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Abstract

The opaque nature of neural networks, often

described as black boxes, poses significant chal-

lenges in understanding their learning mecha-

nisms, which limit our ability to fully optimize

and trust these models. Inspired by how hu-

mans learn, this paper proposes a novel neural

network training strategy that employs multi-

task learning with progressive difficulty sub-

tasks, which we believe can potentially shed

light on the internal learning mechanisms of

neural networks. We implemented this strategy

across a range of NLP tasks, data sets, and neu-

ral network architectures and observed notable

improvements in model performance. This sug-

gests that neural networks may be able to ex-

tract common features and internalize shared

representations across similar subtasks that dif-

fer in their difficulty. Analyzing this strategy

could lead us to more interpretable and robust

neural networks, enhancing both their perfor-

mance and our understanding of their nature.

1 Introduction

How do neural networks learn? This question re-

mains a complex and intriguing area in the field.

Despite the substantial advancements in the applica-

tion and performance of neural networks nowadays,

a comprehensive understanding of the logical con-

nection between their internal configurations and

external behaviors is still developing (a.o.: Wild-

berger, 1994; Lipton, 2018; Rudin et al., 2022).

What we might want to seek intuition from, how-

ever, is how humans learn. One of the key observa-

tions in this heavily researched field (e.g., Lovett

et al., 2023) is that people’s learning process can be

facilitated by starting from understanding simple

notions or from solving toy problems. Inspired by

this observation, we propose a multitask learning

(MTL) strategy (Caruana, 1997) that trains a neural

network using subtasks of progressive difficulty.

We apply this strategy to train neural networks

across different NLP tasks: sentiment analysis, text

classification, unit segmentation, and syllogistic

reasoning. We also experiment with training differ-

ent types of neural networks using this strategy, in-

cluding a generative pretrained transformer (GPT)

in the sense of Zhao et al. 2023 as we recognize the

growing interest in large language models (LLMs).

We expect that progressive difficulty MTL will

enhance the performance of neural networks. By

proposing and testing this MTL strategy, we hope

to better understand the behavior of neural net-

works and establish links between their internal

learning mechanisms and those of humans.

2 Background

In his review of previous work on MTL, Caruana

(1997) introduced MTL as “an inductive transfer

mechanism” that “improves generalization by lever-

aging the domain-specific information contained in

the training signals of related tasks” (page 41). The

motivation behind MTL is to divide and conquer:

we break large problems into small ones (cf. Waibel

et al., 1989). Subsequent work on MTL (a.o.: Kan-

demir et al., 2014; Jaques et al., 2017; Guo et al.,

2020; Lu et al., 2020) also showed that similar

tasks trained simultaneously can benefit from each

other in terms of convergence time and overall ac-

curacy. In particular, Lu et al. (2020) applied MTL

to sentiment analysis and effectively improved the

overall accuracy of variational autoencoders. In

this paper, we use progressive difficulty subtasks

for MTL, and we broaden the empirical ground of

previous work beyond sentiment analysis to encom-

pass other NLP tasks like text classification, unit

segmentation, and syllogistic reasoning.

As for backbone models, among many others,

Cerri et al. (2014) and Peng et al. (2018) applied

neural networks to hierarchical text classification.

The former offered a locally connected network ap-

proach, in which the prediction scores for the classi-

48



fication of the current label level are used as input to

the classification of the next label level. The latter

offered a convolutional neural network (CNN) ap-

proach, in which hierarchical dependencies among

the labels are provided to a classifier with recursive

regularization (Gopal and Yang, 2013). In this pa-

per, we extend the experiments to additional types

of neural networks, including the fully connected

neural network (FCNN), the long short-term mem-

ory network (LSTM), and transformers.

Additionally, Conneau et al. (2017) employed

deep CNNs for text classification, adopting ideas

from VGG (Simonyan and Zisserman, 2015) and

ResNet (He et al., 2016), using a small size of ker-

nels for convolutional filters and adding residual

connections to address degradation problems. With

a similar motivation, Kim et al. (2017) employed

deep LSTMs, which proved to be empirically re-

markable on feature extraction. In this paper, as an

extension of our study, we implement their deep

neural networks and test how adding more layers

to the model may affect the performance of pro-

gressive difficulty MTL. As another extension, we

test how Vu et al.’s (2020) transfer learning (TL)

may affect the strategy we propose.

Finally, in the field of LLMs, numerous recent

studies (a.o.: Wei et al., 2022; Fan et al., 2023;

Fei et al., 2023; Kim et al., 2023; Wang et al.,

2023a,b,c) discussed a chain-of-though (CoT) strat-

egy, which involves prompting the model to gen-

erate intermediate steps before arriving at a fi-

nal answer. This strategy substantially enhanced

model performance, and we believe that this strat-

egy aligns perfectly with the strategy we propose

in this paper: they “start simple.” In this paper,

we apply progressive CoT to syllogistic reasoning.

Specifically, from an information flow perspective,

we let the model be informed about the information

of the main task using manually designed progres-

sive difficulty subtasks.

3 Methods

We conduct two experiments. The first experiment

works on sentiment analysis, text classification, and

unit segmentation. The second experiment works

on syllogistic reasoning.

3.1 Tasks and data sets

We conduct our experiments across a variety of

tasks and data sets. A summary of the data sets is

presented in Table 1.

Sentiment analysis. In a sentiment analysis task,

a model is given a text and analyzes its discrete

degree of positiveness/negativeness. For this task,

we used a data set of coronavirus tweets (cf. Jelodar

et al., 2020).1 This data set contains 45k samples

(41k training and 4k testing) with 3 L1 and 5 L2

labels. We split 4k samples from the training set

for validation.

Text classification. In a text classification task,

a model is given a text and classifies it into one of

the predefined classes. For this task, we used data

sets of Amazon product reviews and of DBPedia

(Auer et al., 2007). The first data set contains 50k

samples with 6 L1, 64 L2, and 510 L3 labels.2 We

concatenated the three levels of labels and dropped

every sample that either belonged to a concatenated

label having fewer than 64 samples or was shorter

than 32 characters. We had around 40k samples left

with 6 L1, 50 L2, and 147 L3 labels. The second

data set contains 338k samples (241k training, 36k

validation, and 61k testing) with 9 L1, 70 L2, and

219 L3 labels.3

Unit segmentation In a unit segmentation task,

a model is given a text and segments it into pre-

defined argumentative components. For this task,

we used a data set of argumentative essays.4 This

data set contains 25k samples (15k training and 10k

testing) with 15 labels. We split 3k samples from

the training set for validation.

Syllogistic reasoning. In a syllogistic reasoning

task, a model is given two or more statements and

one or more conclusions and reasons about whether

each conclusion logically follows from the state-

ments. For this task, we used a data set of syllogism

data.5 We extracted the first conclusion in each

sample and constructed a binary class of labels.

3.2 Experiment 1

Figure 1 sketches a demonstration of the fundamen-

tal structure of our proposed model in experiment

1 (cf. Lu et al., 2020) using three subtasks. In

this model, the input batch is first passed into the

1
https://www.kaggle.com/datasets/datatattle/

covid-19-nlp-text-classification
2
https://www.kaggle.com/datasets/kashnitsky/

hierarchical-text-classification
3
https://www.kaggle.com/datasets/danofer/

dbpedia-classes
4
https://www.kaggle.com/competitions/

feedback-prize-2021
5
https://www.kaggle.com/datasets/warcoder/

syllogism-data
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Data set # of labels # of samples Sample length Vocabulary size

Coronavirus tweets 3/5 45k 32 70k
Amazon product reviews 6/50/147 40k 96 42k
DBPedia 9/70/ 338k 160 618k
Argumentative essays 3/7/15 25k 1024 30k
Syllogism data 2 65 N/A 40k

Table 1: Summary of the data sets.

Notes: The i-th number in the “# of labels” column represents the number of labels at the i-th level. At each level,

fewer labels indicate lower difficulty. Syllogism data have no fixed sample length.

Embedding layer

Feature extractor

Hidden layer

Subtask 2
hidden layer

Subtask 1
hidden layer

Subtask 3
hidden layer

Subtask 1
output layer

Subtask 2
output layer

Subtask 3
output layer

b× n
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b× n× d

b× h

b× h

b× k

Figure 1: Model architecture in experiment 1.

Note: b is the batch size, n is the sample length, d is

the embedding size, h is the hidden size, and k is the

number of labels.

embedding layer, which then feeds the word em-

beddings to the feature extractor. What follows the

feature extractor is a series of processing layers

consisting of a shared hidden layer and, for each

subtask, a subtask-specific hidden layer and an out-

put layer. We implemented the hidden layers using

the fully connected layer structure discussed by

Zhang et al. (2015) and Conneau et al. (2017) and

exploited 2048 units each. In order to accelerate

convergence, we applied batch normalization (Ioffe

and Szegedy, 2015) to every layer in the model ex-

cept for the embedding layer and the output layers.

Embedding layer. We use word2vec to trans-

form tokens into (32-dimensional) word embed-

dings (Mikolov et al., 2013a) in non-transformer-

based models. Before training the backbone model,

we pretrain these word2vec embeddings using skip-

gram on each of the data set and freeze them after-

ward. The embedding layer does not get updated

while pretraining the word embeddings or training

the backbone model. According to Mikolov et al.

(2013b) and Levy et al. (2015), a pretraining strat-

egy like this initializes the model with semantically

meaningful representations, which can capture the

contextual and syntactic similarities between words

and result in better generalization.

Feature extractor. For sentiment analysis and

text classification, we employ and evaluate the

FCNN (Popescu et al., 2009), the CNN (Kiranyaz

et al., 2021), and the LSTM (Yu et al., 2019). For

unit segmentation, considering its complexity, we

use a transformer-based model. While BERT (De-

vlin et al., 2019) may appear to be the preferred

option, its performance diminishes when applied

to lengthy texts. To this end, we use Longformer

(Beltagy et al., 2020), which not only performs bet-

ter with long input sequences but also improves

computational efficiency via dilated sliding win-

dows for attention patterns.

Progressive difficulty subtasks. The definition

of the difficulty of a task can be flexible and should

be manually designed when tackling a specific task.

In the scenarios of sentiment analysis, text classifi-

cation, and unit segmentation, we define progres-

sive difficulty subtasks as tasks that are otherwise

identical but vary in their degree of coarseness.

That is, the number of labels at different levels

of difficulties follows this: k1 < k2 < · · · < kt,

where ks is the number of labels in the s-th subtask,

and t is the number of subtasks. We assume that

more labels mean higher difficulty, and the diffi-

culty progressively increases from the subtask that

has k1 labels to the subtask that has kt labels.

Loss function. The loss is a weighted sum of the

loss of each subtask, and the loss function in every

subtask is a softmax-loss function. Let ŷs be the

predicted output in the s-th subtask of a sample

50



with an actual output of y. Then, Ls, the loss in

this subtask, is defined as in Equation 1.

Ls(ŷs, y) = −

∑

i

(yi log
eŷs,i∑
j e

ŷs,j
) (1)

Subsequently, the final loss L can be calculated

using Equation 2, where ws is the weight assigned

to the s-th subtask.

L(ŷ, y) =
∑

s

(wsLs(ŷs, y)) (2)

3.3 Experiment 2

Recall that in a syllogistic reasoning task, the

model needs to find out whether a given conclu-

sion may be deduced from the given statements. In

this task, we apply our methodology of progressive

difficulty subtasks to the CoT strategy in LLMs,

such as GPT. Specifically, instead of asking the

LLM to go directly toward answering either true

or false, we let it summarize the context and per-

form a basic, intuitive inference from the query in

the meantime. In this scenario, summarizing and

inferring are considered the progressive difficulty

subtasks for syllogistic reasoning.

A demonstration of the prompts we used, en-

coded in Markdown, is presented in the red boxes

below. The first red box contains the general sys-

tem guidance, and the second one contains the dy-

namic prompt format of each query.

General prompt

# Background

Syllogisms are logical arguments of

statements using deductive

reasoning to arrive at a

conclusion.

# Task

You are a philosopher who conducts

syllogistic reasoning. You will be

given two or more statements

followed by a conclusion. Determine

whether the conclusion logically

follows from the given statements.

Specific prompt

# Query

## Statements

[...]

## Conclusion

[...]

The output format is shown in the blue boxes,

including a baseline single prompt that fully relies

on the zero-shot learning ability of LLMs in the

first blue box and an improved version with the

progressive CoT strategy in the second one.

Baseline output format

# Output

Please output the following:

## Result

True or False.

Progressive CoT output format

# Output

Please output the following:

## Summary

List all the relations between the

terms in the statements as in a

knowledge graph in the format of

(term 1, relation, term 2).

## Thought

Can the conclusion be inferred

from the statements following a

strict syllogistic logic?

## Result

True or False.

4 Results

In experiment 1, we used a batch size of 64 for

coronavirus tweets and Amazon product reviews,

128 for DBPedia, and 4 for argumentative essays.

We used a mini-batch SGD optimizer with a mo-

mentum of .9 and a fixed learning rate of .01. The

models converged in around 15 epochs for coron-

avirus tweets and DBPedia, 30 epochs for Amazon

product reviews, and 5 epochs for argumentative

essays. In the meantime, baseline models were

trained without MTL. Table 2 presents the overall

accuracy in each task. We found that by training

the model on both the main task and its simplified

versions simultaneously, the performance of the

model improved in all cases. The improvement is

relatively less notable in unit segmentation, but the

difference is statistically significant with a p value

less than .001.

As an extension to experiment 1, we tried to

stack more layers inside the feature extractor used

in the sentiment analysis and text classification

tasks and see if they can boost the performance

of MTL with progressive difficulty subtasks. As
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Task Data set Feature extractor Baseline Progressive difficulty

Sentiment analysis Coronavirus tweets FCNN 35.91 38.70
CNN 37.78 41.91
LSTM 46.36 53.55

Text classification Amazon product reviews FCNN 17.03 19.16
CNN 25.72 26.77
LSTM 32.60 41.53

DBPedia FCNN 83.17 85.11
CNN 90.57 90.68
LSTM 91.28 92.26

Unit segmentation Argumentative essays Longformer 70.51 70.58

Table 2: Mean overall accuracy over three repetitions of experiment 1 (%).

mentioned in the background section, for CNN, We

implemented the deep neural network discussed in

Conneau et al. 2017, which contained 17 convo-

lutional layers followed by max pooling and fully

connected layers. Additionally, we implemented

the deep LSTM discussed in Kim et al. 2017 with

8 LSTM layers, which added residual connections

between every two layers in the middle six lay-

ers. Table 3 presents the results. We observed that

while trained using progressive difficulty MTL, the

CNN may be benefited from stacking more layers,

whereas the LSTM does not improve as much.

Further, following Vu et al. (2020), we tested the

effect of transfer learning to progressive difficulty

MTL. We added name entity recognition and text

classification to the task pipeline of unit segmen-

tation and applied progressive difficulty MTL to

both of them. For name entity recognition, we used

the CoNLL-2003 data set (Tjong Kim Sang and

de Meulder, 2003), and for text classification, we

used the aforementioned DBPedia data set. We

present the results in Table 4, where we do not see

a positive effect of transfer learning on MTL with

progressive difficulty subtasks.

Last but not least, we conducted experiment 2

using GPT 3.5. The results are in Table 5, where

we can see that progressive CoT achieved notable

improvement, without an extensive prompt design.

5 Discussion

As can be seen in Table 2 and Table 5, progressive

difficulty MTL improved the model performance

in all four NLP tasks. This result may suggest that

neural networks can extract common features and

internalize shared representations from progressive

difficulty subtasks. It may also suggest that they

can adapt to increasingly complex problems if they

are trained in a structured manner. These capabil-

ities are akin to human learning, where we apply

our knowledge from simpler related problems to

more complex problems.

Results in Table 3 show that deep neural net-

works can improve the performance of our pro-

posed model when the feature extractor is a CNN

but not when it is an LSTM. We attribute this differ-

ence to the distinction in their field of view, since

CNNs are structured so that each layer captures in-

creasingly complex features, whereas LSTMs have

an architectural bottleneck. The ability to capture

increasingly complex features is especially crucial

within the context of progressive difficulty MTL,

as learning from features of different levels of com-

plexity can effectively benefit a neural network’s

performance. This inference leads us to conclude

that our strategy prefers a neural network that has

a large field of view.

Table 4 indicates that TL with complementary

data sets cannot improve the performance of MTL

with progressive difficulty subtasks. This result

suggests that progressive difficulty MTL suits bet-

ter for configurations where the goal of all subtasks

is concentrated and uniform. This observation is

on par with previous findings about MTL, which is

believed to perform better when trained using more

related subtasks (cf. Caruana, 1997).

6 Conclusion

Inspired by how humans learn, we proposed an

MTL strategy using progressive difficulty subtasks

and discovered that this strategy improved the per-

formance of various neural networks on various

NLP tasks. We also found out that our strategy

worked better with neural networks having a larger

field of view and with subtasks sharing a common,

focused goal. We stipulate that the internal learning

mechanisms of neural networks are akin to human

learning in the sense that it can apply its knowledge

from simpler tasks to more complex tasks.
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Task Data set Feature extractor Label level Shalow Deep

Sentiment analysis Coronavirus tweets CNN L1 61.29 63.21
L2 38.52 41.91

LSTM L1 70.35 59.89
L2 53.55 39.57

Text classification Amazon product reviews CNN L1 70.52 75.53
L2 43.04 49.46
L3 26.77 34.13

LSTM L1 75.79 77.96
L2 51.95 53.56
L3 41.53 41.12

DBPedia CNN L1 97.52 97.39
L2 93.86 94.28
L3 90.68 91.07

LSTM L1 97.67 96.72
L2 94.92 93.71
L3 92.26 90.39

Table 3: Mean overall accuracy over three repetitions of sentiment analysis and text classification using progressive

difficulty MTL and shallow vs. deep neural networks (%).

Label level No TL CoNLL-2003 DBPedia

L1 78.18 78.17 78.16
L2 71.51 71.51 71.44
L3 70.58 70.57 70.53

Table 4: Mean overall accuracy over three repetitions of

unit segmentation using progressive difficulty MTL and

transfer learning (%).

Baseline Progressive CoT

72.99 (.813) 78.16 (.813)

Table 5: Mean overall accuracy (standard deviation)

over three repetitions of experiment 2 (%).

Limitations

In experiment 1, we opted for a model without

MTL, but it could be argued that for a fair compar-

ison, the baseline model should also incorporate

MTL. We are open to suggestions regarding what

kind of subtasks should be included in the alterna-

tive baseline models.

In experiment 2, we could not confirm whether

GPT 3.5 was multitasking in parallel as in the other

three NLP tasks rather than in sequence. This is due

to the nature of GPT, especially its large size, which

makes it challenging to deploy with the limited

computing resources available to us. We welcome

feedback on ways to clarify this matter.

Another limitation in our work is that we did not

explore the extent to which information is shared

among progressive difficulty subtasks. Much of our

effort focused on demonstrating the applicability

and practicality of our proposed strategy, and we

leave the scope of information sharing as a future

research question.
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