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1 Introduction

Analyzing adult-child speech interactions is crucial for understanding and promoting healthy language develop-
ment, school readiness, and academic performance in children [38, 42, 60, 79]. Adult-child conversations, both at
home with parents or caregivers and in classroom settings with teachers, play a significant role in shaping a
child’s language skills and overall communication abilities [79]. For instance, the variability in the amount and
diversity of talk that parents direct to their toddlers is associated with variability in their language skills at age 3
[12]. Extensive research has demonstrated that the quantity and quality of adult-child interactions are also key
drivers of growth in children’s prosocial behavior and mental health, with short and long-term consequences for
children’s ability to care, show empathy, and voluntarily assist others [48, 90]. Teacher-child interactions in the
classroom environment are similarly important for early social-emotional functioning [7].

Given the importance of analyzing adult-child conversations for understanding and supporting children’s
social, academic, and language development, there has been strong interest in developing ubiquitous technology
to automatically record and analyze adult-child speech interactions in naturalistic settings. Various sensing
modalities, particularly audio, are being increasingly deployed in the home as well as in classrooms to understand
young children’s experiences within early childhood education [22, 96].

One setting of particular interest in studying adult-child conversations has been during play-based interactions.
As humans, some of our most formative early experiences occur in the context of play-based interpersonal interac-
tions with our caregivers, making play sessions incredibly meaningful and informative social interactions [31, 78].
Social scientists have therefore studied play sessions for decades to understand early development, parenting, and
early family functioning [31, 91, 93]. Several standardized assessment tools have been developed to evaluate the
quality and effectiveness of play-based conversations. For example, the Dyadic Parent-Child Interaction Coding
System (DPICS) is widely used in parent-child interaction therapy (PCIT) to assess the quality of parent-child
communication and guide intervention strategies where clinicians coach parents to gain new, more adaptive par-
enting skills across repeated play sessions [25]. Similarly, the Brief Observation of Social Communication Change
(BOSCC) is an observational measure designed to capture changes in social communication skills and monitor
intervention progress in children with autism spectrum disorder (ASD) during brief play-based interactions with
an adult [34].

The importance of analyzing adult-child speech interactions, both in the context of play and otherwise, has
been increasingly recognized in the fields of ubiquitous computing and human-computer interaction. In the
UbiComp community, several studies have focused on using wearable devices and sensors to capture and analyze
adult-child speech interactions in naturalistic settings. Some of the early work in this domain includes the “Human
Speechome Project” to record and analyze child-adult conversations in the home environment to study child
development [80] as well as the use of wearable cameras and audio recorders to capture adult-child interactions
during play sessions [75]. There have also been a number of efforts focused on developing mobile and wearable
technologies to support language assessment and intervention in the context of parent-child interaction (e.g.
[36, 43, 88, 106]). However, most of these technologies rely on low-level vocal features, focus only on adult
speech, use off-the-shelf speech recognition models that are not tested on child-centered speech, or resort to
manual approaches to understand child speech, thereby extracting limited insights from an extremely rich
and varied source of data. Much of the work in the UbiComp and HCI fields also does not take interaction
dynamics into account, but instead focuses on utterance-level insights or conversation-level aggregates rather
than moment-to-moment changes within conversations.
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While an accurate and in-depth analysis of adult-child speech during play-based interactions would have major
implications for early education, parenting, and clinical work, the development of ubiquitous technologies to make
this possible necessitates overcoming several technical challenges. Any pipeline for analyzing such interactions
must include several preliminary stages such as the separation of child and adult speech by identifying the
speaker and automatic speech recognition (ASR) to accurately transcribe the spoken content. Finally, a scoring
function like DPICS needs to be applied to determine the quality of the interaction. Recent advances in large deep
learning-based ASR models and Large Language Models (LLMs) offer powerful tools that could accelerate our
ability to automatically analyze and mediate adult-child interactions. However, several gaps exist in the current
state of research:

(1) Existing speech and language models are not sufficiently tested for child speech or adult speech that is
directed towards young children, which differs significantly from adult-to-adult communication. The unique
characteristics of such speech can substantially impact the performance of ASR and speaker diarization
models in this domain [27], but prior work has largely ignored taking into account this performance gap.

(2) There is a lack of benchmark ASR and diarization datasets containing naturalistic adult-child speech,
especially with younger children whose language skills are still developing. This makes it difficult to
evaluate existing models in this crucial age range.

(3) There is a lack of datasets containing real-world adult-child conversations with annotations such as
DPICS, which would enable the development of automated scoring methods. While it is difficult to collect
and publicly release such datasets due to privacy concerns, they are essential for realizing the vision
of intelligent systems that can automatically reason about the quality of parent-child interactions and
recommend appropriate interventions.

To address these gaps, we curate a dataset for child-centered speech processing during play-based interactions
and evaluate baseline models on this dataset. As an example of a downstream task, we annotate a subset of the
dataset with parent and child DPICS labels and investigate whether various state-of-the-art text classification
models can accurately predict these labels. Our paper makes the following contributions:

(1) We curate a dataset, Playlogue, containing over 33 hours of adult-child interaction audio recorded during
play sessions from three different corpora plus non-play sessions from one additional corpus. We apply
extensive manual filtering and automated forced-alignment techniques to enable researchers to use the
dataset for applications such as speaker diarization and ASR. We annotate a subset of this curated dataset
with DPICS codes, producing 4773 labeled parent utterances and 3895 labeled child utterances along with
full conversation audio and context. This provides a valuable resource for exploring diarization, ASR, and
DPICS prediction using state-of-the-art large audio processing and language models, thereby enabling new
research in this domain.

(2) Using this dataset, we first evaluate the performance of state-of-the-art speaker diarization models trained
to segment adult-adult interactions on adult-child speech. We show that there is considerable performance
degradation, and investigate whether fine-tuning these models on adult-child speech improves performance.
We also train and evaluate adult/child audio classification models using both traditional audio features and
speech representations obtained from pretrained deep neural networks.

(3) Second, we examine several state-of-the-art ASR models to understand the extent of performance degra-
dation when applied to parent-child interactions compared to typical adult speech. We demonstrate that
there is a substantial performance gap and assess whether applying fine-tuning techniques can help miti-
gate this gap. While significant improvements are observed, there remains considerable room for further
enhancement.

(4) Third, we investigate the ability of state-of-the-art LLMs and sentence transformer models to predict DPICS
labels. This analysis provides insights into the feasibility of future Al models that can reason about the
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quality of parent-child interactions and use this information to provide feedback without disrupting the
natural flow of the interaction.

(5) Finally, we conduct a pilot study to record in-home parent-child interactions using a smartphone app. We
collect naturalistic audio data to test the generalization performance of models trained on Playlogue to
real-world UbiComp settings. We demonstrate that diarization, ASR, and text classification models trained
or fine-tuned on Playlogue generalize well to this unseen setting, achieving significantly better performance
than state-of-the-art pretrained models.

The Playlogue dataset would enable researchers to develop more accurate and useful speech and language
models for future ubiquitous technologies that support adult-child interactions. A unique feature of the Playlogue
dataset is that it contains full audio and annotated transcripts from spontaneous (not enacted) conversations
that are, on average, 12 minutes and 36 seconds long. This allows researchers to study adult-child interactions in
context, enabling them to model interaction dynamics and state transitions from one speech act to another using
a purely naturalistic dataset.

2 Related Work
2.1 Adult-Child Interaction in UbiComp and HCI Research

There has been long and sustained interest in the ubiquitous computing and human-computer interaction com-
munities towards understanding and developing tools to support interaction between children and adults (mainly
parents). Previous research has used a wide range of modalities to sense and support adult-child interactions,
including wearable physiological sensing [71], instrumented interactive toys [13], wearable camera-based gazed
estimation [15], social cues delivered via Google Glass [99], smartphone app-based self-reflection [46], etc. Here,
we highlight prior work that specifically utilizes audio sensing to monitor parent-child interactions. For example,
Hwang et al. proposed the TalkBetter system that used mobile phones to record parent-child conversations and
monitor turn-taking and meta-linguistic behaviors such as excessively long parent turns, lack of child responses,
syllable rate, etc. to provide parents feedback on communication strategies [44]. Similarly, TalkLIME provided
parents visual feedback on their interactions with their child by tracking utterance duration and turn initiation
ratios for each party [88]. Yoo et al. derived “conflict cues” based on non-verbal behaviors (e.g., crying, yelling)
from child audio to capture parent behavior, enabling parents to reflect on their actions from the child’s point
of view [108]. MAMAS captured parent and child speech during mealtimes and performed transcription and
sentiment analysis to help parents understand and improve mealtime interactions [47]. “Rosita Reads With
My Family” included a bilingual conversational interface to support language learning and parent-child joint
engagement during co-reading [39, 105]. Other work has focused solely on adult speech within parent-child
dyadic interactions. For example, SpecialTime provided parents engaged in parent-child interaction therapy with
real-time feedback by transcribing audio and classifying speech acts [43]. “Captivate!” used parent speech to
sense joint attention during parent-child dyadic interactions, but did not directly analyze child speech [53].
The above examples highlight the marked interest in the UbiComp and HCI research communities in analyzing
various forms of adult-child interactions. Many of the above technologies rely on various speech and language
processing components, however, there is a lack of such components specifically designed with child populations
in mind. “Rosita”, SpecialTime, and “Captivate!” all used the Google Cloud speech-to-text service. A key limiting
factor in adult-child interaction research is the lack of domain-specific open datasets for researchers to develop and
evaluate machine learning models. This is especially true of datasets that contain information about adult-child
interaction quality and clinically validated behaviors. Huber et al. [43] released a synthetic dataset of parent
sentences labeled using the Dyadic Parent-Child Interaction Coding System (DPICS; [25]), which has been used
by other work to develop text classifiers for parent speech (e.g., [55, 67]). However, this dataset contains discrete
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utterances without the surrounding conversational context and lacks speech audio, both of which are important
indicators for experts when assigning DPICS labels to parent-child conversations [25].

2.2 Children and Voice-based Interactions

Prior work in human-computer interaction has also focused on developing voice-based and conversational
interfaces for children or using speech/vocal features for other downstream applications, which also require similar
speech-processing capabilities as the work listed above. Virtual agents and Al-based storytelling applications
have been utilized to create interactive technologies tailored to children that can be used as language partners or
learning assistants. For example, in the education domain, MathKingdom used Baidu’s speech-to-text service
to record children’s answers to math questions posed to them by a virtual agent as part of an educational
game [104]. Mathemyths used the Google Cloud speech-to-text service and a GPT-based large language model
to engage children in a conversation, co-creating storylines that expose them to mathematical language and
concepts [109]. “Rosita” also uses Google’s speech-to-text and DialogFlow APIs to analyze children’s responses and
categorize intent during a storytelling task [105]. In a similar vein, StoryCoder [20] aimed to improve children’s
computational thinking ability, data literacy, and creative expression through storytelling via a voice-guided
smartphone application. The Spoken Impact Project used a Wizard-of-Oz system in place of automatic speech
recognition to evaluate the effect of audio-visual feedback on encouraging vocalization in children with autism
spectrum disorder [35]. Storytelling technologies can also exist with a physical tangible presence - for example,
the Alpha Egg [94], Luka [111] and Codi [70], are commercially available Al-based robotic toys that provide
platforms for interactive storytelling experiences for children. However, most of these conversational interfaces
and applications rely on existing off-the-shelf services that are not evaluated in a younger population or use a
Wizard-of-Oz stand-in.

Automated speech processing approaches have also been developed to use voice-based interactions to identify
speech and language disorders in young children [32]. DYPA combined handwriting analysis with audio features
from reading tests to screen children for dyslexia using a tablet-based application [112]. Other applications support
speech therapy by utilizing speech recognition during game-based interactions to provide feedback to users or
therapists (e.g., [86, 92]). Speech and vocal features have also been used to screen children for mental health
issues — Cotter et al. found an association between child speech acts labeled using DPICS and parent-reported
behavioral problems [17].

2.3 Gaps in Analyzing Child and Child-Centered Speech

As described above, a large body of prior work employing speech technology for children uses off-the-shelf
models that may exhibit poor performance on child or child-directed speech. For example, recent work evaluating
the Google speech-to-text API on 6- to 11-year-old children’s speech reported a word error rate (WER) of 24% [10],
compared to current state-of-the-art ASR systems that achieve a WER of approximately 6% on adult speech
benchmarks [89]. While there has been some research on developing speech processing systems specifically for
child speech, this has mainly focused on older children. For example, in terms of ASR technologies, child speech
researchers have mainly used the MyScienceTutor dataset of spoken dialogues by children in grades 3 through
5 [98], the PF STAR dataset of children aged 4 to 14 years [81], or the CMU Kids dataset of spoken sentences
from children aged 6 to 11 years [23] to train and evaluate models. We refer interested readers to recent reviews
such as [6] for more details on the various ASR approaches adopted in this line of research.

There is, however, a gap in understanding the performance of ASR models on speech from younger children (i.e.,
preschool-aged), whose speech and language skills are less developed. Sciuto et al. found that younger children
faced difficulties having their speech understood by smart speaker-based conversational agents due to their voice
intonations and cadence [85]. Monarca et al. also studied children’s interactions with a conversational agent and
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found that children with below-average speech skills were both likely to speak less and be less well-understood by
automatic speech recognition (ASR) systems [65]. This highlights the importance of improving ASR performance
not just for child speech in general but also for younger children and children with language deficiencies in
particular.

In a younger population, the LENA system [103] has been used commercially and in prior research to record
and analyze daylong recordings of children in naturalistic environments, providing insights such as adult and
child word counts, turn-taking, speech complexity, etc. in order to support the tracking of language development
in young children (e.g., [30, 97]). However, recent work has found that LENA estimates of child vocalizations and
adult word counts only had weak to moderate associations and large absolute discrepancies with ground-truth
annotations [59], while measures such as conversational turn counts could also be inaccurate [18].

Research on adult-child speaker diarization has attempted to address these gaps using approaches such as
agglomeration clustering [19, 102], probabilistic linear discriminant analysis [51, 52, 102], or end-to-end modeling
with deep neural networks [50] using Mel Frequency Cepstral Coefficients (MFCC) [19, 50], i-vectors [19, 50],
or x-vectors [51, 52] as input features. However, most approaches focus on pre-vocal infants (e.g., [19, 102])
or older children (e.g., [52]). Many of the datasets used in these works are also not publicly available, thereby
limiting the comparison of proposed approaches across datasets. We aim to fill these gaps through our Playlogue
dataset, which we hope will enable researchers to develop and evaluate both diarization and ASR technologies
for preschool-aged children.

3 Benchmark Tasks

In this work, we focus on evaluating speech and language models on the following three tasks that are of particular
relevance to researchers studying preschool populations: (i) adult-child speaker diarization, (ii) automatic speech
recognition, and (iii) automatic coding of speech acts using the Dyadic-Parent Child Interaction Coding System
(DPICS). Speaker diarization is an essential component of ubiquitous technologies to monitor children’s linguistic
development [103] and parent-child interaction quality (e.g., [44, 88, 47]). Automatic recognition of child and
child-centered speech is central to voice-based and conversational interaction systems, including learning and
entertainment systems for young children (e.g., [109, 111, 105]). Lastly, identifying DPICS speech acts from
parent-child conversations has been of interest to child mental health researchers [17] as well as technology
developers [43], particularly in mobile settings. While not an exhaustive list, these tasks serve as a jumping-off
point to illustrate the need for a new, publicly available dataset of child-centered conversations to train and
evaluate machine learning models. The tasks also reflect different levels of analyses of adult-child interactions,
which enable different practical applications such as those described above for researchers and practitioners.

3.1 Adult-Child Speaker Diarization

Speaker diarization is the problem of identifying who speaks at what time in an audio recording with multiple
speakers. In the context of child-centered conversations, having access to speaker identities and speech timings
allows researchers to derive metrics such as response latencies, pauses, and turn-taking behaviors [29]. Prior
research has demonstrated an association between these metrics and children’s social and linguistic devel-
opment [66], quality of interactions [8] as well as autism spectrum disorder severity [9]. The gold-standard
commercial tool used for obtaining these measures in the LENA system [103], however, its limited accuracy [59]
has prompted researchers to explore alternative approaches for deriving these insights.

Several approaches for adult-child speech diarization have been proposed in prior work across different
recording settings, number of speakers, child age ranges, and child clinical phenotypes (e.g., [19, 50, 51, 102]).
However, a fair comparison of existing approaches for adult-child diarization is made difficult by the lack of
publicly available benchmark datasets similar to those of adult speakers - to the best of our knowledge, only the
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SEEDLIingS corpus of infant (6 to 18 month) speech is available to researchers for a fee through the DIHARD
challenge [83]. We aim to fill this gap by curating audio clips of one-on-one conversations between an adult and
a child aged 3 to 5 years along with forced-aligned segment timestamps for each speaker.

3.2 Automatic Speech Recognition

Automatically transcribing children’s speech has been an active area of research over the last few decades, with
diverse applications including understanding children’s language development [82], developing educational
tools [101], and supporting communication with smart speakers and other virtual agents [49]. As described in
Section 2.3, the most commonly used evaluation datasets for child speech recognition ([81, 23, 98]) encompass
child speech from older children (4 to 14 years) rather than the preschool age. Additionally, they include short
segments of speech narrated by children, rather than longer, more naturalistic conversations between children or
child-adult pairs/groups. We aim to address this gap by compiling a dataset of adult-child conversations involving
preschool-aged children (3 to 5 years) from the publicly available CHILDES corpora [64]. While CHILDES data has
been previously used to train ASR systems (e.g., [21]), we contribute a manually filtered and curated dataset with
train/validation/test splits for future work to systematically evaluate ASR performance on adult-child speech.

3.3 Automatic Coding of Speech Acts Using DPICS

The Dyadic Parent-Child Interaction Coding System (DPICS [25]) is the formal coding system used by clinicians
certified to conduct Parent-Child Interaction Therapy (PCIT). Briefly, PCIT is a type of behavioral parent training
intervention specifically for preschool-age children with disruptive behaviors, in which the therapist coaches
the parent on a series of parenting skills to increase the quality of positive attention paid to their child [63].
The DPICS coding system is used by the PCIT therapist to assess progress toward these skills in real time as
parents engage in a play session with their child. Specific positive parenting skills measured and counted by the
DPCIS system include labeled praise, reflecting the child’s verbalizations, and narrating or describing the child’s
behavior [63].

However, DPICS is both a highly detailed and labor-intensive system - it requires therapists to undergo
extensive training as well as to juggle accurately recording DPICS labels with other tasks during the session, such
as making clinical observations or responding to the parent or child [63]. Therefore, there has been an increasing
interest in recent years to automate DPICS coding using speech and text Al-based approaches [43, 67]. Although
this has led to the creation of a public dataset with DPICS labeled sentences [43], there is a lack of datasets with
conversational context and audio data corresponding to these DPICS classes. This presents a challenge in terms
of training models that can utilize vocal features (such as rising tone inflections that signify questions) and prior
conversational context (to detect reflections of child verbalization or behavior description), which are important
considerations for PCIT therapists while manually assigning DPICS labels. We address this gap by creating a
dataset of 4770 annotated parent utterances and parent-child audio during naturalistic interactions reflective of
real-world scenarios.

4 Dataset
4.1 Corpus Selection

To create Playlogue, we identified three corpora from CHILDES [64], the child language component of the
TalkBank system [58], that contain audio recordings and transcriptions of one-on-one play-based conversations
in North-American English between adults and children aged 3 to 5 years. These included the following corpora:

(1) EllisWeismer [40]: This corpus contains language samples recorded between 2.5 years to 5.5 years of age
from children with and without language delays. All children were from monolingual English-speaking
families in the US Midwest. We only included children without language delays in our dataset. We selected
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play-based examiner-child conversations at 3.5 and 4.5 years and parent-child conversations at 3.5 years,
which were recorded using a standard set of toys as props for play-based conversations.

(2) Gleason [61]: This corpus contains recordings of children between 25 and 62 months of age in one-on-one
play-based conversations with their father and mother as well as at the dinner table. All participants were
from White, middle-class families in the greater Boston area in the US and spoke English as a first language.
We selected all play-based recordings where the child’s age was between 3 years 0 months and 5 years 11
months for inclusion in Playlogue and discarded all dinner conversations.

(3) VanHouten [95]:This corpus includes child-centered conversations with US-based children aged two or
three years. Playlogue includes conversations from the three-year subset that were recorded during free
play between an examiner and the child using a park set as props.

In addition to the above play-based corpora, we also selected a small, curated subset of storytelling narratives
from CHILDES as non-play-based training data:

(1) Cameron [11]: This corpus includes audio recordings from three different activities completed by children
aged 4 to 5 years residing in upstate New York in the US who are speakers of Standard American English
(14 participants) or African American English (15 participants). We included one conversation between
each child participant and an examiner, where the child came up with and told their own story based on a
wordless picturebook or toy characters from a playset.

4.2 Data Filtering and Curation

After selecting relevant corpora for Playlogue, we filtered out participants from each corpus who were out of the
3- to 5-year-old age range or who were missing audio recordings or human-annotated transcripts. We manually
checked each transcript and identified several recordings that were either partially transcribed, had transcription
errors, or had incorrect time synchronization between audio and transcript. We followed a two-stage process to
filter and fix these errors: first, we manually identified the start and end times for a correctly transcribed segment
in each audio file. Segments were included even if time synchronization was missing or erroneous, as long as the
speech was correctly transcribed. We used these start and end timestamps to trim each audio and transcript file,
generating clips that would be included in Playlogue.

In the second step, we used the NeMo Forced Aligner (NFA) tool from the NVIDIA NeMo Framework [37] to
generate token-, word- and segment-level timestamps for the selected audio clips. NFA uses Viterbi decoding [28]
with an automatic speech recognition (ASR) model based on Connectionist Temporal Classification (CTC; [33]) to
generate alignments. We used the Parakeet CTC 0.6B version of the FastConformer model [77] from NeMo in our
NFA implementation. The reliability of the output alignments was manually verified using the Gecko tool [54]
and was found to be more accurate than the original time synchronization data obtained from CHILDES. We
include the generated alignment information in Playlogue and use it for all experiments described in this paper.

4.3 Dataset Statistics

Following the data selection, filtering, and alignment process described above, Playlogue includes over 33 hours
of adult-child audio with word-aligned transcripts. This includes 158 audio recordings from 110 unique
participants aged 3 to 5.5 years. Playlogue can be utilized by researchers to develop and evaluate machine learning
models for automatically analyzing conversations of preschool-aged children with an adult, enabling applications
such as automatic speech recognition and conversation analysis in an early childhood population. The mean
duration of clips in the dataset is 12 minutes and 36 seconds, allowing researchers to analyze interaction dynamics
in long-form conversations by going beyond sentence-level or few-second-long analyses. More information about
the Playlogue dataset is presented in Table 1, along with per-corpus statistics.
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Table 1. Descriptive statistics for the Playlogue dataset.

Corpus Corpus  No.of No.of Participant Participant Total Duration Duration
Type Clips Partic- AgeRange Sex (M:Male, Duration of Adult of Child
ipants  (months)  F: Female) Speech Speech
EllisWeismer Play 85 44 42-54 M: 57, F: 28 18:22:31 07:02:08 05:33:22
Gleason Play 23 16 36-62 M: 12, F: 11 09:20:47  04:12:47  02:21:52
VanHouten Play 21 21 38-42 M:12,F: 9 02:54:49 01:07:10 00:55:10
Cameron Narrative 29 29 47-66 M: 15, F: 13, 02:34:20 00:44:39 01:03:18
Unknown: 1
TOTAL 158 110 36-66 M:96,F: 61, 33:12:29 13:06:46 09:53:43

months Unknown: 1

4.4  Speech Act Labeling Using DPICS

To demonstrate the utility of the Playlogue dataset on downstream applications of interest to researchers and
practitioners, we labeled a portion of Playlogue using the DPICS parent and child labels. We used the play-based
parent-child conversations recorded at the age of 4.5 years from the EllisWeismer corpus for this task since DPICS
labels are mainly used in the context of conversations between these parties during parent-child interaction
therapy. This resulted in 27 clips with unique participants, or 5 hours and 31 minutes of data, that were
annotated with DPICS labels.

Two authors served as coders and used the DPICS manual [25] to familiarize themselves with the ten parent
and four child verbalization categories. To maintain consistency with prior work such as [43], the standard parent
categories of “Direct Command” and “Indirect Command” were condensed into the “Command” label. Similarly,
“Information Question” and “Descriptive/Reflective Question” were combined into a single “Question” label. This
resulted in eight DPICS parent labels including “Negative Talk”, “Command”, “Labeled Praise”, “Unlabeled Praise”,
“Question”, “Reflective Statement”, “Behavior Description”, and “Neutral Talk”. DPICS labels were assigned to
child verbalizations based on the standard categories, i.e., “Negative Talk”, “Command”, “Question”, and “Prosocial
Talk”. To the best of our knowledge, there are no existing datasets of child DPICS codes that are publicly available
for use by researchers interested in studying child speech and language.

Coders studied the DPICS manual and discussed label definitions as well as examples before starting the
annotation process. Labels were assigned through a custom interface implemented on the Qualtrics platform?
that allowed coders to simultaneously listen to the audio and scroll through the transcript. Coders actively
considered vocal characteristics (such as changes in tone and pitch), content, and context (preceding parent and
child conversation) to assign one of the eight parent DPICS labels to each parent sentence or one of the four child
labels to each child sentence. Parent and child DPICS codes were annotated in two separate passes over each clip
to minimize errors and ensure higher data quality. Six of the 27 clips (approximately 20%) were independently
rated by both coders. Inter-rater reliability across the six clips was found to be almost perfect [62] with a Cohen’s
kappa [16] value of 0.93 and a percentage agreement of 95.3% over 886 parent utterances and a kappa of 0.98
and agreement of 98.6% over 716 child sentences. Disagreements in labels were resolved via discussion and the
remaining files were annotated by one of the two coders.

Table 2 shows the number of instances of each DPICS parent label within all 27 parent-child conversations.
Note that the DPICS labels are heavily imbalanced — parents mostly engage in “Neutral Talk” or “Questions”

Uhttps://www.qualtrics.com/
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Table 2. Number of instances of each DPICS parent and Table 3. Number of instances of each DPICS parent and

child code in the labeled parent-child conversations from child code in the parent-child conversations from the
the Playlogue dataset. in-home pilot data.
DPICS Label No. of % of total DPICS Label No. of % of total
sentences sentences sentences sentences
Parent Verbalizations Parent Verbalizations
Negative Talk 37 0.8% Negative Talk 10 1.0%
Command 417 8.7% Command 146 15.1%
Labeled Praise 12 0.3% Labeled Praise 16 1.7%
Unlabeled Praise 173 3.6% Unlabeled Praise 61 6.3%
Question 1648 34.5% Question 274 28.3%
Reflective Statement 277 5.8% Reflective Statement 29 3.0%
Behavior Description 35 0.7% Behavior Description 23 2.4%
Neutral Talk 2174 45.5% Neutral Talk 409 42.3%
Total 4773 Total 968
Child Verbalizations Child Verbalizations
Negative Talk 56 1.4% Negative Talk 19 3.3%
Command 207 5.3% Command 64 11.1%
Question 556 14.3% Question 55 9.5%
Prosocial Talk 3076 79.0% Prosocial Talk 440 76.1%
Total 3895 Total 578

while hardly using “Labeled Praise”. A similar imbalance is also seen in child labels, which are dominated by
“Prosocial Talk”. While this can be considered a limitation of the Playlogue dataset, we argue that this is, in fact,
representative of the distribution of DPICS labels that would be expected in a real-life parent-child conversation.
The presence of audio and annotated transcripts from the full conversation also allows researchers to study
transitions from one DPICS label to another across participants, which is not possible using existing datasets that
only provide example sentences from each DPICS class without additional context (e.g., [25, 43]).

4.5 Dataset Validation: Pilot Study of In-Home Parent-Child Conversations During Play

In order to demonstrate the utility of Playlogue in training and validating adult-child speech and language models
in UbiComp settings, we conducted a brief, in-home pilot study recording play-based parent-child interactions
using a smartphone application. We developed a cross-platform app using the Flutter framework? to record
parent and child audio during a structured play session. The session was based on the SpecialTime activity used
in parent-child interaction therapy [26] and consisted of three phases: (i) ten minutes of child-led play, where the
child chooses any activity and the parent plays with them following their lead, (ii) ten minutes of parent-led play,
where the parent leads the child in playing according to their rules, and (iii) five minutes of clean-up, where the
parent directs the child to put away all toys on their own.

We recruited three parent-child dyads to participate in our pilot study through community-based advertisements.
Table 4 shows the participant demographics. All participants were based in the US with the child participants
speaking English as their first language. All adult participants had earned a college degree or completed post-
graduate training. To ensure naturalistic conditions, parents were asked to install the data collection app on their

Zhttps://flutter.dev/
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Table 4. Participant demographics for the in-home pilot study.

ID Child’s Age Child’s Child’s Race and Ethnicity Parent Parent’s Race and Ethnicity
Sex

P1 5years,4 months Male White; Not Hispanic/Latino Mother White; Not Hispanic/Latino

P2 4 years, 1 month Female Asian, White; Not Hispanic/Latino Father =~ White; Hispanic/Latino

P3 3 years, 1 month Female Asian; Not Hispanic/Latino Mother Asian; Not Hispanic/Latino

phones and complete the 25-minute session at home without the researchers present. The app provided audio
instructions at the beginning of each phase and recorded stereo audio at a sampling rate of 44.1 kHz and bitrate
of 128 Kbps. Overall, the pilot study allowed us to collect a total of 75 minutes of parent-child interaction audio
in diverse real-world settings using ubiquitous devices.

The pilot audio data was manually transcribed and each speech segment was assigned a speaker label
(adult/child). Segment-level timestamps were obtained using the forced-alignment technique described in Sec-
tion 4.2. Parent and child speech acts were labeled using DPICS in a manner similar to that described in Section
4.4 for the Playlogue data.

We first use this at-home pilot data to validate the real-world representativeness of the labeled speech acts
in the Playlogue dataset. Table 3 shows the number and percentage of different DPICS parent and child codes
observed within the in-home pilot data. Comparing this with the DPICS labels in Playlogue (Table 2 ), we see
that classes such as “Negative Talk” remain underrepresented and “Neutral Talk”/“Prosocial Talk” remain the
majority classes in the naturalistic, in-home data.

We later use this in-home validation dataset to evaluate the generalizability of speech and language models
trained on Playlogue to other UbiComp settings. Note that due to privacy restrictions, the in-home data will not
be part of the Playlogue data release and is only meant to illustrate the representativeness and generality of the
Playlogue dataset to other real-world contexts of adult-child play interactions.

4.6 Ethics Statement

The audio data in Playlogue was collected by various researchers following their own institutional guidelines
and contributed to the CHILDES system [64]. The audio and anonymized transcripts are available to authorized
researchers through TalkBank [58]. The individual participants in each study consented to data-sharing through
the TalkBank system. This research follows TalkBank’s ground rules for data usage and sharing. As requested,
the senior author applied to become a member of the TalkBank system and described the intended research
to the TalkBank maintainers. The authors took measures to ensure that no sensitive information was revealed
when curating data for Playlogue. The dataset creation procedure reported on in this work did not involve
any additional human subjects research and therefore did not require any institutional approval; however, the
two authors who performed DPICS coding completed human subjects research training requirements at their
institution. All models tested using the data were either run on institutional clusters or via APIs that do not retain
data. The in-home pilot study to validate Playlogue was separately approved by the Institutional Review Board at
the authors’ institution.

5 Analysis

In this section, we utilize the Playlogue dataset to evaluate the performance of several state-of-the-art speech
and language models developed for adult speech on each of the benchmark tasks described in Section 3. We also
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Playlogue dataset.

conduct preliminary analyses to investigate whether training or fine-tuning models using child-centered speech
from Playlogue can improve model performance.

5.1 Adult-Child Speaker Diarization

5.1.1 Evaluating Pretrained Models. To evaluate the feasibility of utilizing pretrained models to perform adult-
child diarization, we tested three speaker diarization models trained on adult speech on the child-centered
conversations in Playlogue. Models are compared using Diarization Error Rate (DER) as the metric, which is
calculated as the duration of false alarms, missed detection, and speaker confusion errors divided by the total
duration across all audio clips in the test set. A lower DER value implies better performance, with a DER of zero
indicating perfect diarization. For all models, DER was calculated with no forgiveness collar and taking into
account overlapped speech.

We randomly assigned 20% of the participants in each play-based corpus in Playlogue into test and valida-
tion sets, with the remaining 60% of the play-based corpora and all of the Cameron narrative corpus used for
training/fine-tuning. This resulted in training, validation, and test sets of durations 19 hours and 6 mins, 5 hours
and 59 mins, and 8 hours and 6 mins respectively. We report the performance of models on the test set in all our
experiments henceforth. The pretrained models evaluated included the PyAnnote powerset speaker diarization
model [72] and the NeMo clustering and neural diarizers [37, 69], which report state-of-the-art diarization error
rates (DERs) on various (adult) speaker diarization benchmarks.

Figure 1 shows the DER of the pretrained models on each play-based corpus in Playlogue. We see that the
PyAnnote model obtained the lowest overall DER of 53.4%. To contextualize this result, the model reports DERs
ranging from 7.8% to 50% on benchmark diarization datasets containing adult speech. Our analysis demonstrates
significant gaps in the generalizability of state-of-the-art diarization models at separating adult vs. child speech.

5.1.2  Fine-tuning on Playlogue. In order to investigate whether fine-tuning using adult-child speech improves
diarization performance, we fine-tuned the speaker segmentation model in the best-performing PyAnnote
diarization model from Figure 1 using the train set from Playlogue. The segmentation model was fine-tuned on
either the play-based corpora only or the play-based+narrative corpora for 30 epochs with 16-bit mixed-precision
training. The segmentation model with the highest performance on the validation set was then used to optimize
the clustering threshold for agglomerative clustering (see [72]) by optimizing for 10 iterations. The performance of
these adapted pipelines is reported in Table 5 — fine-tuning on the play-based corpora (EllisWeismer, Gleason, and
VanHouten) alone improves DER from 53.4% to 40.3%. The performance improvement is statistically significant as
indicated be a paired t-test of DERs across the 33 test files (#(33) = 7.50, p < 0.001). Including training data from
the Cameron narrative corpus brings the DER further down to 33.2% (¢(33) = 2.98, p = 0.005). This demonstrates
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Table 6. Adult-child speaker diarization performance of speech classification models on the Playlogue dataset.

Model Diarization Error Rate Overall DER
EllisWeismer Gleason VanHouten

Fine-tuned PyAnnote diarization model (Table 5) 37.4% 24.3% 32.2% 33.2%

Classification with openSMILE features 38.1% 37.8% 44.8% 38.5%

Classification with WavLM features 33.8% 27.3% 32.2% 31.8%

the utility of adult-child speech datasets in improving the diarization performance of state-of-the-art models
when used for inference in preschool-aged populations.

5.1.3 Training Adult-Child Speech Classification Models. While speaker diarization models segment speech from
an arbitrary number of speakers and assign speaker labels in a permutation-invariant manner (i.e., Speaker A ->
Speaker B -> Speaker A is treated as equivalent to Speaker B -> Speaker A -> Speaker B as long as speaker labels
are consistent and start/end times of each speaker segment are accurate), processing adult-child conversations
sometimes calls for accurately classifying which of the speakers are adults/children. One approach for obtaining
these labels is to apply a diarization pipeline that outputs permutation-invariant speaker clusters and then detect
whether each output cluster represents an adult or child. Another approach followed by prior work such as [43]
involves training a classifier directly using audio features that can distinguish between adult and child speech.

To compare against end-to-end diarization approaches, we trained two adult-child speech classification models
using different speech representation features. First, we used the openSMILE toolkit [24] to extract pitch, voice
quality, energy, spectral, and cepstral features defined in the ComParE 2016 computational paralinguistics
challenge [84] from the raw audio signal using a window length of 60ms. Second, we used the pretrained
Microsoft WavLM-large model [14], which has been trained using large scale-self supervision and shown to learn
useful representations for a range of downstream tasks, to extract hidden state representations from raw audio at
a frequency of approximately 50 Hz. We then trained a simple multi-layer perceptron model with two hidden
layers to classify adult/child speech using the openSMILE or WavLM features as inputs. Each model was trained
for up to 30 epochs with a learning rate of 0.001 and an L2 weight decay of 0.01 to minimize multi-label binary
cross entropy loss to independently predict the presence/absence of adult and child speech in each window.
Binary classification thresholds for each label were selected by maximizing the F1 score on the validation set.
Frame-level labels were combined to reconstruct speaker activity segments, merging segments with the same
speaker label and a gap of less than 1 second between them.

Table 6 shows the DERs achieved by the classification models using openSMILE and WavLM features. While the
openSMILE model performs worse than the fine-tuned PyAnnote model with a DER of 38.5% (t(33) = —1.27,p =
0.212), the classification model using WavLM hidden states as features outperforms the fine-tuned model and
achieves an overall DER of 31.8% (¢(33) = 1.31,p = 0.198).

5.1.4 Validating Models on In-Home Pilot Data. In order to validate whether speaker diarization models fine-
tuned/trained on Playlogue generalize to real-world UbiComp settings, we evaluate their performance on the
in-home pilot dataset described in Section 4.5. Table 7 shows that the fine-tuned PyAnnote model, as well as the
feature-based classification models, generalize reasonably well to this unseen context, with all models achieving
significantly lower DERs than the pretrained model. This demonstrates the utility of Playlogue for training
adult-child speaker diarization models for other research settings.

5.1.5 Implications. Our analysis shows that existing speaker diarization models that achieve state-of-the-art
DERs on adult speaker benchmarks fail to generalize out-of-the-box to adult-child speech. While fine-tuning with
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Table 7. Adult-child speaker diarization performance on in-home pilot data.

Model Diarization Error Rate
Pretrained PyAnnote diarization model 53.9%
PyAnnote diarization model fine-tuned on Playlogue 39.4%
Classification model trained on Playlogue with openSMILE features 43.1%
Classification model trained on Playlogue with WavLM features 33.0%

as little as 20 hours of adult-child data results in a significant performance improvement, we demonstrate that some
applications might benefit even more from a simple, highly efficient classification approach. Specifically, extracting
audio embeddings from a large pretrained model such as WavLM and training a much smaller classification model
using these features achieves the lowest DER when separating adult-child audio. However, the performance
of both fine-tuned and trained models may vary significantly across corpora, highlighting the need for future
adult-child diarization models to be evaluated on diverse datasets such as Playlogue. We illustrate this point by
evaluating these models on our in-home pilot data, where the performance trends match that of the evaluations
on Playlogue.

5.2 Automatic Speech Recognition

5.2.1 Evaluating Pretrained Models. We evaluated six pretrained (on adult speech) ASR models on the Playlogue
dataset to benchmark their performance on child-centered speech. For our experiments, we selected the base/large
versions of Facebook’s wav2vec 2.0 [5] and the medium/large versions of OpenAl Whisper [73] based on prior
work demonstrating the favorable fine-tuning performance of these models on older children’s speech [45]. We
also evaluated the large version of Facebook’s data2vec-audio [4] and the NVIDIA Canary-1B model [37, 77],
which achieved state-of-the-art performance on the SUPERB benchmark [107] and the Hugging Face Open ASR
leaderboard [89] respectively (as of July 2024).

We used the same participants as in Section 5.1 as our train, validation, and test subsets. We formulate our
problem as long-form ASR, where we transcribe several minutes of audio (entire conversations) instead of a
few-second-long clip. We performed strided, chunked inference using a chunk size of 20 seconds for wav2vec 2.0
and data2vec models, 30 seconds for Whisper models, and 40 seconds for Canary-1B. We used the official NeMo
toolkit [37] for inference on Canary-1B and Hugging Face pipelines with the official releases for all other models.
Performance was evaluated in terms of Word Error Rate (WER), calculated as the ratio of the total number of
additions, deletions, and substitutions to the total number of words in the transcript. We calculated WERs for each
model after applying Whisper’s basic text normalizer [73] on reference and predicted transcriptions to remove
symbols, punctuation, and extra whitespace, convert all text to lowercase, and remove words within parentheses.

Figure 2 shows the performance of each pretrained model on the test participants in different corpora within
Playlogue. Whisper Large v3 (1.5 billion parameters) and Whisper Medium (769 million parameters) demonstrated
the two lowest WERs of 40.84% and 49.44%, respectively. To put these error rates in context, the original version
of Whisper Large reported WERs ranging from 3.52% to 19.60% on long-form transcription of adult speech (see
Figure 6 in [73]).

5.2.2  Fine-tuning on Playlogue. We then fine-tuned Whisper Large v3 on the train split from Playlogue. Models
were fine-tuned for 10 epochs with 16-bit mixed precision training and gradient checkpointing. We used a single
GPU with a train and validation batch size of 32 and the AdamW optimizer [57] with a linear warmup to a
learning rate of le-5. As shown in Table 8, fine-tuning on only the play-based corpora (EllisWeismer, Gleason,
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Fig. 2. Performance of pretrained ASR models on the Playlogue dataset.

Table 8. ASR performance on the Playlogue dataset after fine-tuning. | implies a lower score is better while T indicates that a
higher score is better.

Model Type Average Word Average BERT
Error Rate | F1 Score T
whisper-large-v3 Pretrained Model 40.84% 91.40%
Fine-tuned on play-based corpora from Playlogue 31.43% 92.84%
Fine-tuned on all corpora from Playlogue 29.37% 92.58%

and VanHouten) led to a reduction in average WER from 40.84% to 31.43% (t(33) = 6.22,p < 0.001). Including
the narrative Cameron corpus in the fine-tuning data improved the performance marginally, achieving a WER
of 29.37% (t(33) = 0.91, p = 0.368). We also report the performance of the pretrained and fine-tuned models in
terms of the BERTScore, which evaluates text generation by measuring the cosine similarity between words in
the reference and predicted transcriptions using pretrained embeddings from a BERT model [110]. BERTScore
has been shown to correlate with human judgment on sentence-level evaluation. Table 8 shows that while all
models achieve high BERT F1 scores, there is a small improvement after fine-tuning. This is likely due to the fact
that our test audio clips are several minutes long, which means the semantic meaning of a conversation can still
be captured fairly accurately even from an erroneous transcription. However, it is important to note that several
applications in child-centered language processing (e.g., morphological/phonetic analysis, measuring lexical
diversity during language acquisition, etc.) still require accurate transcripts with a low WER. In this regard, it is
clear that fine-tuning with in-domain adult-child speech leads to a significant performance improvement.

We further investigate the effect of fine-tuning corpus size, using 5, 10, or 15 hours of training data to fine-
tune the model. Fine-tuning with as little as 5 hours of data reduces the average WER from 40.84% to 30.26%,
demonstrating significant performance improvement across test corpora (Figure 3). However, additional training
data beyond 5 hours does not improve performance on all corpora — while the WER on the EllisWeismer corpus
continues decreasing, WERs on Gleason and VanHouten start to increase. This suggests that the model might be
overfitting to the EllisWeismer corpus, which is over-represented in the training data, thus hurting generalizability.

To further test generalizability in low training-data regimes, we fine-tuned models with a fixed amount (5
hours) of training data from the Playlogue dataset. Figure 4 shows the performance of the models on each corpus
when fine-tuned with and without data from the same corpus. As expected, including fine-tuning data from
non-overlapping participants in the test corpus generally results in lower WERs. However, there is variability
across corpora in terms of performance gains — while the Gleason corpus benefits from fine-tuning on other
corpora, there is a slight regression in WER when fine-tuned using participants from the same corpus. On the
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Table 9. Performance of ASR models on in-home pilot data after fine-tuning on Playlogue. | implies a lower score is better
while T indicates that a higher score is better.

Model Type Word Error Rate | BERT F1 Score?

whisper-large-v3 Pretrained Model 40.22% 94.00%
Fine-tuned on play-based corpora from Playlogue 19.09% 94.20%
Fine-tuned on all corpora from Playlogue 11.80% 96.60%

other hand, the WER reduction on the VanHouten corpus is marginal when fine-tuned on other corpora, but
substantial when fine-tuned with data from the same corpus.

5.2.3 ASR Performance by Attribute. Finally, we evaluated the WER of the pretrained and fine-tuned Whisper
Large models across speaker characteristics (see Figure 5. First, we computed WERs separately for speech
segments from adults and children. Note that this leads to an inflated WER estimate since we count erroneous
word insertions made by the model between adult and child segments twice (once toward the computation of
adult WER and once toward that of child WER). Nevertheless, we observe that, as expected, both pretrained
and fine-tuned models perform better on adult speech than child speech. However, fine-tuning the model still
results in improved performance for adult speech in addition to child speech. We hypothesize that this is because
fine-tuning helps the model learn to better recognize the characteristic “baby talk” voice that adults tend to
employ when speaking with children. From Figure 5, we also note that the WERs of both models are lower for
older children (4-5 years) than younger children (3-4 years) and for female children compared to male children.
This highlights the need for testing and improving the performance of ASR models across subgroups even within
an early-childhood population.

5.2.4  Validating Models on In-Home Pilot Data. Following our analysis on Playlogue, we evaluate both pretrained
and fine-tuned ASR models on our in-home adult-child conversations. Table 9 demonstrates the utility of fine-
tuning the Whisper Large v3 on Playlogue, showing a significant drop in WER from 40.22% to 19.09% and 11.80%
after fine-tuning with play-based and mixed corpora respectively. We also see a slight improvement in the model’s
BERT F1 scores after fine-tuning. These results highlight the need to adapt state-of-the-art speech processing
models before using them in child-centered UbiComp settings.

5.2.5 Implications. We show that state-of-the-art ASR models exhibit significant performance gaps when tested
on both child speech and child-directed adult speech. Our findings suggest that researchers and practitioners
should exercise caution when using off-the-shelf models and APIs in voice-based applications that interface
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Table 10. Accuracy and F1 scores of the TF-IDF SVM baselines (reimplementation from [43] trained on both the Special-
Time [43] dataset and training data from Playlogue) at parent DPICS classification on our test set.

Models Accuracy F1 Score
TF-IDF SVM model [43]

- Trained on SpecialTime dataset [43] 54.0% 25.31%
- Trained on Playlogue 68.0% 21.58%

with children, and, at minimum, should evaluate ASR components on child speech datasets such as Playlogue
before deploying them in the wild. We show that fine-tuning with as little as 5 hours of data shows a significant
reduction in WER for Whisper, and that fine-tuning on the Playlogue dataset greatly improves ASR performance
on child-centered speech from an unseen corpus.

5.3 Automatic Coding of Speech Acts Using DPICS

5.3.1 Evaluating Baseline Text Classification Models for Parent Speech Acts. We now examine the feasibility of
using text classification models on transcriptions of parent-child conversations to identify DPICS parent codes,
evaluating the approach proposed by Huber et al. [43]. For this evaluation, we used the validation and test
participants in EllisWeismer who completed the parent-child session from among the train/val/test splits defined
in Section 5.1 as our test set for DPICS labeling. This resulted in 13 out of 27 clips in the test set and the rest in the
train set. The test set contained 2176 labeled utterances (“Negative Talk”: 24, “Command”: 187, “Labeled Praise”:
5, “Unlabeled Praise™: 81, “Question”: 738, “Reflective Statement”: 133, “Behavior Description”™: 20, “Neutral Talk”:
988).

The proposed approach for detecting DPICS parent labels in Huber et al. [43] involved extracting a feature
vector for each parent dialogue (i.e., single sentence) using the information-theoretic measure term frequency-
inverse document frequency (TF-IDF; [74]). TF-IDF vectors are derived from unigram and bigram features of
parent dialogues in the training set using both words as well as part-of-speech (POS) tags. The authors used these
features to train a linear support vector machine (SVM) with C = 0.1 as the text classifier predicting DPICS labels.
While this classifier was used to label 7 of the 8 DPICS parent classes in [43], “Question” was labeled using audio
features.

We first trained a TF-IDF SVM model using a similar approach and with the same dataset as used in Huber et
al. [43] and evaluated it on our test set. Diverging slightly from their approach, we used this text classification
model to also detect the “Question” labels. The TF-IDF model achieved an overall accuracy of 54% on our test set,
compared to the 78.3% accuracy reported on the SpecialTime dataset [43]. This demonstrates that the TF-IDF
approach does not generalize well to unseen datasets and contexts and underscores the importance of training
the TF-IDF model on a dataset that closely mirrors the distribution of the test set.

We then trained a similar TF-IDF SVM model on our train set (14 clips) and evaluated it on our test set (13 clips).
While this resulted in a significant improvement in accuracy from 54% to 68%, the performance was further
skewed, with a drop in F1 score from 25.31% to 21.58%. This could be due to the severely low representation of
some DPICS classes in our training set — for example, the training set contained only 7 examples of “Labeled
Praise” and 15 examples of “Behavior Description”, but 1183 examples of “Neutral Talk”. While this is a limiting
factor, it is nevertheless representative of the distribution of class labels that could be expected in naturalistic
conversations.
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Table 11. Accuracy and F1 scores of large language models (without fine-tuning) and sentence transformer models (with
fine-tuning) at parent and child DPICS classification on our test set.

Models Parent DPICS Child DPICS
(8-class classification) (4-class classification)
Accuracy F1 Score Accuracy F1 Score

Single Sentence Classification
Large Language Models (no fine-tuning)

- Llama3 (8B) 64.0% 29.66% 82.95% 44.0%
- GPT-3.5 72.20% 33.92% 78.51% 44.94%
- GPT-4 77.70% 48.09% 87.35% 52.87%
Sentence Transformer Model (fine-tuned on Playlogue)

- MPNet-base sentence embedding model 81.80% 58.49% 91.91% 72.17%
- RoBERTa-large sentence embedding model 82.31% 61.04% 92.02% 72.46%

Classification with Context
Large Language Models (no fine-tuning)

- GPT-4 (variable window) 77.0% 44.20% 86.70% 52.29%
- GPT-4 (fixed window, 10 sentences) 78.60% 49.26% 86.49% 43.23%
Sentence Transformer Model (fine-tuned on Playlogue)

- RoBERTa-large (fixed window, 5 sentences) 85.16% 66.55% 91.85% 72.31%

5.3.2  Evaluating Transformer-based Language Models for Parent and Child Speech Acts. Next, we investigate
whether some of the limitations of baseline models such as TF-IDF can be overcome using recent transformer-
based language models by leveraging their large-scale pretrained capabilities. In addition to evaluating models
for classifying parent DPICS labels as described above, we also investigate classification performance on child
DPICS labels from the 13 test clips. The test set contained 1866 labeled child utterances (“Negative Talk”: 27,
“Command”: 77, “Question”: 249, “Prosocial Talk”: 1513).

We consider two different approaches toward labeling parent and child utterances: (i) classification using
chain-of-thought (CoT) prompting with state-of-the-art pretrained large language models (LLMs) and (ii) fine-
tuning pretrained sentence transformers with a limited amount of labeled data. With the former approach, we
aim to evaluate whether LLMs can achieve high levels of accuracy in classifying parent and child speech acts
without requiring fine-tuning on our specific context or dataset. This is highly desirable because while LLMs
have been shown to achieve impressive performance at language classification tasks, fine-tuning them is often
prohibitively time-consuming and resource-intensive. CoT prompting, on the other hand, has previously been
shown to be an effective approach for text classification [100] . With the latter approach, we intend to find a
middle ground through sentence transformer fine-tuning. Specifically, we use the SetFit framework for efficient
training of text classification models with limited training data. This allows us to adapt pretrained models to our
specific domain with less than 5 minutes of training on a single GPU with 80GB of VRAM. We now describe both
these approaches and the resulting performance of each in more detail.

For our first approach, we considered state-of-the-art large language models including OpenAI’s GPT-
4 [2] and GPT-3.5 [68] as well as Meta Llama3 (8B) [3] (representing large, medium, and small LLM categories
respectively). The evaluation of GPT models was done using the OpenAI API The Llama3 (8B) model was loaded
locally using the official HuggingFace pipeline on a single GPU. We used default hyperparameters for all models
and provided them with the same prompt to maintain consistency. Each query consisted of two parts, a “fixed”’
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prompt and a “test” prompt. The fixed prompt introduces PCIT and/or DPICS, describes the task we expect the
target LLM to perform, explains the data that will be provided as input, and defines the candidate classes with
a few examples of each class from the DPICS manual [25]. Note that the fixed prompt does not include any
examples from our training set in order to estimate performance on any arbitrary parent-child interaction data.
We reproduce the full fixed prompt for both the parent and child DPICS classification tasks in Appendix A. The
test prompt then provides the parent or child utterance (as a single sentence) to be classified by the LLM.

Table 11 shows the performance of each of the LLMsfor both parent and child DPICS classification on our
test set. Relative to the baseline models in Table 10, LLMs trained on a huge corpus of data are less sensitive
to variations in test distribution. As expected, bigger LLMs have higher performance, with GPT-4, GPT-3.5,
and Llama3 (8B) achieving 77.7%, 72.2%, and 64% accuracy respectively at parent DPICS classification, with F1
scores also increasing with model size. The per-class recall of GPT-4, the best performing LLM, was 54.17%,
74.33%, 60.00%, 58.02%, 90.24%, 2.26%, 60.00%, and 81.78% for “Negative Talk”, “Command”, “Labeled Praise”,
“Unlabeled Praise”, “Question”, “Reflective Statement”, “Behavior Description”, and “Neutral Talk”, respectively.
As expected, the model is especially poor at detecting “Reflective Statements”, which, by definition, can only be
identified using knowledge of the previous child dialogue. However, GPT-4 is reasonably accurate at detecting
most other DPICS parent classes even without seeing any examples from our dataset. For child DPICS labeling,
while Llama3 outperforms GPT-3.5 in terms of accuracy, we see a consistent improvement in F1 scores with
increasing model size. GPT-4 again emerges as the best-performing LLM, with an accuracy of 87.35% and F1
score of 52.8%. The per-class recall was 96.29%, 58.44%, 95.18%, and 87.37% for “Negative Talk”, “Command”,
“Question”, and “Prosocial Talk” respectively, demonstrating highly accurate performance for three of the four
categories with no in-domain training data. Given that data collection and annotation for applications such as
DPICS labeling are both highly complex and time-consuming, the generalizability of LLMs can be invaluable in
offering a way to circumvent these extensive processes.

Next, we turn to our second approach of fine-tuning sentence transformer models using the training data
from Playlogue and evaluating their performance on parent and child DPICS labeling. Briefly, SentenceTrans-
formers [76] are text embedding models that have been used for a range of applications such as text classification,
semantic similarity, semantic search and retrieval etc. These sentence embedding models have been developed by
fine-tuning pretrained transformer models on over 1 billion sentence pairs using contrastive objectives, and are
designed to be general-purpose models that can be efficiently adapted for different text-based tasks. We use the
sentence transformer models based on MPNet-base [87] and RoBERTa-large [56] in our experiments, representing
small- and medium-sized models that achieve high performance in the SBERT sentence embedding benchmark
[1] as of July 2024. To adapt these models to the DPICS classification task, we fine-tune them using (sentence,
label) pairs from the Playlogue train set using the SetFit framework. This involves fine-tuning the embedding
model using a triplet loss [41] followed by training a simple logistic regression classification head that utilizes
the fine-tuned embeddings. We separately train and evaluate models for both parent and child DPICS codes.

As shown in Table 11, both the fine-tuned sentence transformer models outperform the pretrained LLMs at
parent and child DPICS classification. The larger RoOBERTa models show slight improvement over the smaller
MPNet models, especially in terms of parent F1 scores. Figures 6 and 7 show the confusion matrices for the parent
and child models respectively. We see that both models are highly accurate at identifying the “Question” and
“Neutral Talk”/“Prosocial Talk” categories. Similar to LLMs, the sentence transformer-based parent DPICS model
is least accurate at identifying the “Reflective Statement” label. Below, we attempt to address this performance
gap by including contextual information during classification.

5.3.3 Model Performance with Additional Context. While our evaluations of DPICS classification models have
so far considered the problem of labeling each parent or child utterance on its own, human raters labeling
speech acts often take into account the underlying context of a conversation when assigning labels. This is
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especially important for some labels — for example, identifying a “Reflective Statement” requires knowledge of
child dialogue(s) that came before the parent dialogue. We hypothesize that providing such interaction context
would therefore improve DPICS classification performance of both LLMs and sentence transformer models.

We first evaluate the effect of additional context on LLM performance by segmenting each clip in our test
set into non-overlapping “windows”. In our “variable window” approach, we segment the clip such that each
window contains one conversation turn ending with the target speaker. Concretely, for parent DPICS classification,
a “variable window” would include one child turn (any number of consecutive child sentences) followed by one
parent turn (consecutive parent sentences). Conversely, for child DPICS classification, the “variable window”
consists of one parent turn followed by one child turn. We also consider another approach, called the “fixed
window” approach, which groups 10 consecutive sentences irrespective of the speaker. This is equivalent to a
non-overlapping sliding window with a size of 10 sentences. Figure 10 illustrates these approaches with examples
for the case of parent DPICS labeling. We include these “variable” and “fixed” windows in our test prompts to
GPT-4 (the best-performing LLM from the previous evaluation) instead of a single parent or child sentence.

Table 11 shows the performance of GPT-4 under both the “variable” and “fixed window” settings. While the
“variable window” approach leads to worse performance compared to the single sentence setting for both parent
and child DPICS classification, we see a small improvement in parent accuracy and F1 score using the “fixed
window” approach. The per-class recall scores for parent DPICS using a 10-sentence window were 66.67%, 80.21%,
40.00%, 53.09%, 79.40%, 54.14%, 60.00%, and 83.91% for “Negative Talk”, “Command”, “Labeled Praise”, “Unlabeled
Praise”, “Question”, “Reflective Statement”, “Behavior Description”, and “Neutral Talk” respectively. As expected,
we see the largest improvement in identifying “Reflective Statement”, with a jump from 2.26% to 54.14%. We also
see an improvement in the classification of “Negative Talk”, “Command”, “Behavior Description” and “Neutral
Talk”, but more confusion between “Labeled Praise” and “Unlabeled Praise” when using the “fixed window”
approach. Overall, we find that test prompts with multiple dialogues provide a more balanced performance
across all classes for parent labels compared to the single sentence mode, emphasizing the value of DPICS datasets
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that provide as much conversation context as possible rather than single/pairs of sentences. However, for child
DPICS classification, we see that GPT-4 performs best when using a single sentence as input, as opposed to a
“variable” or “fixed” window. This is likely because the child DPICS classes rely less on contextual information
and can be identified based on the structure and semantics of an individual sentence.

Next, we evaluate the effect of contextual information on fine-tuned sentence transformer models. We
select the RoBERTa model since it achieved the highest classification performance in the single-sentence scenario.
Instead of training the classification head with a (sentence, label) pair, we use (window, label) pairs with windows
containing a fixed number of sentences and ending with the target sentence that is to be classified. Since the
maximum sequence length of the sentence embedding model is only 256 words, we use a “fixed window” of 5
sentences (4 preceding sentences + target sentence). We use the same training paradigm to obtain both parent
and child DPICS classification models separately.

As seen in Table 11 we see a substantial improvement in parent accuracy (from 82.31% to 85.16%) and F1 score
(from 61.04% to 66.55%) when using a sentence transformer model trained with the “fixed window” approach.
Figure 8 shows the confusion matrix for the parent sentence transformer model using 5-sentence windows.
Comparing the per-class recall to that in Figure 6 we see an improvement in prediction performance for “Negative
Talk”, “Question”, “Reflective Statement”, and “Neutral Talk”, but a regression for “Labeled Praise”, “Unlabeled
Praise”, and “Behavior Description”. Similar to the context-aware LLM scenario, this improvement is not seen in
the child DPICS classification model, where the single-sentence model (Figure 7) outperforms the fixed-window
model (Figure 9).

5.3.4 Validating Models on In-Home Pilot Data. We now evaluate the performance of both the best-performing
LLM (GPT-4) and sentence transformer model (RoBERTa fine-tuned on Playlogue) on parent and child DPICS
labels from our in-home pilot data. Table 12 shows the performance of these models both when using a single
sentence or a fixed window as input. First, we observe that the same CoT prompting approach on GPT-4 produces
slightly worse results on the in-home data compared to the Playlogue test set. While the pretrained GPT-4 model
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Table 12. Accuracy and F1 scores of GPT-4 (without fine-tuning) and RoBERTa sentence transformer model (fine-tuned on
Playlogue) at parent and child DPICS classification on the in-home pilot data.

Models Parent DPICS Child DPICS
(8-class classification) (4-class classification)
Accuracy F1 Score Accuracy F1 Score

Single Sentence Classification

- GPT-4 74.8% 54.12% 82.35% 54.40%
- RoBERTa-large sentence transformer model 72.93% 52.34% 88.24% 74.17%
Classification with Context

- GPT-4 (fixed window, 10 sentences) 71.80% 59.85% 82.69% 54.22%
- RoBERTa-large sentence transformer model 76.34% 55.94% 89.27% 75.60%

(fixed window, 5 sentences)

has not been fine-tuned for the DPICS classification task using data from Playlogue, it is evident that LLMs such
as GPT may not achieve consistent performance across datasets and should therefore be carefully evaluated on a
target dataset. Second, we also observe a drop in performance for the sentence transformer model when evaluated
on the in-home pilot data. However, the sentence transformer model trained on Playlogue with a 5-sentence
window still achieves the best performance on both parent and child DPICS classification in the in-home setting.
This demonstrates the utility of Playlogue’s continuously labeled conversations in training context-aware and
generalizable speech act classification models for adult-child dialogues.

5.3.5 Implications. Operating under the assumption that we are able to accurately diarize and transcribe parent
and child speech, we investigated the ability of various text classification models such as TF-IDF retrieval models,
sentence transformer models, and emerging LLMs to automatically predict parent and child DPICS labels. We
found that LLMs and sentence transformer models offer a plausible alternative to traditional TF-IDF models that
do not generalize well to new settings and datasets. Pretrained LLMs can achieve reasonable DPICS classification
accuracy across datasets even without fine-tuning, which can be invaluable in scenarios where data collection and
annotation are challenging and expensive. However, sentence transformer models offer a powerful alternative
in scenarios where small to moderate amounts of labeled data are available. We demonstrate that less than 5
minutes of fine-tuning with labeled data from Playlogue can result in fairly generalizable DPICS classification
models. We also show that conversational context leads to significant performance improvements in parent
DPICS classification, highlighting the utility of datasets such as Playlogue.

6 Discussion
6.1 Rationale for a New Dataset of Adult-Child Conversations During Play

As discussed in Section 2, there is significant interest in the UbiComp community to develop technologies to
support adult-child (especially parent-child) interactions. Play sessions are an important context for many of these
interactions both within UbiComp [43, 44, 88] and in the broader scientific community [31, 91]. However, there is
a lack of publicly available datasets of naturalistic, play-based adult-child conversations that could accelerate the
development and evaluation of ubiquitous technologies in this domain.

There have been several attempts to bridge this gap over the past few decades, ranging from the development of
the CHILDES system [64] to the release of example parent-child interaction labels in SpecialTime [43]. Although
CHILDES contains an unprecedented collection of open speech and language data, it has seen limited adoption
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in the machine learning and speech processing research communities due to the relatively capricious quality
of audio, transcripts, and time synchronization data across its constituent corpora [21]. In this work, we utilize
a hybrid approach consisting of manual filtering and automated readjustments that allows us to leverage a
significant portion of CHILDES data to create Playlogue.

In terms of identifying speech acts during adult-child interactions, the two sources of DPICS parent codes
available to the research community — SpecialTime [43] and the DPICS coding manual [25] — both contain
synthetic examples without contextualizing them within a longer conversation between the parent and child
(SpecialTime further only contains parent labels). As a result, models trained on these datasets cannot learn
to take previous utterances from the conversation into account even though this would improve classification
accuracy (as shown in Section 5.3). Similarly, the lack of audio data in existing sources precludes researchers
from training audio or multimodal models for DPICS classification. The Playlogue dataset addresses these two
limitations of existing datasets by providing full conversation audio and sentence-level DPICS codes for both
parent and child utterances.

The lack of existing datasets of preschool-aged child and child-directed adult speech has also prevented a
thorough evaluation of existing speech processing approaches on this population. As a result, researchers and
practitioners continue to use off-the-shelf models that exhibit state-of-the-art performance on adult speech in
applications that interface with children, without accounting for potential performance gaps and biases. As
shown in Section 5, there is indeed a significant loss of accuracy when following this approach. Datasets such
as Playlogue can enable further evaluation of existing models prior to deployment with child populations. As
demonstrated by the encouraging generalization performance on our in-home pilot data, datasets like Playlogue
can also support researchers in training or fine-tuning custom models for this purpose.

6.2 Opportunities for Future Research

As described above, the Playlogue dataset will enable researchers working on child-centered speech and lan-
guage applications to develop and evaluate machine learning models for analyzing various levels of adult-child
interactions during play. Researchers and practitioners can utilize Playlogue to model low-level vocal behaviors
(e.g., tone, pitch), diarization-based metrics such as turn durations and overlaps, ASR-based measures like word
complexity and diversity, and higher-level interaction markers such as DPICS codes. The Playlogue dataset
contains naturalistic audio recorded in various home and lab-based settings with a variety of microphones and
noise conditions and contains 110 unique participants in the age range of 3 to 5 years, making it especially suited
for building and evaluating ubiquitous technologies for this population. The availability of full conversation audio,
timestamped and speaker-attributed transcripts, and DPICS codes enables researchers to study conversation
dynamics in addition to sentence-level measures. For instance, future work could examine transitions from one
DPICS label to another or investigate which child utterances are most likely to follow a given parent DPICS label.

The performance gaps in using state-of-the-art models on child-centered speech that have been highlighted in
Section 5 also demonstrate how there is substantial work still to be done in order to build automated adult-child
conversation analysis pipelines that are accurate and generalizable. The cascading errors from each step in
the pipeline could amount to alarmingly poor accuracy in predicting higher-level insights like DPICS codes.
While holistic performance improvement and system building are beyond the scope of the current work, future
research can investigate ways to mitigate some of the challenges associated with these goals. For example,
prior work has utilized LLMs to correct transcription errors in ASR or used multimodal audio-text models for
zero-shot audio classification into relevant categories. The Playlogue can be used to develop and evaluate such
end-to-end approaches for DPICS labeling. It can also be used to assess smaller speech and language models (or
distilled/quantized versions of models) that are suitable for on-device deployment.
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Finally, future research could build on Playlogue by adding annotations for other behavioral markers, such
as perceived emotion or engagement levels, that are of interest within the context of play-based interactions.
Playlogue also only focuses on English-speaking children in North America with typically developing speech. As
such, our analysis and results only apply to this target demographic and should not be assumed to generalize to
other contexts. We encourage future researchers to curate similar datasets that span more diverse subgroups
within the early childhood population.

6.3 Data Availability

The original audio files used to create Playlogue can be downloaded from CHILDES [64]. The audio processing
metadata and scripts, generated transcripts with token-, word-, and sentence-level alignments, speaker diarization
data, DPICS labels, and train/validation/test participant splits are all made available at https://huggingface.
co/datasets/playlogue/playlogue-v1. Researchers who wish to use Playlogue will be asked to abide by the
CHILDES [64] and TalkBank [58] ground rules for data use and sharing.

7 Conclusion

This paper presents Playlogue, a dataset of naturalistic adult-child interactions during play. Playlogue contains
over 33 hours of play-based audio and 5 hours of annotated conversations with 4773 parent and 3895 child
DPICS labels. We use Playlogue to evaluate state-of-the-art speech processing models trained on adult data and
expose performance gaps when applied to child-centered speech. We demonstrate that fine-tuning with data
from Playlogue results in significant performance boosts but that there is still scope for improvement. Further,
we investigate whether pretrained large language models and fine-tuned sentence transformer models can be
leveraged to derive higher-level insights from adult-child conversations. We run an in-home pilot study to validate
the generalizability of models trained on Playlogue to real-world UbiComp contexts. We describe opportunities
for future research using Playlogue and discuss open challenges in developing ubiquitous technologies to support
adult-child interactions.
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A Methodological Transparency & Reproducibility

The “fixed” prompt used in our evaluation of large language models on parent dialogues is reproduced below:

(PROMPT START)

Introduction: Parent-child interaction therapy (PCIT) helps parents improve the quality of interaction with
children who have behavior problems. The therapy trains parents to use effective dialogue acts when interacting
with their children. Besides weekly coaching by therapists, the therapy relies on deliberate practice of skills by
parents in their homes.

Task: Specifically we want you (GPT4) to label parents’ act dialogues into 8 classes.

Data: samples were collected using a standard set of toys - Fisher Price Farm set and Doll House plus people and
furniture - as the props for play-based conversations. For privacy the children’s names are coded as “childsname”.

Labels (numbers behind the classes’ name) with their definition and a few examples:

1: Negative Talk: verbal expression of disapproval of the child or the child’s attributes, activities, products, or
choices. Also includes sassy, sarcastic, rude, or impudent speech.

Example 1: You’re being naughty.

Example 2: You put it in the wrong place.

Example 3: That’s not red.

Example 4: Will you stop whining?

Example 5: (sarcastically) That was smart.

Example 6: If you quit making that noise, I'll play any game you want.

2: Command: statements that contain an order, direction, or suggestion for a vocal or motor behavior to be
performed by the child. Can be direct, implied, or stated as a question.

Example 1: Susie, pick the crayon up off the floor.

Example 2: Try and set it down on its edge.

Example 3: Be careful.

Example 4: Why don’t we use the larger wheel in the front?

Example 5: You can color it purple.

Example 6: see.

Example 7: Let’s see.

Example 8: Look.

3: Labeled Praise: provides a positive evaluation of a specific behavior, activity, or product of the child.
Example 1: You did a great job of building the tower.

Example 2: I like the way you drew that circle.
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Example 3: You sing so well.

Example 4: Thank you for handing me the box.

4: Unlabeled Praise: provides a positive evaluation of the child, an attribute of the child, or a nonspecific activity,
behavior, or product of the child.

Example 1: Nice job.

Example 2: You're a good artist.

Example 3: All right!

Example 4: Thank you.

Example 5: There you go.

5: Question: verbal inquiries, often identifiable from a rising inflection at the end and/or by having the sentence
structure of a question. Questions may or may not require an informative response. Questions asking the child to
do something should be marked a Command, not Question.

Example 1: What did Santa bring you?

Example 2: Do you want the red or the black pieces?

Example 3: She is the princess?

Example 4: How about if I use the green crayon?

Example 5: Child: Is it high enough? Parent: Is it high enough?

Example 6: Child: There is a monster in the closet. Parent: There is a monster in the closet?

6: Reflective Statement: a statement by the parent that has the same meaning as the immediately preceding child
verbalization. The reflection may paraphrase or elaborate upon the child’s verbalization but may not change the
meaning of the child’s statement or interpret unstated ideas.

Example 1: Child: The toy box is full. Parent: The toy box is full.

Example 2: Child: My teacher is taking us to the zoo. Parent: Oh, you’re going to the zoo.

Example 3: Child: That’s a funny clown. Parent: You think he’s funny.

Example 4: Child: It’s a horsey. Parent: It is a horse. It’s a brown horse.

7: Behavior Description: declarative sentences or phrases in which (i) the subject is the child and (ii) the verb
describes the child’s ongoing or immediately completed verbal or nonverbal behavior. This applies only to the
first sentence after the child speaks.

Example 1: You’re building a truck.

Example 2: You drew a rabbit and you gave it long ears.

Example 3: You just finished the red one.

8: Neutral Talk: statements that introduce information about people, objects, events, or activities, or indicate
attention to the child, but do not clearly describe or evaluate the child’s current or immediately completed
behavior.

Example 1: I'm making my rainbow just like yours.

Example 2: I wonder if I left the iron on.

Example 3: Excuse me.

Example 4: Maybe.

Single Parent Sentence Case: Unlike some of the provided examples, I am going to only provide a single dialogue
from the parent. I want you to first analyze it comprehensively and finally label it into one of those 8 classes. If

the dialogue is only "" or something like that, then you can classify it as Neutral Talk and return 8. Return the
label in a separate line (last line) and only return the number without any other character.

“Variable Window” and “Fixed Window” Cases: I will provide a conversation between Child (CHI) and Parents (MOT
or FAT) and you should classify each parents’ dialogue. You can consider child dialogues for understanding the
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context better which is helpful for labeling, but your task is only labeling parents’ dialogues. Sometimes a dialogue
may only consist of parents’ dialogues as well. I want you to first analyze the conversation comprehensively
and finally label each of parents’ dialogues into one of those 8 classes. If the dialogue is only "" or something
like that, then you can classify it as Neutral Talk and return 8. Return the labels in a separate line (last line) and
only return a list of labels with the same number of entries as the parent dialogues. So if a conversation with "m"
dialogues consists of "n" parents’ dialogues, your last line should be a list with n values each corresponds to the
predicted label of each parents’ dialogue (with the same order).

(PROMPT END)
The “fixed” prompt used in our evaluation of large language models on child dialogues is reproduced below:

(PROMPT START)

Introduction: The Dyadic Parent-Child Interaction Coding System (DPICS) is an observational measure for the
quality of parent-child interactions as well as child prosocial and disruptive behaviors. DPICS child codes have
been shown to be associated with parent-reported problem behavior.

Task: Specifically we want you to label children’s act dialogues into 4 classes.

Data: samples were collected using a standard set of toys - Fisher Price Farm set and Doll House plus people and
furniture - as the props for play-based conversations. For privacy the children’s names are coded as “childsname”.

Labels (numbers behind the classes’ name) with their definition and a few examples:

1: Negative Talk: Negative talk is a verbal expression of disapproval of the parent or the parent’s attributes,
activities, products, or choices. Negative talk also includes sassy, sarcastic, rude, or impudent speech.

Example 1: MOT: Put your shoes on. CHI: No.

Example 2: CHI: Your picture is ugly.

Example 3: CHI: Yuck.

Example 4: MOT: The teacher said you started the fight. CHI: She’s a liar.

Example 5: MOT: This is Barney. CHI: You’re wrong.

Example 6: MOT: The pig’s eating. CHI: That’s not a pig.

2: Command: Commands are statements in which the child directs the vocal or motor behavior of the parent.
Commands may be given directly, as an order, or implied, as a suggestion.

Example 1: Dad.

Example 2: Wait.

Example 3: see.

Example 4: Let’s see.

Example 5: Look.

Example 6: Can you think of what should go here?

Example 7: Give me the purple crayon.

Example 8: Let’s make the house bigger.

Example 9: We should tell dad what we made.

Example 10: We need to draw the grass here.

3: Question: Questions are verbal inquiries from one person to another that are distinguishable from declarative
statements by having a rising inflection at the end and/or by having the sentence structure of a question. Questions
request an answer but do not suggest that a behavior is to be performed by the other person.

Example 1: Huh?

Example 2: What do you wanna play?
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Example 3: Where is the block?

Example 4: This is the runway?

Example 5: MOT: I'm drawing a dinosaur. CHI: Yeah?

Example 6: MOT: They have new crayons. CHI: Want to color?

4: Prosocial Talk: Prosocial talk incorporates several categories of verbalizations which contribute positively to
the parent-child interaction. Prosocial Talk includes all statements that positively evaluate an attribute, product,
or behavior of the parent (specifically or generally); describe the parent’s behavior; provide neutral information;
reflect the parent’s verbalizations; or acknowledge the parent.

Example 1: Alright!

Example 2: I need one more pink stick.

Example 3: You are making a hat.

Example 4: MOT: The farmer’s feeding his cows. CHI: Feeding his cows.

Example 5: Yea.

Example 6: The cow is eating the hay.

Example 7: Thanks.

Example 8: MOT: Thanks. CHI: You're welcome.

Example 9: MOT: A car. CHL: A car.

Example 10: MOT: Which one is prettier? CHI: I don’t know.

Single Child Sentence Case: Unlike some of the provided examples, I am going to only provide a single dialogue
from the Child. I want you to first analyze it comprehensively and finally label it into one of those 4 classes. If the

dialogue is only "" or something like that, then you can classify it as Prosocial Talk and return 4. Return the label
in a separate line (last line) and only return the number without any other character.

“Variable Window” and “Fixed Window” Cases: I will provide a conversation between Child (CHI) and Parents (MOT
and FAT) and you should classify each child’s dialogue. You can consider the parents dialogues for understanding
the context better which is helpful for labeling, but your task is only labeling children’s dialogues. Sometimes a
dialogue may only consist of child’s dialogues as well. I want you to first analyze the conversation comprehensively
and finally label each of child’s dialogues into one of those 4 classes. If the dialogue is only "" or something like
that, then you can classify it as Prosocial Talk and return 4. Return the labels in a separate line (last line) and only
return a list of labels with the same number of entries as the Child (CHI) dialogues. So if a conversation with "m"
dialogues consists of "'n" children’s dialogues, your last line should be a list with n values each corresponds to the
predicted label of each child’s dialogue (with the same order).

(PROMPT END)

Figure 10 demostrates the single sentence, “variable window”, and “fixed window” approaches used in evaluating
GPT-4 with illustrative examples of parent DPICS classification.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 4, Article 173. Publication date: December 2024.



173:34

Example 1 (Reflective Statement)

Example 2 (Labeled Praise)

Example 3 (Question)

Kalanadhabhatta et al.

Single Parent Sentence

Variable Window

Fixed Window

r A R A L -
2 —R
. . CHI: uh it's gonna start to rain.
o MOT: it's gonna start to rain. J MOT: it's gonna start to rain. (?_1)
MOT: should we shut the barn up? (?_2)
/_@ N\ . CHI: why?

The parent's dialogue, "It’s gonna
start to rain," is an informative
statement about an event (the
weather) that does not directly
involve or describe the child's
behavior, attribute, or actions. It
fits the definition of "Neutral Talk,"
which includes statements that
introduce information about
events but do not describe or
evaluate the child's behavior.
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~—|  MOT: yeah i'm glad you told her.

R
~—| MOT: oh you do?

CHI: uh it's gonna start to rain.
MOT: it's gonna start to rain. (?_1)
MOT: should we shut the barn up?
(?_2)

MOT: because it's gonna start to rain. (?_3)
MOT: should we shut the barn up? (?_4)

CHI: well we can put these horses back in there.
MOT: okay. (?_5)

MOT: we can put the horses back in there. (?_6)
MOT: maybe he rides on the back. (?_7)
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1.MOT: it's gonna start to rain.

This dialogue mirrors exactly what
the child said, thus it's a "Reflective
Statement.”
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MOT: it's gonna start to rain. (?_1)
This is a Reflective Statement (6), reflecting the
child's statement about it starting to rain.
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This parent dialogue, "yeah I'm glad
you told her," reflects a positive
response to something the child has
previously stated, indicating that the
parent is acknowledging and
appreciating the child's action of
telling someone something. This
dialogue falls under the category of
"Reflective Statement" as it echoes
the child's verbalization by affirming
the action they took and expressing
satisfaction or approval without
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CHI: but i have some more.

CHI: and she probably know.

MOT: yeah I'm glad you told her. (?_1)
MOT: i'm really glad. (?_2)

1. MOT: "yeah I'm glad you told her."
This dialogue is likely expressing a
positive evaluation of the child's
action of telling someone something.
It fits the definition of labeled praise,
which is a positive evaluation of a

changing the original meaning.

specific behavior or activity of the
child.
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MOT: i have your sandwich ready when we're done.
CHI: okay.

MOT: okay. (?_1)

MQT: let's have playtime. (?_2)

CHI: but i have some more.

CHI: and she probably know.

MOT: yeah I'm glad you told her. (?_3)

MOT: i'm really glad. (?_4)

CHI: um there must be something that i can play
with.

CHI: i could play with these?
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3.MOT: yeah I'm glad you told her. - This
statement indicates a positive evaluation of the
child's previous action (telling someone
something). It is providing a positive evaluation of
a specific behavior, thus fitting Labeled Praise.
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This dialogue appears to be a
response to something the child has
said, indicating a form of
acknowledgment or seeking
clarification from the child. The
statement fits the criteria for a
"Question" as it includes a verbal
inquiry and likely follows from a
statement made by the child, which
is not directly commanding or
reflecting but is rather asking for
confirmation or further information.
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CHI: i wanna play with uh this.
MOT: oh you do? (?_1)

MOT: what's that? (?_2)
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1. MOT: "oh you do?" - This phrase
echoes the child's expression of desire
("i wanna play with uh this.") and
provides a reflective affirmation of the
child's statement. It aligns well with
the definition of a Reflective
Statement, where the parent's
statement reflects the meaning of the
\child's expression without changing itj
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MOT: no you wouldn't think so. (?_1)

MOT: you're putting all that extra stuff right in back
of him. (?_2)

CHI: let's see what's in here again.

MOT: okay. (?_3)

MOT: you haven't really seen all that stuff. (?_4)
MOT: i'm gonna come in a little closer. (?_5)

CHI: i wanna play with uh this.

MOT: oh you do? (?_6)

MOT: what's that? (?_7)

CHI: a chicken.
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6.MOT: oh you do?

This is a question but in a reflective tone,
responding to the child’s statement about
wanting to play with something. This can be
considered as a Reflective Statement.

Fig. 10. Examples test prompts and GPT-4 outputs for single parent sentence, “variable window”, and “fixed window” modes
of evaluation (truncated due to space limitations). Ground-truth labels for examples 1, 2, and 3 are “Reflective Statement”,
“Labeled Praise”, and “Question” respectively.
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