATISTICS OF NUMERICAL VARIABLES

Numerical Variable	Mean	Standard Deviation	Minimum	1st Quartile (Q1)	2nd Quartile (Q2)	3rd Quartile (Q3)	Maximum
Sentiment Delta	-0.015	0.379	-1.822	-0.129	-0.002	0.123	1.839
Time Delta	17.858	53.128	0	0.068	0.140	1.845	309.289
Degree Centrality	0.521	0.394	0.008	0.143	0.533	0.667	1
Betweenness Centrality	0.143	0.338	0	0	0.005	0.109	1
Closeness Centrality	0.700	0.063	0	0.667	0.707	0.750	1
Clustering Coefficient	0.005	0.063	0	0	0	0	1
Eigenvector Centrality	0.207	0.267	0	0.050	0.707	0.707	0.707
Average Neighbor Degree	6.098	11.909	1	2	2.5	7	81
Average Degree	1.491	0.355	1	1.333	1.500	1.778	2.571
Network Radius	1.396	1.318	1	1	1	2	6
Network Diameter	2.475	1.589	1	2	2	2	9
Network Density	0.522	0.336	0.018	0.222	0.500	0.667	1
Mobile Homes	70.921	150.823	0	23	83	207	2156
Median Household Income	61843	23249	32045	46978	61146	63750	250001
Unemployed Labor Force	1085	586	70	971	1094	1203	2974
Households with Children	682	446	1	396	639	724	2573
Population 65 and Older (percentile)	18.059	6.916	3	15.851	17.892	20.352	32.963
Black or Hispanic Population (percentile)	6.521	6.015	0	1.418	4.358	7.489	81.593
Single Parent Households (percentile)	17.426	9.266	1	14.918	18.236	19.175	80.793
Married couple Household (percentile)	40.579	15.186	10.933	34.041	41.135	48.548	82.021
Population without Health Insurance (percentile)	19.130	8.033	0.748	12.320	14.054	18.995	31.440
Population without High School Education (percentile)	8.507	4.466	1	3.965	5.853	9.369	26.113
Households without a Vehicle (percentile)	6.479	3.775	0	4.913	7.619	7.692	36
Population Below Poverty Level (percentile)	16.453	9.400	1.041	7.608	15.966	19.694	44.289

TABLE II
DESCRIPTIVE STATISTICS OF CATEGORICAL VARIABLES

Categorical Variable	Value	Count	Percentage	Categorical Variable	Value	Count	Percentage	
Disaster Type	Strong Wind	1615	31.64%	Discussion Topic	Wind Warnings	90	1.76%	
	Heat Wave	878	17.20%		Election Commentary	55	1.08%	
	Ice Storm	707	13.85%		Wildfire Updates	49	0.96%	
	Drought	684	13.40%		Oklahoma Flooding	35	0.69%	
	Lightning	493	9.66%		Severe Weather Watch	15	0.29%	
	Tornado	324	6.35%		Hail Alerts	14	0.27%	
	Flooding	208	4.07%		Oklahoma Earthquakes	14	0.27%	
	Hurricane	130	2.55%		Severe Flooding Reports	10	0.20%	
	Hail	35	0.69%		Gender	Female	1001	19.61%
	Wildfire	17	0.33%		Male	501	9.82%	
	Earthquake	14	0.27%		Unidentified	3277	64.19%	
Discussion Topic	Tornado Warnings	639	12.52%	Race	Unidentified	3277	64.19%	
	Heat Wave Discussions	581	11.38%		White	1587	31.09%	
	Wind Conditions	567	11.11%		Asian	148	2.90%	
	Weather Reports	497	9.74%		Hispanic	87	1.70%	
	Snowfall Reports	389	7.62%		Black	4	0.08%	
	Living Cost & Inflation	256	5.02%		American Indian	2	0.04%	
	Miscellaneous	292	5.72%		Individual	2101	41.16%	
	Hurricane Concerns	127	2.49%		Private Agencies	819	16.04%	
	Water and Daily Needs	223	4.37%		Govt. Agencies	775	15.18%	
	Heavy Snow and Ice	183	3.58%		TV & Newspaper	720	14.10%	
	Restoring Water Resources	179	3.51%		Non-Profit Organizations	689	13.50%	
	Staying Safe in Changing Weather	164	3.22%		Bot	1	0.02%	
	Water Concerns	150	2.94%	User Type	Individual	2275	44.56%	
	Thunderstorm Discussion	141	2.76%		Non-Profit Organizations	735	14.40%	
	Urgent Water Needs	132	2.58%		TV & Newspaper	707	13.87%	
	OKC Thunder Games	95	1.86%		Private Agencies	703	13.85%	
	Winter Storm Updates	91	1.78%		Govt. Agencies	679	13.30%	
					Bot	1	0.02%	

platforms are necessary to swiftly address problematic content, with more stringent review processes for posts from users showing high perspective deviations. Collaboration with various organizations, including private entities, government bodies, newspapers, and nonprofits, is essential to ensure coordinated responses and minimize extreme perspective shifts. Finally, establishing feedback mechanisms for users to report problematic content and suggest improvements can enhance the accuracy and stability of information. The information-switching model proposed in this study can be used to identify those problematic users and using the socio-demographic information to find the causes of extreme perspective deviations to refine these preventive measures and improve future response strategies.

In addition to identifying problematic users and implementing preventive measures, analyzing the demographic factors influencing sentiment changes during crises provides further insight

into how different groups react under stress. Levene's test [44] indicated that females exhibit greater variance in sentiment change compared to males during crises, with a statistic of 129.06 and p-value less than 0.01, thus rejecting the null hypothesis of equal variances. An ANOVA test showed that minority groups experience more significant sentiment changes during compound hazards compared to other groups. The Race variable had an F-statistic of 6.150 and p-value of 0.002, indicating a statistically significant difference in sentiment changes across racial groups.

1) *Results of Linear Regression Analysis:* Table III summarizes the results of the linear regression analysis assessing the relationship between various factors—including disaster types, node types, user types, gender, race, network properties, and socioeconomic variables—on sentiment delta and time delta. It provides the regression coefficients and standard errors for each

TABLE III
RESULTS OF THE REGRESSION MODEL

Dependent Variable	Sentiment Delta		Time Delta		
No. Observations:		5105		5105	
F (32, 5071):		29.24		45.13	
Prob (F-statistic):		0.0000		0.0000	
R-squared:		0.170		0.227	
Adj. R-squared:		0.165		0.222	
Root MSE:		0.248		0.151	
	Sentiment Delta		Time Delta		
Variables	Coefficient	Standard Error	Coefficient	Standard Error	
Disaster Type	Strong Wind Heat Wave Ice Storm Drought	-0.138*** 0.089*** 0.063*** 0.456***	0.025 0.029 0.024 0.028	-0.021** 0.053*** -0.011 -0.030**	0.011 0.013 0.010 0.012
Discussion Topic	Tornado Warnings Heat Wave Discussions Wind Conditions Oklahoma Weather Reports Snowfall Reports	0.141*** -0.079** 0.218*** 0.178*** 0.052***	0.036 0.037 0.032 0.035 0.025	0.012 -0.071*** -0.0019 0.012 0.0084	0.016 0.016 0.014 0.015 0.011
Base Node Type	Individual Non-Profit Organizations TV & Newspaper	0.046*** 0.048*** 0.038	0.016 0.016 0.013	0.026*** -0.012* -0.015***	0.007 0.007 0.006
User Type	Individual Private Agencies	0.005*** -0.022	0.030 0.032	0.032** -0.039***	0.013 0.014
Gender	Female Male	0.015 -0.013	0.017 0.024	0.018** 0.008	0.007 0.010
Race	White Asian Other	-0.042 -0.059* -0.060*	0.047 0.036 0.031	0.030 0.013 -0.007	0.020 0.016 0.013
Network Properties	Closeness Centrality Clustering Coefficient Eigenvector Centrality Average Neighbor Degree Average Degree Network Diameter Network Density	0.388*** 0.308*** -0.500*** -1.127*** -0.598*** -0.175*** -0.443***	0.086 0.096 0.080 0.056 0.196 0.052 0.123	-0.030 -0.083** 0.076** -0.066*** 0.216** 0.297*** 0.016	0.037 0.042 0.035 0.025 0.085 0.023 0.054
Socio-Economic	Black or Hispanic Population (percentile) Median Household Income Mobile Homes Population without Health Insurance (percentile) Population without High School Education (percentile) Households without a Vehicle (percentile) Population Below Poverty Level (percentile)	-0.101 0.074 0.316*** 0.122** 0.083* -0.134** -0.064	0.065 0.133 0.075 0.060 0.046 0.062 0.042	-0.084*** 0.023 0.038 -0.029 0.018 -0.067** 0.064***	0.028 0.058 0.032 0.026 0.020 0.027 0.018
Constant		0.526***	0.182	-0.074	0.079

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. Sentiment delta was modeled using absolute values.

548 independent variable. The table also summarizes the model's
 549 overall fit, including the number of observations, the F-statistic
 550 and its significance, the R-squared and adjusted R-squared val-
 551 ues, and the root mean square error (MSE). The coefficients in-
 552 dicate the average change in the dependent variables (sentiment
 553 delta and time delta) associated with each factor, controlling
 554 for other variables in the model. Asterisks denote the statistical
 555 significance of the coefficients. This table contains outcomes of
 556 a thorough regression analysis, including only variables with
 557 statistically significant influence. It is the result of multiple
 558 iterations and rigorous statistical testing to ensure the reliability
 559 of the findings. Factor collapsing was used to combine cate-
 560 gories and levels within variables to identify the most significant
 561 factors.

562 2) *Disaster Type and Discussion Topic*: The analysis of
 563 tweets related to different disasters reveals varying effects on
 564 sentiment and the rate of sentiment change. Discussions related
 565 to strong wind events show a decrease in sentiment variability
 566 and a slower rate of sentiment change, indicating a more stable
 567 public reaction. Conversely, heat waves significantly increase
 568 sentiment variability and the rate of sentiment change, making
 569 sentiment more variable over time. Ice storms increase sentiment
 570 variability but do not affect the rate of change, reflecting an initial
 571 heightened response that stabilizes. In contrast, drought-related
 572 discussions increase sentiment variability and show slower rate
 573 of change, indicating a diverse and sustained public response.

574 Tornado warnings increase sentiment variability, suggesting
 575 intense public concern, but have minimal impact on the rate

576 of sentiment change, indicating stable reaction timing. Discussions
 577 about heat waves also decrease sentiment variability and
 578 significantly slow the rate of sentiment change, implying less
 579 rapid shifts in sentiment as the heat wave persists. Mentions of
 580 wind conditions increase sentiment variability, reflecting diverse
 581 reactions, but do not affect the rate of change, indicating con-
 582 sistent emotional responses. General weather reports increase
 583 sentiment variability but do not alter the rate of change, suggest-
 584 ing a steady sentiment flow despite initial variability. Finally,
 585 snowfall discussions increase sentiment variability, indicating
 586 varied emotional responses, but have minimal effect on the rate
 587 of change, showing stability in sentiment evolution.

588 *3) Base Node Type and User Type:* The base node type, the
 589 entity initiating the discussion (e.g., individual, nonprofit organi-
 590 zation), affects sentiment and timing differently. Conversations
 591 started by individuals significantly increase sentiment variabil-
 592 ity, showcasing a wide range of personal opinions and reactions.
 593 The rate of sentiment change also accelerates, indicating that
 594 while initial reactions are diverse, sentiment quickly evolves as
 595 the discussion progresses. This highlights the dynamic nature of
 596 individual-initiated discussions, marked by varied starting points
 597 and rapid sentiment evolution.

598 Conversations begun by nonprofit organizations also increase
 599 sentiment variability, indicating diverse public engagement.
 600 However, they show a slight decrease in the rate of sentiment
 601 change, suggesting a more gradual evolution of public senti-
 602 ment following initial responses. Discussions prompted by TV
 603 and newspaper entities do not significantly impact sentiment
 604 variability but are associated with a notable decrease in the
 605 rate of sentiment change. This implies a more stable sentiment
 606 trajectory, possibly due to the perceived authority and reliability
 607 of these traditional media sources.

608 *4) User-Mention Network Properties:* The analysis of net-
 609 work characteristics reveals their varying impacts on sentiment
 610 variability and the rate of sentiment change. High closeness
 611 centrality within a network correlates with increased sentiment
 612 variability, indicating that central users interact with a wider
 613 range of people. However, closeness centrality does not signif-
 614 icantly influence the rate of sentiment change, suggesting that
 615 central users' sentiments vary at a consistent pace. A higher
 616 clustering coefficient is associated with increased sentiment
 617 variability, indicating that tightly knit clusters contribute to
 618 diverse sentiment responses. Conversely, a high clustering coef-
 619 ficient correlates with a decrease in the rate of sentiment change
 620 over time, potentially due to the reinforcing effect of closely
 621 connected groups maintaining consistent sentiment over longer
 622 periods. Greater eigenvector centrality, indicating influential
 623 users within the network, is linked to less sentiment variability
 624 but an increased rate of sentiment change, suggesting that while
 625 influential users have more uniform sentiment responses, their
 626 influence leads to quicker shifts in sentiment across the network.

627 A lower average neighbor degree is tied to less sentiment
 628 variability and a slower rate of sentiment change, implying
 629 that users with less influential neighbors experience more stable
 630 sentiment and less dynamic shifts. Conversely, a lower average
 631 degree corresponds with less sentiment variability but a higher
 632 rate of sentiment change, indicating that less connected users

have more stable sentiment patterns but react more quickly to
 633 changes in the network.

634 A larger network diameter is associated with less sentiment
 635 variability, suggesting a dilution of sentiment extremes across
 636 larger network paths. However, a larger diameter also correlates
 637 with a faster rate of sentiment change, possibly reflecting the
 638 delayed but rapid transmission of sentiment across the network.
 639 Higher network density results in decreased sentiment variabil-
 640 ity, indicating more homogenous sentiment in denser networks.
 641 However, network density does not significantly influence the
 642 rate of sentiment change, suggesting that the density of connec-
 643 tions affects the range of sentiment but not the speed of its
 644 evolution.

645 *5) Socioeconomic Factors:* The analysis of socio-demo-
 646 graphic factors reveals their impacts on sentiment variability
 647 and the rate of sentiment change. A higher percentile of Black
 648 or Hispanic population is associated with decreased sentiment
 649 variability, suggesting a more uniform sentiment response within
 650 these demographic groups. However, it correlates with an in-
 651 creased rate of sentiment change over time, indicating that while
 652 initial responses are uniform, they become more dynamic as
 653 situations progress.

654 Median household income does not significantly influence
 655 sentiment variability or the rate of sentiment change, indicating
 656 that income levels may not play a decisive role in how sentiment
 657 evolves during a crisis within this dataset's context.

658 The presence of mobile homes in a community is positively
 659 associated with sentiment variability, highlighting the potential
 660 vulnerability of populations living in mobile homes to sentiment
 661 changes during disasters. Communities with significant mobile
 662 homes are more likely to experience sentiment shifts. The vul-
 663 nerability of mobile homes to natural disasters contributes to
 664 increased sentiment variability and a higher rate of sentiment
 665 change over time.

666 An increased percentile of the population without health in-
 667 surance is linked to increased sentiment variability, possibly due
 668 to the varied impact of health-related crises on uninsured groups.
 669 However, it does not significantly affect the rate of sentiment
 670 change over time.

671 Higher percentages of the population without a high school
 672 education are associated with increased sentiment variability,
 673 suggesting that educational attainment levels influence how
 674 individuals process and react to crisis information. However,
 675 there is no significant impact on the rate of sentiment change
 676 over time.

677 Lack of vehicle access within households is negatively as-
 678 sociated with sentiment variability, potentially reflecting the
 679 impact of transportation access on crisis perception and response
 680 capabilities. As vehicle access decreases, sentiment variability
 681 also decreases. Households without vehicle access might rely
 682 more on local support networks or community resources, leading
 683 to a more unified response and less sentiment variability. In
 684 contrast, households with vehicle access might have more varied
 685 sentiments based on individual choices and perceptions.

686 The percentile of the population below the poverty level is
 687 not significantly associated with sentiment variability but is
 688 linked to an increased rate of sentiment change over time. This

reflects the precarious nature of the economic conditions of these populations, leading to rapid shifts in sentiment in response to evolving crisis situations.

693 VI. CONCLUSION

694 This study provides a comprehensive analysis of social media
 695 user behaviors by categorizing users into six distinct classes
 696 and employing various machine learning models to explain
 697 their characteristics and behaviors. A novel contribution is the
 698 *Information Switching Pattern Model*, which captures changes
 699 in public sentiment and their rate during disasters. Supplemented
 700 with demographic, socioeconomic, and network property data,
 701 this model provides a detailed view of factors driving sentiment
 702 variability in crises. The study identifies significant socioeco-
 703 nomic variables and the role of network properties in sentiment
 704 dynamics. It reveals the resilience of households without vehi-
 705 cles, the vulnerability of communities living in mobile homes,
 706 and the influence of educational attainment and transportation
 707 access on crisis response. This research enhances our under-
 708 standing of social media behavior during disasters and provides
 709 valuable insights for policymakers and crisis communicators.
 710 Future studies can apply this research design in other contexts
 711 to validate the findings. The *Information Switching Pattern*
 712 *Model* can also be used in non-disaster settings, enabling the
 713 development of efficient, supportive, and targeted strategies to
 714 address challenges in various crisis situations.

715 With the insights gained from this research, policymakers can
 716 better shape responses to build resilience in vulnerable com-
 717 munities. Past work has demonstrated that disaster policy has
 718 consistently underserved our most vulnerable populations, and
 719 this research is a first step in evidencing additional characteristics
 720 of these communities that could inform future policy efforts.
 721 In addition, the *Information Switching Pattern Model* highlights
 722 the weakness in information dissemination policies during crisis
 723 situations. Crisis communicators can use the results here as a
 724 basis for tackling this obstacle by modernizing communication
 725 structures, which is imperative to improving outcomes for af-
 726 fected communities.

727 VII. STUDY LIMITATIONS

728 While this study offers valuable insights, several limitations
 729 should be considered when interpreting the results, as they may
 730 influence the generalizability and scope of the findings. One of
 731 the limitations of our study is the reliance on geotagged tweets,
 732 which excludes a significant portion of relevant data that is
 733 not geotagged. The spatial specificity provided by geotagged
 734 tweets is crucial for linking social media activity with socio-
 735 demographic characteristics at the census tract level. Without
 736 this geo-information, it would be challenging to accurately cor-
 737 relate tweet content with demographic factors, thus potentially
 738 affecting the depth of insights into how different communities
 739 are impacted by different disasters. Future research could benefit
 740 from exploring methods to incorporate more extensive social
 741 media datasets or alternative approaches to enhance the integra-
 742 tion of social media data with socio-demographic information.

Another challenge involves the classification of misinformation. While the *Information Switching Pattern Model* captures dynamic shifts in sentiment and user interactions, accurately classifying misinformation remains challenging. Not all shifts in public sentiment are necessarily related to misinformation, and distinguishing between legitimate changes in opinion and misinformation-induced behavior requires more robust verification methods.

751 ACKNOWLEDGMENT

752 The research presented in this paper was supported by the Na-
 753 tional Science Foundation under Grant Nos. CAREER-2339100
 754 and OIA-1946093. Any opinions, findings, conclusions, and
 755 recommendations expressed are those of the authors and do not
 756 necessarily reflect the views of the National Science Foundation.
 757 The authors also acknowledge the support provided by the
 758 University of Oklahoma Libraries for open access publication.

759 REFERENCES

- [1] G. Haddow and K. S. Haddow, *Disaster Communications in a Changing Media World*. London, U.K.: Butterworth-Heinemann, 2013.
- [2] M. S. Al-Zaman, "Prevalence and source analysis of COVID-19 misinformation in 138 countries," *IFLA J.*, vol. 48, no. 1, pp. 189–204, 2022.
- [3] P. T. Jaeger, B. Schneiderman, K. R. Fleischmann, J. Preece, Y. Qu, and P. F. Wu, "Community response grids: E-government, social networks, and effective emergency management," *Telecommun. Policy*, vol. 31, no. 10–11, pp. 592–604, 2007.
- [4] A. Bernsteiner, T. Schubatzky, and C. Haagen-Schützenhöfer, "Misinformation as a societal problem in times of crisis: A mixed-methods study with future teachers to promote a critical attitude towards information," *Sustainability*, vol. 15, no. 10, 2023, Art. no. 8161.
- [5] S. Lewandowsky, U. K. Ecker, and J. Cook, "Beyond misinformation: Understanding and coping with the "post-truth" era," *J. Appl. Res. Memory Cogn.*, vol. 6, no. 4, pp. 353–369, 2017.
- [6] Y. Wang, R. Han, T. S. Lehman, Q. Lv, and S. Mishra, "Do Twitter users change their behavior after exposure to misinformation? An in-depth analysis," *Social Netw. Anal. Mining*, vol. 12, no. 1, 2022, Art. no. 167.
- [7] R. Iizuka, F. Toriumi, M. Nishiguchi, M. Takano, and M. Yoshida, "Impact of correcting misinformation on social disruption," *PLoS One*, vol. 17, no. 4, 2022, Art. no. e0265734.
- [8] E. C. Nisbet, C. Mortenson, and Q. Li, "The presumed influence of election misinformation on others reduces our own satisfaction with democracy," *Harvard Kennedy Sch. Misinformation Rev.*, 2021.
- [9] V. Suarez-Lledo and J. Alvarez-Galvez, "Prevalence of health misinformation on social media: Systematic review," *J. Med. Internet Res.*, vol. 23, no. 1, 2021, Art. no. e17187.
- [10] S. Chen, L. Xiao, and A. Kumar, "Spread of misinformation on social media: What contributes to it and how to combat it," *Comput. Hum. Behav.*, vol. 141, 2023.
- [11] S. Loomba, A. de Figueiredo, S. Piatek, K. de Graaf, and H. J. Larson, "Measuring the impact of covid-19 vaccine misinformation on vaccination intent in the uk and usa," *Nat. Hum. Behav.*, vol. 5, no. 3, pp. 337–348, 2021.
- [12] J. Zhou, H. Xiang, and B. Xie, "Better safe than sorry: A study on older adults' credibility judgments and spreading of health misinformation," *Universal Access Inf. Soc.*, vol. 22, no. 3, pp. 957–966, 2023.
- [13] S. K. Chong, S. H. Ali, L. N. Doan, S. S. Yi, C. Trinh-Shevrin, and S. C. Kwon, "Social media use and misinformation among Asian Americans during COVID-19," *Front. Public Health*, vol. 9, 2022, Art. no. 764681.
- [14] M. Spring, "Coronavirus: The human cost of virus misinformation," 2020. [Online]. Available: <https://www.bbc.com/news/stories-52731624>
- [15] BBC, "Coronavirus: Man dies taking fish tank cleaner as virus drug," 2020. [Online]. Available: <https://www.bbc.com/news/52012242>
- [16] B. Petrie, "How misinformation became the leading cause of death in the U.S. and what can be done about it," 2023, Accessed: Aug. 04, 2023.
- [17] P. Garg and S. Pahuja, *Social Media: Concept, Role, Categories, Trends, Social Media and AI, Impact on Youth, Careers, Recommendations*. Hershey, PA, USA: IGI Global, 2020, pp. 172–192.

809 [18] S. Haustein, T. D. Bowman, K. Holmberg, A. Tsou, C. R. Sugimoto, and
810 V. Larivière, "Tweets as impact indicators: Examining the implications of
811 automated bot accounts on twitter," *J. Assoc. Inf. Sci. Technol.*, vol. 67,
812 no. 1, pp. 232–238, 2016.

813 [19] J. Qadir, A. Ali, R. ur Rasool, A. Zwitter, A. Sathiaseelan, and J. Crowcroft,
814 "Crisis analytics: Big data-driven crisis response," *J. Int. Humanitarian
815 Action*, vol. 1, pp. 1–21, 2016.

816 [20] M. Mohammed et al., "Assessment of COVID-19 information overload
817 among the general public," *J. Racial Ethnic Health Disparities*, vol. 9,
818 pp. 184–192, 2022.

819 [21] X. Li, X. Guo, and Z. Shi, "Bright sides and dark sides: Unveiling the
820 double-edged sword effects of social networks," *Social Sci. Med.*, vol. 329,
821 2023, Art. no. 116035.

822 [22] R. Ogie, S. James, A. Moore, T. Dilworth, M. Amirghasemi, and J.
823 Whittaker, "Social media use in disaster recovery: A systematic literature
824 review," *Int. J. Disaster Risk Reduction*, vol. 70, 2022, Art. no. 102783.

825 [23] B. Takahashi, E. C. Tandoc Jr, and C. Carmichael, "Communicating on
826 Twitter during a disaster: An analysis of tweets during typhoon Haiyan in
827 the Philippines," *Comput. Hum. Behav.*, vol. 50, pp. 392–398, 2015.

828 [24] D. Allington, B. Duffy, S. Wessely, N. Dhavan, and J. Rubin, "Health-
829 protective behaviour, social media usage and conspiracy belief during
830 the COVID-19 public health emergency," *Psychol. Med.*, vol. 51, no. 10,
831 pp. 1763–1769, 2021.

832 [25] A. M. Sadri et al., "The role of social capital, personal networks, and
833 emergency responders in post-disaster recovery and resilience: A study of
834 rural communities in Indiana," *Natural Hazards*, vol. 90, pp. 1377–1406,
835 2018.

836 [26] K. C. Roy, S. Hasan, A. M. Sadri, and M. Cebrian, "Understanding the
837 efficiency of social media based crisis communication during hurricane
838 Sandy," *Int. J. Inf. Manage.*, vol. 52, 2020, Art. no. 102060.

839 [27] M. W. Graham, E. J. Avery, and S. Park, "The role of social media in local
840 government crisis communications," *Public Relations Rev.*, vol. 41, no. 3,
841 pp. 386–394, 2015.

842 [28] K. Seneviratne, M. Nadeeshani, S. Senaratne, and S. Perera, "Use of social
843 media in disaster management: Challenges and strategies," *Sustainability*,
844 vol. 16, no. 11, 2024, Art. no. 4824.

845 [29] A. M. Sadri, S. Hasan, S. V. Ukkusuri, and M. Cebrian, "Crisis commu-
846 nication patterns in social media during hurricane Sandy," *Transp. Res.
847 Rec.*, vol. 2672, no. 1, pp. 125–137, 2018.

848 [30] X. Han, J. Wang, M. Zhang, and X. Wang, "Using social media to mine
849 and analyze public opinion related to COVID-19 in China," *Int. J. Environ.
850 Res. Public Health*, vol. 17, no. 8, 2020, Art. no. 2788.

851 [31] K. A. Momin, H. M. I. Kays, and A. M. Sadri, "Identifying crisis re-
852 sponse communities in online social networks for compound disasters:
853 The case of hurricane Laura and COVID-19," *Transp. Res. Rec.*, 2023,
854 Art. no. 03611981231168120.

855 [32] S. V. Ukkusuri, X. Zhan, A. M. Sadri, and Q. Ye, "Use of social media data
856 to explore crisis informatics: Study of 2013 Oklahoma tornado," *Transp.
857 Res. Rec.*, vol. 2459, no. 1, pp. 110–118, 2014.

858 [33] R. M. Yanti, I. Santoso, and L. H. Suadaa, "Application of named entity
859 recognition via Twitter on spacy in Indonesian (case study: Power failure
860 in the special region of Yogyakarta)," *Indonesian J. Inf. Syst.*, vol. 4, no. 1,
861 pp. 76–86, 2021.

862 [34] M. Cha, H. Haddadi, F. Benevenuto, and K. Gummadi, "Measuring user
863 influence in Twitter: The million follower fallacy," in *Proc. Int. AAAI Conf.
864 Web Social Media*, 2010, pp. 10–17.

865 [35] L. Hagen, S. Neely, R. Scharf, and T. E. Keller, "Social media use for
866 crisis and emergency risk communications during the Zika health crisis,"
867 *Digit. Government, Res. Pract.*, vol. 1, no. 2, pp. 1–21, 2020.

868 [36] K. Bastani, H. Namavari, and J. Shaffer, "Latent dirichlet allocation (LDA)
869 for topic modeling of the CFPB consumer complaints," *Expert Syst. Appl.*,
870 vol. 127, pp. 256–271, 2022.

871 [37] National risk index for natural hazards | FEMA.gov. [Online]. Available:
872 <https://www.fema.gov/flood-maps/products-tools/national-risk-index>

873 [38] N. Statt, "Twitter is opening up its full tweet archive to academic
874 researchers for free," *Verge*, Jan 2021. [Online]. Available:
875 [https://www.theverge.com/2021/1/26/22250203/twitter-academic-
877 research-public-tweet-archive-free-access](https://www.theverge.com/2021/1/26/22250203/twitter-academic-
876 research-public-tweet-archive-free-access)

878 [39] T. Adam, "Enabling the future of academic research with the
879 twitter api," *X Developer Platform*, 2021. [Online]. Available:
880 [https://developer.x.com/en/blog/product-news/2021/enabling-the-future-
882 of-academic-research-with-the-x-api](https://developer.x.com/en/blog/product-news/2021/enabling-the-future-
881 of-academic-research-with-the-x-api)

883 [40] K. A. Momin, A. M. Sadri, and M. S. Hasnine, "Leveraging social
884 media data to identify factors influencing public attitude towards
885 accessibility, socioeconomic disparity and public transportation,"
886 2024, *arXiv:2402.01682*.

[41] L. Edgemon, C. Freeman, C. Burdi, J. K. Hutchison, and K. Marsh,
885 "Community resilience indicator analysis: Commonly used indicators
886 from peer-reviewed research," *Argonne Nat. Lab.*, Tech. Rep., Apr. 2023.

[42] S. Weisberg, "Yeo-Johnson power transformations," *Dept. Appl. Statist.,
887 Univ. Minnesota*, vol. 1, 2001, Art. no. 2003.

[43] S. A. Othman and H. T. M. Ali, "Improvement of the nonparametric estimation
888 of functional stationary time series using Yeo-Johnson transformation
889 with application to temperature curves," *Adv. Math. Phys.*, vol. 2021,
890 pp. 1–6, 2021.

[44] B. B. Schultz, "Levene's test for relative variation," *Systematic Zool.*,
891 vol. 34, no. 4, pp. 449–456, 1985.

Khondhaker Al Momin received the BSc degree in civil engineering and the MSc degree in transportation engineering from the Bangladesh University of Engineering and Technology (BUET). He is currently working toward the PhD degree with the School of Civil Engineering and Environmental Science, the University of Oklahoma. His research focuses on Big Data analytics, network science, natural hazards, and system optimization.

Arif Mohaimin Sadri received the doctoral degree from the Lyles School of Civil Engineering, Purdue University. He is an associate professor with the School of Civil Engineering and Environmental Science, the University of Oklahoma. His research focuses on how transportation systems critically depend on social and other physical systems in the context of natural and human-made hazards. He develops data-driven and network-based solutions to enhance bottom-up resilience in complex, interdependent systems.

Kristin Olofsson received the PhD degree in public affairs from the University of Colorado. She is an assistant professor of political science with Colorado State University. Her research focuses on policy coalitions and networks, particularly in contentious political environments. She employs comparative research designs, survey data, and network analysis to explore public policy, political behavior, and political psychology.

K.K. Muraleetharan is the Kimmell-Bernard chair in Engineering and a David Ross Boyd and a Presidential professor of Civil Engineering and Environmental Science with the University of Oklahoma. He is also a fellow of the American Society of Civil Engineers (ASCE). He is interested in large-scale computer simulations of infrastructure (bridges, roads, levees, port facilities, etc.) subjected to extreme events (earthquakes, ice storms, high winds, etc.), validations of these simulations using small-scale and full-scale testing, and resilience of infrastructure systems following extreme events.

Hugh Gladwin received the PhD degree in cognitive anthropology from Stanford University. He is an associate professor emeritus with Florida International University (FIU). At FIU, he directed the Institute for Public Opinion Research pioneering GIS-based survey design resulting in risk-mapped inferentially-valid random probability design datasets. He is a coauthor of more than 20 publications based on these datasets. He has also studied and published on the intersection of memory models, risk-sharing, and decision-tree modeling.