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ABSTRACT

Motivated by limitations on the depth of near-term quantum de-
vices, we study the depth-computation trade-off in the query model,
where depth corresponds to the number of adaptive query rounds
and the computation per layer corresponds to the number of paral-
lel queries per round. We achieve the strongest known separation
between quantum algorithms with r versus r — 1 rounds of adaptiv-
ity. We do so by using the k-fold Forrelation problem introduced by
Aaronson and Ambainis (SICOMP’18). For k = 2r, this problem can
be solved using an r round quantum algorithm with only one query
per round, yet we show that any r — 1 round quantum algorithm
needs an exponential (in the number of qubits) number of parallel
queries per round.

Our results are proven following the Fourier analytic machinery
developed in recent works on quantum-classical separations. The
key new component in our result are bounds on the Fourier weights
of quantum query algorithms with bounded number of rounds of
adaptivity. These may be of independent interest as they distinguish
the polynomials that arise from such algorithms from arbitrary
bounded polynomials of the same degree.

CCS CONCEPTS

« Theory of computation — Quantum computation theory;
Quantum complexity theory; Pseudorandomness and derandom-
ization.

KEYWORDS

Quantum Query Algorithms, Query Adaptivity, Forrelation, Quan-
tum Advantages, Fourier Analysis of Boolean Functions

ACM Reference Format:

Uma Girish, Makrand Sinha, Avishay Tal, and Kewen Wu. 2024. The Power
of Adaptivity in Quantum Query Algorithms. In Proceedings of the 56th
Annual ACM Symposium on Theory of Computing (STOC °24), June 24-28,
2024, Vancouver, BC, Canada. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3618260.3649621

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

STOC °24, June 24-28, 2024, Vancouver, BC, Canada

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0383-6/24/06

https://doi.org/10.1145/3618260.3649621

Makrand Sinha
University of Illinois at Urbana-Champaign
Champaign, USA
msinha@illinois.edu

Kewen Wu

University of California at Berkeley
Berkeley, USA
shlw_kevin@hotmail.com

1 INTRODUCTION

The quantum query model, also known as the black-box or oracle
model, has been a very successful test bed to develop quantum
algorithms and to give provable guarantees on speedups over clas-
sical algorithms. In this model, a quantum algorithm has “black-box
access” to the input and is only charged for quantum queries to
the input, while any intermediate computation is considered free.
Most well-known quantum algorithms, such as Grover search [21],
Deutsch-Josza algorithm [15], Bernstein-Vazirani algorithm [6], Si-
mon’s Algorithm [40], and Shor’s period-finding algorithm [38],
are captured by this black-box access model. There are slightly
different models of black-box access to the input and in this work,
we consider the most basic access model where each query returns
a bit of the input.

k-Fold Forrelation. Traditionally, the focus in the query model
has been to compare quantum algorithms with classical ones. The
culmination of this line of work led to the resolution of the following
speedup question:

What is the largest quantum speedup that is possible over classical
algorithms?

The motivation for this question stems from an attempt to pin-
point the exact limit of quantum speedups, and it has helped us
develop a better understanding of the fundamental nature of quan-
tum speedups. In particular, towards this question, Aaronson and
Ambainis [1] introduced the k-fold Forrelation problem: In this
problem one evaluates a degree-k polynomial that we denote by
forry (see [19, Definition A.1]) that measures the “Fourier correla-
tion" between k Boolean functions mapping {+1}" to {+1}. The
algorithm can make superposition queries to any value in the truth
table of these functions and must distinguish the case when the
value of the polynomial is large from the case where it is close to
zero. This defines a partial Boolean function or a promise problem.

Letting n = 2™, this problem can be solved with r = [%] quan-
tum queries with polylog(n)-sized quantum circuits, while [1] also
showed that it can be solved with O(n!~1/2") classical queries. They
conjectured that this is tight. Moreover, they also conjectured that
one should be able to simulate any r-query quantum algorithm
with O(n!~1/2") classical queries, making this a problem where
quantum algorithms have the maximal advantage. Up to low-order
terms, the first conjecture was proven for k-fold Forrelation! and

'We note that the k = 2 case was already resolved by Aaronson and Ambainis [1] and
a different proof follows from the work [34] as well.
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its variants by Sherstov, Storozhenko, and Wu [37] and Bansal and
Sinha [5], building on the work of Raz and Tal [34] and Tal [44]. As
a complement, Bravyi, Gosset, Grier, and Schaeffer [7] extended the
simulation result to arbitrary quantum query algorithms, showing
that any r-query quantum algorithm can be classically simulated
with O(n!1/2r) queries. The k-fold Forrelation also turns out to
be one of the most natural problems that is BQP-complete [1] and
its variants have also been proposed as candidates for other separa-
tions in quantum complexity theory [28], making it a fundamental
problem to study in its own right.

The Power of Adaptivity. In this work, our focus is to identify
the exact limits of quantum depth in the query model, analogous
to the quantum speedup question. One of the primary motivations
for studying the power of depth comes from near-term quantum
hardware which is restricted to quantum circuits of small depth
in order to combat decoherence due to noise. Because of depth
limitations, one needs to use wider circuits with more gates in each
layer to perform computation, thus making parallel operations
quite desirable. This makes optimizing the depth-width trade-off a
fundamental task in quantum circuit synthesis for the near-term:
Reducing circuit depth allows the computation to be completed
before the qubits decohere too much, but it also requires more
quantum gates per layer.

On the positive side, Cleve and Watrous [13] showed how to
implement the quantum Fourier transform in a parallel fashion,
which leads to the parallelization of Shor’s factoring algorithm [39].
Also, in a recent related work, Regev [35] employed parallelization
followed by polynomial-time classical post-processing, to design
a more efficient quantum algorithm for factoring under certain
number-theoretic conjectures. On the other hand, Moore and Nils-
son [32] conjectured that certain staircase-shaped quantum circuits
cannot be efficiently parallelized.

In the query model abstraction, the circuit depth corresponds to
the number of adaptive rounds, denoted by r, and the circuit width
corresponds to the maximal number of parallel queries, denoted by
t, per round. An extreme case r = 1 is the non-adaptive quantum
query algorithm, where all queries are made in parallel. Perhaps
surprisingly, van Dam [45] showed that any n-bit Boolean function
can be computed with bounded error using only ¢ < n/2 + O(+/n)
non-adaptive quantum queries, which is essentially tight for total
functions [31]. Techniques have been developed to establish lower
bounds for various problems in this non-adaptive setting [8, 27, 33],
but less is known when we have more adaptive rounds. Zalka [47]
considered the unordered search problem on n-bit database and
showed that t = Q(n/r?) is needed. This matches the simple divide-
and-search algorithm: Partition the space into O(n/r?) parts of
O(r?) size each and execute Grover’s algorithm [21] on each part
in parallel in r steps. Jeffery, Magniez, and de Wolf [25] proved tight
t=0(n/ 3/ 2 trade-off for the element distinctness problem and
tight ¢ = O(n/r'*1/k) trade-off for the k-sum problem.

The above results show that being more adaptive indeed reduces
the need of quantum queries. However the improvement is quite
marginal: Even if we double the number of rounds, the saving is
still only a constant factor. This naturally leads to the following
question:
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What is the largest possible saving in queries offered by more rounds
of adaptivity?

1.1 The Main Separation

We answer the above question in the strongest sense and along
the way prove structural theorems about the Fourier spectrum of
polynomials that arise from low-depth quantum algorithms.

Our main result shows that the aforementioned k-fold Forrela-
tion problem separates different levels of quantum computational
power, measured in terms of adaptivity. Informally, the saving in
the number of parallel queries can be unbounded, even when we
just have one more adaptive round.

THEOREM 1.1. For any constant r > 2, the 2r-fold Forrelation
problem on n-bit inputs

(1) can be solved with advantage 271 by r adaptive rounds of
queries with one quantum query per round, yet
(2) any quantum query algorithm with r — 1 adaptive rounds

1/r

requires Q(n 2) parallel queries to approximate it.

Remark 1.2. Item 2 continues to hold even in the presence of a
large amount of classical pre-processing. In more detail, we consider
algorithms that are allowed to first make classical queries and based
on the outputs, choose a quantum algorithm to run that has k — 1
rounds of t parallel queries each. We show that any such algorithm

1/r

must either make Q(n!/ (Zr)) classical queries or Q(n 2) quantum

queries. See [19, Appendix C] for more details.

Remark 1.3. We note two easy modifications of the above theorem
that also follow from our work, which we do not state in the theorem
statement above for brevity. First, in the first item above, one can
boost the advantage of the quantum algorithm to any constant close
to 1 by making 20() parallel queries per round without increasing
the number of rounds since error amplification can be done by
making parallel queries. Second, we can more generally obtain an
r versus r’ separation for any r’ < r where the lower bound in the
second item improves as r’ decreases and is of the form Q(nc(rr)
where

forr’ =1,

1

1__

’ r

c(r,r)= r—r’ 1 ’
{rr,+r/2 23 for2<r’' <r-1.

For example, reducing the number of rounds by a factor of 2, i.e.,
when r = 2r, gives ¢(r,r’) = 1/(r+1). Furthermore, notice that the
case when r’ = 1 corresponds to a non-adaptive lower bound: Here
we obtain that any non-adaptive quantum algorithm that solves
2r-fold Forrelation must make Q(n'~1/") parallel queries.

Remark 1.4. We recall that k-fold Forrelation is a partial func-
tion and being a partial function is necessary for Item 1. [25, 47]
showed that for any total Boolean function f, the number of parallel
quantum queries needed with r rounds is t = Q(bs(f)/r?), where
bs(f) is the block sensitivity complexity of f. Note that Simon [41]
proved that bs(f) = Q(log n) if f is a non-degenerate n-bit Boolean
function. This implies that ¢t = Q(log n) when r is a constant. Simi-
larly, Ambainis and de Wolf [3] showed that any non-degenerate
n-bit total function requires Q(logn/loglogn) quantum queries
in total, which implies t = Q(log n/(rloglogn)). In summary, for
total functions and constant rounds, the best possible separation is
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only logarithmic-vs-polynomial, instead of the O(1)-vs-polynomial
separation we obtain.

As mentioned previously, Item 1 of Theorem 1.1 was already
known since the work of [1] and the crux of our result is the lower
bound in Item 2. Lower bounds for k-fold Forrelation are quite
non-trivial to prove even for classical query algorithms and the
known techniques rely on the polynomial method. The polynomial
method cannot be directly applied since k-fold Forrelation is a low-
degree bounded polynomial and as such one needs to find a way
to distinguish it from the polynomials of much higher degree that
are computed by the computational model of interest. In particular,
previous works [5, 34, 37, 44] identified that if the polynomials
computed by a computational model satisfy a certain refined notion
of “sparsity", in terms of bounded Fourier Growth, then the k-fold
Forrelation problem cannot be solved in that model.

1.2 Fourier Growth of Low-Depth Quantum
Algorithms

Recall that every Boolean function f: {+1}" — [0, 1] has a unique
Fourier representation

HOERYION JES

Sc(n] i€S

where ]?(S) =E[f(x) - [1;es xi] is the Fourier coefficient and the
expectation is over uniform x over the hypercube {+1}". The level-¢
Fourier #;-weight L; ¢(f) is defined by

Le(h = Y [F)

|S|=¢

and is a measure of the capability of the function f to aggregate
weak signals on ¢ bits. Let C be a class of Boolean functions, then
the Fourier growth of C refers to the scaling of maxsec L1,¢(f)
when ¢ grows.

Following [34, 44], Bansal and Sinha [5] successfully related the
advantage of approximating k-fold Forrelation for k = 2r with the
(low-level) Fourier growth of the model of computation in question.
Informally, if the Fourier weights grow slower than (+/n) (1-1/k)¢
(which is the Fourier growth of the k-fold Forrelation polynomial)
up to level £ = k?, then it cannot approximate k-fold Forrelation.
As a direct application of [5, Theorem 3.2 and Theorem 3.4], Item 2
of Theorem 1.1 follows from the following Fourier growth bounds.
The detailed calculations can be found in [19, Appendix A].

THEOREM 1.5. Let A be a quantum query algorithm on n-bit
inputs with arbitrarily many auxiliary qubits. Assume A has r adap-
tive rounds of t < n parallel queries. Define f: {£1}" — [0,1] by
f(x) =Pr[A accepts x|. Then

Lie(f) < Ore (tf ) (\/n—/t)l(l—;)d) '

Moreover, this bound holds when some bits of x are fixed in advance.

Remark 1.6. In the non-adaptive case (i.e., r = 1), the bound in
Theorem 1.5 can be improved (see [19, Subsection 2.2] for detail) to

Li¢(f) <O (t€/4 . n[/4) .
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This implies the non-adaptive lower bound of Q(n!~/") parallel
queries for solving the 2r-fold Forrelation problem, as mentioned
in Remark 1.3. This is also tight as shown in [19, Appendix B].

The acceptance probability of any quantum query algorithm
that makes d queries can be expressed as a degree-2d bounded
polynomial. Most of the techniques in the literature do not distin-
guish polynomials of quantum algorithms from general bounded
polynomials and we lack a sufficiently good understanding of such
distinctions.

Our Fourier growth bounds are far better than the bounds that
can be obtained by directly applying the Fourier growth estimates
for low-degree bounded polynomials [16, 23]. Thus, this points to
one way in which polynomials computed by low-depth quantum
algorithms are different than general bounded polynomials of the
same degree.

Classically Simulating Low-depth Quantum Algorithms. We men-
tion an open problem related to the question of where the exact
limits of the trade-offs between depth and the number of parallel
queries lie. As mentioned before, if there is only one query per
round (¢ = 1), then Aaronson and Ambainis [1] conjectured that
any r-round quantum algorithm can be simulated with O(nl~1/2r)
classical queries and this conjecture was proved by [7].

Does such a classical simulation continue to exist for low-depth
quantum algorithms that make multiple parallel queries per round?
We believe this is the case and make the following conjecture.

CONJECTURE 1.7. Any quantum query algorithm on n-bit inputs
with r adaptive rounds and t parallel queries per round can be classi-

cally simulated with 5t,r (nl_l/zr) queries.

It is worth mentioning that the Fourier growth bounds of classical
query models (aka decision trees) [37, 44] scales roughly like (D -
log n)!/2 where D is the number of classical queries. Our Fourier

bound matches the one for decision trees of depth 5” (nl’l/zr)

giving some support to the above conjecture.

1.3 Related Works

Related Works in Communication Models. Aside from the afore-
mentioned results in the quantum query complexity, the round-
query trade-off in the query model can also be deduced from the
round-communication trade-off in the model of communication
complexity. In this model, Alice and Bob are given n-bit inputs x
and y separately and their goal is to evaluate some function F(x, y)
by communication.

Given such a communication task F, we immediately get a query
task f by letting z = (x, y) and defining f(z) = F(x, y). Then each
quantum query to z can be implemented in the communication
setting by Alice and Bob exchanging one round of O(log n) qubits.?
Therefore if F requires sending ¢ log n qubits in each round, then
the corresponding f requires Q(t) parallel queries in each round.
Via this reduction, the pointer chasing problem with r jumps needs
Q,(n) parallel queries with r — 1 adaptive rounds [24, 26], whereas

2Here log n is required for indexing an n-bit string in superposition, which is not
needed classically. By switching the role of Alice and Bob between communication
rounds, we can simulate 7 queries in 7 rounds of communication and one party in the
end will compute the answer.
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it can be solved with r adaptive rounds of O(log n) queries. Since
the pointer chasing problem is a total function, by Remark 1.4 this
logarithmic-vs-polynomial separation cannot be further improved
to an O(1)-vs-polynomial separation.

We remark that? it is possible to define a variant of the pointer
chasing problem which only uses one quantum query per round.
This is achieved by using the Bernstein-Vazirani trick (see [46]) to
encode the address of each jump by the Hadamard code. Note that
this is a partial function (due to the Bernstein-Vazirani trick), and
it is conceivable that it will require n(1) queries if the number
of adaptive rounds is reduced. In light of this, we highlight that
our results generalize to the setting of quantum query algorithms
with classical preprocessing, where the algorithm is allowed to first
perform n®( classical queries, then adaptively choose a quantum
query algorithm with prescribed number of rounds and parallel
queries. See details in [19, Appendix C]. In this setting, variants of
the pointer chasing problem would be solved already in the classical
preprocessing phase, whereas the 2r-fold Forrelation problem still
exhibits an O(1)-vs-polynomial separation.

Related Works in Hybrid Models. There is another line of work
on hybrid quantum-classical query algorithms that is related to the
questions studied here. In particular, this line of work [4, 12, 14, 22]
considers the trade-off between quantum depth and the number
of classical queries in a model that allows both. Although some
of these works prove a fine-grained depth separation that seems
similar to ours, the models considered in these works do not allow
parallel queries (or only allow polylog(n)-parallel queries in [14])
and they do not study the trade-offs between depth and parallel
quantum queries. Consequently, these results are not comparable
to ours.

Related Works in Fourier Growth. The study of Fourier growth
dates back to Mansour [30] for learning theoretic purposes. More
recently it has been successfully applied in the study of pseudoran-
domness [2, 9-11] and quantum-classical separations [5, 17, 18, 34,
37, 44]. Moreover, Fourier growth bounds have been established
for various models of computation: Boolean circuit classes [30, 43],
branching programs [11, 29, 36, 42], query models [5, 20, 37, 44],
communication models [17, 18], and more. We refer interested read-
ers to [18] for detailed discussion.

Full Version. Full version of our paper [19] is available at https:
//arxiv.org/abs/2311.16057.

2 PROOF OVERVIEW

We provide a proof overview here and the details can be found in
the full version of the paper [19].

2.1 High-Level Proof Sketch

Describing Quantum Algorithms with Parallel Queries. Quantum
algorithms which make parallel queries have the following form.
First, we have an initial state |u); this state has some registers to
index coordinates of the input and some registers for workspace.
The algorithm has several rounds, where each round consists of
a few parallel oracle queries followed by a unitary operator. The

3We thank an anonymous QIP’24 reviewer for pointing this out.
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parallel queries are modelled by 02! ® I. Here, Oy is an (n + 1) X
(n + 1) unitary that maps |i) to x; |i) for all i € [n] and keeps |0)
fixed, and this is equivalent to the usual quantum query oracle. The
operator 02! implements t parallel oracle queries and I acts as the
identity matrix on the workspace. Finally, the algorithm applies
some two-outcome measurement and returns the outcome as the
output. See Figure 1 for depiction.

For simplicity, let us imagine that there is no workspace memory.
Additionally, let us ignore the action of the oracle Oy on the basis
state |0) and treat Ox as an n X n unitary matrix. These simplifica-
tions are only for the proof overview, and our proof works in full
generality. In this case, the acceptance probability of this algorithm
can be expressed as

() =u" 02 MOZ! - - My_, 02", (1)

where k is twice the number of rounds, u = v corresponds to the

o _ gt _ gt
initial state, M; = Mk—l’ My = Mk—z’ .
k

5 — 1 unitary operators applied by the quantum algorithm and
My /7 is the final measurement operator. For the rest of our proof,
we can forget about the exact details of these matrices, we will only
need that My, ..., My_; have bounded operator norm and u, v are
unit vectors.

e Mijoog = Mz/zﬂ are the

Fourier Growth of Quantum Algorithms. Let us now understand
the Fourier growth of functions as in (1) where Mj, ..., M_; have
bounded operator norm and u, v are unit vectors. We first set up
some notation. We use I € [n]? to denote a t-tuple of elements in
[n]. We can view I as an ordered multiset of [n] of size t (when
counted with multiplicity). Accordingly, we use @I to denote the
set of elements that appear an odd number of times in I and use
®I ® I’ to denote (&I) ® (®I’) for I, I’ € [n]’.

When we expand the matrix multiplication in (1), many variables
cancel out due to the identity xl.2 = 1. Assume for simplicity that u
and v are real vectors, i.e., (u[I])* = u[I]. Thus, for all S C [n], the
coefficient of the monomial [];cg x; in (1) is given by

fs= >

L,...Ix€[n]*
OLS... =S

ulli M [, IM2[I2, I3] - - - Mye—q [Tge—1, Ik Jo [ I ]

Fix complex numbers as = f(S)*/|]?(S)| for each S C [n] of size ?.

We wish to upper bound L1 ¢(f) = ), IS|=¢ ‘]?(S)} = Z|5|:[ as -]?(S),
which by the above is

Lie(f) = Z

I],..A,IkE[th
oL &I |=t
cull My I, 1M [I, 3] - - - My_q [Tx—q, i Jo [T ]
2

To highlight the difficulties in bounding (2), we first present a few
failed approaches and then describe our high-level proof approach.
First, let us focus on the base case k = 2. For ease of notation, we
will switch from indices I3, I5 to indices I, J and from the matrix M;
to M. Our goal is to upper bound

Lie(f)= Y, alele]]-ullIMIL]]ol].

Ije[n]*
|eIe]|=¢t

alel & - @ Ii]
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Figure 1: Quantum algorithm with r adaptive rounds of ¢ parallel queries each.

One natural approach is to express L1 ¢(f) as a product of ma-
trices (with bounded operator norms). One way to do this is to
incorporate the phases «[®I @ J| and the constraint |®I @& J| = ¢
into the matrix M[I, J]. For instance, define M such that

M[L]] =a[ela]]-1[|eI® J| = ¢£] - M[LJ].

It is easy to see that L1 0(f) = u" Mo and consequently, L ¢(f) <
|M||. What is the best upper bound that we can prove for |M]|?
At first glance, it might seem that we cannot do better than Vnt.
Indeed, given an n X n? unitary matrix M, if we multiply each entry
by arbitrary numbers in the unit disk, this could blow up the oper-
ator norm by as much as Vn! (the Hadamard matrix gives a tight
example of this). However, we can do much better. This is because
the terms multiplying each entry of M are highly constrained; the
term multiplying the (I, J)-th entry depends only on &I @ J.

To get an improved bound, consider the matrix D whose rows and
columns are indexed by all possible ®I and & ] respectively, and the
(L ®))-thentryisa[@I®]]-1[|®I ® J| = £]. It is not too difficult
to convince oneself that M is a sub-matrix of M ® D. Therefore,
IM]|| < IM]| - ID|| < |ID|l. Now, what is the best upper bound we
can show for ||D||? Consider the row corresponding to &I = 0. For
this row, we need to choose a column @] such that |®J| = £ and

there are (';) such columns. This already means that ||D|| > ('})

(and this turns out to be tight). While a bound of L1 ¢(f) < /(})

would already be a great improvement over the previous bound, it
is still a trivial bound that holds for all bounded functions! Indeed,
all Boolean functions which map into the complex unit disk satisfy

Lie(f) < \/@

To get the optimal bound of nt/% . t1/* the idea is to reduce
the operator norm of D. For instance, suppose we defined D to be
D, except that we zero out entries for which |®I \ ]| # ¢/2 (or
equivalently |®] \ @I| # £/2). In this case, for any fixed &I, the
number of possibilities for @] is only ( 672) ( [;2) and we can actually

prove that ID| < nt/4. /4 as desired. Of course this doesn’t suffice
as we also need to sum over terms zeroed out.

In the full proof, the idea is to implicitly consider all possible
values of |®] \ @]|. We fix any #1, £» such that |®I \ &]| = £; and
|®J \ ®I| = £. Since £; + £, = ¢, either (1) £; < £/2 or (2) &, < /2.
We will define two different matrix product decompositions to
handle each of these cases separately. It will turn out that the
decomposition for case (1) satisfies an operator norm bound of
nf1/2 . $f2/2 and the decomposition for case (2) satisfies a bound of
nt/2.th/2, Together, taking the geometric mean of the two bounds
would give the desired bound of ntl4 . ¢t/4,

We remark that our proof doesn’t explicitly list out these cases;
instead, it defines two different decompositions and simply takes the

minimum of the two bounds which essentially captures these two
cases. We describe the details of this in Subsection 2.2. For k > 2, it
turns out that there is a subtle but crucial over-counting issue that
is too technical to describe at this point. To address this, we need
to introduce new matrices in the decompositions as well as carry
out a step similar to Mébius inversion to undo the over-counting.
We highlight this issue in Subsection 2.3.

2.2 Technical Proof Overview: k = 2
Recall from (2) that we wish to upper bound

Lie(f)= Y, alele]]-ulllM[L]lo[]]. ()
ST

The high-level idea is as follows. We will express L1 ¢(f) as

D 96s)

s1,52 €N
S1+sp=C

for some function g(s), where s = (s1, s2) and we shall group the
terms based on the sizes s; and sy of the sets ®I \ &J and @] \ &I
respectively. We shall then upper bound ¢(s) for any s1,s2 € N
satisfying s1 + s2 = £. To do this, we will express g(s) in two dif-
ferent ways, namely, as u"WR’v and as uTW’Ro, for some matri-
ces W, W’, R, R’ with bounded operator norms, and we will upper
bound these by [lu||[[WI[[[R"[|[|o]l and |lul[[[W’|lI[R][[|o]| respectively.
Recall that ||u|| = ||o|| = 1. We will show that ||R||, ||R’|| < 1 and

e o ) o ey ()

We upper bound the minimum of the two bounds by their geometric
mean and use the fact that s; + s, = £ to obtain

g(s) < VnS2t5t - poipse = pt/44t14

as desired. We now describe the function g(s) and the matrices
W, W’,R, R’ in more detail.

We group the terms in (3) based on the sizes of @I \ ®J and
@®J \ ®I. For any (s1,s2) € N X N, define the indicator function
Size®(S1, S2) for any subsets S1,S2 C [n] by

Size®(S1,S2) = 1[IS1\ Szl =51 and |Sz \ S1] = s2] .
We will consider Size® (@I, ®J) as depicted in Figure 2.

Let g(s) denote the contribution to (3) from terms satisfying
Size* (@ @®]) = 1, that s,

g(s) = > Size*(@L@]) - al@l ® J] - u[[IM[L J]o[J].
Lje[n]*
From (3), we have L1 ¢(f) = X5, s,en 9(s). Fix any sq, s2 € N such
si+sp=t
that s; + sy = £. We will now bolunzd g(s). As described before, we

will express g(s) in two different ways, namely, as uTWR’v and
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ol eJ

Unionis ®I & J

Figure 2: The constraint Size’ (&I, ®]) = 1.

as utW’Ro, for some matrices W, W, R, R’ with bounded operator
norms.

Expressing g(s) as u' WR’v. The rows and columns of W are
indexed by I and (I, ®]) respectively, and those of R’ by (I, ®])
and J’ respectively. These matrices are defined as follows

WL (I &) =1[I=T]-Size*(®L&)) - a[®] & J],
R e)).)=1[e) =a]| -M[I'J'].
Intuitively, W is a matrix that multiplies by the signs a[®I @ J] as
well as enforces the Size® constraint on ®I and @/, and R’ is a matrix

that implements the action of M, as well propagates information
about @] backwards. This is depicted in Figure 3.

Figure 3: Expressing ¢(s) as ul WR'v.

It is not too difficult to see that indeed g(s) = utWR’v. We now
show the desired upper bounds of ||R’|| < 1and |[W]| < (s’;) . (Stl)

e Bounding ||R’||: We rearrange the columns of R” according
to @J. Under this ordering of the columns, observe that R/
is a block diagonal matrix, where each block is a submatrix
of M. Since ||M|| < 1, this implies that ||R’|| < 1.

e Bounding ||W||: We rearrange the columns of W according
to I and with this ordering, W is block-diagonal. We now
use the fact that [|[W|| < /[[W|l1 - [[W]|l where [[W]|; and
[|[W||eo are the max-column-norm and the max-row-norm
respectively. Observe that |[W||; < 1, since each column
has at most one non-zero entry, which in turn is of unit
magnitude. We now bound ||W||e. For any row I € [n]?,
observe that there are at most (J’ ) ( stl) many columns &]

such that Size*(®I, ®J) # 0. Since each non-zero entry of

W is of unit magnitude, this implies that ||W || < ( s': ) - ( stl)
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This gives us the desired bound of

i< (2)-() @

Expressing g(s) asu’ RW’v. The rows and columns of R are in-
dexed by I and (J/, ®I”) respectively and those of W’ are indexed
by (J/,®I”) and J respectively, and

W[(J,eI'),J1 =1[] =] - Size*(&I', ®]) - a[&]’ & J],
RIL(J el =1|el=el'| -M[L]'].

Here, W’ implements a[®I & J| as well as enforces the Size® con-
straint on @I and @/, and R implements the action of M, as well
propagates information about @I forward. This is depicted in Fig-
ure 4. A calculation similar to the previous case implies the desired

bound of
s () ©)
1 S2

This completes the proof overview for k = 2.

-~ —>

Figure 4: Expressing g(s) as u' RW 0.

2.3 Technical Proof Overview: k =3

For simplicity of notation, we will switch from indices Iy, Iz, I to
indices I, J, K. We need to upper bound

Lie(f)= ), alel®]eK] ulllM[LJIM[J,K]o[K].
L] Ke[n]*
|eIeJ®K|=t

As before, we will express Li¢(f) as X, .._s,eN 9g(s) grouping
S1+- sy =t
terms based on sizes of certain sets and in order to bound each

g(s), we will try to express it in three different ways as u'i'WlRiRéo,
uTlezRév and u'R; Ry Wso.
It will turn out that [|Rq ||, [[R{]l, l|Rz]l, IR}l < 1 and that
Sp+s3 s1+s3 S1+sp
n\—z n\—z2 n 2
Iwil < (3) 7 el < (3) T wal < (3) T o
(6)
Since s + s + s3 < £, taking the minimum of the three bounds

would give us the desired bound of (n/t)[/3 - t¢. There is an issue
that comes up that we will later highlight. To describe it now in a
nutshell, it turns out we cannot express g(s) in the form of a matrix
product with operator norms bounded as desired. Nevertheless,
with some additional work, we can express a different function
h(s) in this form, furthermore, h(s) = Y P[s,s"]g(s”) for some
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invertible matrix P such that P~! has bounded norms. Therefore,
using bounds on k(s), we can derive the desired bounds on g(s).
We describe all this in more detail.

We start with the description of g(s). Similar to the previous
case, we will fix the sizes of certain sets in the Venn diagram of
®I, &J, ®K as depicted in Figure 5. More formally, let s € N#. Define

ol oJ

S4
s1
)

$3

Union is ®I® J@® K

Figure 5: The constraint Size’ (@ ®J) = 1.

Size’ (51, S2, S3) to be the indicator function of
[S1\ (S2US3)| =51, [S2\(S1US3)|=s2,
1S3\ (S1US2)| =53, [S1NS2NS3|=s4.
Let

Z Size’ (@I, @), ®K) - a[®] & ] ® K]

IJKe[n]!
@I JoK |=¢

~ulI]Mi[L 1Mz [J, KTo[J].

We attempt to express g(s) in three different ways as u%WlRiRéU,
u'Ry WgRéZ}, and u' Ry Ry Ws0. The simplest to describe is the second
expression. Here, we have matrices Ry, W, Ré whose indices are as
depicted in Figure 6.

Based on the intuition from before, there is a very natural way
to define these matrices, namely,

Ri[L(eI'.))] =1|el =eI'| - M[L]],
Ry[(J,®K),K'] = 1[®K’ = @K| - Mz[J,K'],

g(s) =

and
Wz [(J. @), (J',®K)] = 1[] = J'|-Size* (8], ®], ©K)-a[ @I JOK].

Note here that given the row (], @) and the column (J, ®K), we can
compute Size® (&1, ], ®K) and a[®I® JHK]. A similar calculation
to before shows that [|Ry |, |R|| < 1 and

w2 LICEIAET I

— (n/t)(51+53)/2 4t

Let us try to define the other two decompositions u' WiR{Rjv

and u"R;R; W, as depicted in Figure 7. Suppose we could define
Wi and W5 such that

Wil (I''®] @ K)]=1[I = I'| Size® (@], @], ®K)a[®] ®] ®K],
W3[K, (K, @I ® K)|=1[K = K'] Size* (@I, ©], ®K)ar[®] & ] ®K].
(7
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Then, a calculation similar to the previous case would give the
desired operator norm bounds on Wj and W3 as in (6). The prob-
lem is that we cannot define matrices Wj, W3 that satisfy (7). We
explain this issue for Wj. Given a row I and a column (I, ®] @ K),
we cannot compute Size® (@1, @], ®K). After all, we only have the
information about @I and @] & K, and hence the matrix W; can
only enforce the constraints that |®I \ (&J ® K)| = s1 + s4 and
[(®] ® K) \ ®I| = s3 + s3, but it cannot enforce the constraints that
&) \ (&I UBK)| =syor |@K \ (&I U &])| = s3. In particular, if we
only define W; to enforce the constraints that it is able to enforce,
we will end up counting terms corresponding to I’, J/, K’ which sat-
isfy Sizes/(eBI, @], ®K) for s” with s # 53 and 55 # s3. In this case,
instead of estimating the target g(s), we would be over-counting.
We need two new ideas here.

(1) First we need to provide W; some additional information.
One might hope that with a little extra information, W; can
enforce Size®, but this turns out to be false. Giving this in-
formation will increase the operator norms by too much.
Instead, the idea is to provide some information that en-
forces a variant of the Size® constraint.

(2) This variant will allow us to bound a different function h(s).
This function is still an over-counting of g(s), but the im-
portant point is that it is a predictable over-counting, that
is, h(s) = X P[s,s"]g(s’) for some invertible matrix P such
that P! has bounded norm. Hence, we can derive bounds
on ¢g(s) using bounds on A(s).

We first explain step (2). Let

L(L,J,K) =ca[®l® J@® K] - u[I]M [ J)M2[],K]v[K].
While we would like to bound the expression

Z L(LJ,K) - Size*(L, ], K),

L], Ke[n]*

g(s) =

what we can bound turns out to be the expression

h(s) = Z L(I, ], K) Z

LJ,Ke[n]t AB,C,De[n]*
A,B,C,D are disjoint
AUBUCUD=@I®]JeK
where Subset® (A, B, C, D) is the indicator of the constraint that
AC®L|Al=s1, BC®J,|Bl=s2, CCK,|C|=ss,

Dcoelna]Nnek,|D| = s,. (8)

Subset®(A, B,C, D),

This is depicted in Figure 8.

Observe that one of the terms in h(s) is A = &I\ (&JU®K),B =
&J\ (®I UBK),C = ®K \ (®I U ®J) and D = oI N &] N ®K.
Hence, h(s) consists of g(s) plus some additional terms. For example,
elements from D can be moved to either A, B, or C and still satisfy
the constraints in (8). However, we can express

h(s) = ) Pls,slg(s)

for a structured matrix P. This matrix is invertible and has bounded
[[P71||1. Therefore, our goal of bounding ||g||; reduces to bounding
[|h]|1 as h = Pg. This is done in step (1) which we now explain.
We now explain how to bound A(s). We will blow up the matri-
ces in the decomposition uTWIR{Rév to include information about
A,B,C,D C [n]. We will also introduce new matrices Q1, Q{, Qé, Qé
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I J.el J,eK K
U |y .. | e e K
Ry ¢
J. el ] oK
Wy Ré
Figure 6: Expressing ¢(s) as uTR1W2Rév.
1
I LeJoK J, oK K T J. el KoleJ K
] |
I ..............
|
""" [
..... ¢ I 4
. I S R o
’ ’ I
Ry Ry I -
1 RZ Wwa
1

’

Figure 7: Expressing ¢(s) as uTwlRlRéz) and u'Ry R Wyo respectively.

ol

®J

S4
$1
$2

$3

&K

What we want to sum over

(a)

Figure

Figure

oI

®J

&K

(b) What we end up summing over

Figure 8: The summation in g(s) versus A(s).

to enumerate A, B,C, D and verify that they satisfy the Subset®
constraints in (8). Consider the expression u'Q; W; Q1R Q5R: 050,
where the matrices are as depicted in Figure 9.

The matrices Wl,Ré,Rg perform the same role as before and
in addition, propagate information about the sets A, B, C, D. The
matrices Q1, Q{, Qé, Qé impose constraints on A, B,C, D as well as
add and delete information as required. In more detail,

(1) Qi propagates I and introduces A, D such thatthat A, D C &I,

|A| = 51 and |D| = s4. Given I, there are at most (Stl) . (;4)

possibilities for (A, D) and it follows that [|Q1]| < V5t - #54.

(2) W1 enforces AUBUCUD = @I®J®K and the size constraints
on B, C. It also applies a[®I @ ] & K]. For each I, A, D, there
are at most ( S”Z ) - (S'; ) possibilities for (B, C) and once we fix
A,B,C,Dand I,wealsofix®J® K =&l (AUBUCUD).
So |[Wi|| < Vns2 - n%s.

(3) Qj back-propagates K and introduces C, D such that C,D C
®K, |C| = s3,and |D| = s4. Given K| there are at most (St)( t)

3/ \S4
possibilities for (C, D) and hence [|Q || < Vi3 - t54.

(4) R; back-propagates ®K, C, D and introduces J. It also applies
the operator M;. As before, [|R;|| < 1.
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LeJoK LeJoK J, K J.®K
1 I,A,D AD,B,C C,D,B C,D,B CD K,C,D K
[ ] - -
= L 1l L ] e K
: :
Wi ]
R, R,
Q1 01 Q Q3

enforce D, A C &I enforce D, A C &I

enforce B,D C ] enforce C,D C &K

Figure 9: Expressing h(s) = uTQlleiRiQéRéng.

(5) Qé back-propagates J, ®K, C, D, introduces B, and enforces
that B,D C @] and |B| = s2. Given J, there are at most (Stz)
possibilities for B, hence, [|Q5]| < Visz,

6) Ré back-propagates D, B, C, ®] @ K, introduces I, and applies
the operator M;j. As before, ||Ré|| <1

7) Q{ back-propagates D, B,C, ] & K, I, introduces A, and en-
forces D,A C &I and |A| = s;1. Given I, there at most (stl)
possibilities A, hence [|Q]]| < Vst

Combining all these bounds gives us an upper bound on h(s) of

By

S2+ss . pSatsit(satss)/2 _ (n/t)(32+s3)/2 -

a symmetric argument, we blow up the matrices in the decom-

position uTR1R2W3U to include information about A, B,C,D C [n]
and get

h(s) < (n/t)(s1F)/2 4t

Combining the three upper bounds on h(s) we get

h(s) < (n/)' - tL.
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