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Abstract— Existing safety control methods for non-
stochastic systems become undefined when the system
operates outside the maximal robust controlled invariant
set (RCIS), making those methods vulnerable to unexpected
initial states or unmodeled disturbances. In this work, we
propose a novel safety control framework that can work
both inside and outside the maximal RCIS, by identifying a
worst-case disturbance that can be handled at each state
and constructing the control inputs robust to that worst-case
disturbance model. We show that such disturbance models
and control inputs can be jointly computed by considering
an invariance problem for an auxiliary system. Finally, we
demonstrate the efficacy of our method both in simulation
and in a drone experiment.

Index Terms— Constrained control, linear systems, uncer-
tain systems.

I. INTRODUCTION

CONSTRAINTS are ubiquitous in control tasks for safety-
critical systems, such as lane keeping for autonomous

vehicles, overload protection in power systems, and obstacle
avoidance for mobile robots. The goal of safety control is to
synthesize controllers that can guarantee a system operates
under its safety constraints indefinitely. Many methods have
been developed over the years that can provide such safety
guarantees, such as viability theory [3], reference governors
[9], safety supervisory control [14], [17], robust control barrier
functions [12], and Hamilton-Jacobi reachability [4]. The key
behind all these methods is to find a set of states such that if
the system starts from this set, the system can be controlled to
stay within this set against the worst-case disturbance, without
violating any safety constraints. Such a set is called a robust

controlled invariant set (RCIS) of the system.
Notably, there exists a unique maximal RCIS that contains

all possible RCISs given some safety constraints. Controllers
synthesized by the aforementioned methods are defined only
if the system initially operates in the maximal RCIS, since
otherwise the worst-case disturbance is able to force the system
to violate the safety constraints in finite time. However, in
practice, the system may be initialized outside the maximal
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RCIS or exit the maximal RCIS due to unexpected disturbances.
In these cases, the system may still operate safely and even
re-enter the maximal RCIS, as long as the disturbance is not
completely adversarial (or to put it differently, the disturbance
behaves collaboratively to some extent). The core question here
is how to synthesize controllers that can seize the opportunity
to keep the system safe when the disturbance is not entirely
adversarial. Apparently the aforementioned methods do not
answer this question since they become undefined outside the
maximal RCIS.

Similar issues also arise in the field of reactive synthesis
for finite transition systems and have been addressed by recent
works [2], [6]. The main idea there is that if a winning strategy
robust to all disturbances does not exist, one should pick a
strategy at least as good as the other strategies in terms of the
amount of disturbances it can be robust to. These ideas are also
applied in the context of abstraction-based control [16] and
finite-horizon constrained optimal control [8]. Inspired by this
line of work, in this letter, we present a novel safety control
framework. Compared with the existing safety control methods
restricted by the maximal RCIS, our method has the following
benefits:

• The proposed controller provides the same safety guar-
antees as the existing methods when the system operates
inside the maximal RCIS.

• When outside the maximal RCIS, the proposed controller
is robustly safe against the largest amount of disturbance
within a predefined template set.

• The proposed controller is well-defined as long as a
constraint violation is evitable with some possible collab-
oration from the disturbance.

In addition, we show that the proposed controller can be synthe-
sized by finding the maximal RCIS (or its inner approximation)
of an auxiliary system one dimension higher than the original
system, using a technique from [18]. Therefore, toolboxes
developed for existing safety control methods can be directly
applied to synthesize the proposed controllers. Numerical
examples show that our method improve the safety of the
system outside the maximal RCIS significantly.

In terms of related works, Li et al. in [13] propose a
method to extend the domain of a safety supervisor beyond
the maximal RCIS by solving a time-optimal control problem
that maximizes the time to reach the unsafe region against the
worst-case disturbance when the safety supervisor is undefined.
Shown by the numerical examples in Section IV, our method
outperforms the one in [13] significantly when the system is



outside the maximal RCIS and the disturbance is not entirely
adversarial. If we allow the system of interest to be stochastic,
controllers based on the maximal probabilistic RCIS as in
[1], [7] can minimize the chance of constraint violation in
the infinite horizon even if the system is outside the maximal
RCIS, which might be appropriate when the statistics of the
disturbance is known. On the other hand, our method works
without knowing the statistics of the disturbances, and is more
computationally tractable since RCISs are much easier to
compute than probabilistic RCISs.

Notation: We denote the real line and the set of non-negative
integers by R and N. For two sets X and Y , f : X ◆Y denotes
a set-valued function from X to Y . The Minkowski sum of two
sets X and Y is denoted by X +Y = {x+y | x 2 X ,y 2Y}. For
a singleton set, we denote the sum {x}+Y by x+Y for short.
For two sets X and Y , their set difference and symmetric set
difference are denoted by X\Y and X  Y := (X\Y )[ (Y\X)
respectively. For a matrix A 2 Rn⇥n, a scalar a 2 R, and a
subset X of Rn, we denote the sets AX := {Ax | x 2 X} and
aX := {ax | x 2 X}.

II. PRELIMINARIES

We consider a discrete-time linear system S

S : x
+ = Ax+Bu+Ed, (1)

with state x 2 Rn, input u 2 Rm, and disturbance d 2 D✓ Rl .
The disturbance set D contains all possible disturbances. Let
Sxu denote the set of desired state-input pairs, which we call
the safe set of the system. We assume that both D and Sxu are
convex polytopes, and moreover D is compact.

A disturbance model D : Rn ◆ D is a function that assigns a
subset D(x) of D to each x 2Rn. Given a disturbance model D,
if the disturbance input satisfies the constraint d 2 D(x) at each
time step, we say the disturbance is generated by D. Given a
controller u : Rn ! Rm and a disturbance model D, the k-step

forward reachable set Rk

S(x0,u,D) from the initial state x0 is
defined recursively by

Rk+1
S (x0,u,D) = {(x+,u(x+)) | 9(x,u) 2Rk

S(x0,u,D),
x
+ 2 Ax+Bu+ED(x)}, (2)

with R0
S(x0,u,D) = {(x0,u(x0))}. Intuitively, Rk

S(x0,u,D) con-
tains all possible state-input pairs reached at time k from x0
by the closed-loop system when the disturbance d is generated
by D.

A. Robust Safety Control Framework

Given the system S, the safe set Sxu, and a disturbance model
D, the robust safety control problem tries to solve for the set
of initial states x0 where there exists u : Rn ! Rm such that

Rk

S(x0,u,D)✓ Sxu, 8k � 0. (3)

Indeed, the maximal set of such initial states is called the
maximal RCIS Cmax of S with respect to Sxu and D. There is
also an alternative characterization of the maximal RCIS Cmax:
Given the system S, the safe set Sxu, and a disturbance model
D, a set C ✓ Rn is an RCIS of S with respect to Sxu and D

if for all x 2C, there exists an input u such that (x,u) 2 Sxu

and Ax+Bu+ED(x) ✓C. Then, the maximal RCIS Cmax is
the union of all RCIS of S with respect to Sxu and D. Given
an RCIS C with respect to Sxu and D, the admissible input set

A (x,C) at a state x is defined as

A (x,C) = {u | (x,u) 2 Sxu, Ax+Bu+ED(x)✓C}. (4)

A controller u satisfies the condition in (3) for any initial
state x0 2Cmax if and only if for all x 2Cmax,

u(x) 2A (x,Cmax). (5)

Most of existing works on safety control consider a special
case of the robust safety control problem, which we denote
as Problem 1, where the disturbance model Dall is such
that Dall(x) = D for all x 2 Rn. We denote the corresponding
maximal RCIS as Cmax,1 [5]. As an application of (5), if a
reference controller ure f is given, a robust safety supervisor u
that satisfies (3) with respect to Dall for all x0 2Cmax,1 can be
synthesized by minimally modifying the reference controller,

u(x) = min
u2A (x,Cmax,1)

ku�ure f (x)k2
2, 8x 2Cmax,1. (6)

Note that the robust safety supervisor in (6) is not defined
for states outside Cmax,1. In particular, the admissible input
set A (x,Cmax,1) is empty for any x 62 Cmax,1. This is not
problematic if the system starts from Cmax,1 and the disturbance
is always in D, ensuring that the system stays in Cmax,1
indefinitely. But these assumptions may be unreliable in
practice, potentially causing an inadvertent exit from Cmax,1.
As a result, the safety control framework described in this
subsection is exceedingly susceptible to potential violations of
these assumptions.

B. An Opportunistic Safety Control Problem

Let D be a collection of Borel subsets of the disturbance
set D, with D 2 D . We call D the disturbance template set.
For a given controller u and an initial state x0, let P(u,x0)
be the collection of disturbance models D : Rn !D for which
the safety specification in (3) is satisfied, that is

P(u,x0) := {D : Rn !D | Rk

S(x0,u,D)✓ Sxu,8k � 0}.

We further define P(x0) := [uP(u,x0), that is the set of
disturbance models a controller can possibly be robust to when
the system starts at x0.

With these new notations, Problem 1 can be rephrased as
finding u such that the worst-case disturbance model Dall is
in P(u,x0) for a given x0. Note that Dall is the worst-case
disturbance model in the sense that if the safety specification
in (3) is satisfied for Dall , it is satisfied for any D : Rn ! D
with respect to the same x0 and u. Then, it is clear that when
Dall is not contained by P(x0) (that is when x0 62 Cmax,1),
Problem 1 has no solutions. Apparently, a better strategy is to
find a controller u robust to the worst-case disturbance model
available in P(x0) (if Dall is not)1. In this case, we synthesize

1Under the partial order given by D1  D2 iff D1(x)✓ D2(x),8x 2Rn, it can
be shown that Dall is the unique maximal element in the set of disturbance
models, and P(u,x) is a lower set with respect to this partial order. Thus,
being safe against one disturbance model D2P(x0) implies being safe against
all disturbance models less than D.



a controller that is doing its best to keep the system within the
safety constraints, as long as P(x0) is nonempty.

To formalize this idea, we need to identify the worst-case
disturbance model in P(x0). Here we use a simple criterion.
Let µ be a Borel measure on D. For any disturbance models
D1 and D2, we define g(D1,D2) := sup

x2Rn |µ(D1(x) D2(x))|.
This function g is a pseudometric in the space of disturbance
models, measuring the distance between two disturbance
models. Then, since we know Dall is the worst-case disturbance
model among all disturbance models, we simply consider a
nearest point in P(x0) to Dall with respect to g as a worst-case
disturbance model in P(x0). As a result, finding a controller
robust to a worst-case disturbance model in P(x0) is equivalent
to finding u that minimizes the distance g(P(u,x0),Dall) :=
infD2P(u,x0) g(D,Dall) between the set P(u,x0) and Dall (by
default g(P(u,x0),Dall) = +• if P(u,x0) is empty). Based
on the above discussion, we pose an opportunistic safety control
problem.

Problem 2. Given the system S with its safe set Sxu, synthesize

a controller u⇤ : Rn ! Rm
such that

(i) Dall 2P(u⇤,x) for x 2Cmax,1;

(ii) u⇤ minimizes
2

the distance between P(·,x) and Dall

with respect to the pseudometric g for x 62Cmax,1.

Point (i) above assures that any solution u⇤ to Problem 2
provides safety guarantees as strong as that to Problem 1 when
the system operates in the maximal RCIS Cmax,1. When outside
Cmax,1, point (ii) assures that u⇤ provides extra robustness
guarantees compared with solutions to Problem 1. Besides, if
Cmax,1 is empty, Problem 1 has no solution, but a solution u⇤
to Problem 2 may still exist.
Remark 1. The conservativeness and computational tractability
of the solutions u⇤ to Problem 2 depend on the measure µ
over D and the disturbance template set D . A trivial choice is
D = {D}, under which Problem 2 degrades to Problem 1 .

III. CONSTRUCTION OF u⇤

In this section, we show how to construct a solution u⇤ to
Problem 2. As noted in Remark 1, we need to first specify the
measure µ and the disturbance template set D . We choose the
measure µ to be the Lebesgue measure on Rl but restrict it to
D. We assume that µ(D)> 0 3. The disturbance template set
is chosen to be

D = {ud +aD | ud 2 (1�a)D, a 2 [0,1]}. (7)

That is, the disturbance template set D contains all the subsets
of D that have the same shape as D. This collection of
disturbance sets is rich enough since it contains uncountably
many subsets of D scaled to different sizes and positioned at
various places, as demonstrated in Fig. 1a. At the same time,
D is simple enough for constructing u⇤, which is shown next.

For each a 2 [0,1], we define an auxiliary system Sa

Sa : x
+ = Ax+Bu+E(ud +d), (8)

2Point (ii) does not necessarily imply point (i) since g(P(u,x),Dall) = 0
does not imply Dall 2P(u,x) (unless P(u,x) is closed).

3Otherwise, D lies in a subspace of Rl , which implies we should lower l.

(a) D and ud +aD (b) Cmax,a and Cmax,[0,1]

Fig. 1: Demonstration of the disturbance template set D in (7)
and the maximal RCIS Cmax,a of Sa (assuming n = 1).

with A, B, and E the same as in (1), and ud , d 2Rl . In addition
to u, we introduce a new control input ud . The maximal RCIS
of Sa with respect to the safe set Sxu,a := Sxu⇥ (1�a)D and
the disturbance model Da := aDall is denoted by Cmax,a .

Intuitively, in Sa , we split the disturbance input in S into two
parts, namely that ud 2 (1�a)D and d 2 aD, and turn ud into
a control input. When a = 1, Cmax,a is just the maximal RCIS
Cmax,1 of S with respect to Sxu and Dall defined in Section
II-A. As a goes to 0, Sa has more control power and less
uncertainty, and thus Cmax,a monotonically expands as a goes
to 0, as demonstrated in Fig. 1b . When a = 0, we have full
control of the disturbances in D. Hence for any initial state x0
not in Cmax,0, we cannot find a controller and a disturbance
model such that (3) is satisfied. In other words, P(x0) is
empty if and only if x 62Cmax,0. The following theorem draws
a connection between Cmax,a and solutions u⇤ to Problem 2.

Theorem 1. A solution u⇤ to Problem 2 exists. Furthermore,

a controller u⇤ is a solution if and only if for all x 2Cmax,0,

there exists ud 2 Rl
such that

(u⇤(x),ud) 2A (x,Cmax,a⇤(x)), (9)

where a⇤(x) is the maximum a 2 [0,1] such that x 2Cmax,a ,

and A (x,Cmax,a⇤(x)) is the admissible input set of the system

Sa with respect to Sxu,a and Da , with a = a⇤(x). In addition,

the distance between P(u⇤,x) and Dall satisfies

g(P(u⇤,x),Dall) =

(
(1�a⇤(x)l)µ(D) x 2Cmax,0,

+• o.w.
(10)

The proof of Theorem 1 is in the appendix. Intuitively, if a
state x is in Cmax,a , we can find u : Rn !Rm and ud : Rn !Rl

such that the disturbance model ud + Da is in P(u,x). It
can be shown that by taking a = a⇤(x), ud +Da is actually
a worst-case disturbance model in P(x0) and is contained
by P(u⇤,x) for any u⇤ satisfying (9). Furthermore, when
a⇤(x) = 1, ud +Da = Dall . Thus, both points in Problem 2
are fulfilled by u⇤. Applying Theorem 1, given a reference
controller ure f , we propose an opportunistic safety supervisor

u(x) = min
(u,ud)2A (x,Cmax,a⇤(x))

ku�ure f (x)k2
2. (11)

This opportunistic safety supervisor is defined over Cmax,0,
larger than the domain Cmax,1 of the robust safety supervisor in
(6). Recall that when x0 is not in Cmax,0, it becomes inevitable
to violate the safety constraints no matter what the controller



and the disturbance do. The opportunistic safety supervisor
becomes undefined only in this extreme case.

A. One-shot Computation of Cmax,a

In this subsection, we show how to compute Cmax,a for all
a 2 [0,1] in one shot. Consider a new auxiliary system S[0,1]

S[0,1] :


x
+

a+

�
=


Ax+Bu+E(ud +d)

a

�
, (12)

where we introduce a new state a 2 [0,1] and a new control
input ud 2 Rl . Define the safe set Sxu,[0,1] of S[0,1] by

Sxu,[0,1] = {(x,a,u,ud) |(x,u,ud) 2 Sxu,a ,a 2 [0,1]}. (13)

Let D[0,1] be the disturbance model such that D[0,1](x,a) = aD

for all (x,a) 2 Rn⇥ [0,1]. We denote the maximal RCIS of
S[0,1] with respect to Sxu,[0,1] and D[0,1] by Cmax,[0,1]. Since Sxu

and D are both polytopes, it can be shown that Sxu,[0,1] is a
polytope and the maximal RCIS Cmax,[0,1] can be approximated
by the standard iterative method [5]. The implementation details
of this method are outlined in [14], [15], [18]. Once we have
Cmax,[0,1], Cmax,a 0 is just equal to the slice of Cmax,[0,1] through
a = a 0, for any a 0 2 [0,1], as shown in Fig. 1b . Furthermore,
given Cmax,[0,1] and x, the value a⇤(x) can be easily obtained
by solving a linear program:

a⇤(x) = max
a2[0,1]

a

s.t. (x,a) 2Cmax,[0,1].
(14)

Remark 2 (Computational cost). Compared with the robust
safety control for the original system, our method needs to
compute the maximal RCIS Cmax,[0,1] for a system with one
additional state a 2R and one extra control input ud 2Rl (cf.,
(12) vs. (1)) and thus has a higher offline computational cost.

At runtime, given the current state x and Cmax,[0,1], we first
solve the linear program in (14) to check if x 2 Cmax,0 and
find a⇤(x), and then solve the quadratic program in (11).
For a comparison, the robust safety control framework solves
one linear program to check if x 2Cmax,1 and then solve the
quadratic program in (6). The runtime computational cost of
the two frameworks should be similar.
Remark 3. If the maximal RCIS Cmax,[0,1] cannot be computed
exactly, one can use any controlled invariant inner approxima-
tion of Cmax,[0,1] in (11), with the cost of extra conservativeness.

IV. NUMERICAL EXAMPLES

The maximal RCISs Cmax,[0,1] in the examples are com-
puted using MPT3 [11] equipped with GUROBI [10] in
MATLAB. The code and video can be accessed from https:

//ozay-group.github.io/OppSafe/.

A. Adaptive Cruise Control

We consider the car-following example in [13]. The goal is
to maintain the relative distance Ds and the relative velocity
Dv between the ego vehicle and the front vehicle within a
safe range. The system is modeled by a discretized double
integrator with states x = (Ds,Dv). The model parameters can

be found in [13]. The control input and the disturbance are
the acceleration u of the ego vehicle and the acceleration
d 2 [�dmax,dmax] of the front vehicle respectively. The safe set
is given by |Ds�15| 5, |Dv| 5, and |u| 2.

The reference controller ure f = 0.2842Ds+0.8056Dv, with
a saturation limit at ±2. We implemented the robust and the
opportunistic safety supervisors in (6) and (11) and the safety
protection and extension governor outlined in Section V of [13],
assuming dmax = 1. To evaluate these three safety supervisors
at states with different values of a⇤(x), we generated 10 groups
X0,i of initial states, where X0,i contains 1000 states uniformly
sampled in Cmax,0.1⇤(i�1)\Cmax,0.1⇤i for i from 1 to 10. That is,
each x0 2X0,i has a⇤(x0) between 0.1(i�1) and 0.1i. Note
that X0,i is disjoint from the maximal RCIS Cmax,1 for all i,
since we want to evaluate how the controllers perform outside
the maximal RCIS.

For each initial state x0 in X0,i, we generate a random
disturbance sequence from a uniform distribution in the
interval [�dmax,dmax] and then run simulations for each safety
supervisor for 500 steps. During the simulation, if a safety
supervisor becomes undefined, we switch to the reference
controller. Thus, for each group index i and dmax, we have 1000
trajectories starting from X0,i under each safety supervisor.
We evaluate the performance with two metrics: the average

exit time the system first exits the safe set (taken to be 500
when the system never exits Sxu), and the safety rate, the ratio
of trajectories remaining in Sxu through the entire simulation
period out of a total of 1000 trajectories. The average exit time
and the safety rates of the three safety supervisors for dmax = 1
and 1.05 are shown in Fig. 2. First note that both metrics of
all the safety supervisors grow with the group index i. This is
expected since the initial states with a higher value of a⇤(x)
have worst-case disturbances in P(x0) closer to Dall and thus
are easier to be kept within the safe set. Comparing curves in
different colors in Fig. 2, we observe that the performance of
the safety supervisors degrade as the disturbances is sampled
in a range larger than the assumed one. Finally, comparing
curves in the same color, we observe that the proposed safety
supervisor outperforms the safety supervisors in (6) and in
[13] in both metrics for all groups of initial states and all
dmax. In particular, when unexpected disturbances appear (by
increasing dmax from 1 to 1.05), the proposed safety supervisor
has much larger average exit time than the other two, as shown
in Fig.2a, and is the only one among the three that has nonzero
safety rates, as shown in Fig. 2b, showing that the proposed
method enhances the safety of the system significantly when
the system operates outside the maximal RCIS. Similar results
are observed when we repeat this experiment with disturbances
generated by nonuniform distributions, suggesting that our
approach works well across different disturbance distributions.
We omit the results for these other experiments but the code
for reproducing them is available in our code repository.

B. Lane Keeping Control

We consider a highway driving scenario where we want
to keep the lateral position of a vehicle within given lane
boundaries. We use the 4-dimensional linearized bicycle model



(a) Average exit time (b) Safety rate

Fig. 2: The average exit time and safety rates of the safety
supervisors in (6) (robust) and (11) (opportunistic), and the
safety governor in [13] in the adaptive cruise control example.

(a) Average exit time (b) Safety rate

Fig. 3: The average exit time and the safety rate of the robust
safety supervisor in (6) and the opportunistic safety supervisor
in (11) in the lane keeping example.

in [17] with respect to the constant longitudinal velocity 30m/s,
discretized with time step 0.1s. The states are the lateral
displacement y, the lateral velocity v, the yaw angle DY, and
the yaw rate r. The control input is the steering angle u. The
safe set is given by constraints |y| 0.9, |v| 1.2, |DY| 0.05,
|r| 0.3, and |u| p/2. The disturbance of the system is the
road curvature d with |d| dmax.

The reference controller ure f is ure f = �Kx subject to a
saturation limit at ±p/2, where K is determined through
solving an LQR problem (with Q = I and R = 0). Then, we
implement the proposed safety supervisor in (11) and the
robust safety supervisor in (6), assuming dmax = 0.08. For this
example, our implementation of the approach in Section V of
[13] fails to find a nonempty RCIS and thus its simulation
results are omitted. We assess the safety supervisors in the
same manner as in Section IV-A. Fig. 3 illustrates the average
exit time and the safety rate for both safety supervisors under
simulations with dmax = 0.08, 0.12, and 0.16. Similar to the
previous example, the performance of the safety supervisors
is improved as the initial states have a higher value of a⇤(x),
and degrades as the disturbance range used in the simulation
exceeds that used in control synthesis. Comparing curves in
the same color in Fig. 3 , the proposed safety supervisor
consistently outperforms the robust safety supervisor across all
groups of initial states and all dmax. Notably, the performance
of our approach at dmax = 0.12 (50% larger than the assumed
dmax) is even better than the performance of the robust safety
supervisor at dmax = 0.08, highlighting its enhanced safety and
resilience to unexpected disturbances when the system operates
beyond the maximal RCIS Cmax,1.
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(b) With measurement noise

Fig. 4: The drone trajectories in x-y plane under the safety
supervisors in (6) (yellow - red) and (11) (blue - dark blue).
The color of the curves reflects the value of a⇤(x) along the
trajectories.

C. Safe Tracking for Aerial Vehicle

We tested our approach on the drone platform Crazyflie
2.1 in a task of cruising around designated waypoints in the
horizontal plane while avoiding entering hazardous region (red
region in Fig. 4). We use a built-in controller to keep the
altitude of the drone constant, and then control its horizontal
motion by sending the reference velocities ux and uy in the x, y

axes to a lower-level controller in the period of 0.1s. Validated
by the flight data, the drone dynamics in x and y axes under the
lower-level controller are decoupled, homogeneous, and linear.
Thus, we model the dynamics in x and y by two identical
3-dimensional linear systems with states sx = (x,vx,ux,�1) (or
sy = (y,vy,uy,�1), respectively), where x and vx are the position
and velocity in x axis, and ux,�1 is the previous reference
velocity ux. The system matrices are learned from data via
least squares with the disturbance set the convex hull of the
prediction error. The safe set of Sx is given by constraints
|x| 1, |vx| 1, |ux| 1, and |ux,�1�ux| 0.5. The setup for
the system in y axis is the same.

We synthesize one reference tracking controller for each
subsystem in form of ure f ,⇤ = �K(s⇤ � sre f ,⇤) (⇤ is a place-
holder for x or y) subject to a saturation limit of ±1, where K

is determined through solving a LQR problem (with Q = 3I

and R = I). We then implement the safety supervisors in (6)
and (11) to supervise ure f ,⇤. For the experiments, we pick 24
waypoints to form a big “M”, as shown by the checkmarks
in Figure 4. Part of the waypoints is picked outside the
safe region such that the reference controller without any
supervision would steer the drone to the unsafe region. During
the experiments, we switch to the reference controller whenever
the safety supervisor is undefined. Since the drone is initialized
within Cmax,1, both safety supervisors are able to maintain the
drone within the safe region, as shown by Fig. 4a. To make
this task more challenging, we repeat this experiment with
the state measurements corrupted by an additional Gaussian
noise with standard deviation 0.05. Subject to this unexpected
measurement noise, our opportunistic safety supervisor still
successfully keeps the drone within the safe region, while the
robust safety supervisor in (6) fails as shown in Fig. 4b.

V. CONCLUSION

In this work, we present an opportunistic safety control
framework that extends the domain of safety controllers beyond



the maximal RCIS. This is achieved by designing a controller
that is robustly safe against as much disturbance as possible.
Our approach can be trivially extended for nonlinear systems,
which we consider in future. We also want to extend these
results to probabilistic settings, by using a given or learned
probability measure µ instead of the Lebesgue measure used
in this work.

APPENDIX

A. Proof of Theorem 1

In this section, we denote the distance g(P(u,x),Dall)
between P(u,x) and Dall by r(x,u) for short.

Lemma 1. For any given (x,a) 2 Rn+1
, the minimal distance

infu r(x,u) at x is less than or equal to (1�a l)µ(D) if and only

if x 2Cmax,a . Furthermore, a controller u satisfies r(x,u) 
(1�a l)µ(D) for all x2Cmax,a if and only if for all x2Cmax,a ,

u(x) 2A (x,Cmax,a), (15)

where A (x,Cmax,a) is the admissible input set of Sa .

Proof. We first show the “if” direction. Pick an arbitrary x 2
Cmax,a . Since Cmax,a is the maximal RCIS of Sa , there exist
u : Rn ! Rm and ud : Rn ! (1�a)D such that

Rk

Sa ((x,a),(u,ud),Da)✓ Sxu,a , 8k � 0. (16)

Define the disturbance model D(x) := ud(x)+aD 2D for all
x̄ 2 Rn. By the construction of Sa and Sxu,a , (16) implies that
Rk

S(x,u,D)✓ Sxu for all k � 0. That is, D 2P(u,x). Hence,

inf
u

r(x,u)r(x,u) g(D,Dall) = (1�a l)µ(D), (17)

where the last equality uses the property of Lebesgue measure
µ(aD) = a l µ(D) (recall that D ✓ Rl). Also, by Section II-
A, we know that u satisfies (15). Hence, we proved the “if”
direction of both statements in Lemma 1.

Next, we pick an arbitrary (x,a) such that infu r(x,u) 
(1�a l)µ(D). By the definition of r(x,u), for any integer
i� 1/a , there exist ui : Rn ! Rm and Di : Rn !D such that
Di 2P(ui,x) and g(Di,Dall)< (1�a l

i
)µ(D), with ai := a�

1/i > 0. By the definition of D in (7), there exists ud : Rn !
(1�ai)D such that ud(x)+aiD✓ Di(x) for all x 2Rn. Hence,
Di 2P(u,x) implies that the disturbance model ud +aiD is
in P(u,x) as well. That is, Rk

S(x,ui,ud +aiD)✓ Sxu for all
k � 0, which is further equivalent to

Rk

Sai

(x,(ui,ud),Dai
)✓ Sxu,ai

, 8k � 0. (18)

By definition, (18) implies that x 2Cmax,ai
, that is, (x,ai) 2

Cmax,[0,1]. Since Cmax,[0,1] is closed, we know that (x,a) =
limi!•(x,ai) 2Cmax,[0,1] as well. This completes the proof for
the first statement in Lemma 1.

Now suppose that u is a controller satisfying r(x,u) (1�
a l)µ(D) for all x 2Cmax,a . We pick an arbitrary x 2Cmax,a .
Clearly, (x,u(x)) 2 Sxu. For all i� 1/a , there exists Di : Rn !
D such that Di 2P(u,x) and g(Di,Dall)< (1�a l

i
)µ(D). Thus,

for all d 2 Di(x),

Rk

S(Ax+Bu(x)+Ed,u,Di)✓ Sxu, 8k � 0, (19)

which implies that r(Ax+Bu(x)+Ed,u) (1�a l

i
)µ(D) for

all d 2 Di(x). Based on the first statement of Lemma 1, we
have (Ax+Bu(x)+Ed,ai) 2Cmax,[0,1] for all d 2 Di(x). Since
g(Di,Dall)< µ(D)�µ(aiD), there exists ud,i 2 (1�ai)D such
that ud,i +aiD✓ Di(x). Thus, we have (Ax+Bu(x)+E(ud,i +
d),ai) 2Cmax,[0,1] for all d 2 aiD. Since D is compact, there
exists a subsequence of ud,i that converges to a point ud 2 (1�
a)D. We abuse the notation a bit and denote this subsequence
by ud,i again. Then, we have Ax+Bu(x)+E(ud +aD)✓Cmax,a
and (x,u(x)) 2 Sxu, which implies u(x) 2A (x,Cmax,a).

Proof of Theorem 1 . Point (i) of Problem 2 is trivially sat-
isfied by u

⇤ since (9) implies (5) with respect to Cmax,1 for
x 2 Cmax,1. For point (ii), according to (10), a controller u⇤
minimizes r(x, ·) for all x 2 Rn if and only if r(x,u⇤) 
(1�a⇤(x)l)µ(D) for all x 2 Cmax,0, which is equivalent to
the condition in (15) due to Lemma 1. Equation (10) is just a
direct application of Lemma 1.
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