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Figure 1. High-quality video (1920 ⇥ 960) reconstruction comparisons between the proposed Pyramidal NeRV and other models, PSNR
in yellow. PNeRV outperforms other models on perceptual quality with less noise and artifacts, maintaining spatial consistency.

Abstract

The primary focus of Neural Representation for Videos
(NeRV) is to effectively model its spatiotemporal consis-
tency. However, current NeRV systems often face a signif-
icant issue of spatial inconsistency, leading to decreased
perceptual quality. To address this issue, we introduce
the Pyramidal Neural Representation for Videos (PNeRV),
which is built on a multi-scale information connection
and comprises a lightweight rescaling operator, Kronecker
Fully-connected layer (KFc), and a Benign Selective Mem-
ory (BSM) mechanism. The KFc, inspired by the tensor de-
composition of the vanilla Fully-connected layer, facilitates
low-cost rescaling and global correlation modeling. BSM
merges high-level features with granular ones adaptively.
Furthermore, we provide an analysis based on the Univer-
sal Approximation Theory of the NeRV system and vali-
date the effectiveness of the proposed PNeRV. We conducted
comprehensive experiments to demonstrate that PNeRV sur-
passes the performance of contemporary NeRV models,
achieving the best results in video regression on UVG and
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DAVIS under various metrics (PSNR, SSIM, LPIPS, and
FVD). Compared to vanilla NeRV, PNeRV achieves a +4.49
dB gain in PSNR and a 231% increase in FVD on UVG,
along with a +3.28 dB PSNR and 634% FVD increase on
DAVIS.

1. Introduction
In recent years, Implicit Neural Representation (INR) has
emerged as a pivotal area of research across various vision
tasks, including neural radiance fields modeling [42, 67],
3D vision [8, 51, 57] and multimedia neural coding [9, 53].
INR operates on the philosophy that target implicit mapping
will be encoded into a learnable neural network through
end-to-end training. By leveraging the modeling capabili-
ties of neural nets, INR can approximate a wide range of
complex nonlinear or high-dimensional mappings.

However, when considering the video coding task, ex-
tant NeRV systems exhibit a notable deficiency in percep-
tual quality. The reconstructions of foreground subjects,
which are obscured by high-frequency irrelevant details or
blurring, prove challenging for current NeRV models. This
issue of spatial inconsistency is primarily attributed to se-



mantic uncertainty, causing the model to struggle with dis-
cerning whether two long-range pixels pertain to the same
objects or constitute part of a noisy background. We postu-
late that this predicament stems from the absence of global
receptive field and multi-scale information communica-
tion. Inspired by existing empirical evidence from other
vision research, we speculate that if the dense prediction
could leverage the high-level information learned from raw
input, it would substantially alleviate both the semantic un-
certainty and spatial inconsistency (as illustrated in Fig. 1).

In practice, introducing multi-scale structures into NeRV
poses a significant and non-trivial challenge. Existing
NeRV models typically resort to cascaded upsampling lay-
ers (the so-called “mainstream”) for decoding fine video,
striking a compromise between performance and efficiency.
However, layers that use subpixel-based operators [52, 69]
can hardly maintain a balance between the increasing recep-
tive field, parameter demand, and performance (more dis-
cussions in Sec. B and visualization in Fig. 2). Additionally,
these decoding layers are solely receptive to features from
the previous layer, ignoring information from other preced-
ing layers. Moreover, the design of multi-scale structures
in NeRV remains unguided by either practical or theoretical
principles due to constraints on parameter quantities com-
pared with methods for other vision tasks.

To address this issue, we propose the Pyramidal Neural
Representation for Videos (PNeRV) based on hierarchi-
cal information interaction via a low-cost upscaling oper-
ator, Kronecker Fully-connected (KFC) layer, and a gated
mechanism, Benign Selective Memory (BSM), which aims
at adaptive feature merging. Utilizing these modules, PN-
eRV can fuse the high-level features directly into each un-
derlying fine-grained layer via shortcuts, thereby creating a
pyramidal structure. Further, we introduce Universal Ap-
proximation Theory (UAT) into the NeRV system for the
first time and provide an analysis of existing NeRV models,
revealing the superiority of our proposed pyramid structure.
Our main contributions are summarized as follows.
• Towards the poor perceptual quality of NeRV systems, we

propose PNeRV to enhance spatial consistency via multi-
scale feature learning.

• In pursuit of model efficiency pursuit, we propose the
KFC, which realizes low-cost upsampling with a global
receptive field and BSM for adaptive feature fusion, thus
forming an efficient multi-level pyramidal structure.

• We introduce the first UAT analysis in NeRV research.
Using UAT, we describe NeRV-based video neural cod-
ing as the Implicit Video Neural Coding problem, clarify-
ing and defining some fundamental concepts within this
framework.

• We confirm the superiority of PNeRV against other mod-
els on two datasets (UVG and DAVIS) using four video
quality metrics (PSNR, SSIM, LPIPS, and FVD).

2. Related Work
Implicit Neural Representation for Videos. In recent
years, INR has gained increasing attention in various vi-
sion areas, such as neural radiance fields modeling [11, 16,
42, 43], novel view synthesis [29, 41], and multimedia neu-
ral coding [9, 10, 14, 31, 71]. For INR-based neural video
coding, NeRV [9] first uses index embeddings as input and
then decodes back to high-resolution videos via cascaded
PixelShuffle [52] blocks. ENeRV [31] aims to reallocate
the parameter quantity between different modules for bet-
ter performance. Unlike the above index-based methods,
HNeRV [10] employs ConvNeXT [37] blocks as an en-
coder and provides content-aware embeddings, improving
the performance. Furthermore, apart from content embed-
ding, DiffNeRV [71] inputs the difference between adjacent
frames as temporal embeddings, enhancing temporal con-
sistency. The major distinction between PNeRV and DiffN-
eRV is that the latter does not refer to multi-scale spatial
information, resulting in spatial discontinuity.
Multi-scale Hierarchy Structure for Dense Prediction.
In previous CV research, there have emerged numerous
studies on multi-scale vision [7, 22, 34–36, 38, 50, 62, 72].
UNet [50] aimed to improve accuracy by combining con-
textual information from features at different resolutions.
FPN [34] developed a top-down architecture with high-
level semantic feature maps at all scales, showing signifi-
cant improvements in dense prediction tasks. PANet [35]
followed the idea of multi-level information fusion and pro-
posed adaptive feature pooling to leverage useful informa-
tion from each level. PVT [62] introduced the pyramidal ar-
chitecture into vision transformers. The success of pyrami-
dal structure lies in multi-level feature fusion, and detailed
predictions should be guided by high-level context features.
Video Coding Pipelines and Theories. Video coding
has been studied for several decades based on handcrafted
design and domain transformation [4, 17, 55, 64]. Fur-
thermore, neural video coding [26, 30, 33, 39] aims to
replace some components in the traditional pipeline, but
they suffer from high computational complexity and slow
decoding speeds. Beyond Rate-Distortion Optimization
(RDO) [54], [5] reveals the importance of perceptual qual-
ity and proposes the Perception-Distortion Optimization
(PDO). [6] defines the Rate-Distortion-Perception Opti-
mization (RDPO). Different from those pipelines, we rein-
terpret the INR-based video coding [9, 10, 71] with UAT
framework, and more details are in Sec. 4.2 and Sec. A.1.
Universal Approximation Theory (UAT). One of the pur-
suits of UAT analysis on the deep neural net is to estimate
the minimal width of a model to approximate continuous
functions under certain errors and fixed lengths. [20] pro-
vides the estimation of minimal width w⇤ of a RELU net as
din+1  w⇤  din+dout in Theorem 1. [46] provides the
first definitive result for deep ReLU nets, and the minimum



Figure 2. Visualized comparison between PixelShuffle and KFc,
where ⇥ denotes matrix multiplication and black box is the sub-
pixel area. PixelShuffle fills the subpixels using a local receptive
field, lacking long-range relationship modeling ability, while KFC
calculates the correlation between every position.

width required for the universal approximation of the Lp

functions is exactly max{din +1, dout}. [32] demonstrates
that a deep ReLU ResNet with one neuron per hidden layer
can uniformly approximate any Lebesgue integrable func-
tion. More discussions are given in Sec. 4 and Sec. A.1.

3. Pyramidal Neural Representation for Videos
As analyzed before, pursuing spatial consistency leads to
the communication of multi-scale information via a global
receptive field. Fine-grained reconstruction requires high-
level information as guidance and a low-cost upsampling
operator is crucial for creating multi-level shortcuts.

Therefore, we propose Pyramidal NeRV (PNeRV) con-
sisting of a learnable encoder and a novel pyramidal de-
coder. The main innovation in the decoder is a low-cost
global-wise upscaling operator, Kronecker Fully-connected
(KFC) layer, and a gated memory unit, Benign Selective
Memory (BSM) for disentangled feature fusion. The over-
all structure of PNeRV is shown in Fig. 3.

3.1. Kronecker Fully-connected Layer
NeRV aims to decode high-resolution videos from tiny
embeddings. Therefore, Conv-based upsampling opera-
tors [52, 69] are not efficient enough due to the huge up-
scaling ratio, which differs from previous visual tasks. The
parameter quantity will grow sharply due to increased chan-
nels or kernel size. However, NeRV aims to encode videos
with as few parameters as possible, namely model efficiency
pursuit.

In contrast to this goal, subpixel-based upscaling opera-
tors fail to form shortcuts and a pyramidal structure. Once
upscaling from given embeddings F0 (16 ⇥ 2 ⇥ 4) to fine-
grained features Fn (16⇥320⇥640), there is an intolerable
increase in parameters (25600⇥) to fill in the target sub-
pixels. Even when the kernel size is only 1 ⇥ 1, a single
PixelShuffle [52] layer requires 6.96M parameters from F0

to Fn, regardless of the size of videos or model structure.
Towards this dilemma, we propose the Kronecker Fully-

connected layer (KFC), given as

Z = CONCAT
i

⇣
K

(i)
1 X

(i)
K

(i)
2

⌘
+ bc ⌦ bh ⌦ bw, (1)

where X
(i) 2 RHin⇥Win are input features, Z

(i) 2
RHout⇥Wout are output features, K1,2 are two kernels
which K

(i)
1 2 RHout⇥Hin and K

(i)
2 2 RWin⇥Wout in chan-

nel i. Each feature map is calculated channel-wise and will
be concatenated in the channel. bc,h,w are three vectors
and they output the BIAS via kronecker product ⌦ where
bc 2 RC⇥1, bh 2 RHout⇥1 and bw 2 RWout⇥1.
Motivation. KFC is motivated by the fact that, the sub-
pixels of one position are related to every other position
in current feature maps. The dilemma between local and
global feature learning is an enduring issue in deep learn-
ing [38, 61, 63, 68]. Unlike the local prior in the CONV
layer, FC is more effective, especially for the top embed-
dings containing semantic features with little local spa-
tial structure. The calculation between K1, X and K2

is actually the product between vectorized input features
vec(X) 2 RHinWin⇥1 and hybrid weight matrix K⌦ 2
RHoutWout⇥HinWin , where K⌦ = K1 ⌦ K

>
2 . Compared

with the vanilla FC layer, two low-rank matrices K1 and
K2 come from the Kronecker decomposition, while the bias
term bc,h,w is the CP decomposition of the original ones.

Besides, KFC is also inspired by LoRA [25], which uses
adaptive weights in low “intrinsic dimension” [2] for PEFT.
Visualization is shown in Fig. 2. For the same F0 and Fn

mentioned above, parameters needed by KFC is 0.05M,
only 0.7% of that required by PixelShuffle. Detailed com-
parisons of parameters and FLOPs are given in Fig. 3.

3.2. Benign Selective Memory
Using KFC as the basic operator for shortcuts, PNeRV re-
alizes efficient multi-scale feature learning. Also, adaptive
feature fusion between different levels is quite important.

Therefore, we propose the Benign Selective Memory
(BSM). BSM is inspired by the gated mechanism in RNN
research [12, 24], treating features in different streams as
input and cell states. We follow the convention in RNN,
where lowercase represents hidden states. For the high-level
feature z on the top and the fine-grained feature hl�1 in the
l-th layer, BSM is given as follows:

nl = Wn ⇤ z, KOWNLEDGE

ml = Wm ⇤ hl�1 MEMORY

sl = �(Ws ⇤ RELU(nl +ml)), DECISION

hl = hl�1 � (1� sl) + nl � sl, BEHAVIOUR

where ⇤ is convolution with weights Wn,m,s ,� is hadamard
product and � is the sigmoid activation.

BSM is an imitation of the human learning and decision-
making process. The high-level z is regarded as exter-
nal Knowledge, while hl�1 from the previous block in the
mainstream is the inheriting Memory. The model should
learn from Knowledge and integrate it with Memory to
guide the Behaviors (reconstruction). That is the so-called
Benign Selective Memory.



Figure 3. The overall architecture of PNeRV, consists of KFC and BSM. The right part shows the comparison of parameters and FLOPs
between PixelShuffle (PS) and KFC, where input feature maps are in c⇥ h⇥ w, the upscaling rate is r and kernel size in PS is k ⇥ k.

Motivation. The primary distinction between previous
gated mechanisms and BSM is that BSM learns features
(referred to as “Knowledge” and “Memory”) separately be-
fore merging them. This disentangled fashion aids PNeRV
in adaptively merging features from different levels. The
ablation studies in Tab. 7 show the superiority of BSM.

3.3. Overall Structure
Therefore, the proposed PNeRV consists of three parts, as
follows (where X is the input embedding, Ĥl are featured
in the mainstream lth layer, Zl are features upsampled by
shortcuts, and Hl are the features after fusion):
1. A mainstream comprises cascaded upsampling lay-

ers (containing CONV, PixelShuffle, and GELU)
to provide high-resolution reconstruction, Ĥl =
Block(Hl�1), 1  l  L,L = 6, H0 = X .

2. Various shortcuts upsample the high-level embeddings
X into Zl before merging into the mainstream, form-
ing a multi-level hierarchical architecture, Zl =
Shortcut(X), 2  l  L0, L0 = 5.

3. A feature fusion mechanism is employed to merge
Zl with Ĥl adaptively for the final output, Hl =
Fusion(Zl, Ĥl).
In implementation, we conducted two versions, namely

PNeRV-M and PNeRV-L. PNeRV-M has only a single
stream which takes content embeddings [10] XC in 16 ⇥
2 ⇥ 4 as input. For PNeRV-L, temporal embeddings [71]
X

T in 2⇥ 40⇥ 80 are involved. X
C is delivered to the

mainstream and X
T is upscaled in shortcuts via KFC and

merged into each mainstream layers through BSM. We
choose PNeRV-L as the final version. All kernels are 3⇥ 3
except for the first and final output layer. For the input video
V and reconstructions Ṽ, the key equations of the entire
model in the l-th layer (1 < l  L) are presented as fol-
lows:

Encoder : X
C ,XT = E(V),

Decoder : Ĥl = BLOCKl(Hl�1)

= BLOCKl � · · · � BLOCK1(X
C),

Zl = SHORTCUTl(X
T ),

Hl = BSMl(Ĥl,Zl),

where H0 = X
C . The final output will be passed through

an output layer, Ṽ = CONV1⇥1(Hl=L).

4. Universal Approximation Theory on NeRV
First, we will clarify some concepts in NeRV within the
UAT framework. A NeRV-based neural video coding
pipeline is defined in Sec. 4.2. We describe the limitations
of existing NeRV models in Sec. 4.3, discuss the signifi-
cance of shortcuts and the multi-scale structure in the pro-
posed PNeRV in Sec. 4.4.

4.1. Basic Definitions and Notations
One of the main issues for the UAT analysis of a finite
length L feed-forward network is to find out the minimal
width w⇤ := minmax di, 1  i  L where di is the width
of the i-th layer so that neural nets with width w⇤ and length
L can approximate any scalar continuous function arbitrar-
ily well [19, 20, 46]. Following the statement in [20], a deep
affine net is defined as follows.
Definition 1. (Deep Affine Net). A deep affine net of L
layers is given as follows:

N := AL � � �AL�1 � · · · � � �A1. (2)

where the ith layer is an affine transformations Ai :=
Rdi ! Rdi+1 , d1 = din, dL = dout with � as activation.

In existing NeRV research, NeRV [9] and HNeRV [10]
meet this definition.

4.2. Implicit Neural Video Coding
Recently, INR-based video coding has received increasing
attention, and it uses a lightweight model to fit a video clip.
We formulate this coding pipeline as Implicit Neural Video
Coding (INVC), and the decoder with its embeddings to-
gether is known as the NeRV system [9, 10, 21, 31, 71].

Definition 2. (NeRV System). Each frame Vt in an RGB
video clip V = {Vt}Tt=1 2 RT⇥3⇥H⇥W is represented by
an implicit unknown continuous function F : [0, 1]din !
Rdout with the embedding E(t) obtained by encoder E :
N ! [0, 1]din on the t time stamp,

Vt = F � E (t) ,



where F can be approximated by a learnable neural network
D of finite length LD, width wD and activation �. The re-
construction Ṽt via D and E is given as follows:

Ṽt = D � E (t) ,

where the decoder D and embedding E(t) together are
known as NeRV system, {D, E(t)}T

t=1.
For the index-based models [9] and [31], the encoder E is

Positional Encoding [53]. In content-based models [10, 71],
E is learnable and provides content embeddings. When D
is a deep affine net, it is named as a serial cascaded NeRV
system, such as NeRV [9] and HNeRV [10], and D is for-
mulated as follows, where Bl is the l-th upsampling layer.

D := BL � � �BL�1 � · · · � � �B1. (3)

We present the proposed Implicit Neural Video Coding
Problem (INVCP) as follows. More discussions between
INVCP and existing pipelines are given in Sec. A.
Problem 1. (INVCP). The goal of INVC is to obtain the
minimal parameter quantity under a certain approximation
error ✏ between input V and reconstruction Ṽ ,

argmin
D,E

Param (D) +
TX

t=1

dtin,

s.t. LD, wD 2 [1,1) , sup
X

kṼt � Vtk  ✏, t 2 [1, T ].

where dt
in

is the dimension of embedding E(t) w.r.t. the t-th
frame, LD and wD are the length and width.

4.3. UAT Analysis of Cascaded NeRV Model
For video INRs, the model strives to capture the implicit
function that efficiently encodes a video. Within the UAT
framework, a keen focus is on the smoothness properties
of this implicit function, as it also encapsulates the video’s
inherent dynamics.

We name these properties as rate of dynamics, refer-
ring to the differences and transitions between consecutive
frames within the video. We introduce !�1

V to informally
represent the rate of dynamics for video V , inspired by the
mathematical techniques used in UAT analysis [20].
Definition 3. The dual modulus of continuity !�1

f
w.r.t. a

continuous f defined on ⌦ is set as

!�1
f

(✏) := sup{� : !f (�)  ✏},

where !f represents the modulus of continuity of f

!f (�) := sup
x,y2⌦

{kf(x)� f(y)k : d(x, y)  �}.

Remark 1. Using a function F : N ! RdV to roughly
represent a video V , when the variation of frames (video
dynamics) kF(ti) � F(tj)k is at a certain level ✏ for two
time stamps ti and tj , then the longer the duration sustains,
the larger !�1

F gets. Smoother video has larger !�1
F .

Notably, the explicit calculation of !�1
f

is hard to obtain,
and it is more like an empirical judgment, such as camera
movement, subject speed, noise, and others. We present
the estimation of the upper bound of the minimal parameter
quantity of the cascaded NeRV model as Theorem 1. The
proof of Theorem 1 can be found in Sec. A.3.
Theorem 1. For a cascaded NeRV system to ✏-approximate
a video V which is implicitly characterized by a certain un-
known L-Lipschitz continuous function F : K ! Rdout

where K ✓ Rdin is a compact set, then the upper bound of
the minimal parameter quantity Param(D) is given as

Parammin(D)  d2
out

✓
O (diam (K))

!�1
F (✏)

◆din+1

.

From Theorem 1, it can be seen that for a video, the fit-
ting performance of the cascaded NeRV model depends on
the rate of dynamics !�1

F and the dimension of the video,
dout. The smoother and lower the dimension of the video to
be modeled, the less difficult it is to approximate.
Remark 2. The rate of dynamics for a given video will de-
termine the performance of the NeRV system.

4.4. UAT Analysis of PNeRV
According to Theorem 1, the upper bound of parameters
of cascaded NeRV required for model fitting only depends
on the properties of the target video. It demonstrates that,
although different models can exhibit diverse architectures,
their fitting behavior on the same video tends to be sim-
ilar, indicating a limitation in the model’s ability. How-
ever, according to observations in UAT research [15, 32],
the model with shortcuts will reduce the maximum width
to 1, indicating that the model size can be greatly reduced
while maintaining the performance. Therefore, the involve-
ment of shortcuts is the key to enhancing model capability.

Besides, we believe the implicit function representing a
video can be decomposed into diverse sub-functions from a
pattern-disentangled perspective. If we treat each stream in
D as a sub net, the whole D is an ensemble,

D :=
X

A(i)
L � ⇢(i)L�1 �A

(i)
L�1 � · · · � ⇢

(i)
1 �A(i)

1 . (4)

Different shortcut pathways can fit various patterns, as a
single shortcut has the universal approximation ability. For
example, in Fig. 3, ¨ may capture the low-frequency mo-
tions. Whereas ≠, directed towards fine-grained layers, sig-
nifies spatial details. This hypothesis aligns with the empir-
ical evidence observed in other vision areas, which shows
that the pyramid structure, a widely adopted hierarchical
topology, can improve dense prediction tasks. That is why
PNeRV outperforms others and achieves less semantic un-
certainty and better perceptual quality.
Remark 3. As the ensemble of sub-nets, the Pyramidal
structure will enhance the perceptual quality of NeRV sys-
tems.



5. Experiment
Settings. We perform video regression on 2 datasets, and
all videos are center cropped to a 1⇥ 2 ratio. UVG [40] has
7 videos with a size of 960 ⇥ 1920 in 300 or 600 frames at
120 FPS. DAVIS [47] is a large dataset of 47 videos in 960⇥
1920, containing large motions and complex spatial details.
We choose 9 videos1 from DAVIS as a subset, containing
different types of spatiotemporal features.
Metrics. We use PSNR and MS-SSIM to evaluate pixel-
wise errors. For spatial consistency, we choose the Learned
Perceptual Image Patch Similarity (LPIPS) [70] and Frechet
Video Distance (FVD) [60] as perceptual metrics, where
LPIPS is based on AlexNet and FVD is based on the I3D
model. The difference between PNeRV (P) and the baseline
(B) is calculated as (B � P )/B to show the improvement.
Training. We adopt Adam as the optimizer, where beta is
(0.9, 0.999) and weight decay is 0. The learning rate is 5e-
4 with a cosine annealing schedule. The loss function is
L2, and the batch size is 1. All experiments are conducted
using PyTorch 1.8.1 on NVIDIA GPU RTX2080ti, train-
ing for 300 epochs. We choose NeRV [9], E-NeRV [31],
HNeRV [10], DivNeRV [21] and DiffNeRV [71] as base-
line models. All models are trained with a similar 3M size,
and we follow the setting of embedding size as the baseline
method.

5.1. Video Regression on UVG
Pixel-wise error. PSNR comparison on UVG is reported in
Tab. 1, where bold font is the best result and underline is the
second best. PNeRV-L surpasses other models (+0.42 dB
against DiffNeRV and +4.25 dB against NeRV). PNeRV-M
achieves the best result against other single-stream models
(+1.96 dB against HNeRV and +3.02 dB against NeRV).
The proposed pyramidal architecture shows its effectiveness
when combined with various encoders.
Perceptual quality. The perceptual results are given in
Tab. 3 (LPIPS) and Tab. 4 (FVD), and the results of PNeRV
show a significant improvement, especially for “Bospho”
and “ShakeN”. The FVD results in Tab. 4 indicate that PN-
eRV provides better spatiotemporal consistency compared
to other baseline models (+231% against NeRV [9] and
+64.5% against DiffNeRV [71]).
Case study. The visualized comparison on UVG is exhib-
ited in the bottom three rows of Fig. 4. For dynamic ob-
jects with indistinct boundaries or noisy backgrounds, such
as the horse in “ReadyS” and the tail in “ShakeN,” PNeRV
demonstrates superior visual quality without requiring ad-
ditional semantic information.
Compared with the SOTA. As shown in Tab. 1, PNeRV
obtained competitive PSNR results on dynamic and smooth
videos. [21] is less effective for videos with fewer motions

1Bmx-bumps, Camel, Dance-jump, Dog, Drift-chicane, Elephant,
Parkour, Scooter-gray, Soapbox.

but complicated contextual spatial correlation. Also, [71]
makes it hard to reconstruct the videos filled with high-
frequency details. By comparison, PNeRV achieves com-
parable performance on all videos.

5.2. Video Regression on DAVIS
Pixel-wise error. In Tab. 2, we present the PSNR and SSIM
comparison on the DAVIS dataset. PNeRV gains a +0.88
dB PSNR increase compared to DiffNeRV and +3.28 dB
compared to vanilla NeRV. Despite the challenges posed by
complex spatiotemporal features, PNeRV exhibits signifi-
cant improvements (refer to “Parkour”, which is the most
difficult one, or “Drift-chicane”, where the racing car un-
dergoes intense motion amidst smoke-induced noise).
Perceptual quality. The LPIPS results on DAVIS are
reported in Tab. 3, where PNeRV achieved a 32.0% in-
crease compared to NeRV and 12.6% against the second-
best DiffNeRV. In Tab. 5, PNeRV gains a 634% FVD in-
crease over NeRV and 128% against DiffNeRV. For the
worst case, “Dog”, although PNeRV obtained a poor FVD
result owing to the severe global blurring caused by camera
motion, the PSNR is only slightly lower than the best (-0.24
db).
Case study. Visualizations are shown in Fig. 4. PN-
eRV reduced spatial inconsistency, particularly in “Dance
Jump” and “Elephant,” which are filled with irrelevant high-
frequency details obscuring semantic clarity.

5.3. Ablation Studies
The ablation of the effectiveness of the proposed pyramidal
architecture is in Tab. 6, and the contributions of two pro-
posed modules are validated in Tab. 7, where the parameters
of different models remain the same for a fair comparison.
Overall structure. We validate the design of the multi-
level structure on the most dynamic and smooth videos
(“Parkour” and “HoneyB”). In Tab. 6, the “serial” in the
first row represents HNeRV [10]. “Pyram.+Concat.” incor-
porates solely shortcuts without fusion modules. The main
difference between DiffNeRV and PNeRV-L is the quantity
of shortcuts (2 vs 5), and PNeRV-L performs better.
Modules contribution. We compare KFC with two upscal-
ing layers, Deconv [69] and Bilinear (the combination of bi-
linear upsampling and Conv2D). KFC performs better due
to the global receptive field, as shown in Tab. 7.

Also, we compare BSM with Concat, GRU [12] and
LSTM [24]. The results suggest that, disentangled feature
fusion significantly enhances performance. Detailed results
for each video are listed in Tab. C.6 in the appendix.

5.4. Validation of Theoretical Analysis
The results in Tab. 1 and Tab. 6 validate the Remark 2. For
those smooth videos with larger !�1

f
and a smaller upper

bound, models may obtain better performance; vice versa.
The results of PNeRV in Fig. 4, which exhibit less noise and



PSNR " D.P. E.S. Beauty Bospho HoneyB Jockey ReadyS ShakeN YachtR Avg. M.

Avg. V. N/A N/A 36.06 35.32 39.48 33.27 27.53 35.27 30.03 N/A

NeRV [9] 3M 160 33.25 33.22 37.26 31.74 24.84 33.08 28.03 31.63
NeRV⇤ [9] 3.2M 160 32.71 33.36 36.74 32.16 26.93 32.69 28.48 31.87
E-NeRV [31] 3M 160 33.17 33.69 37.63 31.63 25.24 34.39 28.42 32.02
HNeRV [10] 3M 128 33.58 34.73 38.96 32.04 25.74 34.57 29.26 32.69
DiffNeRV [71] 3.4M 6528 40.00 36.67 41.92 35.75 28.67 36.53 31.10 35.80
DivNeRV⇤ [21] 3.2M N/A 33.77 38.66 37.97 35.51 33.93 35.04 33.73 35.52

PNeRV-M 1.5M 128 37.51 33.80 41.76 29.96 24.15 36.18 28.92 33.18
3M 128 39.08 35.56 42.59 31.51 25.94 37.61 30.27 34.65

PNeRV-L 1.5M 6528 37.98 35.18 41.78 34.43 27.28 36.65 28.29 34.51
3.3M 6528 39.46 36.68 42.73 35.81 28.97 38.25 30.92 36.12

Table 1. PSNR comparison on UVG: the larger, the better. ⇤ indicates methods that fit videos in a shared model while others fit each video
in a single model. D.P. is the parameter quantity of the decoder, and E.S. is the corresponding embedding size per frame. Avg. V is the
average PSNR across all models for the same video. Avg. M is the average PSNR for a single model on the entire dataset.

PSNR / SSIM " Bmx-B Camel Dance-J Dog Drift-C Elephant Parkour Scoo-gray Soapbox Avg.

NeRV [9] 29.42/0.864 24.81/0.781 27.33/0.794 28.17/0.795 36.12/0.969 26.51/0.826 25.15/0.794 28.16/0.892 27.68/0.848 27.99/0.840
E-NeRV [31] 28.90/0.851 25.85/0.844 29.52/0.855 30.40/0.882 39.26/0.983 28.11/0.871 25.31/0.845 29.49/0.907 28.98/0.867 29.62/0.878
HNeRV [10] 29.98/0.872 25.94/0.851 29.60/0.850 30.96/0.898 39.27/0.985 28.25/0.876 26.56/0.851 31.64/0.939 29.81/0.881 30.22/0.889
DiffNeRV [71] 30.58/0.890 27.38/0.887 29.09/0.837 31.32/0.905 40.29/0.987 27.30/0.848 25.75/0.827 30.35/0.923 31.47/0.912 30.39/0.890

PNeRV-L (ours) 31.05/0.896 27.89/0.892 30.45/0.873 31.08/0.898 40.23/0.987 29.72/0.903 27.53/0.878 32.68/0.950 30.85/0.902 31.27/0.908
Table 2. PSNR and MS-SSIM comparison on DAVIS.

LPIPS # Beauty Bospho HoneyB Jockey ReadyS ShakeN YachtR Avg.

NeRV [9] 0.229 0.203 0.043 0.251 0.326 0.189 0.276 0.216
ENeRV [31] 0.224 0.179 0.039 0.279 0.318 0.168 0.363 0.224
HNeRV [10] 0.218 0.172 0.042 0.270 0.348 0.191 0.253 0.213
DiffNeRV [71] 0.205 0.164 0.042 0.196 0.206 0.181 0.241 0.176

PNeRV (ours) 0.210 0.132 0.037 0.177 0.211 0.146 0.230 0.163

LPIPS # Bmx-B Camel Dance Dog Drift Eleph Parko Scoo-g Soapb Avg.

NeRV [9] 0.374 0.476 0.517 0.573 0.136 0.490 0.481 0.308 0.424 0.419
ENeRV [31] 0.386 0.357 0.426 0.404 0.061 0.419 0.429 0.282 0.380 0.349
HNeRV [10] 0.315 0.331 0.392 0.405 0.058 0.387 0.414 0.226 0.357 0.321
DiffNeRV [71] 0.320 0.278 0.423 0.394 0.053 0.431 0.478 0.268 0.297 0.326

PNeRV (ours) 0.308 0.284 0.363 0.387 0.054 0.343 0.314 0.188 0.324 0.285

Table 3. LPIPS comparison on UVG (left) and DAVIS (right) dataset.

FVD# Gap" Beauty Bospho HoneyB Jockey ReadyS ShakeN YachtR Avg. "

NeRV [9] 3.76e-5 281% 1.00e-4 253% 1.45e-5 193% 5.81e-4 499% 1.98e-3 122% 3.27e-5 178% 4.07e-4 92.8% 231%
ENeRV [31] 2.66e-5 169% 7.86e-5 176% 5.88e-6 186% 1.00e-3 936% 1.46e-3 64.2% 2.12e-5 80.7% 1.00e-3 376% 284%
HNeRV [10] 3.29e-5 233% 6.74e-5 137% 1.50e-5 203% 9.46e-4 874% 2.07e-3 132% 5.06e-5 331% 3.56e-4 68.8% 282%
DiffNeRV [71] 1.29e-5 30.7% 4.28e-5 50.3% 6.50e-6 31.1% 1.55e-4 60.1% 6.58e-4 -26.3% 4.69e-5 300% 2.23e-4 5.9% 64.5%

PNeRV (ours) 9.88e-6 - 2.85e-5 - 4.96e-6 - 9.70e-5 - 8.94e-4 - 1.17e-5 - 2.11e-4 - -

Table 4. FVD comparison on UVG.

FVD# Gap" Bmx-B Camel Dance-Jump Dog Drift-C Elephant Parkour Scoo-gray Soapbox Avg. "

NeRV [9] 8.99e-5 146% 2.70e-4 404% 6.66e-5 1273% 3.02e-5 336% 3.85e-6 2830% 2.470e-5 95.8% 1.35e-4 309% 3.815e-5 197% 9.39e-5 115% 634%
ENeRV [31] 1.20e-4 229% 1.08e-4 102% 6.05e-6 24.8% 4.04e-6 -41.5% 5.41e-7 311% 2.647e-5 110% 7.09e-5 114% 3.961e-5 208% 7.01e-5 61.1% 124%
HNeRV [10] 4.97e-5 36.2% 1.04e-4 94.1% 9.58e-6 97.5% 4.51e-6 -34.6% 1.21e-6 821% 4.439e-5 252% 7.81e-5 135% 2.256e-5 75.8% 7.36e-5 69.3% 171%
DiffNeRV [71] 3.11e-5 -14.8% 3.85e-5 -28.1% 1.19e-5 146% 3.61e-6 -47.6% 6.48e-7 392% 6.408e-5 408% 1.45e-4 339% 1.614e-5 25.7% 1.64e-5 -62.2% 128%

PNeRV (ours) 3.65e-5 - 5.36e-5 - 4.85e-6 - 6.91e-6 - 1.31e-7 - 1.261e-5 - 3.31e-5 - 1.283e-5 - 4.35e-5 - -

Table 5. FVD comparison on DAVIS.

blurring, validate Remark. 3. Hierarchy structure reduces
ambiguity and artifacts caused by semantic uncertainty.

5.5. Additional Experiment Results
Additional results are provided in the appendix. Video in-
terpolation on UVG is discussed in Sec. C.1 where PNeRV
achieves the second-best PSNR (31.18 dB), exceeding the
vanilla NeRV (26.54 dB). Video compression is shown in
Sec. C.2, where competitive results are achieved over differ-
ent coding pipelines. Video inpainting on the DAVIS subset
is provided in Sec. C.3, where an average PSNR of 25.54 dB
is achieved, outperforming NeRV (22.71 dB) and DNeRV
(25.20 dB). More visual examples are shown in Sec. C.4,

and visualization of feature maps in Sec. D.1. More detailed
ablations are presented in Sec. D.2. More video examples
with the link are listed in Sec. C.6.

6. Conclusion
To resolve the spatiotemporal inconsistency issue, we pro-
pose Pyramidal NeRV realizing multi-level information in-
teraction by a low-cost KFC and a fusion module BSM. Fur-
ther, we use UAT to provide some explanations and insights
for NeRV. Competitive results on various tasks and metrics
validate the superiority of PNeRV.
Limitation and future work. Hierarchical structure brings
higher computational complexity. We will optimize redun-



Figure 4. Visual comparison on various videos. “Bmx” has larger motion, “Elephant” has massive droplets blurring, “Parkour” involves
both camera rotation and extreme dynamics, “Dance” contains large motion under high-frequency reed leaves. “Jockey”, “ReadyS”, and
“ShakeN” are videos with complex spatiotemporal correlation in UVG. Zoom in for a detailed comparison.

Parkour (Dynamic) HoneyB (Smooth)
Models Size 1.5M 3M 5M Avg. 0.75M 1.5M 3M Avg.

Serial (HNeRV [10]) 25.07 26.56 24.34 25.32 36.65 36.72 38.96 37.44
Pyram. + Concat. 24.20 25.45 25.83 25.16 40.07 41.58 42.34 41.33
Pyram. + BSM. (PNeRV-M) 24.81 26.02 27.13 25.99 40.34 41.36 42.59 41.43

Serial + Diff. (DiffNeRV [71]) 25.49 25.75 25.71 25.65 40.52 41.52 41.92 41.32
Pyram. + Diff. + BSM. (PNeRV-L) 25.62 27.08 27.21 26.67 39.81 41.85 42.73 41.46

Table 6. Ablation studies for model size and overall architecture on “HoneyB” and “Parkour”.

PSNR" SSIM" (A.P.G.)" Concat GRU LSTM BSM

Bilinear 27.16/0.816(-4.14) 28.39/0.847(-2.91) 28.07/0.834(-3.23) 29.08/0.862(-2.22)
Deconv 27.37/0.803(-3.93) 29.00/0.845(-2.30) 28.91/0.850(-2.39) 29.96/0.881(-1.34)
KFc 28.68/0.848(-2.62) 29.31/0.868(-1.99) 29.04/0.866(-2.26) 31.30/0.904(+0)

Table 7. Contribution ablations for KFC and BSM, reported as average results on 7 DAVIS videos. A.P.G. indicates the average PNSR gap
compared with the final version of PNeRV (KFC + BSM); the larger the better. Detailed results for each video are given in Sec. D.2.

dant modules of the model for acceleration in the future.
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PNeRV: Enhancing Spatial Consistency via
Pyramidal Neural Representation for Videos

Supplementary Material

A. More Discussions of Universal Approxima-
tion Theory (UAT) Analysis on NeRV

We provide more analysis and discussions of UAT analy-
sis on the NeRV system. We define the problem that current
NeRV systems are attempting to address and provide a com-
parison with existing video neural coding pipelines.

A.1. Implicit Neural Video Coding Problem

Following the pipeline of Implicit Neural Video Coding
(INVC) presented in Sec. 4.2 , we recall the proposed Im-
plicit Neural Video Coding Problem (INVCP) as follows.

Problem A.1. (INVC Problem). The goal of Implicit Neu-
ral Video Coding is to find out the optimal design of the
decoder D and encoder E in pursuit of minimal param-
eter quantity Param(D) and embeddings {et = E (t) 2
Rd

t
in}T

t=1 (where d = dt
in

is often the same for all t in ex-
isting NeRV systems) under a certain approximation error
✏ between the reconstruction Ṽ and a given video sequence
V ,

argmin
D,E

Param (D) +
TX

t=1

dt
in
,

s.t. LD, wD 2 [1,1) , sup
X

kṼt � Vtk  ✏, t 2 [1, T ].

In the practice of INVC research, we usually use the dual
problem of A.1 to determine the optimal architecture of a
model to achieve a certain level of accuracy for fitting the
video. We name it the Dual Implicit Neural Video Coding
Problem (DINVCP).

Problem A.2. (Dual INVC Problem). Given a certain pa-
rameter quantity µ, the Dual INVC problem aims to deter-
mine the optimal design of decoder D and encoder E to
minimize the minimal approximation error between the re-
construction Ṽ and the given video sequence V ,

argmin
D,E

sup
X

kṼt � Vtk,

s.t. LD, wD 2 [1,1) ,Param (D) +
TX

t=1

dt
in

 µ, t 2 [1, T ].

In practice, when using a NeRV model to represent a
given video within a certain model size limit µ through end-
to-end training, it is trying to solve the DINVCP.

A.2. Comparison between DINVCP and Previous
Neural Coding Pipelines

Distribution-Preserving Lossy Compression (DPLC) is pro-
posed by [59] motivated by GAN-based image compres-
sion [3]. It is defined as follows:

min
E,D

EX,D[d(X,D(E(X)))] + �df (pX , p
X̃
),

where E,D,X, X̃ are encoder, decoder, given input and
reconstruction, df is a divergence which can be estimated
from samples. DPLC emphasizes the importance of main-
taining distribution consistency for effective compression
and reconstruction.

[54] proposes Rate-Distortion Optimization (RDO).
Later, [5] reveals the importance of perceptual quality and
proposes the Perception-Distortion Optimization (PDO) as

min
pX̃|Y

d(pX , p
X̃
) s.t. E[�(X, X̃)]  D,

where � is the distortion measure and d is the divergence
between distributions. Furthermore, [6] defines the Rate-
Distortion-Perception Optimization (RDPO) as

min
pX̃|X

I(X, X̃) s.t. E[�(X, X̃)]  D, d(pX , p
X̃
)  P,

where I denotes mutual information.
The primary objective, which also serves as the main ob-

stacle in the aforementioned pipelines, is that density esti-
mation is not only costly but also challenging to estimate ac-
curately. Different from DPLC, PDO, or RDPO, DINVCP
does not need to model the distribution of the given signal
explicitly. In fact, the distribution of input images or videos
is difficult to approximate. Whether it is approached by
minimizing ELBO or through adversarial training [18, 28],
there is always a certain gap or mismatch. Besides, other
density estimation methods, such as flow-based or diffusion
models, suffer from huge computational costs [23, 49]. In
contrast, NeRV system implicitly models the unknown dis-
tribution of a given signal via specific decoding computa-
tion process under certain model parameter quantity con-
straints. The calculation process per se is regarded as the
side information [27, 65].

This approach of implicitly modeling distributions
through computational processes under parameter quantity
constraints aligns with some current perspectives that sug-
gest the intelligence of Large Language Models (LLM)
emerges from data compression [13, 48]. LLMs such as



GPT aim to transfer as much data as possible to models
of the same size for learning (and continue to increase the
model size after learning) to achieve information compres-
sion and efficient information coding. However, the NeRV
system strives to compress the model size as much as possi-
ble for a given video, emerging with robust representations
with generalized capability.

The improvement of PNeRV in terms of perceptual qual-
ity confirms this conjecture. By upgrading the model struc-
ture and training with only MSE loss, PNeRV emerges bet-
ter perceptual performance without having to estimate the
signal’s unobtainable prior distribution.

A.3. Proof of Theorem 1
Following the definitions given in Sec. 4 , the width w of N
is named as max di, {di 2 N}L

i=1. Once the minimal width
w⇤ = wmin (din, dout) is estimated by din, dout, such that,
for any continuous function f : [0, 1]din ! Rdout with
✏ � 0, there exists a N with input dimension din, hidden
layer widths at most w⇤, and output dimension dout that
✏�approximates f :

sup
x2[0,1]din

kf (x)�N (x) k  ✏.

The goal of Theorem 1 is to determine the minimum param-
eter demand when ✏�approximates the implicit F which
represents the given video. We recall Theorem 1 as Theo-
rem A.1 as follows for better illustration.

Theorem A.1. For a cascaded NeRV system to ✏-
approximate a video V which is implicitly characterized
by a certain unknown L-Lipschitz continuous function F :
K ! Rdout where K ✓ Rdin is a compact set, then the
upper bound of the minimal parameter quantity Param(D)
is given as

Parammin(D)  d2
out

✓
O (diam (K))

!�1
F (✏)

◆din+1

.

Before we start, we will recall the setup and demonstrate
some mathematic concepts and lemmas.

Definition A.1. A function g : Rdin ! Rdout is a max-
min string of length L � 1 on din input variables and dout
output variables if there exist affine functions `1, . . . , `L :
Rdin ! Rdout such that

g = �L�1(`L,�L�2 (`L�1, · · · ,�2 (`3,�1 (`1, `2)) · · · ) .

The definition of max-min string and DMoC (Def. 3 ) are
first introduced in [19] and [20]. We introduce two lemmas,
which were presented as Propositions 2 and 3 in [20].

Lemma A.1. [20] For every compact K ✓ Rdin , any con-
tinuous f : K ! Rdout and each ✏ � 0, there exists a

max-min string g on din input variables and dout output
variables with length

 
O (diam (K))

!�1
f

(✏)

!din+1

,

for which
kf � gkC0(K)  ✏.

Lemma A.2. [20] For every max-min string g on din input
variables and dout output variables with length L and every
compact K ✓ Rdin , there exists a RELU net N with input
dimension din, hidden layer width din + dout, and depth L
that computes x 7! g(x) for every x 2 K.

Lemma A.3. [46] For any p 2 [1,1), RELU nets of
width w are dense in LP (Rdin ,Rdout) if and only if w �
max{din + 1, dout}.

The proofs of Lemma A.1 and A.2 can be found in the
Sec. 2.1 and Sec. 2.2 of [20]. Lemma A.3 is the Theorem
1 demonstrated in [46] with its proof. Now we provide the
proof of Theorem A.1 as follows.

Proof. From Lemma A.1, the implicit function FV which
represents the video V can be approximated by one max-
min string g. It is worth mentioning that FV is supposed to
be continuous because video can be considered as a slice of
the real world. The length of this max-min string g is given
by Lemma A.1. According to Lemma A.2, there exists a
RELU net Ng with the same input and output dimensions
that fit this max-min string. So, the minimal parameters of
Ng , also the sum of weights for each layer, is

Param =
LX

l=1

wlwl�1,

where wl is width in each hidden layer and L is given in
Lemma A.1. Noticed that the whole width w of a model is
the upper bound of all hidden layer widths {wl}Ll=0. wmin is
the minimum estimate for this upper bound, wl  wmin 
w. wmin is further contracted from din+dout to max{din+
1, dout} by [46] (Lemma A.3).

Thus, the minimal parameters of Ng under a certain error
is no longer than

Parammin  w2
min

 
O (diam (K))

!�1
f

(✏)

!din+1

= d2
out

 
O (diam (K))

!�1
f

(✏)

!din+1

,

where wmin = dout for video V : N ! Rdout . Equality is
reached when each layer width reaches the upper bound of
minimal width, the worst case.



Although the upper bound of Param(D) is fixed regard-
less of the detailed architecture, the actual performance of
serial NeRV will be influenced by structure design, param-
eter initialization, activation functions, loss functions, and
optimizer.

B. More Related Works
Comparison with Other Subpixel-based Upsampling
Operators. The NeRV system aims at reconstructing high-
resolution videos through decoding low-dim embeddings.
Therefore, proper upsampling operators are crucial for its
performance. Existing subpixel-based upsampling opera-
tors are not efficient enough for the NeRV system. De-
conv [69] pads the subpixels with zeros and passes them
through a Conv layer, resulting in block artifacts [45].
PixelShuffle [52] first expands the feature map channels
through a CONV and then rearranges them into the target
subpixels. However, the desired subpixels of a given po-
sition are only related to the expanding channels of the
same position, ignoring contextual information, as shown in
Fig. 2 of the main text. Additionally, PixelShuffle encoun-
ters an exponential explosion of required channels when the
upsampling ratio is large.
Comparison with INR on Images. [53] (SIREN) uses
sine as a periodic activation function to model the high-
frequency information of a given image [58] and performs a
sinusoidal transformation before input [66] tries to directly
modify an INR without explicit decoding. The main differ-
ence between these methods and ours is that we consider the
input coordinate-pixel pairs to be dense for the INR on im-
age coding. In a natural image, the RGB value at a specific
position is often closely related to its neighboring positions.
However, for high-resolution videos, the gap between ad-
jacent frames can be much larger, both in terms of pixels
and semantic terms. This situation is akin to only observing
partial pixels from a given image.
Comparison with Self-attention Module. Self-attention
(SA) and Multi-head Self-attention (MSA) modules [38, 56,
61, 63] compute the response at a position by attending to
all positions, which is similar to KFC. The major defect
of SA and MSA when adopted in NeRV is that the compu-
tational complexity and the space complexity are too high
to efficiently compute the global correlations between arbi-
trary positions, especially the computational cost (O(n2d))
between queries and keys for high-resolution feature maps.
KFC not only captures long-range dependencies but also
achieves low-cost rescaling, both of which are significant
for NeRV.

C. Additional Results
Unless otherwise specified, all models utilized in the addi-
tional results are trained on a 3M model for 300 epochs.

Figure C.1. PSNR of video compression on UVG.

Figure C.2. SSIM of video compression on UVG.

C.1. Comparison of Generalization Ability by Video
Interpolation Results

Indeed, the concepts of approximation and generalization
are distinct topics within the field of deep learning the-
ory [1, 44]. Understanding the causal relationship between
overfitting and the generalization capacity of NeRV neces-
sitates further investigation. Existing NeRV models always
focus on the models’ approximation capabilities through
overfitting training.

Nonetheless, we also evaluate the generalization perfor-
mance of our proposed PNeRV through a video interpola-
tion experiment. Adhering to the experimental methodol-
ogy employed in [10] and [71], the model is trained using
odd-numbered frames and then tested with unseen even-
numbered frames. The results, presented in Table C.1, indi-
cate that PNeRV surpasses most baseline methods. Future
research will focus on the theoretical analysis and enhance-
ment of PNeRV’s generalization abilities.

C.2. Comparison of Video Compression and Dis-
cussion of Training Difficulties

The video compression comparison of PNeRV with other
NeRV models in terms of PSNR and MS-SSIM is shown in
Fig. C.1 and Fig. C.2. Following the same settings utilized



Beauty Bospho Honey Jockey Ready Shake Yacht Avg.

NeRV [9] 28.05 30.04 36.99 20.00 17.02 29.15 24.50 26.54
E-NeRV [31] 27.35 28.95 38.24 19.39 16.74 30.23 22.45 26.19
H-NeRV [10] 31.10 34.38 38.83 23.82 20.99 32.61 27.24 29.85
DiffNeRV [71] 35.99 35.10 37.43 30.61 24.05 35.34 28.70 32.47

PNeRV 33.64 34.09 39.85 28.74 23.12 31.49 27.35 31.18

Table C.1. Video interpolation results on 960 ⇥ 1920 UVG in PSNR.

Bmx-B Camel Dance-J Drift-C Elephant Parkour Scoo-G Scoo-B Avg.

HNeRV 20.39 21.85 21.73 28.81 17.35 19.97 24.49 19.76 21.79
DiffNeRV 22.95 23.72 21.78 30.37 26.02 21.55 22.78 21.00 23.77

PNeRV 21.69 24.28 25.21 30.01 27.32 22.61 22.84 22.61 24.57
Table C.2. Video inpainting results using center mask on 960 ⇥ 1920 DAVIS in PSNR.

Bmx-B Camel Dance-J Drift-C Elephant Parkour Scoo-G Scoo-B Avg.

HNeRV 0.665 0.733 0.677 0.650 0.489 0.650 0.859 0.789 0.725
DiffNeRV 0.767 0.815 0.667 0.949 0.817 0.754 0.852 0.844 0.808

PNeRV 0.802 0.844 0.792 0.947 0.862 0.801 0.874 0.812 0.842
Table C.3. Video inpainting results using center mask on 960 ⇥ 1920 DAVIS in SSIM.

Bmx-B Camel Dance-J Drift-C Elephant Parkour Scoo-G Scoo-B Avg.

HNeRV 23.16 20.94 26.54 31.70 17.36 21.32 26.89 21.05 23.62
DiffNeRV 25.70 24.71 26.59 34.74 25.93 24.51 26.61 24.27 26.63
PNeRV 24.96 24.18 26.62 34.84 27.50 24.98 26.85 22.13 26.51

Table C.4. Video inpainting results using disperse mask on 960 ⇥ 1920 DAVIS in PSNR.

Bmx-B Camel Dance-J Drift-C Elephant Parkour Scoo-G Scoo-B Avg.

HNeRV 0.728 0.661 0.779 0.957 0.490 0.685 0.889 0.794 0.748
DiffNeRV 0.819 0.832 0.795 0.972 0.827 0.799 0.892 0.897 0.854

PNeRV 0.843 0.854 0.806 0.975 0.877 0.836 0.910 0.866 0.871
Table C.5. Video inpainting results using disperse mask on 960 ⇥ 1920 DAVIS in SSIM.

Figure C.3. Example of training difficulty of different NeRV meth-
ods in 3M size.

in [10, 71], we evaluate the video compression comparison
with 8-bit quantization for both embeddings and the model
without model pruning.

PNeRV has demonstrated remarkable performance, no-
tably outperforming conventional encoding pipelines like
H264 [64] and H265 [55], and possesses substantial ad-
vantages over several traditional neural video coding mod-
els [30, 33, 39], particularly at low bit rates. Compared to
INR-based methods, PNeRV has also achieved competitive
results and outperforms other NeRV methods [9, 10, 71] in
terms of PSNR.

For detailed experimental settings, PNeRV adjusts the
size of the decoder and the dimensions of the input diff em-
bedding to validate the encoding performance of the pro-
posed method across various bit rates. At low bit rates, the
encoding performance of the model may experience some



degradation. We believe this is due to the diversity and com-
plexity of the modules required by PNeRV. Maintaining a
certain amount of parameters (such as the number of chan-
nels in convolutional layers) is crucial for preserving perfor-
mance. This ensures that the model has sufficient capacity
to handle the challenges posed by low-bit rate encoding.

It is worth noting that all implicit models encounter sig-
nificant training challenges when dealing with large param-
eters, such as those exceeding 5M. As a result, these models
often converge to local minima, leading to trivial outputs.
This issue poses a significant obstacle to the compression
performance of all NeRV methods, particularly when the
Bpp value increases. Some examples of training failure are
shown in Fig. C.3, where models are 3M under the same
conditions.

C.3. Comparison of Robustness by Video Inpaint-
ing Results

We evaluate the robustness of different methods using video
inpainting tasks following the same setting as in [10] and
[71], which use a center mask and disperse mask. The cen-
ter mask uses a rectangular area that occupies one-fourth of
the width and height of the original frame, positioned at its
center. The disperse mask comprises five square areas, each
measuring 100 ⇥ 100 pixels, positioned in the four corners
and the center of the frame. The pixel value of areas in
the masks is reset to 0. The trained models in video regres-
sion tasks will be directly utilized for inpainting without any
fine-tuning. Models take the masked frames as input and try
to predict the original ones.

The results using the center mask are provided in
Tab. C.2 and Tab. C.3. The dispersed ones are in Tab. C.4
and Tab. C.5. PNeRV acquires competitive results with both
the center mask and the disperse mask, indicating robust
modeling capability.

C.4. More Visualization Examples for Perceptual
Quality

We show some more examples of qualitative comparisons
between different models.

Shown in Fig. D.4, the results of PNeRV are smoother
and less noisy. For instance, in “Lucia” and “Horse-low”,
PNeRV pays more attention to the geometric pattern of
the main objects and ignores those high-frequency details
of the background scene. Other baseline methods cannot
reconstruct frames at such a semantic level. Due to the
lack of high-level information guidance and a global recep-
tive field, baseline methods are hard to reasonably allocate
model weights to more important objects, e.g., red water-
pipe in “Breakdance-flare” and patterns in “Cows”.

Shown in Fig. D.5, the comparison at different times-
tamps of the same video indicates some specific common
issues of different models. Overlapping and noisy patterns

have occurred in the results of DiffNeRV [71] and HN-
eRV [10], such as the grass and hands in “Hike”. EN-
eRV [31] and NeRV [9] often result in color deviation and
blurring, e.g., backpack in “Hike” and motor in “motor-
bump”. PNeRV achieves a balance between preserving de-
tails and maintaining semantic consistency. Compared to
DiffNeRV, which also uses the difference between frames
as input, the latter’s reconstruction of details is unbiased.
However, human attention to visual elements under differ-
ent semantics should be different. Improving the recon-
struction results through high-level information is one of
PNeRV’s pursuits.

C.5. Discussion on the Failure Cases
As shown in Table 2 , PNeRV fails in the “Dog” which is
blurred and mixed with jitter and deformation. Also, the
“Soapbox” video, which comprises two clips from entirely
different scenes connected by a few frames where the cam-
era rotates through a large angle, poses a challenge. So far,
PNeRV has not been able to handle severe temporal incon-
sistency effectively.

C.6. Video Examples
We provide some video examples from DAVIS as follows.
From the video comparison, it can be seen that the re-
constructions of NeRV have lost spatial details, and it is
difficult for DNeRV to reconstruct videos containing per-
vasive scattered high-frequency details. Whether there is
large motion or high-frequency details in the given videos,
PNeRV is more robust in modeling the spatial consistency,
leading to better perceptual quality in reconstructions. The
links to the examples are presented as follow.
Dance-jump: https://drive.google.com/file/
d / 18JZq1BCkBJWCkZs - 71OB7wI6j _ Vma0vP /
view?usp=drive_link
Elephant: https://drive.google.com/file/d/
1rnPEsEtfA5UADU6BnwEDOPRG9hO9uPuM/view?
usp=drive_link
Kite-surf: https://drive.google.com/file/d/
1DDGw1zc2iJWcJHdBS4DOnfUQVf2H04Bs/view?
usp=drive_link
Parkour: https://drive.google.com/file/
d / 1jWbJuoc - GCz2N _ dXAJSER0PSy7ThrMr -
/view?usp=drive_link
Scooter-grey: https://drive.google.com/file/
d / 1vs22Ru - AwAQuG710qbF72lwdHS1ABy83 /
view?usp=drive_link

D. Additional Ablation Studies
D.1. Ablation Results of Model Structure Details
We ablate the structure details of PNeRV in 3M on
“Rollerblade” in 480⇥ 960 from DAVIS, given in Tab. C.7,

https://drive.google.com/file/d/18JZq1BCkBJWCkZs-71OB7wI6j_Vma0vP/view?usp=drive_link
https://drive.google.com/file/d/18JZq1BCkBJWCkZs-71OB7wI6j_Vma0vP/view?usp=drive_link
https://drive.google.com/file/d/18JZq1BCkBJWCkZs-71OB7wI6j_Vma0vP/view?usp=drive_link
https://drive.google.com/file/d/1rnPEsEtfA5UADU6BnwEDOPRG9hO9uPuM/view?usp=drive_link
https://drive.google.com/file/d/1rnPEsEtfA5UADU6BnwEDOPRG9hO9uPuM/view?usp=drive_link
https://drive.google.com/file/d/1rnPEsEtfA5UADU6BnwEDOPRG9hO9uPuM/view?usp=drive_link
https://drive.google.com/file/d/1DDGw1zc2iJWcJHdBS4DOnfUQVf2H04Bs/view?usp=drive_link
https://drive.google.com/file/d/1DDGw1zc2iJWcJHdBS4DOnfUQVf2H04Bs/view?usp=drive_link
https://drive.google.com/file/d/1DDGw1zc2iJWcJHdBS4DOnfUQVf2H04Bs/view?usp=drive_link
https://drive.google.com/file/d/1jWbJuoc-GCz2N_dXAJSER0PSy7ThrMr-/view?usp=drive_link
https://drive.google.com/file/d/1jWbJuoc-GCz2N_dXAJSER0PSy7ThrMr-/view?usp=drive_link
https://drive.google.com/file/d/1jWbJuoc-GCz2N_dXAJSER0PSy7ThrMr-/view?usp=drive_link
https://drive.google.com/file/d/1vs22Ru-AwAQuG710qbF72lwdHS1ABy83/view?usp=drive_link
https://drive.google.com/file/d/1vs22Ru-AwAQuG710qbF72lwdHS1ABy83/view?usp=drive_link
https://drive.google.com/file/d/1vs22Ru-AwAQuG710qbF72lwdHS1ABy83/view?usp=drive_link


Models Bmx-B Camel Dance-J Dog Drift-C Parkour Soapbox Avg. A.P.G

NeRV [9] 29.42/0.864 24.81/0.781 27.33/0.794 28.17/0.795 36.12/0.969 25.15/0.794 27.68/0.848 28.38/0.835 -
E-NeRV [31] 28.90/0.851 25.85/0.844 29.52/0.855 30.40/0.882 39.26/0.983 25.31/0.845 28.98/0.867 29.75/0.875 -
HNeRV [10] 29.98/0.872 25.94/0.851 29.60/0.850 30.96/0.898 39.27/0.985 26.56/0.851 29.81/0.881 30.30/0.874 -
DiffNeRV [71] 30.58/0.890 27.38/0.887 29.09/0.837 31.32/0.905 40.21/0.987 25.75/0.827 31.47/0.912 30.84/0.892 -

Ablation Study

Bilinear + Concat 24.85/0.783 24.49/0.793 28.32/0.806 26.19/0.723 31.92/0.943 25.09/0.793 29.23/0.872 27.16/0.816 -4.07
Bilinear + GRU 29.86/0.874 25.00/0.811 29.16/0.830 27.11/0.753 32.09/0.945 26.43/0.845 29.10/0.874 28.39/0.847 -2.84
Bilinear + LSTM 26.22/0.792 26.87/0.871 27.85/0.788 26.71/0.741 33.65/0.946 25.82/0.820 29.42/0.881 28.07/0.834 -3.16
Bilinear + BSM 29.97/0.877 27.35/0.881 29.49/0.838 27.14/0.756 34.34/0.968 26.15/0.835 29.14/0.876 29.08/0.862 -2.15

DeConv + Concat 28.06/0.840 24.07/0.774 27.86/0.792 25.16/0.693 34.97/0.961 22.13/0.683 29.33/0.877 27.37/0.803 -3.86
DeConv + GRU 27.52/0.827 28.16/0.900 29.09/0.825 25.76/0.706 37.91/0.980 25.09/0.793 29.54/0.882 29.00/0.845 -2.23
DeConv + LSTM 30.15/0.882 26.49/0.859 28.30/0.805 25.94/0.712 34.91/0.956 26.35/0.842 30.26/0.895 28.91/0.850 -2.32
DeConv + BSM 31.56/0.906 27.18/0.878 29.77/0.847 30.09/0.868 36.03/0.971 26.09/0.831 29.00/0.872 29.96/0.881 -1.27

KFc + Concat 27.51/0.826 25.02/0.816 29.02/0.831 28.80/0.831 36.82/0.974 25.12/0.796 28.53/0.864 28.68/0.848 -2.55
KFc + GRU 31.69/0.910 25.88/0.848 28.32/0.805 28.47/0.813 33.25/0.942 26.68/0.853 30.89/0.903 29.31/0.868 -1.92
KFc + LSTM 29.16/0.862 27.24/0.878 28.90/0.825 29.28/0.842 32.73/0.935 26.62/0.839 29.35/0.879 29.04/0.866 -2.19
KFc + BSM (PNeRV) 31.05/0.896 27.89/0.892 30.45/0.873 31.08/0.898 40.23/0.987 27.08/0.867 30.85/0.902 31.22/0.902 +0

Table C.6. Ablation results on DAVIS subset in PSNR and MS-SSIM, where Avg. is the average PSNR and A.P.G is the average PSNR
gap. Every result is reported by corresponding model trained in 300 epoch and 3M size.

40⇥80 20⇥40 10⇥20

PSNR 31.94 31.33 30.50
SSIM 0.960 0.954 0.947

Table C.7. Embedding size in PNeRV-L.

1⇥1 3⇥3 5⇥5

PSNR 31.92 31.94 31.90
SSIM 0.960 0.960 0.961
Table C.8. Kernel size in BSM.

ReLU Leaky GeLU w/o BN

PSNR 31.80 31.86 31.94 31.53
SSIM 0.959 0.961 0.960 0.959

Table C.9. Activation and BN in KFC.

Tab. C.8 and Tab. C.9. The alternation of kernel size or
activation has little influence. Encoding more information
into embeddings will help the decoder reconstruct better
and also increase the overall size.

D.2. Ablation Results of Proposed Modules on
DAVIS

To verify the contribution of different modules in PNeRV,
we conduct ablation studies on (1) upscaling operators and
(2) gated memory mechanisms. We compare KFc with two
upscaling layers, Deconv and Bilinear, where “Deconv” is
implemented by “nn.ConvTranspose2d” from PyTorch, and
“Bilinear” is the combination of bilinear upsampling and
Conv2D. KFc achieves better performance due to the global
receptive field regardless of what fusion module it is com-
bined with.

Also, to illustrate the importance of adaptive feature fu-
sion and improvement of BSM, we compare BSM with
Concat, GRU and LSTM, where “Concat” means directly
concatenating two features from different domains together.
The ablation results suggest that the adaptive fusion of fea-
tures from different domains significantly improves perfor-
mance, and BSM outperforms other memory cells due to
the disentangled feature learning. The last row is the final
PNeRV and the last column shows PSNR gaps when chang-
ing modules in PNeRV.

D.3. Visualization of Feature Maps
To verify the effectiveness of hierarchical information
merging via KFC and BSM, we visualize some feature
maps in PNeRV-L which was pretrained on “Parkour” as
examples. Those feature maps shown in Fig. D.6 are from
different channels and layers using the same frame as input.
Those in Fig. D.7 are all from the 4-th layer but using dif-
ferent frames as input. The feature maps from 4-th layer are
in 480⇥960, and the original frames are in 960⇥1920. For
each lower layer, the height and width are halved compared
to the upper layer. “Before” and “After” refer to the feature
maps before and after passing through BSM or after.

Fig. D.6 illustrates how the coarse features are refined
by BSM. Different channels respond to distinct spatial pat-
terns of video frames, including factors like color, geomet-
ric structure, texture, brightness, motion, and so on. Before
being processed by the BSM, the vanilla features are se-
mantically mixed and entangled. However, the BSM is able
to decouple these features and distinguish their specific ef-
fects, resulting in more refined and distinct outputs.

Additionally, for imperfect feature maps, BSM can add
details or balance the focus of the reconstruction across var-
ious areas in the frames. These phenomena are commonly
observed in the 4-th layer, which is responsible for prepar-
ing for fine-grained reconstruction, as demonstrated in Fig-
ure. D.7. This shows the effectiveness of BSM in enhancing
the quality of feature maps and improving the overall recon-
struction.



Figure D.4. Visual comparison examples on various videos.



Figure D.5. Visual comparison examples on the same video by same models. Corresponding time stamps are shown in the bottom left.



Figure D.6. Visualization examples of feature maps in different layers.“C” refers to the channel number and “L” is the layer number.



Figure D.7. Visualization examples of feature maps for different frames.“C” refers to the channel number and “L” is the layer number.
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