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ABSTRACT

Deep learning-based methods provide remarkable perfor-
mance in a number of computational imaging problems.
Examples include end-to-end trained networks that map mea-
surements to unknown signals, plug-and-play (PnP) methods
that use pretrained denoisers as image prior, and model-based
unrolled networks that train artifact removal blocks. Many
of these methods lack robustness and fail to generalize with
distribution shifts in data, measurements, and noise. In this
paper, we present a simple framework to perform domain
adaptation as data and measurement distribution shifts. Our
method learns a small number of factors to add in a pretrained
model to bridge the gap in performance. We present a number
of experiments on accelerated magnetic resonance imaging
(MRI) reconstruction and image deblurring to demonstrate
that our method requires a small amount of memory and
parameter overhead to adapt to new domains.

1. INTRODUCTION

Computational imaging (CI) is an imaging paradigm that in-
tegrates optics and signal processing, wherein measurements
and reconstruction algorithms are jointly designed to address
numerous applications [1]. These applications include Mag-
netic Resonance Imaging (MRI) [2, 3], Computed Tomogra-
phy (CT) [4, 5], and Phase Imaging [6], particularly in cases
where conventional imaging is infeasible. In instances where
conventional imaging remains possible but not optimal, com-
putational imaging methods, such as super-resolution [7], de-
blurring [8], and denoising [9], are used to enhance recon-
struction quality and reduce measurement costs. Our pro-
posed method solves such imaging problems while demon-
strating robustness to shifts in data and distribution.

The measurement process in CI problems is formulated as

y = Ax+1, ey

where y represents measurements, A(-) represents the for-
ward operator, x represents the image to be reconstructed,
and 7 represents additive measurement noise. The problem
of reconstructing x from a set of imperfect and noisy mea-
surements y falls under a class of problems known as inverse
problems. Many inverse problems are ill-posed by nature and
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Fig. 1: A reconstruction network trained on brain scans (a) shows poor per-
formance on knee MRI images. Our proposed modulated network (b) learns
domain specific rank-1 factors to perform modulated convolutions. This en-
ables the pretrained network to successfully reconstruct knee scans.

require solving a regularized optimization problem to recover
the original image. For instance, in the case of compressive
sensing (CS), we seek to recover a high-dimensional signal
from noisy and under-sampled measurements [10]. The opti-
mization algorithm for such problems typically uses the for-
ward model to enforce data consistency with the measure-
ments and a regularizer to enforce a certain prior belief on
the image [11]. Priors that promote sparsity in some repre-
sentation space are commonly used as regularizers [12, 13].

Recently, deep learning-based end-to-end trained net-
works have emerged as effective solutions for various inverse
problems. These methods are entirely data-driven and trained
to directly map measurements to ground-truth images through
paired training data. In this paper, we focus on end-to-end
networks denoted as f, with parameters 6, that take an ini-
tial estimate X and output final reconstruction X = f5(X).
The training objective for these networks aims to minimize
the distance between the ground truth and the reconstructed
images, as formulated by the equation
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where X; represents reconstructed images and x; represent
ground truth images. These methods are proven effective
in various reconstruction and restoration tasks, including CT
[14], MRI [15], denoising [16], and super-resolution [17].

Despite their impressive performance, end-to-end meth-
ods are not robust to distribution shifts [18, 19, 20]. The study
in [18] concluded that deep learning methods yield unstable
results for image reconstruction. A small perturbation in the
input can result in severe artifacts in the reconstructed output.
Robustness in accelerated MR image reconstruction was stud-
ied in [19]. The study showed that end-to-end methods lack
robustness when faced with distribution shifts. The findings
from the paper also indicated that this lack of robustness is
not unique to deep learning-based end-to-end methods; tradi-
tional sparsity-based methods are also affected by these shifts.
Additionally, the work in [20] showed that training a single
denoiser for all noise levels leads to suboptimal performance.

In this paper, we propose a simple and efficient framework
that enables end-to-end reconstruction networks to adapt to
new domains. Our method factorizes these networks into
shared and domain-specific modules. Once the shared mod-
ules are trained on the source domain, they are fixed. Our
method then learns target domain-specific modulations. We
apply these modulations to the shared modules using element-
wise products during inference. We demonstrate our meth-
ods’ effectiveness on a number of accelerated MRI recon-
struction and image restoration tasks.

In Figure 1 (a), we present a network f with parameters
0 initially trained to reconstruct brain MRI scans. While this
network performs well on brain scans, its performance is poor
when tested on knee scans. Our proposed network, shown in
Figure 1 (b), introduces domain-specific modulated convolu-
tion blocks. These blocks apply modulations specific to the
knee domain. The number of parameters needed for the mod-
ulations is less than 0.5% of the parameters in the pretrained
network. As illustrated in the figure, the modulated network
has an improved performance on knee scans.

2. BACKGROUND AND RELATED WORK

2.1. Accelerated MRI reconstruction
MR scanners acquire measurements in the frequency domain
known as k-space. These measurements are related to the
scanned image via a Fourier transformation, F. Most mod-
ern scanners employ acceleration and multiple receiver coils
to speed up the acquisition process. The measurement from
the ¢-th coil of a multi-coil MR scanner can be written as

i1=1
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where M represents the under-sampling matrix, F is the 2D
discrete Fourier transform, S; represents the sensitivity map

of the i-th coil, n represents a complex measurement noise
and x represents the underlying image to be scanned.

Convolutional Neural Network (CNN) based deep net-
works have recently been introduced for MR image recon-
struction [21]. In this paper, we follow a U-Net [22]-like ar-
chitecture to solve (2), which takes an initial estimate X com-
puted as:
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where C represents the number of coils, F! represents
the inverse Fourier transform, and y; represents the under-
sampled measurements.

2.2. Image restoration

Image restoration is the task of recovering clean images from
noisy and corrupted measurements. Denoising, deblurring,
and super-resolution are common examples of restoration
problems. For denoising, the forward model can be expressed
as 'y = x + n, where the forward operator is the identity,
and 7 represents the measurement noise. In deblurring, the
forward model can be modeled as convolution with a blur
kernel. For a detailed review of deep learning methods for
inverse problems, we refer the reader to [23].

3. METHODS

Our method adapts a pretrained network denoted as f with
parameters 6 to a target domain by applying a unique set of
modulations denoted as M. These modulations are specific to
each new domain and are applied to the convolution layers of
the network. At the [-th convolution layer, the pretrained net-
work has kernels represented as §; € R¥*#*CinxCout wwhere
k represents the kernel size, and C;,, and C,,; represent the
input and output channels, respectively. To adapt to new tar-
get domains, we learn a set of modulations for each convo-
lutional layer and apply them to the pretrained weights using
element-wise product, denoted as 6; ® M;.

Inspired by [24], we aim to find a parameter-efficient
approximation for our modulation, M;. We decompose
M; into four rank-1 factors: M} € RF, M? € RF M} €
R M;* € RCut, Our proposed modulation technique is
described as follows. Prior to performing convolution, we
modulate the i-th channel of the input I with C;,, features as

I(:,:0) = I(:,:0) x MP(i), (5)

where X represents ordinary multiplication. We then perform
convolution on the i-th modulated input using a modulated
kernel 6;, where 0,(:,:,4,5) = 0,(:,:,4,7) © (M}! @ MP),
and ® represents the outer product. Finally, we apply post-
convolution modulation using M, 4. similar to (5). In sum-
mary, our modulated convolution operation to obtain the j-th



channel of the output feature map O can be expressed as

Cin
O, 5) = M) | D 0i(54,5) # 1,10 | (6)
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where * represents 2D convolution, ] represents the modu-
lated kernel, I represents modulated inputs, and M}! represent
the output modulation.
Once the base network parameters 6 are trained on the
source domain, they are kept frozen. To adapt to target do-
mains, we only optimize over the rank-1 modulations as
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where X represents the initial estimate, and x; represents the
ground truth image. This approach significantly reduces the
number of additional trainable parameters. The number of
parameters needed to modulate the I-th convolution layer is
2K + Cin + Cout, which is notably smaller than the base
network weights at that layer, which amount to K2CinCl,;.
Moreover, such parameterization restricts the optimization
search space, which has been shown to be effective in [25].

4. EXPERIMENTS AND RESULTS

We conducted a series of image reconstruction and restoration
experiments to demonstrate the effectiveness of our method.
Our first set of experiments involve domain adaptation for MR
image reconstruction, where we adapt networks trained on
brain MR scans to knee scans and vice versa. We then in-
vestigate adaptation related to forward model shifts, focusing
on adapting to changes in sampling patterns and sampling ra-
tios. Additionally, we conducted experiments on image blur-
ring problems, where we adapt to shifts in the degradation
model. In the following sub-sections, we provide a detailed
experimental procedure as well as results.

4.1. Domain shift

We utilized the NYU fastMRI Brain and Knee datasets [21]
for our domain adaptation experiments. To simulate the
under-sampling operator M, we use the sub-sampling library
from the fastMRI package [21]. We use Cartesian sampling
that selects 5% vertical lines in the center, followed by 4x
accelerated sampling at random. Our reconstruction network
is an 8-layer U-Net [22] model with 64 channels. We inde-
pendently trained two models on knee and brain scans. The
performance of these networks, when tested on both knee and
brain scans, is reported in the second and third columns of
Table 1. We observed a performance drop when using the
network trained on knee images to reconstruct brain scans
and vice versa. To bridge this performance gap, we applied
our modulation technique and reported performance of our
adapted networks in the last two columns of Table 1. We suc-
cessfully adapted the network trained on knee to brain scans,
resulting in the network with the best average performance.
Similarly, in the last column, we report the results of the

brain network after adapting it to knee scans. These networks
maintain their performance when tested on the source domain
and apply the learned modulation when performing inference
on the target domains.

Table 1: Networks trained on Knee and Brain domains did not maintain
their performance when tested on unseen domains, as shown in columns two
and three. Our proposed method effectively adapted these networks to each
target domain, as shown in the last two columns. (Colors indicate source
domains, and bold text highlights the top-performing network).

Train Knee Brain Knee—Brain Brain—Knee
Test PSNR, SSIM  PSNR, SSIM  PSNR, SSIM  PSNR, SSIM
Knee 32.47,0.83 28.25,0.73 32.47,0.83 31.57,0.80
Brain 29.93,0.87 32.45, 0.90 32.11, 0.90 32.45, 0.90
TAvg 31.20,0.85  30.35,0.82 32.29,0.87  32.01,0.85 ~

4.2. Forward model shifts

We conduct a set of experiments to demonstrate the effective-
ness of our proposed adaptation method under shifts in the
forward operator, A.

4.2.1. MRI Reconstruction

Sampling ratio shift. We now focus on the effects of sam-
pling ratio shifts in accelerated MRI reconstruction. Similar
to the previous experiments, we independently train networks
on 4x and 2x sampling ratios and test these networks on both
ratios. These results are reported in the second and third
columns of Table 2. We observe a performance drop when
there is a mismatch between the source and target sampling
ratios, especially when testing a network trained on 4x and
testing it on 2x accelerated measurements. To close this per-
formance gap, we applied our modulation technique to both
networks, allowing them to adapt to the new target domains.
We report these results in the last two columns, where we
demonstrate that our adapted networks achieve the best aver-
age performance.

Table 2: We show the performance of MRI networks trained on 2x and 4x

acceleration factors during sampling ratio shift. Our adapted network shows
an overall superior performance across all sampling ratios.

Train 2x 4x 2x — 4x 4x —2x
Test PSNR, SSIM  PSNR, SSIM PSNR, SSIM PSNR, SSIM
2x 35.36, 0.90 31.33,0.86 35.36, 0.90 34.92,0.89
4x 29.68,0.78 32.47,0.83 32.35,0.82 32.47,0.83
TAve | 32.52,0.84  31.90,0.85 ~ 33.86,0.86  33.70,0.86

Sampling pattern shift. MR image scanners can employ var-
ious types of sampling patterns in the Fourier domain, such
as Cartesian and radial sampling. In this experiment, we ap-
ply our adaptation technique to address the performance gap
caused by shifts in the sampling pattern. We observe a perfor-
mance drop when a network trained with Cartesian sampling
is tested on radially sampled Fourier measurements, and vice
versa. These results are reported in Table 3 under the second
and third columns. In both cases, we observed a performance
drop of approximately 5 dB. Using our proposed method, we
successfully bridged the performance gap and achieved supe-
rior performance using our adapted networks.



Table 3: We trained networks on Cartesian and Radial patterns separately
and tested them on both patterns. Our adapted networks, shown in the last
two columns, mitigated the performance drop caused by the pattern shift.

Train Cartesian Radial Cart—Rad Rad—Cart
Test PSNR, SSIM  PSNR, SSIM PSNR, SSIM  PSNR, SSIM
Cartesian 32.47,0.83 27.00, 0.72 32.47,0.83 31.20, 0.80
Radial 27.88,0.78 35.83, 0.86 35.48, 0.86 35.83, 0.86
TAvg | 30.18,0.81  31.42,0.79 ~ 33.98,0.85  33.52,0.83

4.2.2. Image restoration

Degradation model shifts. We now consider image restora-
tion problems, specifically, image deblurring problems,
where we adapt to shifts in degradation models. We model
the degradation as convolution with blur kernels and analyze
the effects of shifts in these kernels.

Image blurs can be caused by several factors and can be
modeled using different blur kernels. We consider motion,
disk, and Gaussian blur kernels adapted from [26]. We set the
kernel sizes to 35 x 35 for motion and Gaussian blurs and a
radius of 5 for the disk blur. Our objective is to adapt a deblur-
ring network trained on a specific kernel to unseen kernels.
Our training dataset consists of images from the DIV2K [27],
Flickr2K [28], and Waterloo exploration [29] datasets. We
cropped and resized our training images to the size 256 x 256.
For testing, we used the widely-used BSD68 [30] dataset.

We used the network architecture proposed in [31], that
combines U-Net [22] and ResNet [32]. We trained three net-
works on motion, disk, and Gaussian blur kernels. These net-
works learn a direct mapping from blurred to sharp images.
As presented in columns 2 to 4 of Table 4 and Figure 2,
these networks perform poorly when tested on images blurred
with unseen kernels during training. To overcome this perfor-
mance degradation, we applied our modulation technique on
the network trained on motion blur to adapt to Gaussian and
disk blurred images. We report the performance of our pro-
posed method in the final column of Table 4 and showcase
sample visual results in the last column of Figure 2. Our
adapted network significantly outperforms the blur-specific
network when tested on unseen kernels.

Table 4: The performance of deblurring networks trained on a specific blur
type degrades severely when tested on unseen blur types. Our Adapted Net-

work, which is pretrained on motion blur and applies modulations for the
other blurs, achieves the best average performance.

Train Motion Gaussian Disk Adapted
Test PSNR, SSIM PSNR, SSIM PSNR, SSIM  PSNR, SSIM
Motion 43.99, 0.99 8.41,0.02 14.03, 0.21 43.99, 0.99
Gaussian 19.93,0.45 43.73, 0.99 15.66, 0.23 39.77, 0.99
Disk 21.54,0.48 8.06, 0.01 35.20, 0.95 29.37,0.87
TAve | 2839,0.64  20.07,034  21.63,046  37.71,095

4.3. Comparison experiments

We compared our proposed method with LoRA and reported
the results in Table 5. We tested knee and brain scans for
domain shifts, and Cartesian and radial sampling for forward
model shifts. Our method outperformed LoRA in all exper-

Blurred Input

Trained on Motion

Trained on Disk Adapted Network

Motion

Gaussian

Disk

Fig. 2: Image deblurring from three different blur kernels using blur-specific
(columns 2 to 4) and adapted (last column) networks.

iments with a PSNR gains ranging from 0.3 to 1 dB (except
for radial to Cartesian adaptation, where LoRA’s PSNR was
0.03 dB better).

Table S: Distribution shift Comparison experiments. Our method outper-
forms LoRA in all adaptations, except for the Radial to Cartesian adaptation.

Method LoRA Our method
Adaptation PSNR SSIM PSNR SSIM
Knee — Brain 31.28 0.89 3211 090
Brain — Knee 31.31 0.79 31.57 0.80
" Radial — Cartesian | 31.23°  0.80 3120 0.80
Cartesian — Radial 3463 0.85 3548 0.86

4.4. Number of parameters

Our proposed method is parameter-efficient as it requires sig-
nificantly fewer parameters compared to the base network for
adaptation to new domains. The U-Net model used in the
MRI reconstruction experiments has 31 million parameters.
To adapt it to D new domains using full model tuning, we
would need D x 31M parameters. In contrast, our method
only requires 11.9 thousand modulations to adapt to new do-
mains, totaling D x 11.9K parameters for adaptation to D
new domains. Similarly, the network used for image restora-
tion has 1.3 million parameters, while our modulations only
require 4.7 thousand parameters per domain. These results
show that our method is remarkably parameter efficient.

5. CONCLUSION

We explored the effects of domain shifts on deep learning-
based end-to-end reconstruction networks for solving inverse
problems. We observed that these shifts often lead to a severe
performance degradation. To overcome this, we proposed a
flexible and parameter-efficient domain adaptation method.
We demonstrated the effectiveness of our method on a va-
riety of image reconstruction and restoration problems, en-
compassing different network architectures. Our adapted net-
works achieve competitive performance compared to single-
domain fully trained networks while requiring only a fraction
of the number of parameters.
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