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Abstract. The problem of reliable/secure all-to-all communication over
low-degree networks has been essential for communication-local (CL) n-
party MPC (i.e., MPC protocols where every party directly communi-
cates only with a few, typically polylogarithmic in n, parties) and more
recently for communication over ad hoc networks, which are used in
blockchain protocols. However, a limited number of adaptively secure
solutions exist, and they all make relatively strong assumptions on the
ability of parties to act in some specific manner before the adversary can
corrupt them. Two such assumptions were made in the work of Chandran
et al. [ITCS ’15]—parties can (a) multisend messages to several receivers
simultaneously; and (b) securely erase the message and the identities of
the receivers, before the adversary gets a chance to corrupt the sender
(even if a receiver is corrupted).

A natural question to ask is: Are these assumptions necessary for
adaptively secure CL MPC? In this paper, we characterize the feasibil-
ity landscape for all-to-all reliable message transmission (RMT) under
these two assumptions, and use this characterization to obtain (asymp-
totically) tight feasibility results for CL MPC.

– First, we prove a strong impossibility result for a broad class of RMT
protocols, termed here store-and-forward protocols, which includes
all known communication protocols for CL MPC from standard cryp-
tographic assumptions. Concretely, we show that no such protocol
with a certain expansion rate can tolerate a constant fraction of
parties being corrupted.

– Next, under the assumption of only a PKI, we show that assuming
secure erasures, we can obtain an RMT protocol between all pairs of
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parties with polylogarithmic locality (even without assuming multi-
send) for the honest majority setting. We complement this result by
showing a negative result for the setting of dishonest majority.

– Finally, and somewhat surprisingly, under stronger assumptions (i.e.,
trapdoor permutations with a reverse domain sampler, and compact
and malicious circuit-private FHE), we construct a polylogarithmic-
locality all-to-one RMT protocol, which is adaptively secure and
tolerates any constant fraction of corruptions, without assuming
either secure erasures or multisend. This last result uses a novel
combination of adaptively secure (e.g., non-committing) encryption
and (static) FHE to bypass the impossibility of compact adaptively
secure FHE by Katz et al. [PKC’13], which we believe may be of inde-
pendent interest. Intriguingly, even such assumptions do not allow
reducing all-to-all RMT to all-to-one RMT (a reduction which is
trivial in the non-CL setting). Still, we can implement what we call
sublinear output-set RMT (SOS-RMT for short). We show how SOS-
RMT can be used for SOS-MPC under the known bounds for fea-
sibility of MPC in the standard (i.e., non-CL) setting assuming, in
addition to SOS-RMT, an anonymous PKI.

Keywords: Secure Multiparty Computation · Communication
Locality

1 Introduction

1.1 Communication Locality and Adaptive Security

Secure multi-party computation (MPC) [4,19,31,47] allows a set of n parties to
securely compute a function on their joint private data. Initial work on MPC
focused on feasibility, and it was followed by a series of works on improving round
and communication complexity. Envisioning the potential need to deploy MPC
on massive networks, novel works on scalable MPC (e.g., [20,21,25,34]) have
investigated settings and techniques that allowed for protocols with communi-
cation complexity that grows (asymptotically) slower than the size of the player
set. Boyle, Goldwasser, and Tessaro [8] put forth a different metric that is very
relevant for the design of massive-scale MPC, namely, communication locality
(CL). The CL of a party in a protocol is the number of parties that this party
sends/receives messages to/from, via a direct point-to-point channel, through
the execution of the protocol; as such, the CL of a protocol is the maximum
CL of any party. Motivated by the potential application of MPC to privately
executing sublinear algorithms in a distributed manner, [8] proposed a solution
which achieves MPC with a sublinear (i.e., polylogarithmic in n) CL tolerating
a (sub-optimal) number of t < (1/3 − ε)n actively corrupted parties, for ε > 0.

The original solution in [8] only considered static corruptions and relied on
the existence of a public-key infrastructure (PKI), a common reference string
(CRS), semantically secure public-key encryption and existentially unforgeable
signatures. Chandran et al. [15] improved on the above result to tolerate an
asymptotically optimal number of t < (1/2 − ε)n adaptive active corruptions,
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for an arbitrary small constant ε. Their construction relied on the same assump-
tions except for the CRS, which was replaced by a hidden (random) graph: A
suitable random graph on n vertices (with sublinear degree) that is sampled by
a trusted entity and where each party is given its neighborhood in this graph.
However, parties do not know the other parties’ neighborhoods, and, most impor-
tantly, the adversary does not know the (honest) neighbors of honest parties. As
shown in [15], this random graph can be realized via a standard symmetric-key
infrastructure (SKI)—wherein every two parties share a (secret) symmetric-key
encryption key. The emulation is simple: Every two nodes locally use their sym-
metric key as a seed to a PRF to derive sufficiently long pseudorandomness that
can be utilized to decide (locally and independently) whether or not the parties
should have an edge between them in any given round. In fact, we mention that,
as noted in [14], the above hidden graph (or, equivalently, SKI) assumption can
be replaced by standard number-theoretic cryptographic assumptions (such as
DDH and its resulting PKI), allowing non-interactive key exchange (NIKE, for
short—cf. [24]). The simple idea is that the PKI can be used to non-interactively
establish the SKI required in [15], which can be used to derive the hidden graph.

The core challenge associated with such sublinear CL protocols is propagat-
ing information and connecting any two parties using a sparse (i.e., sublinear
degree) communication graph. In such a context, one needs to route messages
through the induced (incomplete) communication graph so that the adversary
cannot block (even indirect) communication between any two honest nodes, thus
disconnecting the graph. Indeed, since any party can only directly communicate
with a sublinear number of neighbors, the only way for it to reach all parties in
the network is by means of a gossiping protocol. In [8], gossiping was done via
a routing protocol based on hierarchical routing and sorting networks that clev-
erly knit the paths to ensure each message travels over sufficiently many paths,
making it impossible for the adversary to block it.

The above gossiping protocol works for a static adversary corrupting t <
(1/3 − ε)n parties. However, when one considers stronger adversaries, with an
asymptotically optimal (for MPC) corruption threshold—i.e., t < (1/2 − ε)n—
and, most importantly, adaptive adversaries, the problem becomes even more
challenging, as message routing through the incomplete graph turns into a “cat-
and-mouse” game—more formally, a graph discovery game—with the adversary
using an initial set of corrupted parties to try to discover possible message routes
and block them. In [15], properties of a hidden Erdős-Rényi graph were used
along with a clever use of edges in a disposable manner (where every edge was
used only once) in order to win the above graph discovery game, and devise a
sublinear-locality communication protocol for the problem of reliable message
transmission (RMT) between any two honest nodes, which allowed every honest
party to reach every other honest party. The protocol from [15] tolerates an arbi-
trary constant fraction of the parties being adaptively (and actively) corrupted.
RMT protocols can then be used to trivially construct secure message transmis-
sion (SMT) protocols—informally, these are protocols which emulate a secure,
i.e., private and authenticated, channel between a sender and a receiver—in the
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model assuming a PKI, which can then be used to build communication local
MPC protocols1.

1.2 Erasures and Network Assumptions in CL Protocols

The protocol in [15] relied on the aforementioned setup and hardness assump-
tions, namely, a PKI, an SKI, and the existence of enhanced one-way
permutations—the latter being a common minimal assumption for MPC. In
addition, an assumption was made in [15] which is not essential for MPC, but,
as we show in this paper, turns out to be necessary for sublinear communication
when natural gossiping protocols are used. In more detail, the assumption of
secure erasures [12]—namely, that honest parties can erase whichever part of
their state they wish, in a way that if they are corrupted later on, the adversary
cannot recover the erased information—is only needed for a subset of adaptively
secure MPC protocols without the sublinear CL restriction [28]. The construc-
tion from [15], however, assumes not just erasures, but actually two levels of
strengthening of the assumption: First, it also assumes an atomic multisend
capability [33], which in a nutshell ensures that if a player p attempts to send
a message to a subset Q of the player set in some given round, then either all
honest parties will receive the message or none of them will2. However, even
assuming secure erasures in addition to such a rushing adversary proves not to
be sufficient for the protocol in [15]. The reason is that when a message is sent
to a polylogarithmic (in n) number of parties, then one of these parties may be
corrupted, in which case the adversary can corrupt the sender and learn who the
other receivers were, before the sender has had a chance to erase their identities,
and corrupt them too, thereby completely neutralizing the sender. In fact, the
inability of the adversary to mount such an attack is essential in [15]’s secu-
rity proof. In order to exclude this attack, [15] also assumes that multisend and
erase can jointly be done as an atomic operation—i.e., p can send his message
so that it is received by all the parties in Q and erase their identitites before the
adversary is able to corrupt him.

1.3 Our Results

The above state of affairs leaves open several questions regarding the mini-
mal assumptions required for sublinear locality in all-to-all communication (and
therefore also in MPC) in the adaptive security setting. In particular, it leaves
open the question of the necessity and sufficiency of secure erasures, atomic
multisend, and their atomic combination as mentioned above. In this paper we

1 As a side note, an interesting side effect of the recent popularity of blockchain proto-
cols is that, as they also rely on gossiping for communication, results on the feasibility
of sublinear-communication protocols provide insights on basic feasibility questions
in the blockchain context as well (see related work for further details).

2 As shown in [33,36], this property is impossible to obtain from simple point-to-point
communication in the standard adaptive and rushing adversary setting [10].
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provide a characterization of this landscape, as depicted in Table 1. The impossi-
bility results in Table 1 are for adaptively secure all-to-all reliable message trans-
mission, i.e., the task of allowing every party pi to send a (potentially different)
message to every party pj in a reliable, i.e., authenticated manner—where pj

becomes aware that the message was sent by pi—so that the adversary cannot
block or alter the message exchanges between any pair of honest parties. As
noted earlier, this serves as a building block for SMT and CL MPC protocols.
These results apply to a broad class of protocols which we call store-and-forward
(SF) protocols, which, intuitively, allow intermediate parties to only store and
forward previously received messages, and (for the non-erasure case) under an
expansion-rate assumption, which mandates that messages originating from any
neighbors of a sender will reach a large (polylogarithmic size) set relatively fast
(i.e., before they reach their respective receiver) (see Definitions 1 and 2). This
includes several natural message propagation and gossiping protocols, and in
particular all those used in the CL literature (see Sect. 2 for a discussion).

The positive results in Table 1 are for all-to-one RMT, i.e., there is one
receiver who everyone wishes to send messages to. As we shall show, assum-
ing erasures, the feasibility results can be extended to all-to-all RMT. However,
intriguingly, in the non-erasure setting, the protocol can only be extended to
allow for a sublinear (polylogarithmic) set of receivers. Even so, the assumption
of an additional setup, namely, an anonymous PKI, allows us to rescue the sit-
uation: We show that we can implement a new notion of MPC, which we term
sublinear output-set MPC (SOS-MPC for short). Likewise, we use the term SOS-
RMT to refer to the formerly obtained notion of RMT with a sublinear set of
receivers. Intuitively, in an anonymous PKI setting, parties have access to a PKI
but do not know which public-key corresponds to which party. Such a setup is
common in YOSO-style MPC protocols which have become highly relevant in
the blockchain literature [30]. Our newly defined SOS-MPC is similar to stan-
dard MPC (i.e., the inputs of all parties are accounted for in the computation)
but only a (random) subset of the parties of sublinear size receives the output
from the computation. We note that SOS-MPC is sufficient for the motivating
applications of CL MPC, namely, secure computation of sublinear algorithms,
where the output is by definition far smaller than the input (cf. [9]). This leaves
open the question of feasibility or impossibility of (all-to-all RMT and) standard
MPC in this setting.

Our positive results are of two flavors. Assuming secure erasures under stan-
dard assumptions (i.e., one-way functions), we provide SF protocols for RMT
tolerating the (asymptotically) optimal number of corruptions, as implied by
the impossibility result of Theorem 3. This leaves open the following important
question:

Is it possible to construct an RMT protocol in the no-erasures setting that
is adaptively secure against a constant fraction of corruptions?

We answer this question in the affirmative, albeit using strong cryptographic
assumptions. Concretely, assuming trapdoor permutations with a reversed
domain sampler and the existence of a malicious, compact, and circuit-private
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Table 1. A characterization of feasibility of reliable communication (RMT) under the
different assumptions: Atomic multisend (A-MS), secure erasures (Erasures), and multi-
send and secure erasures as an atomic operation (A-MSE). All negative results are for
all-to-all RMT. The positive results are for all-to-one RMT; but all except Theorem 4
are extended to all-to-all RMT, whereas Theorem 4 is extended to SOS-RMT. Note
that SF stands for store-and-forward as defined in Definition 1, and expansion rate is
as defined in Definition 2.

A-MS Erasures A-MSE

✓ ✓ ✓ [15]: Assuming PKI and one-way functions, there exists an (SF) sublinear
locality RMT protocol tolerating t < (1− ε)n corruptions, for any ε > 0.

✓ ✗ ✗ Theorem 1: There exists no SF polylogarithmic locality RMT protocol
with expansion rate (polylog(n), k logn

c log logn
) tolerating a constant fraction of

corruptions, for any k < 1, where the degree of the communication graph
is O(logc n).

✗ ✓ ✗ Theorem 2: Assuming PKI and one-way functions, there exists an (SF)
polylogarithmic locality RMT protocol tolerating t < ( 1

2
− ε)n

corruptions, for any 0 < ε < 1
2
. Theorem 3: There exists no SF

polylogarithmic locality RMT protocol tolerating t > ( 1
2
+ ε)n

corruptions, for any 0 < ε < 1
2
.

✗ ✗ ✗ Theorem 4: Assuming PKI, trapdoor permutations with a reversed
domain sampler and compact and malicious circuit-private FHE, there
exists a polylogarithmic locality RMT protocol tolerating t < (1− ε)n
corruptions, for any ε > 0.

fully-homomorphic encryption (FHE) scheme [42], we can construct a proto-
col, which is not SF, and thus circumvents our impossibility result, allowing for
RMT tolerating any constant fraction of corruptions. Its construction relies on
a novel combination of adaptively secure (e.g., non-committing) encryption [12]
and (statically) secure FHE to obtain a homomorphic encryption scheme that,
although not fully homomorphic, allows to compute a class of circuits sufficient
for our RMT, while providing adaptive security (including deniability), a prop-
erty which is known to be impossible for general FHE [37].

Regarding our MPC feasibility results, using techniques from [15], we can
“lift” all the above all-to-all RMT feasibility results on adaptive all-to-all commu-
nication to adaptively secure MPC, under the assumption of enhanced trapdoor
permutations, or any other assumption that would allow for corruption-optimal
adaptively secure MPC over a complete point-to-point network. Similarly, we
can lift the SOS-RMT results to SOS-MPC.

1.4 Related Work

Although introduced as a notion explicitly for standard MPC by Boyle, Gold-
wasser, and Tessaro [9], the idea of low communication locality was already
implicit in a number of works on almost-everywhere secure (communication,
Byzantine agreement, and computation) protocols [17,18,23,27,39,40,44]. Such
protocols can operate over incomplete networks (or under-utilize a complete
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network to achieve low CL as we do here) but “give up” security for a num-
ber of parties; such so-called doomed parties might loose their input privacy,
and/or contribute a false input to or receive a false output from the compu-
tation. The goal of such almost-everywhere secure protocols is then to achieve
optimal tradeoffs between number of corruptions and number of doomed parties.
We refer to [16] for a recent formal treatment of and detailed literature review
of almost-everywhere secure protocols.

As already mentioned, Chandran et al. [15] improved on the resiliency of
the protocol from [9] and brought adaptive security to the model, at the cost,
however, of the strong atomic erase-and-multisend assumption, which restricts
the ability of an adaptive adversary to attack the protocol, as we discuss in
detail in Sect. 2. The results from [15] relied on a hidden-graph setup which,
by construction, was an expander graph. The follow-up work by Boyle et al. [6]
provided the first solutions to the problem for PRAM-based MPC, which in
addition achieved some load balancing properties. Following that, Boyle et al. [7]
investigated the question of whether an expander is in fact needed for sublinear
locality MPC, answering it in the negative.

Also related to our goals are works that explicitly target sublinear per-party
communication complexity. In this context, Dani et al. [22] presented a stati-
cally secure information-theoretic MPC protocol with a per-party communica-
tion complexity of O(

√
n) tolerating t < n/3 corruptions. King and Saia [38]

showed how to construct a Byzantine agreement (BA) protocol that is secure
against adaptive corruptions, where the communication complexity of every
party is Õ(

√
n), which leads to a BA protocol with Õ(n) communication locality

tolerating t < ( 13 − ε)n corruptions.
Also related to our work is the work of Matt et al. [41], who consider a weak-

ening of the adversary’s adaptivity, which they term delayed adaptive corruption.
Here the adversary who wants to corrupt a party needs to first indicate its inten-
tion, say, in round r, but the actual corruption does not take effect until a few
rounds later. Despite being useful for making statements about the load balance
and delivery guarantees of blockchain-inspired message propagation protocols, in
the context of sublinear locality we are considering, this assumption trivializes
feasibility questions. Indeed, the latter protocols tend to use parties (network
nodes) as “disposable” relays, i.e., once a party successfully relays its message
to its neighbors, corrupting it does not buy the adversary anything. This fact,
in combination with the delayed adaptive corruption assumption (which would
imply that the adversary’s ability to corrupt is slower than the message propa-
gation), would prevent the adversary from adaptively blocking discovered paths.

2 Model

Notation. Here we present some basic notation used throughout the paper. We
denote by [n] the set [n] = {1, . . . , n}. P = {p1, . . . , pn} denotes the set of parties
participating in the MPC protocol. We will often refer to parties as nodes in a
network. We will assume that the adversary is able to corrupt a number t < n
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of the parties; it will be convenient for our exposition to express corruption in
terms of a fraction τ of the total number of parties; hence t = τn, for 0 < τ < 1.

In any directed graph over P, we will use ρi,j to denote the length of the
shortest path from node i ∈ P to node j ∈ P. Further, we will denote by Γq(u)
the set of all nodes (not including u) that are at forward distance ≤ q from node
u ∈ P, and we will define γq(u) = |Γq(u)|. Hence, Γ1(u) denotes the set of all
outgoing neighbors of u. Analogously, we will denote by Γ in

q (u) the set of all
nodes v ∈ P such that ∈ Γq(v). Hence, Γ in

1 (u) denotes the set of all incoming
neighbors of u.

2.1 Adversarial Model

Next, we turn to defining the communication and adversary model for adaptively
secure computation with communication locality. We note that most works in
this area leave several of the model assumptions implicit or unspecified. Instead,
since our goal is to provide a complete feasibility landscape given such assump-
tions, we need to take a more rigorous and detailed approach to the specification
of the model.

Consistently with the classical MPC literature, we assume that parties are
connected with each other via a complete network of secure (i.e., authenticated
and private) point-to-point channels [5,32]. However, since each party can “talk”
to only a sublinear (i.e., polylogarithmic in n) number of other parties, no party
will be using all its point-to-point channels. The communication is synchronous,
which means all parties advance in a round-based manner, where whenever the
round switches everyone is informed, and messages sent in any round r are
guaranteed to be delivered by the beginning of the following round r+1—unless
the sender gets corrupted during r and no multi-send capability is assumed (see
below). We will consider an adaptive and rushing adversary who might actively
corrupt parties during the protocol execution.

The combination of sublinear communication locality and synchrony with
such an adversary brings up a number of modeling challenges, described below.

Localized Notification. In classical synchronous point-to-point networks, the
adversary is always informed when a party pi sends a message to another party
pj via their direct point-to-point channel. Notifying the adversary about such a
transmission implicitly captures the assumption that the adversary has a global
view of the entire network, including runtime-observable events, such as mes-
sages being transmitted. This gives him the ability to induce a worst-case (arbi-
trary/adversarial) scheduling of messages that makes for stronger security.

However, when we shift to settings with vastly large sets of parties—these are
the settings where sublinear-locality protocols become relevant—the assumption
that the adversary has a complete view of all the events that occur in the network
might be too strong. In fact, it is impossible to achieve adaptive security with
sublinear locality in this worst-case setting. Indeed, in low-locality settings3, a
3 Here “low” specifically means asymptotically smaller than the adversary’s corruption

budget.
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party might only communicate with a small number of its neighbors. Hence,
if the adversary is able to detect that an honest party p attempts to send a
message to another honest party, then he can simply corrupt the receiver and
block this transmission path; by performing this attack on every transmission of
p the adversary will be able to isolate the party from the rest of the network,
making all-to-all communication (and therefore “full” MPC) impossible4. Hence,
for such settings, it is natural and relevant to limit the visibility to the adversary
in message transmission events to only events happening near his neighborhood,
i.e., assume that the adversary only observes message transmissions on channels
that are incident to a neighborhood where he is present—e.g., channels in the
immediate neighborhoods of parties currently under his control. In our model, we
make this assumption—which is necessary for sublinear-locality communication
and MPC, and therefore implicit in all relevant works—explicit by assuming
that the adversary is only able to observe a transmission when the sender or the
receiver of that transmission is corrupted.

Adaptive Adversarial Scheduling. The above localized notification assump-
tion is natural in large networks (and necessary for adaptive corruption), but
it does create a challenge with allowing the adversary to perform worst-case
scheduling: Since the adversary does not have a full view of which honest-to-
honest channels are used in each round (recall that only a small, sublinear per
party, number is utilized), how can he induce a worst-case scheduling? In fact,
although the above localized-notification assumption was implicit in [15], this
delicate issue was not addressed.

To address it, we look back at the classical way of defining scheduling for an
adaptive and rushing adversary in [10]: Every round is split in “mini-rounds”,
where in each mini-round the adversary can have one party pi send his message
to another party pj . If in the protocol every party communicates with all other
parties in each round (a common protocol structure in feasibility results) then
this means that each round has n2 mini-rounds. The adaptive adversary is able to
corrupt parties between any two mini-rounds. Note that, as explicitly discussed
in [10], this means that a worst-case adversary would first deliver all messages
sent to corrupted receivers and then schedule the remaining messages in an
adaptive manner. To allow for worst-case scheduling in our model, we rely on
the exact same idea: In each round r, the adversary operates in n2 mini-rounds,
where each such mini-round corresponds to a unique (ordered) pair of parties
(pi, pj), allowing pi to send its rth round message to pj . The only difference
here is that if and while both pi and pj are honest, the adversary does not
learn whether or not a message was sent on the (pi, pj) channel in that round.
(Of course, if either pi or pj gets corrupted down the line, then the adversary
will find out at the point of corruption whether a message was exchanged in
round r, unless the corrupted party has had a chance to erase before becoming
corrupted—see discussion about erasures below.)
4 Here, we use “full” MPC to refer to the standard MPC formulation where no party

is left out; this is in contrast to “almost-everywhere” MPC [27], where some of the
parties are not given any correctness and privacy guarantees.
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Trusted Setup Assumptions. We assume classical correlated randomness
setups: The parties have access to a public-key infrastructure (PKI), which they
can use for digital signatures and public-key encryption. In addition, the parties
are given an appropriately sampled hidden random graph setup with polyloga-
rithmic degree [15]. As discussed in [15], and already mentioned earlier, under
standard hardness assumptions (i.e., existence of pseudo-random generators)
this graph setup can be replaced by a different correlated randomness setup,
namely, a secret key infrastructure (SKI); alternatively, if the PKI allows for non-
interactive key exchange (NIKE), then any other setup assumption is not needed
since an SKI can be created by pairwise invocation of the NIKE protocol—since
this is non-interactive, it does not result increase communication locality.

Secure Erasures. Secure erasures are common (and, in fact, necessary in SF
protocols) for adaptively secure MPC and, as we prove here, for point-to-point
communication over a sublinear-degree network graph. The assumption is that
(honest) parties are able to erase any part of their internal state (including parts
of their setup and/or randomness) so that if they get corrupted later on, the
adversary does not have access to the erased information. We note that in a
model where such erasures are possible, such actions take place responding to
protocol instructions, and therefore the adversary corrupting a party is allowed
to learn that an erasure was performed by the party in the past.

2.2 Atomicity Assumptions

Atomicity of Actions. One of the most important parameters of any adaptive
adversary setting, which is often left as implicit, is the question of atomicity of
operations for the honest party. A block of operations is considered atomic if,
once an honest party starts performing them, it is allowed to complete them
before the adversary gets a chance to act (e.g., perform additional corruptions).
Clearly, the higher the number of operations that are bundled in an atomic
block, the harder the job of the adversary becomes. One of the standard uses of
atomicity in the distributed computing and cryptographic protocols literature is
the so-called atomic multi-send, where if in a given round a party is supposed to
send a message to multiple parties, it is allowed to do so without any in-between
adversarial interference. One can view this assumption as a way to restrict the
rushing ability of the adaptive adversary. As such, in the recent literature the
(setting of an) adaptive adversary over a network of standard (point-to-point)
channels (i.e., with non-atomic multisend) is at times referred to as strongly
rushing [1,46] and the term “rushing” is used to refer to the setting where the
adaptive adversary operates over a network with atomic-multisend channels.

In this work we use the term “rushing” consistently with [10,11,26,33] to
characterize the adversary (i.e., its ability to schedule the delivery honest par-
ties’ messages) rather than the setting of network and adversary. Hence, atomic
multisend is a network/protocol-related atomicity assumption: When the proto-
col instructs a party p to deliver a message to several parties in some set Q in
the same round (or even a vector (mp1 , . . . ,mpQ) of messages, where each mpi

is
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to be sent to pi ∈ Q), then the party can send all those messages as an atomic
operation, meaning that these messages will be delivered to their intended recip-
ients at the beginning of the following round; in particular, the adversary cannot
corrupt p in the middle of the transmission and enforce that some pi ∈ Q receives
the message mpi

from p while some other pj ∈ Q does not.

Atomicity Assumptions Used in This Work. The way different feasibil-
ity assumptions are bound together in an atomic operation has an impact on
the feasibility of reliable communication (and therefore MPC) that one is able
to prove. As our goal is to investigate the different relevant assumptions for
sublinear- (polylogarithmic-) locality MPC, we next include a detailed discus-
sion on the ways these assumptions can be bound (and have been bound in prior
literature):

– No erasures/no (atomic) multisend (NE-NAMS): This is the worst-case net-
work and erasures model (fourth row of Table 1): (1) No honest party is
allowed to erase its internal state and the adversary, upon corrupting a party,
learns that party’s entire prior and current state, and (2) the parties send
their messages one by one as discussed in the adaptive scheduling above.

– No erasures/(atomic) multisend (NE-AMS): This corresponds to the second
row of Table 1): (1) (Lack of) erasures are as above, and (2) the parties can
atomically multisend their messages.

– Erasures/no (atomic) multisend (E-NAMS): This corresponds to the third
row of Table 1. We assume erasures but no atomic multisend. Hence: (1) In
each mini-round where a party pi is allowed to “speak” (we say the party is
activated); i.e., in each miniround corresponding to a pair (pi, pj) for some pj ,
the party pi can first erase and then send, but it cannot erase the message it
is about to send (including the identity of the receiver) until the next mini-
round when the party is activated, and (2) messages are sent in a one-by-one
manner (in mini-rounds as above), where between any two mini-rounds the
adversary can act.

– Erasures/(atomic) multisend (E-AMS): (1) Erasures are as in the previous
case, and (2) when a party is activated for sending, it is allowed to erase
and then send to a set Q of parties (but as above, it cannot erase this set or
the messages it sends until the next time it is activated). Note that this case
allows an adversary who has corrupted a party in Q to learn the message,
corrupt the sender, learn the identities of all other parties in Q (since the
sender is not given a chance to erase before) and corrupt all of these parties
thereby blocking this message.

– Atomic erasures and multisend (AE-AMS): This is the strongest of the atom-
icity assumpions (first row of Table 1) and corresponds to the model con-
sidered in past works on sublinear locality MPC with adaptive corruptions
(e.g., [7,15]). In this case, whenever a party is activated for sending a message,
it is allowed to send to a set Q of parties (where all are guaranteed to receive
their messages at the beginning of the following round) and perform erasures
after sending is complete and before the adversary has a chance to corrupt
this party. This, in particular, means that even if the adversary controls one
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of the parties in Q, he is still unable to learn who the other parties in Q are
even by corrupting the sender (as before corruption the sender is able to erase
their identities).

3 Technical Overview

Impossibility of Store-and-Forward Without Erasures. Our first tech-
nical contribution (see Sect. 4) is an impossibility result for all-to-all (in fact,
even one-to-all) store-and-forward RMT with a high expansion rate, if we do
not assume erasures. In particular, we show this impossibility for expansion rate
(logz(n), k log n

c log log n ), for all z > 1 and k < 1, where the degree of the communi-
cation graph is O(logc n). Intuitively, our definition of (L, �) expansion rate (see
Definition 2) captures the constraint that, in an honest execution of the proto-
col, when the sender’s message reaches parties up to a distance � from himself,
his message also reaches at least L parties through each of his neighbors. To
our knowledge, this property can be shown to hold for all CL MPC protocols
in the current literature. The result holds independently of whether or not we
assume atomic multisend. The proof utilizes a combination of graph-theoretic
and protocol results and can be summarized as follows: The first step in the
proof shows that, due to the polylogarithmic locality assumption, there must
exist a pair (ps, pr) of sender and receiver that are far enough from one another,
concretely, in distance greater than k log n

c log log n (Lemma 2). Looking ahead, this will
be the pair the adversary will try to disconnect. The expansion rate assumption
will then ensure that for each forward neighbor p of ps in the RMT to pr, the
graph rooted at p that is created by coloring the communication graph as the
message of ps (intended for pr) passes though the intermediate nodes, will have
sufficiently many colored nodes before it reaches pr, so that with high probability
one of them can be adversarial. Once this happens, the adversary will be able to
follow the thread backwards all the way to this neighbor p and then corrupt p
and all parties that p has sent the message to, thereby eliminating p as a possible
relayer. Since each such p can be eliminated with high probability, and ps had
at most polylogarithmically many neighbors, the above adversary will be able
to capture all these neighbors (and the colored graphs rooted at them) before
the message reaches pr (and without corrupting ps). This adversary can drop all
the message passing from captured nodes, thereby disconnecting ps and pr and
violating the security of the RMT. The detailed proof is given in Sect. 4.

We remark that, although the above SF subclass might appear somewhat
simple, it captures the structure of several natural message-propagation and
gossiping protocols—in particular those used in the context of blockchains, as
well as in so-called store-and-forward (switching) networks (cf. [3]). In fact, as
demonstrated in Lemma 1, the class of SF RMT protocols with expansion-rate
parameter that fall within our impossibility range includes all known message-
propagation protocols in the sublinear locality MPC realm. We stress that our
impossibility is not intended as a way to tightly characterize the feasibility land-
scape of CL RMT in the non-erasure setting, but rather to abstract the core of
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the above protocols that makes them inadequate against adaptive adversaries
in this setting. Notwithstanding, we are not aware of any technique that yields
a protocol in the non-erasure setting, as even common approaches for anony-
mous communication, e.g., onion-routing-based protocols, seem insufficient in
this highly adversarial setting (as discussed in Sect. 1.4).

The Power of Secure Erasures for CL Protocols. As discussed above,
the above impossibility (for SF RMT) protocols renders existing communication
protocols in the CL MPC (and blockchain-via-gossip) literature insecure when
erasures are not assumed. Continuing our exploration of the landscape, we turn
to the question of how far can the secure-erasures assumption take us in terms
of feasibility of RMT. Recall that [15] proved that if erasures and multisend can
be performed/bundled in an atomic operation, then any adversary corrupting
any constant fraction of the parties can be tolerated in RMT. Here we ask
what happens if we unbounded these two assumptions, i.e., assume either only
erasures, or erasures and multi-send as separate operations. And we shoot for
the strongest possible results: (1) Feasibility even without atomic multisend and
(2) Impossibility even with atomic multisend.

For the first (feasibility) result, our starting point is the RMT protocol
from [15], which at a high level operates as follows: The sender sends his signed
inputs to his hidden graph Round-1 neighbors,5 and whenever a party receives
a message in some round rnd, he relays it (in the next round, rnd + 1) to his
(rnd + 1)-round hidden-graph (forward) neighbors6.

The above protocol does not work here, since the communicating parties
can be cut off by the attack described in Sect. 1.2; namely, a corrupted node p
who receives a message from an honest neighbor q can corrupt q and all of q’s
neighbors before any chance of erasure. To make the above protocol secure when
(just) erasures are assumed, we make the following modification: Every round is
assigned to exactly one party in P, who, if he has a message to send, sends this
message to exactly one of his hidden graph (forward) neighbors at a time, and
then (in the next activation/round) erases both the fact that he sent it and the
relevant (used) edge from his hidden graph setup (i.e., the edge pointing to the
neighbor he just contacted). Importantly, unlike [15], where as soon as a party
relays a message he does not need to do any more relaying, we require every party
that has received a message to keep relaying it to its hidden graph(s) neighbors.
By forwarding messages to neighbors one at a time and erasing in between, the
adversary is prevented from corrupting the neighbors of honest relayers who get
corrupted, enabling a message to propagate into the network even after a past
relayer is compromised. Note that to allow for worst-case attacks, one needs to
devise a careful structure that gives the adversary sufficient attack-opportunities.
We ensure this by forcing on our protocol a structure that makes erasures slow
enough, so that the adversary is given enough time to attack (see Sect. 5.1.1).

5 Since we will be running at most polylogarithmic-round protocols, we can assume
wlog that the hidden graph is a multi-graph consisting of polylogarithmic, indepen-
dent copies of polylogarithmic-degree hidden graph setup.

6 Recall that the hidden graph is directed.
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The above protocol is clearly SF, and it even has an expansion rate that
matches the parameter of our non-erasure impossibility theorem. Hence, one
might be tempted to believe that if the adversary corrupts a constant fraction of
the parties, then with good probability he will be able to block the message in a
similar way as in our no-erasures impossibility proof. However, contrary to the
above intuition, we show that any adversary corrupting at most t < (1/2−ε)n of
the parties can be tolerated (with overwhelming probability). The proof follows
a careful probabilistic argument: Since, from a Chernoff bound, more than half
of the hidden graph neighbors of any party are honest, we can show that the
above protocol will create an avalanche effect: With good probability, for several
rounds from the start of the above protocol the set of honest parties that has
received the message will keep growing and it will become large enough to be
guaranteed to include a party who is one hop (in the hidden graph) from the
RMT receiver. Once this happens, it is game over for the adversary since this
party will relay the message to the RMT receiver in the following round.

The above result establishes (one-to-one) RMT assuming an honest majority
and erasures only (Theorem 2) and as a corollary, (one-to-one) RMT assum-
ing honest majority, erasures, and multisend, not necessarily bulked as a single
atomic operation (Corollary 1). Furthermore, it can be trivially extended to the
all-to-all RMT case (where every party wants to send a message reliably to every
other party) by using batching techniques from [15] (Corollary 2). This settles
the feasibility question.

We next turn to impossibility. Here we use an argument that can be seen as
mirroring the proof of Theorem 2: We prove that if the majority of the parties
can be corrupted (in particular, t > (1/2 + ε)n for any constant ε) then in any
RMT-protocol candidate, the adversary can with noticeable probability make
the expansion of the set of parties that learn the sender’s input shrink, resulting
in the message dying in the network before it reaches the receiver. This yields
a strong impossibility of RMT in the erasures model, which as we show holds
even if we assume multisend (Theorem 3).

Beyond Store-and-Forward. Next, we turn our attention to the question of
whether one can design RMT protocols in the non-erasure model, by devising
non-SF protocols, thereby circumventing our impossibility. The answer to this
question is far from simple, which further underpins the challenges that CL
protocol design poses.

Our key idea is to hide the store-and-forward procedure under the hood of
fully homomorphic encryption (FHE). This will hide the message and signature
(and in particular, origin and path) for transmitted messages. But as as we shall
see, this seemingly simple intuition needs several modification to work.

The protocol structure is similar to the previous protocol (which assumed
secure erasures), with the main difference being that the sender encrypts his
original message and signature with the receiver’s HE public key, and this cipher-
text is what is diffused through the low locality network. In particular, instead
of checking signatures in the clear, every party uses HE to check if any of the
received ciphertexts is an encoding of a message signed by the sender. If so,
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it (the circuit evaluated by HE) outputs a new, rerandomized HE ciphertext
that encrypts the sender’s message and signature (if several such messages are
received then use any of them); otherwise encrypt the all-zero message along
with a default signature on it. We denote the above protocol by ΠRMT

FHE .
In order for the above approach to work we need the HE scheme to satisfy

several properties that are common in the fully homomorphic encryption (FHE)
literature, namely compactness and malicious circuit-privacy [29,43,45]. Infor-
mally, compactness ensures that the ciphertext size depends only on the plain-
text and the security parameter (in particular it does not grow when the EvalFHE
operation is applied). On the other hand, malicious circuit privacy ensures that
the ciphertext that is computed by EvalFHE leaks no information about the cir-
cuit that was homomorphically evaluated, even when the ciphertext on which
EvalFHE is computed is maliciously formed. This last property will ensure that
applying EvalFHE automatically rerandomizes the ciphertext. We note that both
of these properties are common in standard FHE schemes (cf. [29,42,43,45]).

A caveat in the above idea is that it is known that adaptively secure FHE
which satisfies compactness is impossible [37]. Nonetheless, we construct a com-
pact adaptively secure FHE scheme which allows for the homomorphic evaluation
of the specific function needed by our RMT protocol. In particular the specific
function we require does not actually modify the contents of the underlying
message that was encrypted (but only checks validity of a signature “under-the-
hood” and then retains or disregards the underlying message). We stress that
existence of such a scheme does not contradict the impossibility result of Katz
et al. [37], as the circuits we consider are not in the class considered there.

Next, we describe the idea to circumvent the above impossibility. We con-
sider only the single-pair RMT setting, where one sender u wishes to send a
message to one receiver v. In order to ensure that ciphertexts can be simulated
without knowledge of the plaintext and, if, later on, the sender and/or receiver
is corrupted, the simulator can present randomness matching this ciphertext, we
use the following idea: The sender first encrypts the message m it wishes to send
with the receiver’s public key, using an adaptively secure encryption scheme (e.g.,
the non-committing encryption of Canetti et al. [13]). (Looking ahead, this will
allow a simulator to equivocate the message if needed.) Next, the sender signs the
resulting ciphertext c, and encrypts the resulting pair (c, σ) using the receiver’s
public key for a (statically secure) FHE scheme. For brevity, we will refer to the
above operation of encrypting with FHE an authenticated version of the adap-
tively encrypted plaintext as adaptively authenticated homomorphic encryption
(aaHE for short). Then the sender propagates the aaHE ciphertext through the
hidden communication graph, identically to the original protocol described in
Sect. 5.1.

However, unlike the original protocol, parties that are at distance > 1 from
the sender cannot tell if the aaHE ciphertext they receive is encrypting a valid
message (i.e., one actually originating from the sender). Looking ahead, this
property is the key part where our protocol deviates from the SF protocol struc-
ture. One solution would be for relayers to propagate all messages they receive.
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This, however, would result in an exponentially growing message and could com-
promise the security of the protocol, as the number of relayed messages would
leak information about the position of the relayer in the hidden graph.

This is where FHE comes to the rescue. Upon receiving several such cipher-
texts, a relayer homomorphically evaluates the circuit which on input all the
(plaintexts of the) received ciphertexts and the sender’s verification key, checks
if any of these plaintexts is of the form (c, σ), where σ is a valid sender’s signa-
ture on c, and if it finds one it outputs (an FHE ciphertext c̃ encrypting) it. (If
more than one such message is found then output the first one encountered in
the above search.) This will make sure that every relayer sends out ciphertexts
of the same length which encrypt either (c, σ), in case the sender was honest
and the relayer is on an honest path between the sender and the receiver, or
some arbitrary pair (∗, ∗) (chosen by the adversary) otherwise. In other words,
the above scheme ensures that the information transmitted by the above scheme
is exactly an aaHE encryption of the message m which our original SF protocol
from Sect. 5.1 would propagate, except that since this information is encrypted,
the adversary cannot use it to trace the message/aaHE ciphertext back to the
sender. We stress that the properties of compactness as well as malicious circuit
privacy, of FHE play a crucial role here, as we elaborate in the full version.

However, there is still a way the adversary can obtain information in the
above scheme that allows him to potentially link the sender to the transmitted
aaHE ciphertext, by observing which parties “speak” in which round. This can
easily be mitigated by decoy traffic: every party sends some message in every
round, where in the first round, parties other than the actual sender create and
send to their neighbors an aaHE ciphertext using dummy strings d and s in place
of m and σ respectively, with |d| = |m| and |s| = |σ|.7

The final missing piece in the protocol is to ensure that we can use the above
protocol for transmitting multiple messages (as is needed in MPC). It is not hard
to see that for this to be possible, we need to exclude replay attacks. Indeed,
although the adversary cannot create an aaHE of a new message corresponding
to honest senders, he can replay past aaHE of messages created by the sender.
The way to mitigate this is, as is common in the security literature, to use unique
publicly agreed identifiers—e.g., round-number and/or message ID—and make
sure that the circuit which EncFHE is run on, also takes as input (and checks) the
corresponding identifier. Yet, one needs to be careful about where the identifier
is placed inside the aaHE. If one encrypts (m,msg_ID) with aaHE then EvalFHE
will be unable to check the message ID msg_ID under the (adaptively secure)
encryption. Therefore, the actual message which is encrypted with FHE will be
of the form ((c,msg_ID), σ), where σ is a signature on the pair (c,msg_ID).

This completes the high-level protocol description. In Theorem 4 we prove
that the above protocol is an adaptively secure single-pair RMT protocol with
polylogarithmic locality. Intuitively, the fact that the message is transmitted
successfully between two honest parties follows from the fact that the protocol
view of the adversary in this case is fully simulatable, hence any attack by an

7 WLOG, we assume that valid RMT messages are from a fixed-size domain.
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adaptive adversary who does not corrupt the sender or receiver can be reduced
to the static case proven in [15]. If, on the other hand, the adversary corrupts
the sender or the receiver, then the only challenge for the simulator is to be able
to come up with coins that are consistent with the actual input m of the sender.
But this is straightforward in aaHE as the FHE ciphertext (i.e., encrypting
((c,msg_ID), σ)) is generated by the simulator and hence he can simply reveal
the keys used for this encryption. Having these coins, the simulator needs to
simply show how to open c to the message m. But for that, he can use the
adaptive security of the underlying encryption scheme.

From One-to-One CL RMT to Many-to-Many CL RMT. The FHE-based
protocol described above is for one-to-one RMT. One might might be tempted
to assume that having such a protocol gives us also all-to-all RMT in this model.
Indeed, at first thought, it appears that one can achieve this by simply running
n(n−1)

2 instances of ΠRMT
FHE in parallel over the same hidden graph (i.e., a joint

state) on separate slots, one for each sender-receiver pair, following the idea of
Sect. 5.1.2. However, the following major flaw breaks such a protocol.

Let u and v be honest parties in the network, and z be a party corrupted
by adaptive adversary A, with u being a sender while v and z act as receivers.
Further, suppose the shortest honest path from u to z is shorter than that from
u to v; i.e., z receives her message from u before (in an earlier round than) v.
Now, adversary A can decrypt z’s message in that same round and learn that
it is a valid message originating from u. Moreover, A can corrupt the neighbor
who sent her this valid message and decrypt that neighbor’s previously received
set of messages for z. In this manner, A can corrupt everyone who this message
has passed through by following the inverse path the message travelled. Clearly,
this is identical to the adversarial strategy employed in Sect. 4 to prove the
impossibility of SF RMT in the NE-NAMS model, and it is easy to see that the
same reasoning breaks the protocol here.

Intuitively, the root of the problem is that using FHE under the receiver’s
key renders messages “unlinkable” for everyone but the receiver. In single-pair
RMT, there is a single receiver and correctness is trivial if he is corrupted, so
ΠRMT

FHE suffices. But with multiple receivers, corrupted receivers can evidently
cause trouble for honest ones.

The above discussion, points to a restricted class of all-to-all RMT, which
we call sublinear-output-set RMT (in short, SOS-RMT) to come to the rescue.
SOS RMT allows every party (a sender) to send a (potentially different) mes-
sage to every receiver in a subset of Pof size o(n)—in our case this will be of
polylogarithmic size. Here is how we proceed towards the design of SOS RMT:

1. First we observe that the above one-to-one RMT can be trivially turned into
an all-to-one RMT, by having honest parties replace their decoy messages with
the actual message they want to send to the (single) receiver and adjusting
the homomorphic operation to keep (one copy of) all these messages as the
ciphertext is diffused through the network. We provide the specification of
this operation and the corresponding statement of security in Sect. 6.2. Note
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that this protocol uses the same edges of the underlying communication graph
as the one-to-one RMT protocol it “piggybacks” on.

2. Having such an all-to-one RMT it is straightforward to turn it to an SOS
RMT by using an independent (part of the) hidden-graph setup for each
of the receivers. Since there are polylogarithmic receivers and each of these
hidden (sub-)graphs has polylogarithmic degree, the resulting protocol will
also have polylogarithmic locality (see Corollary 4).

From CL RMT to CL MPC. Last but not least, we show how to turn
the above feasibility results on RMT into feasibility for CL multi-party com-
putation (CL MPC). For the erasures case, we can use the same approach as
the one used in [15] for this reduction: Use a constant-round MPC, e.g., [2],
where calls to a broadcast channels are replaced by a polylogarithmic-round (in
the worst-case) byzantine broadcast protocol. Because the expected constant-
round protocol of [35] is guaranteed to terminate with overwhelming probability
after polylogarithmically many round, we can simply employ this protocol. This
will result in polylogarithmically many invocations of the all-to-all RM from
Sect. 5.1, which consumes a polylogarithmic hidden graph setup, thereby yield-
ing a CL MPC protocol in the secure-erasures model (with or without atomic
multisend), which is secure under an honest-majority (adaptive) adversary. We
refer to Sect. 7.1 for details.

The more challenging case is the non-erasures setting. Here, we do not have
an all-to-all CL RMT, so we cannot hope for standard CL MPC—as the latter
would imply the former. Instead, we go for (CL) SOS MPC, which as with SOS
RMT, computes a function with inputs from all parties, but only distributes the
output to a sublinear (polylogarithmic) set of parties. We believe that the notion
of SOS MPC is interesting in is own accord, as it appears to be a best-possible
security notion in the CP non-erasure setting. Furthermore this notion is already
reasonable for the core application of CL MPC, namely computing sublinear
algorithms. Indeed, such algorithms typically have output asymptotically smaller
than n. In this case, having the output-set of SOS MPC distribute the otputs to
the whole player set (using the complete graph) does not incur a big overhead
in communication complexity.

To implement CL SOS MPC, we assume an additional setup, namely, anony-
mous PKIs for the FHE, NCE, and signature schemes used in our non-erasures
RMT protocol: Parties are given public keys but they do not know who has
the corresponding secret key. Given this setup and SOS RMT, SOS MPC can
be designed as follows: Let C denote a polylogarithmic size subset of the (own-
ers of the secret keys for) the anonymous public keys. (Any subset will do,
but for simplicity we can assume that this is the first polylog(n) public key in
a lexicographic order). The parties use SOS RMT (where the FHE and NCE
encryptions, and the underlying signatures are are with the anonymous PKIs)
to share their input to C. Then the parties in C run an MPC over SOS RMT
(again with these anonymous keys). However, to avoid leaking their identities
through communication pattern, all n parties participate in these RMTs, where
parties not in C simply send decoy traffic as in our one-to-one version of the
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non-erasure RMT protocol. The details on this construction and security proof
are given in the end of Sect. 7.1.

4 Impossibility in the NE-NAMS and NE-AMS Models

In this section, we show an impossibility result for a natural class of reliable
message transmission (RMT) protocols (and therefore also MPC) which we term
store-and-forward protocols, with low communication locality in NE-NAMS and
NE-AMS models—i.e., a model where secure erasures are not allowed—tolerating
an adaptive adversary corrupting a linear number of parties. As discussed above,
this class includes most if not all, gossip-style communication protocols which
have been used in the CL MPC and CL communication literature.

Let us first define the class of store-and-forward RMT protocols:

Definition 1 (Store-and-Forward). A PKI-hybrid RMT protocol with
sender ps and receiver pr, using parties in P who communicate over point-
to-point channels, is a store-and-forward (in short, SF) protocol if it has the
following structure:

– In the first round of the protocol, ps sends the message m (that he wishes to
transmit to pr) to any neighbors of his choosing, along with his signature σs

on m. ps does not participate in any other transmission.
– In every round j > 1, any party who has received a pair (m,σs), where σs

is a valid signature (with respect to ps’s verification key) on m, may forward
the pair (m,σs) to any neighbors of his choosing.

We remark that the above definition allows parties to selectively decide
(using their current state) when and to whom they forward the pair (m,σs).
As such it also captures protocols that use delays to hide communication pat-
terns. Furthermore, the assumption that in the first round, ps sends all his
protocol messages does not pose a restriction with respect to such scheduling—
i.e., on when ps sends his message to each neighbor—as such delays can be
trivially simulated by ps telling his neighbors (in the first round) to apply the
intended delay. We also point out that the above single-pair RMT can be trivially
extended to all-to-all RMT, by allowing each relayer p to forward vectors of pairs
((mi1 , σi1), . . . , (mi�

, σi�
)), where each (mij

, σij
) is a (message, pij

-signature)-
pair that p heard in a previous round.

Our impossibility result assumes a restriction on the above class of SF pro-
tocols, which relates the maximum length of a path traversed by the sender’s
message to the size of the set of parties that have seen the message. To define
this, we introduce the following graph theoretic notation.

Notation. We will denote by Gs,r the labeled graph with vertices V = P which
corresponds to a protocol’s execution in the following manner: an edge (w1, w2)
is added to Gs,r when w1 ∈ V sends the message (m,σs) to w2 ∈ V through their
point-to-point channel, in the RMT protocol between sender ps and receiver pr.
The label lw1,w2 of each such edge (w1, w2) is defined as the round of the RMT
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protocol in which this edge was added to Gs,r. Further, we denote by Grnd
s,r the

subgraph of Gs,r that only contains edges (w1, w2) having labels lw1,w2 ≤ rnd.

Definition 2 (Expansion Rate of SF RMT Protocols). We say that an SF
RMT protocol has expansion rate (L, �), where L ∈ [n] and � ∈ N, if the following
property holds at every round rnd in the protocol execution: If the maximum size
of a path in Grnd

s,r from ps to a sink (i.e., a node which has out-degree 0 in Grnd
s,r)

is �, then for any (forward) neighbor p of ps in Grnd
s,r, the number of nodes in the

subgraph of Grnd
s,r (with in-degree at least 1) rooted at p is at least L.

The above definition can easily be extended to all-to-all SF RMT protocols
(resp. one-to-all), by requiring that for every pair (ps, pr) (resp. for sender ps

and all receivers pr) the expansion rate of the transmission is as above.
Looking ahead, we will prove our impossibility result for SF RMT protocols

with expansion rate (logz(n), k log n
c log log n ) for all k < 1 and z > 1, where the

degree of the communication graph is O(logc n). To get a better intuition of
how the expansion rate affects the security of RMT protocols against adaptive
adversaries, it is worth looking at the simpler case with expansion rate (dξ−1, ξ),
where d = O(logc n) is the degree of the underlying communication graph and ξ
is a constant. We note that this seemingly simple case corresponds to (the first
of ξ rounds of) the “vanilla” SF strategy which, to our knowledge, is employed
by all CL MPC protocols in the literature.

Lemma 1. Assuming no erasures, there exists no polylogarithmic-locality SF
one-to-all RMT protocol with sender ps that has expansion rate ((logc n)2, 3)) for
some constant c > 1, and tolerates an adaptive adversary corrupting a constant
fraction of the parties.

Note that this is the case with ξ = 3. We give a proof sketch of the above
lemma in the full version. Since this is just a special case of the general theorem
(Theorem 1) proved later in this section, we keep the proof at an informal level,
to allow the reader to grasp the main ideas, and refer to the remainder of this
section for formal claims (that even cover the more general case).

The Case of Expansion Rate (logz n, k log n
c log log n ). We assume that the adver-

sary is able to corrupt a constant fraction τ of the nodes; hence t = τn. Our
impossibility result holds for any constant τ > 0. Our proof relies on a series of
lemmas (see the full version for proofs) on the (polylogarithmic-degree) commu-
nication graph and how the adversary attacks any RMT protocol π over such a
graph. Concretely, towards our impossibility result, we prove the following:

1. First, we will show (Lemma 2) that there exists a sender ps and a receiver
pr, such that the length of the shortest path between ps and pr (in the com-
munication graph Gs,r of π) is strictly greater than q, where q = k log n

c log log n ,
for any k < 1 and where the communication locality of the RMT protocol is
O(logc n). In other words, let rnd be the round of π in which the (ps, pr)-RMT
message first reaches a distance q from ps; then, pr is not connected to any
node in Grnd

s,r .
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2. The remainder of our proof strategy is as follows: Consider an execution of
RMT with sender ps and receiver pr as above; the communication graph
after rnd rounds is Grnd

s,r . The goal of the adversary (and what we will prove
he can achieve) is to corrupt each of the neighbors of ps in this graph, and
also corrupt everyone to whom they have (directly or indirectly) conveyed
information on ps’s message, before this information reaches the receiver pr.
Thus, our proof focuses on each of the neighbors of s individually, and shows
that the above is achieved with overwhelming probability. Using the fact that
the total number of neighbors of ps is O(logc n), and by the choice of q, we
can then prove that the probability of an adversary successfully attacking
all of ps’s neighbors and cutting ps off before (information on) his intended
message reaches pr is noticeable (Lemma 3). This forms a successful attack
on the RMT protocol π, as it disconnects ps and pr, completing the proof.

The formal statement of Lemma 2 now follows.

Lemma 2. For any given SF RMT protocol π with communication locality
O(logc n), let q = k log n

c log log n for any k < 1. Consider a sender ps. There exists
a receiver pr such that pr is not connected to any node in Grnd

s,r, where rnd
denotes the round of π in which the (ps, pr)-RMT message first reaches distance q
from ps.

The most interesting step which captures the essence of our proof is Lemma 3
below. The intuition of the proof is that because the distance between ps and pr

is larger than q, each ps-neighbor in Gs,r will have distance of at least q to pr

in Gs,r. Thus, any message originating from such a ps-neighbor needs at least q
hops to reach the receiver. Now consider the subgraph of Gs,r which grows from
a forward neighbor p of ps only, i.e., the graph consisting of p, his neighbours, his
neighbors’ neighbors and so on. To prevent ps from communicating with pr via
p, the adversary will first corrupt nodes at random with the hope of corrupting
at least one node in this subgraph. More specifically, let us consider an adversary
that initially corrupts a β < τ

4 fraction of random nodes in the whole graph Gs,r,
and show that such an adversary leaves both ps and pr initially uncorrupted—
and looking ahead, will avoid corrupting ps and pr after this initial step. The
first observation is that the message sent by ps and relayed by p will, with
overwhelming probability, hit some party in this initially corrupted set before it
hits the receiver pr. Once this happens, the adversary corrupts everyone who this
message has passed through by following the inverse path the message travelled.
This is feasible because nodes cannot erase any information, and in particular
where messages came from and where they were relayed. If the adversary is able
to do this for every ps-neighbor, then he successfully cuts ps off from pr. To
complete the proof we need to argue that this strategy can be launched within
the adversary’s corruption budget. Intuitively, this is the case, because in each
step the total set of parties who have received information about the sender’s
message grows by a polylogarithmic factor. Hence, by the above choice of q we
are guaranteed that the size of the set remains sublinear. Since the adversary
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has only spent a fraction of his linear budget in his initial corruption choice, he
still has sufficiently many corruptions to perform the above attack. The formal
statement follows.

Lemma 3. For any given SF RMT protocol π with communication locality
O(logc n), let q = k log n

c log log n for any k < 1. Further, let π have expansion rate
(logz n, q) for any z > 1. Consider a sender ps and a receiver pr, and an adver-
sary A who corrupts each node in P at random with constant probability β < τ

4 .
Then, with noticeable probability 1

poly(n) , A (i) does not corrupt more than τn
2

nodes in total; (ii) does not corrupt nodes ps and pr; but (iii) corrupts at least
one node in {p}⋃

Γ(q−1)(p) for every p ∈ Γ1(ps).

We now combine Lemmas 2 and 3 to obtain our impossibility result, in the
following theorem, the proof of which is given in the full version.

Theorem 1. In NE-NAMS and NE-AMS models (i.e. models not assuming era-
sures), there exists no SF protocol, with (logz n, q) expansion-rate, for all-to-all
RMT with polylogarithmic (i.e., O(logc n)) communication locality tolerating an
adaptive adversary corrupting a linear number t = τn (for any constant τ) of
parties, where q = k log n

c log log n , for any k < 1 and z > 1. The statement holds even
assuming an arbitrary correlated randomness setup, atomic multisend, and any
cryptographic hardness assumptions.

5 Positive Results in the E-NAMS/E-AMS Models

In this section, we assume that parties can erase their state. In our positive result,
we do not assume that parties have an atomic multisend operation available
to them, and the operations of sending a message and erasing state are not
atomically bound either. This corresponds to the E-NAMS model. We will first
show an all-to-all RMT protocol in this model with polylogarithmic locality
tolerating t < ( 12 − ε)n corruptions (Sect. 5.1); this automatically also implies a
protocol in the stronger E-AMS model. To complement this result, we also show
that tolerating t > (12 + ε)n corruptions is impossible in the E-NAMS model
(Sect. 5.2).

5.1 Polylogarithmic Locality RMT in the E-NAMS Model

Our protocol is a standard RMT protocol that allows a sender ps to reliably
transmit a message to a remote recipient pr over a polylogarithmic degree graph.
The all-to-all RMT is then obtained by having each pair use this RMT simulta-
neously. In addition to a PKI (for digital signatures) our protocol uses a hidden
graph setup as in [15] as follows: the setup picks a directed random Erdős-Rényi
graph G(n, p) = (V,E), where V = P is the vertex set and E is the set of edges
in G, and for every i, j ∈ V , Pr[(i, j) ∈ E] = p. This graph is given to the parties
such that every party learns its incoming and outgoing edges in G (and nothing
else). From Sect. 2, recall that for any node u ∈ V , we denote its set of outgoing
neighbors by Γ1(u). The set of nodes at distance ≤ i on a forward (directed)
path starting from a node u are denoted by Γi(u).
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5.1.1 Single-Pair RMT Protocol in the E-NAMS Model
We now describe our RMT protocol from honest sender ps to honest receiver

pr, where ps, pr ∈ V , denoted by ΠRMT . Our protocol assumes a PKI, a hidden
graph setup, existentially unforgeable digital signatures (equivalently, one-way
functions), worst-case secure erasures (as discussed in Sect. 2), and no atomic
multisend. As a corollary of our statement, at the end of the section we prove
that the protocol with a minor tweak works even if we assume atomic multisend
instead of just point-to-point communication. (The latter corollary is not that
surprising, as atomic multisend restricts the adversary’s power, but needs to
be nonetheless done with care to make sure the adversary cannot abuse it to
discover the hidden graph.)

Protocol Structure. To make the protocol and proof simplest, we will (implic-
itly) induce the following structure: The protocol advances in blocks of two
sequential (mini-)rounds, where in the first of these two minirounds a specific
sender gets a chance to send a message to a specific receiver, and in the second
one that sender gets a chance to erase his state (e.g., the information of the
previous receiver). These miniround-blocks are advanced in a round-robin fash-
ion: the first n blocks of such minirounds are with sender p1 and receiver each
party pj in the party set; the next n blocks of minirounds are for sender p2 and
receiver each party pj in the party set, and so on; after n such sets of n blocks,
the (n + 1)st set of n blocks is again with sender p1, etc. Thus, a sequence of
2n2 minirounds (where all parties have had a chance to send all the messages
they have for any other parties) constitutes a round in the protocol. We induce
the above structure as it makes the influence of an adaptive adversary clean, no
matter what model one is used to. Recall that we consider an adversary A who
can adaptively corrupt up to a τ fraction of nodes in the network. Hence, A is
allowed to order the blocks of minirounds within a single round (worst-case adap-
tive scheduling), and he can corrupt any party in between any two minirounds.
Observe that this protocol structure does not increase the CL of the protocol,
as a party will utilize its associated minirounds if and only if it has something
to send to the corresponding receiver.

More concretely, the protocol starts at round 0, and we call the entire block
below a round in the protocol.

– For spkr = 1 to n, do the following:
• If Party pspkr has a message to send to p0 it will do so.
• Party pspkr is given a chance to erase.
• If Party pspkr has a message to send to p1 it will do so.
• Party pspkr is given a chance to erase.

...
• If Party pspkr has a message to send to pn−1 it will do so.
• Party pspkr is given a chance to erase.

The protocol then proceeds to the next round, completing a total of R rounds.
The protocol ΠRMT itself is defined as follows.
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RMT Protocol Between ps and pr. Our protocol proceeds for a total of
R = logc̃ n rounds, for some constant c̃ > 1 (where rounds are defined as above).
All the verification keys of all nodes (denoted vkw for each party w ∈ P, with
corresponding signing key skw) are known to all parties.

1. First, ps signs (m, pr) with skps
. Denote the signed message (which comprises

of the (m, pr) as well as the signature on it) by μm. Party ps also initializes
ctrps

to the index of a random neighbor in Γ1(ps).
2. Now, at every round 0 ≤ j ≤ R, every node w does the following:

– w checks if he possesses a single valid message μm - i.e., a message of
the form (m, pr) that has been signed by ps. If so, then w sends μm to
Γ1(w)[ctrw] and sets ctrw = ctrw + 1. (This constitutes a mini-round,
and is immediately followed by another mini-round in which w is given a
chance to erase the information of the node in Γ1(w)[ctrw] he sent to in the
previous miniround.) Node w repeats the above over d many neighbors
in Γ1(w) by iteratively incrementing ctrw, where d = O(logc n) (for some
c > 1) is the communication locality. Otherwise, if he possesses no valid
message μm, then he does nothing.

– w disregards all messages from w∗ /∈ Γ in
1 (w).

We now prove that the above protocol is an RMT between ps and pr. Define
set, GOODj , 0 ≤ j ≤ R to be the set of nodes, who at the beginning of round
j of the protocol are a) honest and b) are in possession of the message μm. Let
gj = |GOODj | for all j. The idea of our proof is that no matter what the adversary
does, the set of parties that know the message (and will therefore forward it in
the next round) grows multiplicatively in each round of the protocol. Hence, in
logc̃ n rounds, the message will reach a large enough honest set, so that one of
them will be a neighbor of pr and will therefore forward the message to pr. Once
this happens, RMT will have succeeded.

To this end, we prove a series of lemmas, which can be found in the full
version. We first use a probabilistic argument to show that the good set GOOD1

of honest parties that have seen message μm at the beginning of round 1 has
size polylog(n), with overwhelming probability. Next, we show that, as long as
the adversary corrupts a minority of parties, the size of the good set increases
multiplicatively in every round by a constant greater than 1. Finally, we prove
that the above constant expansion will ensure that, in logc̃ n rounds, μm will
arrive at its intended receiver pr. This implies the following theorem.

Theorem 2. Assuming a PKI, a hidden graph setup as above, secure erasures,
one-way functions (for existentially unforgeable signatures) and an adaptive
adversary corrupting at most t < (12 − ε)n parties for any 0 < ε < 1

2 , the protocol
ΠRMT realizes reliable message transmission from ps to pr. The statement holds
in the E-NAMS as well as E-AMS models.

Since atomic multisend is a stronger model than the non-atomic multisend
setting considered above, the possibility result applies also to this case. Indeed,
given atomic multisend one can trivially simulate point-to-point communication
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between a sender ps and receiver pr, by having ps multisend the vector that
includes the intended message to the location corresponding to pr and 0 to
all other parties in its outgoing neighborhood of the hidden graph setup. This
proves the following statement about the protocol Π

(MS)
RMT which results from

instantiating ΠRMT via the above invocation of the atomic multisend primitive.

Corollary 1. Assuming a PKI, a hidden graph setup as above, secure erasures,
one-way functions (for existentially unforgeable signatures), atomic multisend,
and an adaptive adversary corrupting at most t < (12 − ε)n parties for any 0 <

ε < 1
2 , the protocol Π

(MS)
RMT described above realizes reliable message transmission

from ps to pr in the E-AMS model.

5.1.2 All-Pairs (aka All-to-All) RMT in the E-NAMS Model
We now describe our protocol for RMT between all pairs of parties, denoted

by Πa2aRMT. This will allow every party u to send a message to every other
party v in a total of R rounds (where a round is defined as earlier). At a high
level, Πa2aRMT works as follows. We will execute a total of n(n−1)

2 instances of
protocol ΠRMT from Sect. 5.1.1 in parallel. For every receiver v, every sender u
signs (m, v) with sku. Denote the signed message (which comprises of the (m, v)
as well as its signature) by μu,v. Every party w will maintain n(n−1)

2 slots, each
corresponding to one (u, v) pair. Now, at every round 0 ≤ j ≤ R, w checks if
it possesses any valid message that has been sent by sender u to receiver v (i.e.
a message μu,v of the form (m, v) that has been signed by u). It places this
message in the slot corresponding to the pair (u, v). w then sends (potentially)
all n(n−1)

2 messages to Γ1(w)[ctrw] and sets ctrw = ctrw +1. It is easy to see that
the communication locality of any party does not increase through this process
– only the number of messages sent by a party at a time increases from a single
message to a collection of n(n−1)

2 messages. Applying a union bound over all pairs
of senders and receivers, one can obtain the following corollary to Theorem 2.

Corollary 2. Assuming a PKI, a hidden graph setup as above, secure era-
sures, one-way functions (for existentially unforgeable signatures) and an adap-
tive adversary corrupting at most t < (12 − ε)n parties for any 0 < ε < 1

2 , the
protocol Πa2aRMT realizes reliable message transmission between all pairs of par-
ties (u ∈ P, v ∈ P). The statement holds in the E-NAMS as well as E-AMS
models.

5.2 Impossibility of Dishonest Majority in the E-NAMS Model

In this section, we shall show that it is impossible to construct SF reliable mes-
sage transmission (RMT) protocols (and therefore also MPC) with low commu-
nication locality, in a model even with erasures, if the corruption threshold is
1
2+ε for any constant ε > 0. To do so, we shall prove that an adversary can break
correctness of any RMT protocol between some pair of honest nodes in any such
protocol. The proof idea can be seen as symmetric to the proof of Theorem 2. In
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particular, in Theorem 2 we showed that if the adversary corrupts t < ( 12 − ε)n
parties, for any constant 0 < ε < 1/2, then the set of honest nodes that learns
(and forwards) the sender’s message grows exponentially fast, and therefore in
logc̃ n rounds it will be large enough to hit a neighbor of the receiver. Here we
prove that if t ≥ ( 12 + ε)n for any constant 0 < ε < 1/2, then there is a strategy
making the above set shrink exponentially fast, which can make the message
disappear before reaching the receiver pr.

Consider an RMT protocol between an honest sender ps and an honest
receiver pr. We shall show that for any SF RMT protocol from ps to pr, an
adversary that corrupts 1

2 + ε parties can prevent the message m from reaching
pr in any polynomial number of rounds. As in Sect. 5.1, let the RMT protocol
from ps to pr begin at round 0, and define GOODj , 0 ≤ j ≤ R to be the set of
nodes, who at round j of the protocol are a) honest and b) are in possession of
the message μm. Let gj = |GOODj | for all j.

Adversarial Strategy. Our adversarial strategy is as follows: First, corrupt
nodes in the graph uniformly at random (i.e., every node is corrupted with
probability 1

2 + ε
4 ). Next, if an adversarial node receives a message (that was a

part of the RMT protocol between ps and pr) from some node w (other than
ps), then corrupt w. Do not forward any messages.

We now prove a series of lemmas (see full version) to show that our adversary
violates the assumed security of RMT. We first show that our adversary corrupts
at most 1

2 + ε fraction of nodes, with overwhelming probability. We next show
that after the initial round, only a small set of honest nodes are in possession of
the message. Finally, we show that after every round in the protocol, the number
of honest nodes having the message reduces. This implies the following theorem.

Theorem 3. In the E-NAMS model (i.e., without atomic multisend), there exists
no all-to-all store-and-forward RMT protocol with polylogarithmic CL tolerating
an adaptive adversary corrupting t ≥ (12 + ε)n (for any constant 0 < ε < 1

2)
parties. The statement holds even assuming an arbitrary correlated randomness
setup, secure erasures, and any cryptographic hardness assumption.

Remark 1. We note that the above argument holds if we do not assume atomic
multisend (i.e., in E-NAMS). Indeed, in the stronger E-AMS model, the nodes
might be able to do some smart multisend-based relay that prevents the set of
parties that know the message from shrinking, or slows down the rate. We leave
this interesting question as a future research direction.

6 Polylogarithmic Locality RMT in the NE-NAMS Model

In this section, we propose RMT protocols which are not store-and-forward,
and can therefore circumvent the impossibility result from Sect. 4. Our key idea
is to remove the ability of the adversary to identify the sender by looking at
intermediate messages, with the use of fully homomorphic encryption (FHE) to
hide the contents (and in particular, origin and path) of transmitted messages.
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The resulting protocol for single-pair RMT is described in Sect. 6.1. However,
we subsequently note that the same protocol loses its security when composed
in parallel for the purpose of all-pairs RMT. In the following Sect. 6.2, we show
how the protocol can be extended to obtain RMT from all senders to polylog(n)
receivers, which we term sublinear output-set RMT (or SOS-RMT) and later use
directly to achieve communication-local SOS-MPC in Sect. 7.2.

6.1 Single-Pair RMT Using Fully Homomorphic Encryption

We next provide a description of our (one-to-one) RMT protocol in the non-
erasure case under strong cryptographic assumptions. Here we denote the sender
by u and the receiver by v. See full version for the proof of Theorem 4.

Single-pair RMT Protocol ΠRMT
FHE Between u and v from FHE and Adap-

tively Secure (Non-committing) Encryption. Similarly to the protocol
from Sect. 5.1, our protocol proceeds for a total of R = logc̃ n rounds for any
constant c̃ > 1 (where rounds are as defined in Sect. 5.1). The protocol assumes
setup for the following schemes:

– An existentially unforgeable digital signature scheme (KeyGen, Sign, Verify).
Denote by vku the verification key of the sender u and by sku the correspond-
ing signing key.

– A non-committing encryption scheme (KeyGenNCE, EncNCE, DecNCE). Denote by
pkNCEv and skNCEv the encryption and decryption keys of the receiver.

– A compact and malicious circuit-private FHE scheme (KeyGenFHE, EncFHE,
EvalFHE, DecFHE). Denote by pkFHEv and skFHEv the encryption and decryption
keys of the receiver, respectively.

The protocol also assumes that the parties have agreed on unique public message
IDs msg_ID for the transmitted messages (this will include the protocol ID, the
party ID, and the current round). The protocol proceeds as follows:

1. Computation of each party when the protocols starts (to compute the first
message they will send):

– Code for the sender u: First, u encrypts m with v’s (non-committing)
encryption key pkNCEv ; denote the resulting ciphertext by c. Then, u signs
(c, v,msg_ID) with sku; denote the corresponding signature by σ. Finally,
u encrypts the pair ((c, v,msg_ID), σ) with v’s FHE encryption key pkFHEv ;
denote the resulting (aaHE) ciphertext by c̃u.

– Code for each party w �= u: Party w computes c as an encryption of
the all-zero message of size |m| with v’s (non-committing) encryption key
pkNCEv and sets σ to the all-zero string of same size as the actual signature
of u above. Then, w encrypts ((c, v,msg_ID), σ) with v’s FHE encryption
key pkFHEv ; denote the ciphertext by c̃w.

2. Next, at any round 0 ≤ j ≤ R, every node w does the following: Let Cw,j =
{ỹ1, . . . , ỹq} be the ciphertexts that party w has received in the previous
rounds (Cw,j = {c̃w} if no messages have been received yet.)
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– w applies the homomorphic evaluation function EvalFHE on input the
ciphertexts in Cw,j , the verification key vku of the sender u, and the
pre-agreed message ID msg_ID to compute the following function: If any
ỹ ∈ Cw,j can be parsed as ((c, v,msg_ID), σ), where σ is a valid signa-
ture on (c, v,msg_ID) according to the sender’s verification key vku, then
output ((c, v,msg_ID), σ). (If there are multiple such ỹ, output the one
with the smallest c.) Party w denotes the resulting FHE ciphertext by
c̃w,j , sends it to Γ1(w)[ctrw] and sets ctrw = ctrw + 1.

– w disregards all messages from w∗ /∈ Γ in
1 (w).

3. At round R, v uses his FHE decryption key to decrypt each FHE ciphertext
in Cv,R (i.e., all ciphertexts received in the protocol). If any ỹ ∈ Cv,R can be
parsed as ((c, v,msg_ID), σ), where σ is a valid signature on (c, v,msg_ID)
according to the sender’s verification key vku, then v uses his NCE decryption
key skNCEv to decrypt c and outputs the corresponding message as the one sent
by u (if more than one such c exists, then v takes the one corresponding to the
smallest message m). Otherwise, v outputs 0 as the message received from u.

Theorem 4. Assuming a PKI, hidden graph setup, trapdoor permutations with
a reversed domain sampler, and compact and malicious circuit-private FHE [42],
protocol ΠRMT

FHE securely realizes single-pair RMT, tolerating an adaptive adver-
sary who corrupts t < εn parties for any 0 ≤ ε < 1, in the NE-NAMS model.

6.2 Multi-sender RMT

While ΠRMT
FHE cannot be composed in parallel to achieve all-pairs RMT as dis-

cussed in Sect. 3, we show in this section that simple joint state parallel compo-
sition of single-pair RMT is sufficient to construct an all-to-one RMT protocol
Πa21RMT

FHE , and the usage of multiple all-to-one RMT instances over independent
hidden graphs can further extend this to an SOS-RMT protocol ΠSOS−RMT

FHE . See
the full version for detailed protocols and proofs.

Corollary 3. Assuming a PKI, a hidden graph setup, trapdoor permutations
with a reversed domain sampler, and compact and malicious circuit-private FHE,
Πa21RMT

FHE securely realizes all-to-one RMT, tolerating an adaptive adversary who
corrupts t < εn parties for any constant 0 ≤ ε < 1, in the NE-NAMS model.

Corollary 4. Assuming a PKI, a hidden graph setup, trapdoor permutations
with a reversed domain sampler, and compact and malicious circuit-private FHE,
ΠSOS−RMT

FHE securely realizes SOS-RMT, tolerating an adaptive adversary who
corrupts t < εn parties for any constant 0 ≤ ε < 1, in the NE-NAMS model.

7 Communication-Local MPC

We finally turn to the question of adaptively secure MPC with polylogarithmic
communication locality. In Sect. 7.1, we show that all-pairs RMT can be used to
realize CL MPC, and we outline our impossibility and feasibility results for CL
MPC in the NE-AMS, E-NAMS, and E-AMS models. In Sect. 7.2, we state our
final feasibility result for CL SOS-MPC in the NE-NAMS model.
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7.1 CL MPC in the NE-AMS, E-NAMS, and E-AMS Models

All our negative results on all-to-all RMT trivially apply to MPC, since the
former is a special case. Next, we show the feasibility of CL MPC, under the
combination of the feasibility bounds of all-pairs RMT proven here and the
classical t < n/2 bound, necessary and sufficient for standard (non-CL) MPC.

The idea for the above is as follows: Execute the MPC protocol where the
point-to-point communication is replaced by encrypting the message with the
public key of the receiver and sending it using a fresh all-pairs RMT execution
(as constructed here). As noticed in [15], to achieve adaptive security, each round
of the MPC protocol will require RMT on a new hidden graph setup which, in
the worst case, induces an additive polylogarithmic increase in the CL in every
round. To keep the overall CL of the MPC polylogarithmic, one needs to be
careful that the total number of point-to-point rounds in the MPC protocol
is at most polylogarithmic. To this direction, we adopt the following solution
from [15]: Invocations to the (typically round-intensive) broadcast channel are
replaced by a polylogarithmic-round broadcast protocol provided in [15]. This
protocol can be used within an adaptively secure constant-round MPC protocol
(e.g., [2]) to get an overall polylogarithmic-round MPC protocol.

Theorem 5. Assuming a PKI, a polylogarithmic-degree hidden graph setup8,
and trapdoor permutations with a reversed domain sampler, the following feasi-
bility and impossibility statements hold for the existence of a store-and-forward
protocol for securely evaluating any given n-party function against an adaptive t-
adversary satisfying the following two conditions with overwhelming probability:

– Locality. Every party communicates with at most O(log1+ε n) other parties,
for some constant ε > 0.

– Rounds. The protocol terminates after O(logε′
n) rounds, for some constant

ε′ > 0.

1. In the NE-AMS and NE-NAMS models, i.e. if we do not assume erasures, then
no such MPC exists if t = O(n) and the protocol has an expansion rate of
(logz n, k log n

(1+ε) log log n ), for some k < 1 and z > 1.
2. In the E-NAMS and E-AMS models, i.e., if we assume erasures (with or with-

out atomic multisend), then there exists such an MPC protocol if t < (12−ε′′)n
for some constant ε′′.

3. In the E-NAMS model, no such MPC exists if t > (12 +ε′′)n for some constant
ε′′.9

8 Recall that this can be replaced by an SKI or a NIKE scheme assuming the PKI
supports it.

9 Note that Theorem 3 implies that if we assume erasures as an atomic operation and
no atomic multisend, then no MPC as in the above theorem exists if t > ( 1

2
+ε′′)n for

some constant ε′′. However, this is anyway implied by the tightness of the condition
t < n/2 for adaptive security even in the complete (i.e., non-CL) point-to-point
channels setting, and is therefore omitted.
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7.2 CL Sublinear-Output-Set (SOS) MPC in the NE-NAMS Model

Since we do not have all-pairs RMT in the NE-NAMS model, we propose a pro-
tocol for sublinear output-set MPC (SOS-MPC), where a sublinear (here poly-
logarithmic) set of parties learns the output. A high-level outline is as follows.

We first select a committee of some polylog(n) parties; these parties per-
form the actual MPC and learn the output. The first task here is to select the
committee members and keep their identities hidden from the adversary, while
still allowing parties to send messages to committee members. We resolve this by
introducing an anonymous PKI setup, for all three schemes involved, namely the
signature scheme, the non-committing encryption scheme, and the FHE scheme.
Each party receives its secret keys, while the public keys are made known to
everyone without disclosing identities. The setup also selects some polylog(n)
parties at random to form the committee, and publishes their public keys.

Next, each party creates polylog(n) secret shares of his MPC input, and
distributes these shares to the committee with a single instance of SOS-RMT
(using ΠSOS−RMT

FHE ). Finally, the committee members simulate an arbitrary MPC
protocol to obtain the output. This can be realized by simulating each round of
communication in the MPC protocol via a new instance of SOS-RMT, wherein
each committee member sends the appropriate message for the MPC protocol
to other committee members, while other parties just send a dummy all-zeros
message to each committee member. After every RMT instance, each committee
member decrypts messages received from other committee members.

A detailed description of our final protocol can be found in the full version,
and the following theorem is immediate.

Theorem 6. Assuming an anonymous PKI, a polylogarithmic-degree hidden
graph setup, trapdoor permutations with a reversed domain sampler, and com-
pact and malicious circuit-private FHE, there exists a protocol, satisfying the
following two constraints with overwhelming probability:

– Locality. Every party communicates with at most O(log1+ε n) other parties,
for some constant ε > 0, and

– Rounds. The protocol terminates after O(logε′
n) rounds, for some constant

ε′ > 0,

which securely evaluates any given n-party function against an adaptive t-
adversary corrupting up to t < n/2 parties in the NE-NAMS model, and delivers
the output to any O(logε′′

n) parties, for constant ε′′ > 0.
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