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This paper studies online resource allocation with replenishable budgets, where budgets can be replenished

on top of the initial budget and an agent sequentially chooses online allocation decisions without violating the

available budget constraint at each round. We propose a novel online algorithm, called OACP (Opportunistic

Allocation with Conservative Pricing), that conservatively adjusts dual variables while opportunistically

utilizing available resources. OACP achieves a bounded asymptotic competitive ratio in adversarial settings as

the number of decision rounds ) gets large. Importantly, the asymptotic competitive ratio of OACP is optimal

in the absence of additional assumptions on budget replenishment. To further improve the competitive ratio,

we make a mild assumption that there is budget replenishment every ) ∗ g 1 decision rounds and propose

OACP+ to dynamically adjust the total budget assignment for online allocation. Next, we move beyond the

worst-case and propose LA-OACP (Learning-Augmented OACP/OACP+), a novel learning-augmented algorithm

for online allocation with replenishable budgets. We prove that LA-OACP can improve the average utility

compared to OACP/OACP+ when the ML predictor is properly trained, while still o�ering worst-case utility

guarantees when the ML predictions are arbitrarily wrong. Finally, we run simulation studies of sustainable

AI inference powered by renewables, validating our analysis and demonstrating the empirical bene�ts of

LA-OACP.

CCS Concepts: • Theory of computation→ Online algorithms.

Additional Key Words and Phrases: Online Allocation, Replenishable Budget, Learning-Augmented Algorithm

ACM Reference Format:

Jianyi Yang, Pengfei Li, Mohammad J. Islam, and Shaolei Ren. 2024. Online Allocation with Replenishable

Budgets: Worst Case and Beyond. Proc. ACM Meas. Anal. Comput. Syst. 8, 1, Article 4 (March 2024), 34 pages.

https://doi.org/10.1145/3639030

1 INTRODUCTION

Online allocation subject to resource (or budget) constraints models a sequential decision-making
problem where the agent needs to allocate resources without violating the available budget con-
straint at each round. It is a central problem of critical importance in numerous applications, such
as revenue management, online advertising, computing resource management, among many others.
For example, Internet companies need to select advertisements based on online user arrivals subject
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to advertisers’ budget constraints; cloud operators need to dynamically allocate user requests to
available machines subject to resource constraints; and edge devices need to dynamically optimize
its battery energy usage while intermittently harvesting energy from the surrounding environment.
As such, the problem of online allocation and its variants have received rich attention in the past
few decades [9, 11, 31, 40, 55, 59].

Online allocation decisions are temporally coupled due to total budget constraints, thus requiring
complete o�ine information to obtain the optimal solution. Nonetheless, the availability of only
online information in practice makes online allocation extremely challenging. To meet budget
constraints in online settings, a commonly considered approach is Lagrangian relaxation, which
includes weighted budget constraints as a regularizer for online decision making where the weights
are dual variables and can be interpreted as the budget/resource price [21, 45, 49, 63]. Consequently,
by adjusting the resource price, the agent’s budget consumption is also governed so as to meet
the budget constraint. For example, there have been a variety of approaches to updating the dual
variables online [1, 9, 11, 45, 63].

Despite these e�orts and advances in various (relaxed) settings such as stochastic utility functions
[9], optimizing the total utility subject to strict budget constraints still remains a challenging problem
in adversarial settings, where the utility functions can be arbitrarily presented to the agent. In fact,
competitive online algorithms for adversarial settings have only been proposed very recently. More
concretely, online resource allocation with a single-inventory constraint [41] and a multi-inventory
constraint [40] are two of the very few known competitive online algorithms with a �nite number of
decision rounds under the assumption that the utility functions of each inventory are separable. In
[11], an online allocation algorithm that adjusts the dual variable is proposed, achieving a bounded
asymptotic competitive ratio in adversarial settings when the length of each problem instance
is su�ciently long. Nonetheless, these studies [11, 40, 41] are crucially limited in the following
aspects.
• No budget replenishment. First and foremost, the total budget constraint is �xed without al-

lowing replenishment online [11, 40, 41]. In fact, these algorithms explicitly assume that budgets
are not replenishable, which would otherwise void their competitive analysis. However, budget
replenishment in an online manner is common in practice, e.g., dynamic energy harvesting (see
Section 2.3 for additional examples). While some studies [7, 28, 30, 50, 60] have considered budget re-
plenishment, they typically focus on independent and identically distributed budget replenishment.
In contrast, arbitrary budget replenishment in adversarial settings naturally provides additional
power to the adversary, thus creating signi�cantly more challenges.
• Worst-case performance only. Second, the studies [11, 40, 41] only focus on the worst-case

performance in terms of the competitive ratio. As a result, the conservativeness needed to address
the worst possible problem input signi�cantly limits their average-case performance for most typical
problem inputs. Online algorithms based on machine learning (ML) models have been considered
for various problems [2, 12, 35, 59], including online resource allocation [23, 24]. Nonetheless,
unlike the hand-crafted online algorithms [11, 40, 41], ML-based online optimizers may not o�er
worst-case performance guarantees and can result in signi�cantly bad results when, for example,
the training-testing distribution di�ers. Even though heuristic techniques such adversarial training
can empirically mitigate the lack of performance robustness to some extent, it is still challenging to
provably guarantee the worst-case performance of ML models. Thus, it remains an open problem
to achieve the best of both worlds — improving the average utility while o�ering the worst-case
robustness (in the presence of budget replenishment). In fact, as highlighted above, there even do
not exist competitive online algorithms that address budget replenishment in adversarial settings,
let alone a learning-augmented algorithm that can improve the average performance while provably
o�ering worst-case performance guarantees.
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Algorithm Budget replenishment Budget cap Worst-case robustness Average utility bound

CR-Pursuit [41] ; NA 7 ;

A&P [40] ; NA 7 ;

DMD [11] ; NA 7 ;

OACP (our work) 7 7 7 ;

OACP+ (our work) 7 7 7 ;

LA-OACP (our work) 7 7 7 7

Table 1. Comparison between our work and recent online competitive allocation algorithms for adversarial
se�ings. Algorithms for non-adversarial se�ings are discussed in Section 6 and not shown in the table.

Contributions. In this paper, we address the above points and consider online allocation with
replenishable budgets, where the agent receives budget replenishment on the �y and needs to
choose irrevocable online decisions to allocate" resources. The goal of the agent is to maximize the
total utility over ) rounds subject to per-round available budget constraints, where the per-round
utility is a function in terms of the online allocation decision.
We �rst consider an adversarial setting and propose an online algorithm, called OACP (Oppor-

tunistic Allocation with Conservative Pricing), that updates the dual variable (i.e., resource pricing)
online to regulate the agent’s budget allocation and achieves an asymptotic competitive ratio as
) → ∞. The key insight of OACP is that we treat the uncertain budget replenishment di�erently
than the initially-assigned �xed budget and set the resource price in a conservative manner, which
encourages the agent to be more frugal while still allowing the agent to opportunistically utilize
the replenished budgets when applicable. Most importantly, we prove in Theorem 3.1 that OACP
achieves the same asymptotic competitive ratio bound as the state-of-the-art optimal bound in
[11] that does not address budget replenishment. In our setting with replenishable budgets, the
adversary naturally has more power than the setting of a �xed known budget, as it can arbitrarily
present budget replenishments to the agent. Therefore, achieving the same asymptotic competitive
ratio as that of the state-of-the-art algorithm for �xed budget allocation [11] highlights the bene�t
of OACP in terms of addressing additional uncertainties of replenished budget.
Next, we propose OACP+ to utilize the budget replenishment more e�ciently under a mild

assumption that the budget is replenished at least every) ∗ g 1 decision rounds. Speci�cally, OACP+
divides the whole episode of ) rounds into  frames of unequal lengths and performs frame-level
budget assignment online and a round-level online budget allocation within each frame. To account
for the maximum budget cap, a new threshold-based budget assignment strategy is proposed to
decide the assigned budget for each frame. Given the assigned budget for each frame, we apply OACP
for round-level budget allocation while deferring all the budget replenishment to future frames.
We prove that OACP+ achieves a higher asymptotic competitive ratio than OACP if the total budget
replenishment is positive in every ) ∗ rounds (Theorem 3.2).

Last but not least, we move beyond the worst-case and aim to maximize the average utility while
still o�ering worst-case utility guarantees. We propose a novel learning-augmented algorithm,
called LA-OACP (Learning-Augmented OACP), that integrates a trained ML predictor with OACP. More
concretely, LA-OACP utilizes the ML prediction (i.e., online allocation decision by the ML-based
optimizer) and expert decision (from OACP or OACP+) as advice, and judiciously combine them.
The key novelty of LA-OACP is to introduce a new reservation utility that produces a constrained
decision set within which all decisions can meet the worst-case utility constraint (de�ned with
respect to OACP or OACP+). Meanwhile, LA-OACP ensures that the online decisions are chosen from
the constrained decision set while being close to ML predictions so as to exploit the bene�ts of
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ML predictions to improve the average utility. We rigorously prove that LA-OACP can improve the
average utility compared to OACP when the ML predictor is properly trained, while still o�ering
worst-case utility guarantees (see Theorems 4.1 and 4.2).

Finally, we run simulation studies of sustainable AI inference to maximize the total utility subject
to energy constraints with renewable replenishment. Our results validate the analysis of OACP,
OACP+ and LA-OACP, demonstrating the empirical advantage of LA-OACP in terms of the average
utility over OACP and OACP+ as well as other baseline algorithms.

We highlight the main di�erence between our algorithms and recent online allocation algorithms
that consider adversarial settings in Table 1. Our major contributions are also summarized as

follows. First, we propose two novel online algorithms OACP and OACP+ that achieve bounded
asymptotic competitive ratios for online allocation with replenishable budgets in adversarial
settings (Theorem 3.1 and Theorem 3.2). To our knowledge, the proposed provably-competitive
algorithms advance the existing competitive online algorithms to address budget replenishment
in adversarial settings for the �rst time [11, 40, 41]. Second, we move beyond the worst case and
propose a novel learning-augmented algorithm, LA-OACP, that probably improves the average
utility compared to OACP or OACP+ (Theorem 4.2), while still o�ering worst-case utility guarantees
for online allocation with budget replenishment for any problem instance (Theorem 4.1).

2 PROBLEM FORMULATION

In this section, we present the problem formulation for online allocation with replenishable budgets.
Notations: For the convenience of presentation, we �rst introduce the common notations used

throughout the paper. Unless otherwise noted, we use [# ] to denote the set {1, 2, · · · , # } for a
positive integer # . E(·) is the expectation operator, P is a probability measure, I(G) is an indicator
function (i.e., I(G) = 1 if the condition G is true and I(G) = 0 otherwise), and R�+ and R�++ are
�-dimensional non-negative and strictly positive real number spaces, respectively. For a vector G ,
G 9 denotes its 9-the element and ∥G ∥ is its norm (;2 norm by default). For two vectors G and~, we use
G f ~ to denote element-wise inequality, i.e., G 9 f ~ 9 for all 9 and use G » ~ to denote element-wise

product. min(G,~) denotes the element-wise minimization. We also use [G]1 = min (G, 1) and
[G]+ = max (G, 0), where the capping and rectifying operators are applied for each element when G
is a vector. For a sequence of variables 21, · · · , 2) , we use 28:9 to denote the subsequence 28 , · · · , 2 9
for 1 f 8 f 9 f ) ; we have 28:9 = ∅ if 8 > 9 .

2.1 Model

We consider an online allocation problemwith replenishable resource budgets, where each sequence
(a.k.a., problem instance) includes ) consecutive rounds and involves sequential allocation of"
types of resources based on online information.

At the beginning of a sequence (i.e., round C = 1), the decision maker (i.e., agent) is endowed with
an initial resource budget �1 = [�1,1, · · · , �",1] ∈ R"++, where �<,1 = )d< is the initial resource
budget for type-< resource, with d< > 0 being the per-round average budget initially assigned
to the agent, for < ∈ ["]. Moreover, we have �1 f �max, where �max = [�1,max, · · · , �",max]
represents the maximum budget cap. The inclusion of �max is both practical and general: �max

captures practical constraints such as battery capacity for energy resources, space constraint for
product inventory, among others, and the budget cap can be e�ectively voided when setting a large
�<,max → ∞ for< ∈ ["], to which case our design also applies.
At the beginning of each round C ∈ [) ], the agent is presented with a utility function 5C (G) :

R"+ → R+, where G ∈ X is the allocation decision. Additionally, the agent also receives a potential

budget replenishment �̂C =
[

�̂1,C , · · · , �̂",C
]

∈ R"+ , resulting in a total budget ofmin
(

�C + �̂C , �max

)

=
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�C + �C , available for allocation at round C , where �C is the remaining budget at the end of round C .

In other words, due to the budget cap, the actual budget replenishment is �C = min(�̂C , �max − �C )
at round C .

The agent’s allocation decision for round C is GC = [G1,C , · · · , G",C ] ∈ X, where X = {G ∈ R"+ |0 f
G f Ḡ} with Ḡ = [Ḡ1, · · · , Ḡ" ] representing the maximum allocation for each resource type at each
round. Note that we have Ḡ f �max since otherwise the maximum budget cap is more stringent
while the maximum allocation constraint Ḡ is never binding.

Given the budget replenishment and the agent’s allocation decision, the budget evolves as

�C+1 = min
(

�C + �̂C , �max

)

− GC = �C + �C − GC for round C + 1. Thus, the information revealed to the

agent at the beginning of each round C can be summarized as ~C = (5C , �̂C ), while all the information
for a sequence can be written as ~ = [~1, · · · , ~) ] ∈ Y, where Y denotes the space of all possible
episodic information. When the context is clear, we also use ~ to denote a sequence. Any remaining
budgets at the end of an sequence are wasted without rolling over to the next sequence. If an
algorithm c is used to solve the problem with information ~, the total the total utility is denoted as

�c
)
(~) = ∑)

C=1 5C (GC ).
To summarize, for a sequence ~, the o�ine problem can be formulated as

max
G1:Đ ∈XĐ

)
∑

C=1

5C (GC ) (1a)

B .C ., GC f �C + �C and GC ∈ X, ∀C ∈ [) ] (1b)

�C+1 = �C + �C − GC and �C = min
(

�̂C , �max − �C
)

, ∀C ∈ [) ] (1c)

Next, we make the following standard assumptions on the utility function 5C (G) for C ∈ [) ].

Assumption 1 (Utility function 5C (G)). For any C ∈ [) ], the utility function 5C (G) : R"+ → R+ is
assumed to be non-negative, have subgradients at each point of G ∈ X. In addition, we assume
5C (0) = 0 and sup 5C (G) = 5̄ for C ∈ [) ] and G ∈ X.

The assumptions are standard in the literature on online allocation with budget constraints
[9, 11, 40]. Note that we do not require concavity of the utility functions, making our algorithms
applicable for a wide range of applications.

2.2 Performance Metrics

With complete information ~ = [~1, · · · , ~) ] ∈ Y provided to the agent at the beginning of a
sequence, the problem in (1) can be e�ciently solved via subgradient methods for constrained
optimization [13, 16, 27]. If the utility functions are concave, subgradient methods such as the
projected subgradient method and the primal-dual subgradient method have provable convergence
guarantees [16, 27]. Nonetheless, in practice, the agent only has access to online information ~1:C
before making its decision GC at round C ∈ [) ], adding substantial challenges.
Our goal is to design an online algorithm c that maps available online information ~1:C to a

decision GC ∈ X subject to the budget constraint (1b) at each round C ∈ [) ]. To measure the decision
quality of an online algorithm c , we use the following metrics that capture the worst-case and
average-case performance, respectively.

De�nition 1 (Asymptotic competitive ratio [10, 14]). The asymptotic competitive ratio of an online

algorithm c is �'c if lim)→∞ sup~∈Y
1
)

(

$%) (~) − 1
�'ÿ

�c
)
(~)

)

f 0, where �c
)
(~) = ∑)

C=1 5C (GC ) is
the total utility of algorithm c and$%) (~) is the optimal utility obtained by the oracle given o�ine
information.
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De�nition 2 (Average utility). Given an online algorithm c , the average utility is de�ned as
�+�c = E~∈Y

[

�c
)
(~)

]

, where the expectation is over the sequence information ~ ∼ P~ .

Both competitive ratio and average utility are important in practice, characterizing the robustness
of an online algorithm (in terms of its utility ratio to the optimal oracle) and its quality for typical
problem instances, respectively. Here, we consider an asymptotic competitive ratio (in the sense of
) → ∞) because of the intrinsic hardness of our problem — even for online allocation of a �xed
budget without replenishment, only an asymptotic competitive ratio is attainable in the state of
the art [11]. We shall design in Section 3 online allocation algorithms to address the worst-case
robustness, while we will consider the average performance (subject to a worst-case robustness
constraint) in Section 4.

2.3 Application Examples

We now provide a few examples as motivating applications to make our model more concrete.
Online advertising with budget replenishment. Online advertisement serves as a prominent, if not

the most prominent, source of revenue for Internet companies [11]. Advertisers need to dynamically
set a biding budget, which will then be used by the publisher to maximize pro�ts or the number
of impressions for advertisers per their contracts with the publisher. Meanwhile, they can also
increase budgets anytime they like. Thus, by viewing the bidding budget as an online decision, this
problem �ts nicely into the online allocation of replenishable budgets.
Sustainable AI inference. Nowadays, the rapidly increasing demand for arti�cial intelligence

(AI) inference, especially large language models, has resulted in large carbon emissions [43]. To
achieve sustainable AI inference, it is important to exploit renewable generation to replenish on-site
energy storage. Meanwhile, for the same AI inference service, there often exist multiple models
(e.g., eight di�erent GPT-3 models [17]), each having a distinct model size to o�er a �exible tradeo�
between accuracy performance and energy consumption. However, the renewables are known to
be time-varying and unstable. Thus, by viewing the intermittent renewables as replenished budgets,
the resource manager needs to schedule an appropriate AI model for inference in an online manner
to maximize the utility (e.g. maximizing the accuracy) given available energy constraints [51, 53].

Online inventory management with dynamic replenishment. Manufacturers need to dynamically
dispatch available inventory to di�erent distributors based on market demands. Meanwhile, they
will also replenish the inventory through newly manufactured products. The goal is to manage
the available inventory to maximize the total pro�t/revenue given dynamic replenishment and
environment (e.g., market demands and supply-chain situation), to which our model is well suited.

3 OACP: OPPORTUNISTIC ALLOCATIONWITH CONSERVATIVE PRICING

In this section, we address the worst-case robustness in adversarial settings and design an asymptot-
ically competitive online algorithm, called OACP, that conservatively updates the dual variable based
on mirror descent and opportunistically allocates replenished budgets. Using a novel technique,
OACP provably o�ers the optimal worst-case performance guarantees for adversarial settings of
online allocation with replenishable budgets (Theorem 3.1). Then, by making an additional assump-
tion on the minimum budget replenishment, we extend OACP to OACP+, which o�ers an improved
asymptotic competitive ratio (Theorem 3.2).

To solve the online allocation problem in (1), one can equivalently relax the budget constraints
using Lagrangian techniques. More speci�cally, instead of directly solving (1), we introduce a
regularizer and solve ĜC = argmaxG∈X{5C (G) − `¦C G} where `C ∈ R"+ is the Lagrangian multiplier
vector (a.k.a., dual variable) with each entry corresponding to one resource budget constraint. The
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Algorithm 1 Opportunistic Allocation with Conservative Pricing (OACP)

Require: Initialize dual variable `1, and budget �1 = d) for d > 0

1: for C = 1 to ) do

2: Receive utility function 5C (G) and potential budget replenishment �̂C .

3: Get the actual replenished budget �C = min{�̂C , �max − �C }
4: Pre-select action GC based on `C : ĜC = argmaxG∈X{5C (G) − `¦C G}
5: if ĜC f �C + �C then
6: GC = ĜC and 6C = −ĜC + d //for conservative pricing
7: else

8: GC = 0 and 6C = 0

9: end if

10: Update budget �C+1 = �C + �C − GC
11: Dual mirror descent:

`C+1 = argmin`g0 6¦C ` + 1
[
+ℎ (`, `C ) where +ℎ (`, `C ) = ℎ(`) − ℎ(`C ) − ▽ℎ(`C )¦ (` − `C ) is the

Bregman divergence in which ℎ(`) is a f-strongly convex reference function (Assumption 2)
12: end for

interpretation of `C is that it can be viewed as the resource price [49, 56]: a higher price encourages
resource conservation to meet the budget constraints, and vice versa.

If we were able to optimally set `C ∈ R"+ for C ∈ [) ], we could optimally solve (1) while satisfying
the per-round budget constraints. Nonetheless, like in the original problem (1), �nding the optimal
`C for C ∈ [) ] requires the complete o�ine information ~ = [~1, · · · , ~) ] at the beginning of an
episode, but this information is clearly lacking for online allocation.
Despite this challenge, the interpretation of the dual variable `C as the resource price at round

C ∈ [) ] provides us with inspiration for the design of OACP. Speci�cally, in view of the dynamic
budget replenishment �C , we propose to conservatively update the price `C+1 to a higher value for
each round C + 1 as if �C does not exist, and then opportunistically use the actually available budget
�C + �C . Our algorithm, called OACP, is described in Algorithm 1.

3.1 Competitive Algorithm Design

At each round C ∈ [) ], given `C and online information, we solve the following relaxed optimiza-
tion problem:

ĜC = argmax
G∈X

{5C (G) − `¦C G}. (2)

Next, we check if ĜC satis�es the current budget constraint �C + �C : we set GC = ĜC if the budget
constraint is satis�ed, and GC = 0 otherwise. Then, we update the dual variable based on mirror
descent `C+1 = argmin`g0 6¦C ` + 1

[
+ℎ (`, `C ), where +ℎ (`, `C ) = ℎ(`) − ℎ(`C ) − ▽ℎ(`C )¦ (` − `C ) is

the Bregman divergence de�ned with respect to a reference function ℎ(`).
The goal of mirror descent is to update the dual variable `C+1 such that it can set a resource

price that re�ects the current budget level while staying not too far away from the current dual
variable `C as regularized by

1
[
+ℎ (`, `C ) in terms of Bregman divergence. In particular, the usage

of mirror descent to update dual variables for online constrained optimization has begun to be
explored recently [7, 9, 11]. Nonetheless, the prior studies on online allocation under adversarial
settings have only considered a �xed budget without dynamic budget replenishment [11].
Key insight. The key insight of OACP lies in how we set 6C and choose GC in Lines 5 and 6 of

Algorithm 1. The dual variable `C is updated based on 6C = −ĜC + d , whose inverse (i.e., ĜC − d)
measures the overuse of the current allocation compared with a reference per-round budget d =

�1
)
.
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When 6C is smaller, the degree of budget overuse is greater, and `C+1 tends to be greater in the
mirror descent step, encouraging the agent to use fewer resources at round C + 1. Under the setting

of no budget replenishment, it is natural to set the per-round budget d =
�1
)

to evaluate the degree
of over-consumption for each round. Nonetheless, in the presence of budget replenishment, we
cannot simply use d + �C as the reference to incorporate new replenishment �C in resource pricing.
The reason is that the sequence of �C can be arbitrary and the future replenishment �C+1, · · · , �)
is unknown. As a result, aggressively using d̃ = d + �C as the reference per-round resource
consumption can result in an unnecessarily low resource price `C+1. Instead, OACP still sets the

reference per-round budget as d =
�1
)

as if no budget replenishment were received. Consequently,
the resource price `C+1 tends to be higher than using d + �C otherwise, encouraging the agent to be
more frugal in resource consumption. On the other hand, the budget replenishment �C can be still
used opportunistically by increasing the actual available budget from �C to �C +�C (Line 5). Thus, by
doing so, OACP tends to be more conservative in resource pricing (i.e., `C ), while still opportunistically

using budget replenishment in actual allocation decisions.
Next, to make Algorithm 1 self-contained, we specify the following assumptions on the reference

function ℎ(`) used in the mirror descent step.

Assumption 2 (Reference function ℎ(`)). The reference function ℎ(`) : R"+ → R is di�erentiable
and f-strongly convex in ∥ · ∥1-norm in R"+ , i.e., ℎ(`) − ℎ(`′) g ▽ℎ(`′)¦ (` − `′) + f

2
∥` − `′∥21 for

any `, `′ ∈ R"+ .

Assumption 2 is standard in the analysis of mirror descent-based algorithms [9, 11]. Along with
Assumption 1 on the utility function, it essentially ensures that there is always a unique solution
in the mirror descent step in Line 11 of Algorithm 1. Importantly, this step can recover common
gradient-based update algorithms by a proper choice of the reference function. For example, with

ℎ(`) = ∑"
<=1 `< log(`<), the update in Line 11 of Algorithm 1 becomes `C+1 = `C » exp(−[6C ) and

captures multiplicative weight updates, where the operator “»” is the element-wise product [6];
for ℎ(`) = 1

2
∥`∥22, the update rule becomes `C+1 = [`C − [6C ]+ and recovers online sub-gradient

descent method [11].

3.2 Performance Analysis

We proceed with the analysis of OACP in terms of its worst-case performance. Our result highlights
that OACP is asymptotically competitive against the o�ine oracle$%) , generalizing the prior results
on the allocation of a �xed budget [11] to replenishable budgets.

Theorem 3.1. For any episode ~ ∈ Y and [ > 0, by Algorithm 1, the utility of OACP satis�es

$%) (~) − U� OACP) (~) f U 5̄ + U (d̄ + ∥Ḡ ∥∞)2 [)
2f

+ U
[
+ℎ (`, `1), (3)

where U = max<∈[" ]
Ḡģ
dģ

, d̄ = max<∈[" ] d< is the maximum per-round average budget initially

assigned to the agent at round C = 1, Ḡ is the maximum per-round resource allocation constraint,

+ℎ (`, `1) is the Bregman divergence between ` and the initial dual variable `1 given the f-strongly

convex reference function ℎ, and ` = 0 if Line 5 of Algorithm 1 is always true, and otherwise, ` =
5̄

Ud Ġ
4 9

with 9 = argmin<∈Mý
+ℎ ( 5̄

Udģ
4<, `1) where M� =

{

< | ∃C ∈ [) ] such that Ĝ<,C > (�C + �C )<
}

, 4<

is a standard"-dimensional unit vector. Furthermore, by optimally setting[ =
1

d̄+∥Ḡ ∥∞
√

2f+ℎ (`, `1)/) ,
we have

lim
)→∞

sup
~∈Y

1

)

(

$%) (~) − U� OACP) (~)
)

f lim
)→∞

1

)

(

U 5̄ + U (d̄ + ∥Ḡ ∥∞)
√

+ℎ (`, `1))
2f

)

= 0, (4)
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i.e., OACP achieves an asymptotic competitive ratio of 1
U
= min<∈[" ]

dģ
Ḡģ

against $%) .1

The proof of Theorem 3.1 is deferred to Appendix A to keep the main body of the paper more
concise for better readability. Our proof relies on a technique speci�cally designed for budget
replenishment. Concretely, without budget replenishment, the allocation algorithm (e.g., DMD in
[11]) stops allocation whenever any resource type in the initial budget �1 is exhausted. In contrast,
OACP continues allocation until the end of an episode due to new budget replenishment. To account
for this, we introduce a group T� of rounds that each has a budget violation event, and bound the
total utility for rounds that are not in T�.

Theorem 3.1 can be interpreted as follows. Without optimally setting [, by rearranging the terms

in (3), we have � OACP
)

(~) g 1
U
$%) (~) − 5̄ − (d̄+∥Ḡ ∥∞ )2[)

2f
− 1
[
+ℎ (`, `1). That is, for any episode ~ ∈ Y,

OACP can obtain a total utility of at least 1
U
times the optimal oracle’s utility, minus per-round

utility bound 5̄ and a term related to the convergence of `. Moreover, by setting [ ∼ $ ( 1√
)
), OACP

achieves an asymptotic competitive ratio bound of 1
U
as ) → ∞. The parameter U = max<∈[" ]

Ḡģ
dģ

measures how stringent the initially assigned per-round budget is with respect to the agent’s own
maximum allocation constraint. Naturally, the larger U (i.e., the initial budget is relatively more
limited), a lower competitive ratio bound. Moreover, the asymptotic competitive ratio bound in
Theorem 3.1 matches the optimal bound for online allocation of a �xed budget [11].

We also note that, with the added uncertainties due to budget replenishment, the optimal (o�ine)
resource price `∗C can also be time-varying, while the optimal resource price `∗ is �xed when
without budget replenishment [11]. Consequently, even if we aggressively update the resource
price `C by directly incorporating replenished budgets at each round, there is still no hope to learn
the optimal dynamic resource price `∗C with a sublinear regret (or an asymptotic competitive ratio
of 1); instead, we can incur additional utility losses due to aggressive but potentially incorrect
tracking of `∗C in an adversarial setting. Therefore, OACP utilizes the design of conservative pricing
while using opportunistic allocation for actual decisions. It adds to the literature by generalizing
the state-of-the-art (asymptotically) competitive online algorithm for the setting of a �xed budget
[11] to replenishable budgets.

In our setting with replenishable budgets, the adversary naturally has more power than the setting
of a �xed budget, as it can adversrially present budget replenishments to the agent. Thus, achieving
the same optimal asymptotic competitive ratio as that of state-of-the-art DMD for �xed budget
allocation [11] demonstrates the merit of OACP in terms of addressing additional uncertainties of
replenished budget.
Importantly, our asymptotic competitive ratio 1

U
is optimal in the adversarial budget replenish-

ment setting. Speci�cally, in the adversarial case, it is possible that there is zero budget replenish-
ment, or the budget replenishment only arises in the last decision round and the utility function for
this round is chosen as zero by the adversary. As a consequence, the replenished budget cannot be
utilized to improve the utility, and our setting essentially reduces to the no budget replenishment
setting in the worst case. This means that without further assumptions on the budget replenishment,
one cannot �nd a higher competitive ratio than the optimal bound 1

U
for online allocation with a

�xed budget [11].

3.3 Extension to OACP+ with Minimum Budget Replenishment Assumption

In the unrestricted adversarial budget replenishment case, there can be zero budget replenishment
and hence, one cannot expect a higher asymptotic competitive ratio than that of the optimal bound
for �xed budget allocation. Next, to avoid the trivial case of no budget replenishment and improve

1Throughout the paper, the asymptotic competitive ratio is naturally no greater than 1, i.e.,�'OACP = min{1, 1
Ă }.
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Algorithm 2 Opportunistic Allocation with Conservative Pricing + (OACP+)

Require: Unit frame length ) ∗ and initial budget �1 = d) for d > 0

1: for frame 8 = 1 to  do

2: Initialize `)ğ−1+1, set learning rate [8 > 0, assign the budget �
(8 )
)ğ−1+1 = � (8 ) as Eqn. (5) and

d̂8 = �
(8 )/()8 −)8−1), where )8 = (28 − 1)) ∗.

3: for C = )8−1 + 1 to )8 do
4: Receive utility function 5C (G).
5: Pre-select action GC based on `C : ĜC = argmaxG∈X{5C (G) − `¦C G}
6: if ĜC f �

(8 )
C then

7: GC = ĜC and 6C = −ĜC + d̂8
8: else

9: GC = 0 and 6C = 0

10: end if

11: Update budget �
(8 )
C+1 = �

(8 )
C − GC and the actual remaining budget �C+1 = �C + �C − GC

12: Update dual `C+1 = argmin`g0 6¦C ` + 1
[ğ
+ℎ (`, `C ).

13: end for

14: end for

the asymptotic competitive ratio, wemake amild assumption on theminimumbudget replenishment
every ) ∗ rounds (referred to as a unit frame) and propose a new algorithm called OACP+.

3.3.1 The Design of OACP+. As discussed in the key insight of Algorithm 1, aggressively setting
6C = −ĜC + d + �C for resource pricing cannot improve the competitive ratio since �C is arbitrary
and d + �C is not a reliable reference per-round budget in the adversarial case. On the other hand,
a higher �xed budget means that the online allocator is less starved and hence can increase the
competitive ratio [9, 11]. Thus, this provides us with an inspiration to improve the competitive
ratio of OACP: Batching the budget replenishment and allocating it later as if we had a higher �xed

budget.

Concretely, we design a new two-level online allocation algorithm, called OACP+, which divides
an entire episode of ) rounds into  frames and batches the budget replenishment in frame 8
for resource allocation in frame 8 + 1. Then, within each frame, OACP+ views the e�ective budget
replenishment (subject to frame-level budget allocation to be speci�ed in Eqn. (5)) in the previous
frame as if it were a �xed resource and allocates it online.
OACP+ is described in Algorithm 2, where we introduce a unit frame of length ) ∗ g 1 rounds

during which a minimum amount of budget is replenished (see De�nition 3). Note that OACP+ only
needs the information of ) ∗, but does not know the minimum budget replenishment within ) ∗

rounds. Within each frame 8 ∈ [ ] starting from round )8−1 + 1 to round )8 , we initialize the dual
variable, assign the budget � (8 ) as the initial budget for frame 8 , and set the reference per-round
budget d̂8 = �

(8 )/()8 −)8−1). Then, by considering that all the budget replenishment in frame 8 is
deferred for allocation in frame 8 + 1 (Line 11 of Algorithm 2), we apply OACP with a �xed assigned
frame-level budget � (8 ) to choose actions for all rounds in frame 8 . The dual variable is updated
based on the reference per-round budget d̂8 and learning rate [8 for frame 8 . Note that in Line 6,

we make sure the allocation is not larger than the remaining frame budget �
(8 )
C which is a part

of the �xed assigned frame-level budget � (8 ) . This means that the new budget replenishment in
frame 8 is not incorporated in the resource pricing or used for allocation in frame 8 . The remaining

frame-level budget �
(8 )
C and the actual remaining budget �C are updated simultaneously in Line 11.
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By batching the budget replenishment in frame 8 and deferring it for allocation in frame 8 + 1, OACP+
can allocate more resources as if it had a higher �xed budget in frame 8 + 1.
Nonetheless, to improve the competitive ratio, there are two key challenges in the design of

OACP+— frame construction and frame-level budget assignment — which we address as follows.
Frame construction. To defer the budget replenishment in one frame to the next frame and

allocate it as �xed budget, it is crucial to appropriately decide the length of each frame, i.e., frame
construction. An intuitive way of frame construction is to divide the entire episode of ) rounds
uniformly into  = +) /) ∗, frames, each with ) ∗ g 1 rounds (which is the length of a unit frame).

By doing so, OACP+ incurs an additional term of O(
√
) ∗) in the reward bound of each frame by

Theorem 3.1 and hence a total additional term of O
(√
) ∗ +) /) ∗,

)

, which grows linearly with

) . Thus, to avoid the additional linear term O
(√
) ∗ +) /) ∗,

)

, OACP+ utilizes a doubling frame

construction as follows.
Speci�cally, the entire episode of) rounds is divided into =

⌈

log2 () /) ∗)
⌉

frames, where) ∗ g 1

is the length of a unit frame. The 8-th frame starts from round )8−1 + 1 and ends at round )8 , where
)8 = (28 − 1)) ∗.2 In other words, assuming the �rst frame has a length of ) ∗ rounds, the length of
frame 8 = 2, · · · ,  is 28−1) ∗, doubling the length of its previous frame 8 − 1. For each frame 8 , the

additional term incurred by OACP+ is O(
√
28−1) ∗), the sum of which is still sublinear with respect

to ) , keeping the asymptotic competitive ratio independent of the choice of the initial dual in each
frame.

Frame-level budget assignment. It remains to set the frame-level budget � (8 ) for each frame 8
given uncertain future budget replenishment. The initial �xed budget �1 = )d is proportionally
divided into  frames: the frame-level budget � (8 ) for each frame 8 includes a �xed budget 28−1) ∗d ,
where 28−1) ∗ is the length of frame 8 . Additionally, the assigned frame-level budget � (8 ) also includes
an additive budget ¬8 which comes from the budget replenishment and unused budgets assigned
in previous frames. Without a maximum budget cap (i.e. �max = ∞), we can directly set ¬8 as the
actual budget accumulation �)ğ−1+1 − () −)8−1)d , where �)ğ−1+1 is the actual remaining budget at
the beginning of frame 8 and () − )8−1)d = () − (28−1 − 1)) ∗)d is the sum of the �xed budget
assignment reserved for the remaining frames (including frame 8). Thus, by combining the �xed
budget and replenished budget (including unused assignments) from previous frames, the assigned
total budget for frame 8 is � (8 )

= �)ğ−1+1 − () − (28 − 1)) ∗)d .
However, if the maximum budget cap �max exists, it can restrict the actual budget replenishment.

Thus, if we assign all the actually accumulated budget for frame 8 , it can happen that little additional
budgets (other than the �xed budget 28) ∗d) can be used for frame 8 + 1. To further explain this
point, consider an online allocation problem with a linear utility function 5C (G) =< 2C , G > (i.e.,
the inner product of 2C and G). Suppose that the remaining budget �)1+1 at the beginning of the
second frame (which has a length 2) ∗ rounds) is as large as �max. This is possible if there is a large
budget replenishment during the �rst frame. As a result, new budget replenishments cannot be
accumulated due to the budget cap �max unless some budgets have been consumed. Assume that the

budget replenishment �̂C and context parameter 2C for the second frame are as follows. In the �rst

) ∗ + 1 rounds of the second frame, the budget replenishment is �̂C > 0 and the context is 2C = 0; in

the following) ∗ − 1 rounds of the second frame, the budget replenishment for each round is �̂C = 0

and the context parameter 2C is su�ciently large. In this example, OACP+ will not consume any
resource during the �rst ) ∗ + 1 rounds, and instead consume all of the assigned budget � (2) during
the remaining) ∗ − 1 rounds. As a result, no budget replenishment can be accumulated in this frame

2The last frame (i.e.,  -th frame) starts from round (2ć−1 − 1)) ∗ + 1 and ends at the last round) . For the convenience of

presentation, we assume) = (2ć − 1)) ∗ to be consistent with the previous frame’s ending round)ğ = (2ğ − 1)) ∗.
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due to the maximum budget cap. If we still assign the frame budget as � (2)
= �) ∗+1 − () − 3) ∗)d

as if there were no budget cap, the remaining budget at the beginning of the third frame will be
�)2+1 = () − 3) ∗)d and the assigned total budget for the third frame will be 4) ∗d , resulting in zero
additive budget for the third frame (¬3 = 0) other than the �xed budget assignment 4) ∗d .
To ensure a positive additive budget for each future frame, we need to allocate the budget

replenishment ¬8 for frame 8 more conservatively: the additive budget ¬8 , 8 ∈ [2,  − 1] is set as
the minimum of the actual budget accumulation �)ğ−1+1 − () − (28−1 − 1)) ∗)d and a threshold �8 ,
i.e., ¬8 = min{�)ğ−1+1 − () − (28−1 − 1)) ∗)d, �8 }.
It remains to design a proper threshold �8 for frame-level budget assignment. Naturally, if the

budget cap �max becomes larger, the threshold �8 should be set higher; also, �8 should increase
with the length of the frame. We set the threshold as �8 = 28−2) ∗dmax » V where the operator

“»” is the element-wise product, dmax =
�max

)
and V ∈ '"+ is a hyper-parameter indicating the

level of conservativeness to balance between the aggressive budget assignment for the next frame
and conservative budget reservation for subsequent future frames. Therefore, the assigned total

frame-level budget for frame 8 is the sum of the �xed budget assignment 28−1) ∗d (where d =
�1
)
)

and an additive budget ¬8 , i.e.

� (8 )
= 28−1) ∗d + ¬8 , (5)

where ¬1 = 0, ¬8 = min
{

�)ğ−1+1 − () − (28−1 − 1)) ∗)d, �8
}

with �8 = 28−2) ∗dmax » V for 8 ∈
[2,  − 1], and ¬ = �)ć−1+1 − 2 −1) ∗d . When dmax =

�max

)
is su�ciently large such that the

threshold �8 is not activated, the assigned budget becomes � (8 )
= �)ğ−1+1 − () − (28 − 1)) ∗)d , which

reduces to the budget assignment without a maximum budget cap and shows the �exibility of our
design of frame-level budget assignment.

3.3.2 Performance Analysis. In this section, we give the asymptotic competitive ratio of OACP+ to
highlight the bene�ts of budget replenishment. To avoid the adversarial case which can reduce to
the no budget replenishment setting, we �rst de�ne the minimum replenishment �min g 0 for a
unit frame with length ) ∗ and then provide the asymptotic competitive ratio relying on �min. The
assumption of minimum budget replenishment in each unit frame is reasonably mild in practice,
especially for large ) ∗. For example, it is reasonable to assume that a minimum amount of solar
renewables are replenished each day [7, 11, 51]. Note that �min is decided by the environment and
OACP+ does not need the knowledge of �min.

De�nition 3 (Minimum budget replenishment). Given a unit frame of) ∗ g 1 rounds, the minimum
potential budget replenishment for type-< resource within each unit frame is �min,< g 0, i.e.,

�min,< = inf 9

{

∑9 ·) ∗

C=( 9−1)) ∗+1 �̂C,<
}

, where �̂C,< is the budget that would be replenished at round C if

�max,< → ∞, 9 = 0, · · · , +) /) ∗, − 1 is the index of a unit frame and �min =

[

�min,1, · · · , �min,"

]

.

Theorem3.2. If the learning rate for frame 8 is chosen as[8 =
1

d̄+ ă̄2 d̄max+∥Ḡ ∥∞

√

2f+ℎ (`, `)ğ−1+1)/(28−1) ∗)

with d̄max = max< dmax,< where dmax,< =

�max,ģ

)
and V̄ = max< V< , OACP+ achieves an asymptotic

competitive ratio against $%) as

�'OACP+ = min
<∈[" ]

d< + �d<

Ḡ<
, (6)

where Ḡ< is the maximum per-round allocation of type-< resource and �d< g 0 is the improvement

due to budget replenishment. Speci�cally, if �max,< g () + ) ∗)d< holds for a resource<, we have

�d< = min
{

�min,ģ

2) ∗ ,
2�max,ģ

3()+) ∗ ) −
dģ
3

}

with the optimal choice of V< =
4)

3()+) ∗ ) −
2dģ

3dmax,ģ
; and if �max,< <
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() +) ∗)d< holds for a resource<, we have �d< = min
{

�min,ģ

2) ∗ ,
�max,ģ

6) ∗ − ()−) ∗ )dģ
6) ∗

}

with the optimal

choice of V< =
)
3) ∗ − )−) ∗

3) ∗
dģ

dmax,ģ
. Moreover, without the minimum budget replenishment (i.e., �min,< =

0), we have �d< = 0 and the asymptotic competitive ratio �'OACP+ reduces to the one in Theorem 3.1.

The proof of Theorem 3.2 is deferred to Section B. The key challenge is to lower bound the
assigned frame-level budget � (8 ) in Eqn. (5) for frame 8 and get an e�ective per-round budget

d̂ = d + �d . To do so, we construct an e�ective additive budget ¬̂8 (V) for frame 8 given any V > 0

in (21) and prove that ¬̂8 (V) is the in�mum of the additive budget ¬8 (V) by OACP+ for any V > 0.

Then, by selecting the worst-case per-round e�ective reference budget d + ¬̂8/(28−1) ∗) for each
frame 8 and optimizing it by choosing V , we obtain the per-round budget d̂ = d + �d . At last, by
summing up the utility bounds of all the frames, the di�erence between the optimal utility and

OACP+ is bounded as$%) (~) − Û� OACP+
)

(~) f �̂1 + �̂2

√
) , where Û = max<∈[" ]

Ḡģ
dģ+�dģ , and �̂1 and

�̂2 are two �nite constants in Appendix B. This is then translated to the asymptotic competitive
ratio in Theorem 3.2.
Di�erent from the competitive ratio of OACP which relies on the �xed per-round budget d , the

competitive ratio of OACP+ utilizes the e�ective per-round budget d + �d , which includes the �xed
part d and the additional part �d due to replenishment (subject to the maximum budget cap �max).
Importantly, �d is positive if the minimum replenishment over a unit frame �min > 0, resulting
in a higher asymptotic competitive ratio than OACP. When �min = 0, there is no guarantee of
minimum budget replenishment for each unit frame. Hence, the asymptotic competitive ratio of
OACP+ reduces to the one achieved by OACP in the worst case since we cannot rule out the case in
which there is no budget replenishment at all. Thus, the improvement of the competitive ratio by
OACP+ does not con�ict with the optimality of the competitive ratio achieved by OACP for general
cases (which includes the case of no budget replenishment).

The insights of the asymptotic competitive ratio of OACP+ are further explained as follows. The
improvement of the competitive ratio compared with OACP depends on�d< , which is lower bounded

by the minimum of two terms. The �rst term
�min,ģ

2) ∗ indicates the e�ect of the minimum amount of
budget replenishment within a unit frame. Naturally, a larger minimum budget replenishment can
make the problem less resource-constrained and lead to a higher competitive ratio. The second term
in the minimum operation shows the e�ect of the maximum budget cap �max,< on constraining the
actual budget replenishment following (1c). The second term has a di�erent expression for resource
< with �max,< < () +) ∗)d< because a small �max,< can result in less space for replenishment. No
matter whether �max,< g () +) ∗)d< holds, a higher budget cap �max allows more budgets to be
replenished, thus leading to a higher competitive ratio. If the budget cap �max is large enough, it
does not constrain the budget replenishment any more and the competitive ratio improvement only
depends on the minimum budget replenishment �min. In addition, the best choices of threshold
hyper-parameter V< increases with dmax,< = �max,</) . This is consistent with the intuition that
with a larger budget cap �max,< , the threshold of the additive budget in Eqn. (5) can be set larger to
assign the frame-level budget more aggressively. These observations all con�rm the intuition that a
larger budget cap can utilize the budget replenishment more e�ectively, increasing the asymptotic
competitive ratio.

4 LA-OACP: LEARNING-AUGMENTED ONLINE ALLOCATION

While OACP and OACP+ have provable worst-case performance guarantees (in terms of asymptotic
competitive ratio), they may not perform well on average due to their conservativeness in resource
pricing `C in order to address the worst-case uncertainties in budget replenishments. In this section,
we go beyond the worst-case and propose a novel learning-augmented approach, LA-OACP, that
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integrates an ML-based online optimizer with OACP (or OACP+) to improve the average performance
(Theorem 4.2) while still being able to guarantee the worst-case performance (Theorem 4.1).

4.1 Average Utility Maximization with Worst-Case Utility Constraint

We �rst present our optimization objective of designing a learning-augmented online algorithm c

as follows — maximizing the average utility subject to a worst-case utility constraint. Since the
competitive algorithms (i.e., OACP or OACP+) have been proved to ensure the asymptotic competitive
ratios, we guarantee the worst-case utility of the learning-augmented online algorithm c by
comparing it with the utility of a competitive algorithm. Thus, the objective of our learning-
augmented online algorithm is

max
c
E~

[

�c) (~)
]

(7a)

B .C ., �c) (~) g _�c
 

) (~) − ', ∀~ ∈ Y, (7b)

where �c
)
(~) =

∑)
C=1 5 (GC , 2C ) is the total utility of an online algorithm c , _ ∈ [0, 1] represents

multiplicative competitiveness of the online algorithm c with respect to the algorithm c (i.e.,
OACP or OACP+ in our case) and ' g 0 indicates the additive slackness in the utility constraint.
Note that considering a sequence-wise distribution of ~ ∼ P~ di�ers from the standard stochastic
setting where each online input ~C for C ∈ [C] is assumed to follow an independent and identically
distributed (i.i.d.) distribution (e.g., i.i.d. utility function 5C in [11], or i.i.d. potential replenishment

�̂C in [7]), because ~C for C ∈ [C] within an sequence can still be arbitrary in our problem (7).
The parameters _ ∈ [0, 1] and ' g 0 can be viewed as worst-case robustness requirement

with respect to OACP or OACP+ (denoted as c for the convenience of presentation). Concretely,
when _ ∈ [0, 1] increases and/or ' g 0 decreases, the online algorithm c is closer to c in
terms of the worst-case utility, and vice versa. Moreover, as c itself has performance guaran-
tees and is asymptotically competitive against the optimal oracle $%) (Theorem 3.1 and Theo-
rem 3.2), the constraint in (7b) also immediately translates into provable asymptotic competitive-
ness of the online algorithm c with respect to $%) . That is, given the asymptotic competitive

ratio �'c
 
achieved by c , the constraint (7b) leads to lim)→∞ sup~

1
)

(

$%) (~) − 1

_�'ÿ
 �

c
)
(~)

)

f

lim)→∞ sup~
1
)

(

$%) (~) − 1

�'ÿ
 �

c 
)

(~) + '

_�'ÿ
 

)

f 0, guaranteeing an asymptotic competitive ra-

tio of _ ·�'c 
for c . In fact, considering a baseline algorithm for worst-case robustness is also a

common practice in existing learning-augmented algorithms [19, 39, 52]. Thus, in the following, it
su�ces to consider (7) to achieve the best of both worlds: maximizing the average utility while
bounding the worst-case utility (directly with respect to OACP or OACP+ and also indirectly with
respect to $%) ).

Unlike OACP or OACP+ that is particularly designed to address the worst-case robustness, an ML
model can readily exploit statistical information of ~ ∈ Y based on history instances. Thus, one
may want to use a pure ML-based online optimizer to maximize the average utility for solving
(7). Nonetheless, ML-based optimizers typically do not have worst-case performance guarantees
as hand-crafted algorithms (OACP or OACP+ in our case) due to, e.g., training-testing distributional
shifts. In fact, even by assuming perfect ML-based optimizers, maximizing the average utility alone
does not necessarily guarantee the worst-case robustness in (7b). The reason is that maximizing the
average utility needs to prioritize many typical problem instances, while the worst-case robustness
needs to address those rare but possible corner cases. In general, the trade-o� between average
utility and worst-case robustness is unavoidable and well-known for online optimization problems,
thus spurring the emerging �eld of learning-augmented online algorithms that leverage both
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ML predictions and hand-crafted algorithms (see, e.g., [5, 19, 52, 57] for studies in other online
problems).

4.2 Algorithm Design

We now present the design of LA-OACP, a novel learning-augmented algorithm for online allocation
with replenishable budgets under an additional mild assumption of Lipschitz utility functions.

Assumption 3 (Lipschitz utility). For any C ∈ [) ], the utility function 5C (G) is !-Lipschitz continu-
ous with respect to G , i.e. ∀G, G ′ ∈ X, we have |5C (G) − 5C (G ′) | f !∥G − G ′∥, where ! > 0 and ∥ · ∥ is
a norm operator.

The Lipschitz assumption implies a bounded utility change given a bounded action change,
which is reasonable for real applications and commonly assumed in online problems. Remember
that to guarantee a competitive ratio, OACP in Algorithm 1 and OACP+ in Algorithm 2 conservatively
set their resource prices `C in two di�erent conservative manners. Thus, the key goal of LA-OACP
is to overcome the conservativeness of competitive algorithms like OACP and OACP+ by exploiting
the distribution of ~ ∈ Y to improve the average utility while bounding the worst-case utility loss
with respect to OACP/OACP+.3 Towards this end, LA-OACP utilizes an ML policy/predictor (denoted
as c̃ ) as well as a competitive algorithm (denoted as c ) that output their decisions as advice, and
then judiciously chooses the actual online decisions.

Naturally, always following the decisions of competitive algorithm satis�es the worst-case utility
constraint in (7b), but fails to utilize ML for average utility improvement. On the other hand, blindly
following the ML policy can potentially improve the average performance but the worst-case utility
constraint is not guaranteed.
Thus, a key challenge of learning-augmented online algorithms is how to utilize the decisions

of the ML policy and a worst-case robust algorithm (i.e., OACP and OACP+ in our case) as online

advice [19, 52]. To address this challenge, given G̃C and G
 
C that represent the allocation decisions by

the ML policy and the competitive algorithm, respectively, LA-OACP chooses the actual decision GC
using a novel reservation utility which we introduce as follows. In the following, to be consistent
with the literature [19], we also refer to the ML policy’s decision G̃C as ML predictions.

Constrained decision set. To ensure that an online algorithm c satis�es the worst-case utility
constraint (7b) for any sequence ~ ∈ Y, it might seem su�cient to guarantee

∑C
g=1 5C (GC ) g

_
∑C
g=1 5C (G C ) − ' for each round C ∈ [) ]. Nonetheless, even though the constraint

∑C
g=1 5C (GC ) g

_
∑C
g=1 5C (G C ) − ' is satis�ed for round C , it may not be guaranteed at round C + 1, thus potentially

violating the worst-case utility constraint at the end of the sequence. Let us now consider an
illustrative example to explain this point. Suppose that the algorithm c satis�es

∑C
g=1 5C (GC ) g

_
∑C
g=1 5C (G C ) − ' but allocates more resources than c up to round C . Then, in future rounds, it

is possible that there is very little budget replenishment and the algorithm c can still allocate
resources to gain a higher utility, whereas the algorithm c does not have enough resources to match
the utility of c . In other words, if c uses more resources than c up to round C , the satisfaction of

utility constraint by c in terms of
∑C
g=1 5C (GC ) g _

∑C
g=1 5C (G C ) − ' is just temporary and can still be

violated in the future.
To address such uncertainties in the future, we introduce a novel reservation utility �(GC ) =

_!
∑"
<=1

[

(� C + �
 
C − G

 
C )< − (�C + �C − GC )<

]+
into the utility constraint for each round C , where

(�C + �C − GC )< means the remaining budget for the type-< resource at the end of round C . The

3For notational simplicity, we use LA-OACP to represent our learning-augmented algorithm, noting that the competitive

algorithm used by LA-OACP can also be OACP+.
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Algorithm 3 Learning-Augmented Online Allocation with Replenishable Budgets (LA-OACP)

Require: ML policy c̃ and the competitive algorithm c (OACP or OACP+)
1: for C = 1 to ) do

2: Receive reward function 5C , and potential budget replenishment �̂C .

3: Get replenished budgets �C = min{�̂C , �max − �C } for LA-OACP, and � C = min{�̂C , �max − � C }
for c 

4: Get ML prediction G̃C
5: Get the action G C of c

 based on its own history (by Algorithm 1 or Algorithm 2)
6: Choose GC by solving

GC = argmin
G∈X

∥G − G̃C ∥ (9a)

B .C .,

C
∑

8=1

5C (G8 ) g _

C
∑

8=1

5C (G 8 ) + �(GC ) − ', and GC f �C + �C , (9b)

where �(GC ) = _!
∑"
<=1

[

(� C + �
 
C − G

 
C )< − (�C + �C − GC )<

]+

7: Update budgets �C+1 = �C − GC + �C for LA-OACP, and � C+1 = �
 
C − G

 
C + �

 
C for c

 

8: end for

interpretation of �(GC ) is to bound the maximum potential utility advantage (scaled by _ ∈ [0, 1])
obtained by c in future rounds, if c has more remaining budgets compared to c at the end of
round C ; on the other hand, if the algorithm c has even more resources available than c , there is no
need to add the reservation since c can always roll back to the decision of c in the future without
worrying about budget shortages. Here, we simply use �(GC ) for the convenience of presentation
while suppressing its dependency on other terms such as G C . Thus, by adding �(GC ), we now have
a new constraint on the decision GC as follows:

C
∑

8=1

5C (G8 ) g _

C
∑

8=1

5C (G 8 ) + �(GC ) − ', (8)

which, if satis�ed at round C , guarantees the existence of at least one feasible decision that can still
satisfy the constraint. In other words, if the decisions GC are chosen out of the constrained set (8)
for round C ∈ [) ], worst-case utility constraint (7b) can be satis�ed at the end of any sequence
~ ∈ Y. To our knowledge, the design of �(GC ) for constructing a constrained decision set (8) is
novel for online allocation with replenishable budgets and also di�ers from many prior learning-
augmented algorithms (e.g., [5] uses a pre-determined threshold for dynamically switching between

ML prediction G̃C and the worst-case robust action G C ).
Algorithm. Next, we describe the online optimization process of LA-OACP in Algorithm 3. In

LA-OACP, the competitive algorithm (i.e., c ) runs independently for the purpose of bounding
the worst-case utility constraint (7b), and the ML predictor c̃ takes the actual online information
~1:C (including the actual remaining budget �C and replenishment �C ) as its input and generates
its prediction G̃C as advice to LA-OACP. Then, G̃C is projected into a constrained decision set (8)
to �nd the actual decision GC that guarantees the worst-case utility constraint. The purpose of
the projection in LA-OACP is to ensure that GC is both close to the ML prediction G̃C to exploit its
potential for improving the average utility, while still staying inside the constrained decision set (8)
for worst-case utility constraint (7b).
ML training. Up to this point, we have assumed that the ML predictor/policy c̃ has been

provided to LA-OACP for online optimization. Next, we discuss how to train c̃ used in Algorithm 3.
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In the context of online optimization, the ML-based predictor/policy is typically trained o�ine and
then applied online for inference [2, 23, 35, 37]. Here, we adopt this standard practice for LA-OACP.
Speci�cally, we collect a training dataset S of episodic information ~ ∈ Y based on history data
and/or data augmentation techniques, and build an ML model (e.g., a recurrent neural network for
online sequential decision making, with each base network parameterized by the same weights
[2, 35]).
We train the ML model c̃ by optimizing the expected utility obtained by Algorithm 3. Denote

LA-OACP (c̃ ) as the algorithm LA-OACP with the ML model c̃ . The training objective is expressed as

max
c̃

1

|S|
∑

~∈S
�
LA-OACP(c̃ )
)

(~), (10)

where �
LA-OACP(c̃ )
)

(~) is the total utility of LA-OACP(c̃) for the sequence ~.
To train the ML model, we apply the state-of-the-art backpropagation, while noting that dif-

ferentiation of the projection operator (which itself is a constrained optimization problem) with
respect to the ML prediction G̃C is needed and can be performed based on implicit di�erentiation
techniques [3, 4, 34].

4.3 Performance Analysis

We now present the performance analysis of LA-OACP in terms of its worst-case utility as well as its
average performance. As formally stated below, our results highlight that LA-OACP guarantees the
worst-case utility constraint for any sequence ~ ∈ Y and meanwhile is able to exploit the bene�ts
of ML predictions to improve the average utility.

4.3.1 Worst-Case Utility. We �rst present the worst-case utility of LA-OACP.

Theorem 4.1. For any _ ∈ [0, 1] and ' g 0, given any ML predictor c̃ and by the design �(GC ) =
_!

∑"
<=1

[

(� C + �
 
C − G

 
C )< − (�C + �C − GC )<

]+
, LA-OACP in Algorithm 3 always guarantees the worst-

case utility constraint (7b) for any sequence ~ ∈ Y.

The proof of Theorem 4.1 is available in Appendix C and shows that, based on the design of
�(GC ), if (8) is satis�ed for round C , then there must always exist a feasible solution satisfying (8)
for round C + 1.
Theorem 4.1 guarantees that the worst-case utility constraint (7b) is always satis�ed for any

sequence ~ ∈ Y regardless of how bad the ML predictions are. Thus, even when the training-testing
distributions di�er and/or the ML predictions are adversarially modi�ed, LA-OACP can still o�er
worst-case utility guarantees with respect to the competitive algorithm OACP or OACP+.

4.3.2 Average Utility. Besides the robustness guarantee, the performance of a learning-augmented
algorithm is often analyzed by considering the worst-case competitive ratio (a.k.a., consistency)
under the assumption that ML predictions are perfect and o�ine optimal for any sequence ~ ∈ Y
[5, 57]. The consistency metric measures how closely a learning-augmented algorithm can follow
the perfect ML predictions in the worst case. However, an ML model in practice is typically not
perfect and instead is trained to maximize the average performance in practice. Thus, to measure
the capability of LA-OACP for following ML predictions, we directly bound the average utility
of LA-OACP and compare it with the average utility of the optimal unconstrained ML model
c̃∗

= argmaxc E~
[

�c
)
(~)

]

that provides the best average performance. As such, given an optimally
trained ML model, we measure the average-case consistency of LA-OACPwith respect to the optimal
unconstrained ML model c̃∗ in terms of the average utility di�erence between LA-OACP and c̃∗.
Our consideration of an optimal ML model essentially parallels the assumption of “perfect ML
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prediction” for worst-case consistency analysis of learning-augmented algorithms [52, 57], while
noting that our optimality is in the average sense subject to our designed constrained decision set
(8).

More concretely, we consider an optimal ML predictor that optimizes the average utility of
LA-OACP, i.e.

c̃◦
= argmax

c̃
E~

[

�
LA-OACP(c̃ )
)

(~)
]

, (11)

where LA-OACP(c̃) outputs the actions GC satisfying (8) given the ML prediction G̃C , and show the
average utility bound of LA-OACP in the next theorem.

Theorem 4.2. For any _ ∈ [0, 1] and ' g 0, the average utility of LA-OACP with the optimal ML

model c̃◦ is bounded by

E~

[

�
LA-OACP(c̃◦ )
)

(~)
]

g max

{

E~

[

� c̃
∗

) (~)
]

− !(1 − W_,')E~

[

)
∑

C=1

∥G C − G̃∗C ∥
]

,E~

[

�c
 

) (~)
]

}

(12)

where W_,' = min
{

1, '
2_!\

}

, \ = max~
∑)
C=1 ∥G̃∗C − G

 
C ∥1 indicates the maximum cumulative decision

di�erence between the action G C of OACP or OACP+ and the action G̃∗C of the optimal unconstrained ML

predictor c̃∗, and ! is the Lipschitz constant of the utility function (Assumption 3).

The proof of Theorem 4.2 is available in Appendix D. The key idea is to translate the constraint

(8) into a new distance constraint between GC and G
 
C . Thus, if GC is su�ciently close to G C for each

round C ∈ [) ], we guarantee the worst-case utility constraint (7b). Meanwhile, by considering
the optimal unconstrained ML predictor c̃∗

= argmaxc E~
[

�c
)
(~)

]

, we �nd the closest distance

between GC and the ML prediction G̃∗C subject to the distance constraint between GC and G
 
C , and use

this as a feasible online algorithm. The bound of such a closest distance requires an analysis of
the remaining budget perturbation depending on the non-linear budget dynamics in (1c) due to
the maximum budget cap. Next, by optimality of c̃◦ used by LA-OACP to explicitly maximize the
average utility satisfying our constraint (8), we obtain the bound in Theorem 4.2.
Theorem 4.2 shows that the average utility of LA-OACP(c̃◦) with the optimal ML model c̃◦ is

no worse than that of the competitive algorithm c (OACP or OACP+) which is the second term in
the maximum operator. The reason is that the competitive algorithm c is one of the decision
policies with actions in the constrained decision sets (8), whereas LA-OACP(c̃◦) is the optimal
policy satisfying the decision constraints (8). This indicates that, while providing the worst-case
performance guarantee, LA-OACP can still improve the average utility comparedwith the competitive
algorithm (OACP or OACP+). The improvement relies on the �rst term in the maximum operator,
which bounds the average utility di�erence between LA-OACP and the optimal-unconstrained ML
model c̃∗.

The �rst term in the maximum operator in Theorem 4.2 provides the key insight into the tradeo�
between the worst-case performance and average performance. Speci�cally, with a smaller _ ∈ [0, 1]
and/or greater ' g 0, the worst-case utility constraint is less stringent and hence provides more
�exibility for LA-OACP to exploit the bene�ts of ML predictions for higher average utility, and vice
versa. In particular, when ' is large enough or _ is small enough, the worst-case utility constraint
in (7b) is so relaxed that it does not a�ect average utility maximization. In such cases, LA-OACP
approaches the average utility of the optimal unconstrained ML predictor. When the decisions of
the optimal-unconstrained ML predictor and the competitive algorithm become more distinct (i.e.,

increasing \ or E~

[

∑)
C=1 ∥G C − G̃∗C ∥

]

in Theorem 4.2), it is natrually more di�cult to follow the ML

predictions while still staying close to the competitive algorithm for worst-case utility, unless we
lessen the worst-case utility constraint by decreasing _ ∈ [0, 1] and/or increasing ' g 0.
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Theorem 4.2 gives the bound of average utility by assuming an optimal ML model c̃◦ which
parallels the assumption of “perfect ML prediction” for the worst-case consistency analysis in
existing learning-augmented algorithms [52, 57]. However, if the ML model c̃ in LA-OACP is not
optimally trained, we can de�ne the ML prediction imperfectness as n = E~

[

� c̃
◦

)
(~) − � c̃

)
(~)

]

,

where c̃◦
= argmaxc̃ E~

[

�
LA-OACP(c̃ )
)

(~)
]

is the optimal ML model for LA-OACP. The imperfectness

can come from a variety of sources, including �nite model capacity and potential training-testing
distributional shifts. Then, the average utility boundwith respect to c̃ can be obtained by subtracting
the ML imperfectness n from the average utility bound in Theorem 4.2. Nevertheless, even when

n → ∞, the average utility of LA-OACP is always bounded by _E~

[

�c
 

)
(~)

]

−', where E~
[

�c
 

)
(~)

]

is the average utility of the competitive algorithm (OACP or OACP+) used by LA-OACP. This is a
natural byproduct of Theorem 4.1, which guarantees the worst-case utility constraint of LA-OACP
with respect to the competitive algorithm.

In general, achieving the optimal tradeo� between average utility and the worst-case utility is
extremely challenging for learning-augmented algorithms (see, e.g., [19, 52] for discussions on
smoothed online convex optimization). Nonetheless, although it remains an open problem to achieve
the best tradeo�, our result in Theorem 4.2 provides the �rst characterization of such a tradeo� in
the context of learning-augmented algorithms for online allocation with budget replenishment. In
fact, even a competitive online algorithm with budget replenishment is lacking prior to our design
of OACP and OACP+.

5 SIMULATION STUDY

In this section, we run a simulation study on sustainable AI inference powered by renewables. First,
we present the experimental setup, followed by the comparative analysis of the results from our
algorithms with existing baselines. We show that LA-OACP has improved performance in terms of
average utility while still being able to o�er good worst-case utility.

5.1 Setup

This section presents our problem setting, dataset, baseline algorithms, and ML model architecture.
Problem setting. Edge data centers are becoming a major platform for AI inference thanks to

their proximity to end users. To achieve sustainable AI inference on the edge, it is important to
exploit renewable generation to replenish on-site energy storage. This can signi�cantly lower the
carbon emissions caused by the surging demand for AI inference [43]. For a given AI inference
service, multiple models are often available. For instance, there are eight di�erent GPT-3 models
[17], each with distinct model sizes, providing a �exible balance between accuracy and energy
consumption. However, the renewable sources are known for their time-varying and unstable
nature. Thus, we can use intermittent renewables to replenish the energy budgets, and schedule an
appropriate AI model for inference in an online manner to maximize the utility given available
energy budget constraints [51, 53].

Speci�cally, we focus on an edge data center with an on-site energy storage unit (e.g., batteries)
for AI inference. The initial energy budget is �1 = 12:,ℎ. At each round C , the time-varying
renewable energy �C is replenished to the energy storage subject to themaximum capacity constraint
�max = 30:,ℎ. Each problem instance has 120 rounds. If served by the full AI model, the energy
consumption for inference is 2C , which also measures the total demand. Nonetheless, the resource
manager can decide an AI model at each round C , which consumes energy GC . If a smaller AI model
is chosen, then GC is also smaller, but the inference accuracy is potentially lower. Here, we use a
utility function to denote the reward by consuming GC energy for serving the demand. Speci�cally,
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we model the utility of serving each unit of AI inference demand as log(1 + min{1, GĪ
2Ī
}), where

the min operator means that over-using energy GC beyond the maximum demand does not o�er
additional utility. Next, by using the total demand 2C to scale the demand, we have a utility function
of 5C (GC ) = 2C log(1 + min{1, GĪ

2Ī
}) at time C . Note that choosing GC = 0 means that the inference

demand is not processed by the edge (and routed to cloud data centers beyond our scope). The
remaining budget in the energy storage is then updated according to (1c). The goal of the resource

manager is to maximize
∑)
C=1 5C (GC ) subject to the energy budget constraint.

Dataset. In our experiment, the inference demand 2C comes from the GPU power usage of the
BLOOM model (a large lanugage model) API running on 16 Nvidia A100 GPUs [43]. The budget
replenishment �C (harvested renewable energy) is constructed based on the renewable dataset
from California Independent System Operator [47], which contains hourly solar renewables. The
values are scaled down to our setting. We extend the BLOOM trace data by data augmentation to
construct a training dataset consisting of 1600 problem instances, each with 120 hours. Then, the
entire dataset is divided into training and testing sets with a 3:1 ratio.
Baseline algorithms. To compare our results, we consider the following baseline algorithms.
– OPT : OPT is the optimal oracle algorithm that solves (1) based on complete o�ine information.

Thus, OPT has the highest utility for any problem instance.
– Equal: Equal uniformly allocates the initial budget, and greedily uses the replenished budget

whenever applicable, i.e., GC = min{Ḡ, d + �C }.
– Greedy: Greedy allocates as much budget as possible at each round, i.e., GC = min{Ḡ, �C + �C }.
– DMD: DMD (Dual Mirror Descent) updates the dual variable by mirror descent [11]. With

replenishable budgets, DMD updates the dual variable based on subgradient 6C = d + �C − ĜC .
–ML:ML uses a standalone ML predictor to yield online allocation decisions subject to per-round

budget constraints. Such ML-based online optimizer empirically have superior average performance
in a variety of online problems (when training-testing distributions are consistent) [2, 23, 35], but
cannot guarantee worst-case utility bounds.
The hyperparameters for these algorithms, if applicable, are tuned based on our validation

dataset to achieve the maximum utility. While it is not possible to compare our algorithms with
all the existing baselines in the literature, our choice of baseline algorithms is representative in
the sense that they cover the strongest OPT, naive Greedy, state-of-the-art competitive online
algorithm DMD, as well as state-of-the-art ML-based online optimizers. Thus, we do not consider
other competitive algorithms than state-of-the-art DMD, or other algorithms that focus on average
performance but do not have as empirically good performance as ML. Importantly, our design of
OACP or OACP+ is provably-competitive and LA-OACP can provably satisfy the worst-case utility
constraint (7b) with respect to any available online algorithm by using it to replace OACP or OACP+
as c in Algorithm 3.
ML model architecture. We implement the ML model based on a neural network with 2

hidden layers each having a width of 10 with ReLu activation. To train the model, we use the
Adam optimizer for 100 epochs with a batch size of 20 and a learning rate of 0.001. The same ML
architecture is also used in LA-OACP.

5.2 Results

In this section, we present a comparative analysis of di�erent baselines with our proposed algorithms
in terms of the average utility and empirical competitive ratio. The average utility is empirically
calculated as the average utility of the testing samples and is normalized by the optimal average
utility. The competitive ratio is empirically calculated as the minimum ratio of an online algorithm’s
utility to the optimal utility among the testing samples. Because of the provably better asymptotic
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ML OACP OACP+ LA-OACP-0.3 LA-OACP-0.6 DMD Greedy Equal

AVG
In 0.9340 0.8959 0.9130 0.9311 0.9301 0.8715 0.8574 0.7246

OOD 0.8975 0.9036 0.9041 0.8953 0.8981 0.9016 0.9000 0.7528

CR
In 0.8645 0.8481 0.8565 0.8303 0.8223 0.8200 0.8048 0.5650

OOD 0.7916 0.8234 0.8411 0.7916 0.8003 0.8076 0.8048 0.5650

Table 2. Comparison of average utility (AVG) and empirical competitive ratio (CR). LA-OACP-= indicates
LA-OACP with _ = =. “In” and “OOD” mean in-distribution and out-of-distribution, respectively. The average
utility is normalized by that of OPT (i.e., 80.2771 and 78.8540 for the in-distribution and out-of-distribution
cases, respectively).... Bold values represent the best for the respective metrics.

competitive ratio of OACP+, we use OACP+ in LA-OACP and set ' = 0 in (7b) by default. All the utility
values are normalized with respect to that of OPT.

Comparison with baselines. We �rst compare OACP, OACP+ and LA-OACP with the baseline
algorithms in Table 2 under an in-distribution case where the training-testing instances are drawn
from the same distribution. Our results show that ML has the highest average utility among the
considered online algorithms, while LA-OACP, OACP, and OACP+ outperform other baselines (DMD,
Greedy and Equal) in terms of the average utility. Importantly, by setting _ = 0.3 and _ = 0.6, the
average utilities of LA-OACP are both improved compared to OACP and OACP+, and closer to that of
ML.

For the in-distribution testing case, the empirical competitive ratio of ML is also the best, although
ML does not have a guaranteed competitive ratio. Besides, OACP and OACP+ both have higher
competitive ratios than other baselines (DMD, Greedy, Equal), demonstrating their advantages in
competitive ratio guarantees. Note that the empirical competitive ratios of OACP are higher than
that of DMD which sets its resource price more aggressively, showing the bene�t of conservative
pricing in OACP. Moreover, while the empirical competitive ratios of LA-OACP are lower than ML,
they have provable competitive ratio which is scaled down by _ compared to that of OACP+.

Training-testing distributional shifts. The above results consider that the training and testing
instances are drawn from the same distribution. Now, we consider an out-of-distribution (OOD)
testing case by adding perturbation noises to 30% of the testing instances, and show the results in
Table 2. OOD is commonly seen in practice, making ML predictions potentially untrusted. Since
the testing distribution shifts compared to the training distribution under the OOD setting, the
performances of ML in terms of both average utility and competitive ratio decrease and become
worse than OACP and OACP+. Still, OACP and OACP+ outperform the other baselines (DMD, Greedy
and Equal) in terms of the empirical competitive ratio, again showing their bene�ts in the worst-case
competitive guarantee. The learning-augmented algorithm LA-OACP improves the competitive ratio
of ML with a large _, showing its e�ects in providing the ML with guaranteed competitiveness.

Performance under varying _. Next, we show in Fig. 1(a) the impact of _ ∈ [0, 1] on LA-OACP

in terms of the average utility. We see that under the in-distribution setting, when _ increases,
the average utility of LA-OACP can decrease due to the increasingly more stringent worst-case
robustness constraint (7b). Interestingly, LA-OACP can achieve higher average utility than ML under
some _. This is due to the fact that OACP+ used by LA-OACP can correct the ML predictions for some
problem instances in which the original ML predictions do not perform well. For the OOD setting,
the average utility of ML is lower due to the distribution shift. By integrating OACP+ with ML,
LA-OACP is more bene�cial in terms of improving the average utility. This con�rms our analysis of
LA-OACP in Theorems 4.1 and 4.2.

We show the empirical competitive ratios under di�erent _ in Fig. 1(b). In practice, it is di�cult
to evaluate the competitive ratio empirically since the adversarial samples for the algorithms
under evaluation may not exist in the actual testing dataset under evaluation. As a result, a few
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Fig. 1. (a) Average utility of LA-OACP with varying _ ∈ [0, 1]; (b) Empirical competitive ratio of LA-OACP with
varying _ ∈ [0, 1] (do�ed lines represent the theoretical competitive ratio bounds); (c) Utility constraint (7b)
violation probability by the pure ML predictor.

unfavorable instances can a�ect the empirical competitive ratio signi�cantly. Our results show
that LA-OACP has an empirical competitive ratio higher than the theoretical bound in Theorem 4.1
(dotted line in Fig. 1(b)), which is also very common in practice.

Finally, we show in Fig. 1(c) the worst-case utility constraint violation probability for the pure
standalone ML predictor. Naturally, when _ increases, the worst-case utility constraint in (7b)
becomes tighter, making the pure ML predictor violate the constraint more frequently. This high-
lights the lack of worst-case utility guarantees of pure ML, as well as the necessity of LA-OACP to
safeguard the ML predictions. Thus, although ML empirically can have a good competitive ratio
(against OPT) as shown in Table 2 for the in-distribution case, this empirical advantage is not
always guaranteed.

6 RELATED WORKS

Online constrained allocation is a classic problem extensively studied in the last few decades. For
example, some earlier works [20, 26] solve online allocation by estimating a �xed Lagrangian mul-
tiplier using o�ine data, while other studies design online algorithms by updating the Lagrangian
multiplier or resource price in an online manner [1, 21, 63]. Likewise, online algorithms have
also been proposed for online stochastic optimization with distributional information [32]. Online
algorithms that allow budget violations are also available [42, 45, 46]. In the context of network
optimization, Lyapunov optimization can address various resource constraints by introducing
resource queues (equivalent to the Lagrangian multiplier), but the extension to adversarial settings
with strict budget constraints is challenging [28, 29, 45, 61].

Online allocation with budget constraints in adversarial settings is very challenging and has not
been fully resolved yet. Concretely, for online allocation with inventory constraints, competitive
online algorithms are designed by pursuing a pseudo-optimal algorithm, but the utility function
either takes a single scalar [41] or is separable over multiple dimensions [40]. A recent study [9]
considers online allocation with a more general convex utility function and proposes dual mirror
descent (DMD) to update the Lagrangian multiplier given stochastic inputs at each round, while
the extension to adversarial settings has been considered more recently in [11] and extension to
uncertain time horizons is studied in [8]. Nonetheless, these studies do not apply to online budget
replenishment, which we address by proposing provably-competitive OACP and OACP+.
ML predictors/policies have been emerging for exploiting the distributional information of

problem inputs and hence improving the average performance of various (online) optimization
problems [18, 36, 54]. For example, online scheduling, resource management, and classic secretary
problems [12, 35, 54, 62] have all been considered. Nonetheless, amajor drawback of these standalone
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ML-based optimizers is that they do not have worst-case performance guarantees and may have
very high or even unbounded losses in the worst case. As a consequence, they may not be suitable
for mission-critical applications. While constrained ML-based policies [22, 25, 33, 58] are available,
they focus on orthogonal challenges (i.e., unknown cost/utility functions) and typically focus on
the average constraint, rather than worst-case utility constraint for any problem instance.
LA-OACP is relevant to the emerging �eld of learning-augmented algorithms [15, 15, 19, 38, 44, 57].

The goal of typical learning-augmented algorithms is to improve the worst-case competitive ratio
when theML prediction is perfect, while bounding theworst-case competitive ratiowhenML predici-
tion is arbitrarily bad. While it has been considered in a variety of settings, a learning-augmented
algorithm for online allocation with replenishable budgets is still lacking. Thus, LA-OACP addresses
this gap and is the �rst learning-augmented algorithm for online allocation with replenishable
budgets that o�ers worst-case utility guarantees for any problem instance.

7 CONCLUSION

In this paper, we study online resource allocation with replenishable budgets, and propose novel
competitive algorithms, called OACP and OACP+, that conservatively adjusts dual variables while
opportunistically utilizing available resources. We prove, for the �rst time, that OACP and OACP+

both achieve bounded asymptotic competitive ratios in adversarial settings as the number of
decision rounds ) → ∞. In particular, under the mild assumption that the budget is replenished
every ) ∗ rounds, OACP+ can improve the asymptotic competitive ratio over OACP. Then, to address
the conservativeness of OACP, we move beyond the worst-case and propose LA-OACP, a novel
learning-augmented algorithm for our problem setting. LA-OACP can provably improve the average
utility compared to OACP and OACP+ when the ML predictor is properly trained, while still o�ering
worst-case utility guarantees. Finally, we perform simulation studies using online power allocation
with energy harvesting. Our results validate our analysis and demonstrate the empirical bene�ts of
LA-OACP compared to existing baselines.
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APPENDIX

A PROOF OF THEOREM 3.1

We now prove Theorem 3.1 and �rst restate the convergence lemma of online mirror descent.

Lemma A.1 ([11, 48]). Let +ℎ (G,~) = ℎ(G) − ℎ(~) − ▽ℎ(~)¦ (G − ~) be the Bregman divergence

based on a f-strongly convex function ℎ. IfFC (`) is a convex function with respect to ` ∈ D where

D is a convex set and its sub-gradient satis�es ∥m`FC (`)∥∞ f � , by updating the variable `C+1 =

argmin`∈D `¦m`FC (`) + 1
[
+ℎ (`, `C ) from some initial variable `1, it holds for any ` ∈ D that

)
∑

C=1

FC (`C ) −FC (`) f
�2[

2f
) + 1

[
+ℎ (`, `1). (13)

Proof of Theorem 3.1

Proof. We de�ne T� =
{

g1, · · · , g | Tý |
}

as a set of rounds when ĜC violates the budget constraint,
i.e. ∀g ∈ T�, there exists a dimension< such that (Ĝg )< > (�g + �g )< . By our algorithm design, if
C ∈ T�, we choose GC = 0 and 6C = 0. De�ne a sequence of functions as

FC (`) = `¦C 6C =
{

`¦C (d − ĜC ), C ∉ T�,
0, C ∈ T� .

(14)

By Lemma A.1, we have

)
∑

C=1

FC (`C ) −FC (`) f
�2[

2f
) + 1

[
+ℎ (`, `1), (15)

where � = sup ∥6C ∥∞ f d̄ + ∥Ḡ ∥∞. By our algorithm design, ∀C ∉ T�, the action is chosen as
GC = argmaxG∈X{5C (G) −`¦C G}, we have 5C (G∗C ) f 5C (GC ) +`¦C (G∗C −GC ) and 0 = 5C (0) f 5C (GC ) −`¦C GC .
Thus we have

U 5C (GC ) = 5C (GC ) + (U − 1) 5C (GC )
g 5C (G∗C ) − `¦C G∗C + `¦C GC + (U − 1) 5C (GC )
g 5C (G∗C ) − `¦C G∗C + `¦C GC + (U − 1)`¦C GC
= 5C (G∗C ) − U`¦C (d − GC ) − `¦C G∗C + U`¦C d
g 5C (G∗C ) − UFC (`C ),

(16)

where the last inequality holds by setting U = max<∈[" ]
Ḡģ
dģ

.
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Then for any ` > 0, we have

$%) (~) − U�) (~)

f
)
∑

C=1

5C (G∗C ) − U
∑

C∉Tý
5C (GC )

f
)
∑

C=1

5C (G∗C ) −
∑

C∉Tý
5C (G∗C ) +

∑

C∉Tý
UFC (`C )

f
∑

C ∈Tý
5C (G∗C ) + U

∑

C∉Tý
FC (`) + U

(

�2[

2f
) + 1

[
+ℎ (`, `1)

)

f|T� | 5̄ + U
∑

C∉Tý
`¦ (d − GC ) + U

(

�2[

2f
) + 1

[
+ℎ (`, `1)

)

(17)

where the �rst inequality holds because the utility are non-negative, the second inequality holds
by (16), the third inequality holds by Lemma A.1, and the last inequality holds by 5C f 5̄ .
Now it remains to choose ` to get the bound. If |T� | = 0, set ` = 0, and the bound holds.

Otherwise, we choose ` as follows. De�ne M� is the set of resources of which the corresponding
constraints are violated, i.e. for< ∈ M�, ∃C ∈ [) ] such that Ĝ<,C > (�C + �C )< . Since the consumed
resource plus ĜC,< is larger than the initial budget �1,< when the constraint resource< is violated
and ĜC,< f Ḡ< , it holds for resource< ∈ M� that

∑

C∉Tý
GC,< + Ḡ< g �1,< = d<) . (18)

We choose one resource 9 ∈ M� and set ` =
5̄

Ud Ġ
4 9 where 4 9 is a unit vector with 9th entry being

one and other entries being zero, it holds that

U
∑

C∉Tý
`¦ (d − GC )

=U
∑

C∉Tý
` 9 (d 9 − GC, 9 )

fU () − |T� |)` 9d 9 − U` 9 ()d 9 − Ḡ 9 )
f − U |T� |` 9d 9 + U` 9 Ḡ 9
f − |T� | 5̄ + U 5̄ ,

(19)

where the �rst inequality holds by (18), and the last inequality holds by the choice of `.
Substituting (19) into (17), we get the bound as

$%) (~) − U'�"�) (~) f U 5̄ + U�
2[)

2f
+ U
[
+ℎ (`, `1), (20)

whereU = sup<∈[" ]
Ḡģ
dģ

, and ` = 0 ifM� = ∅. Otherwise, ` = 5̄

Ud Ġ
4 9 , 9 = argmin<+ℎ ( 5̄

Udģ
4<, `1),< ∈

M�}. Thus, we complete the proof. □

B PROOF OF THEOREM 3.2

Lemma B.1. If a �xed budget � (8 )
= 28−1) ∗d + ¬8 where ¬8 = min{�)ğ−1+1 − () − (28−1 −

1)) ∗)d, 28−2) ∗dmax » V} where dmax = �max/) is assigned to each frame 8, 1 f 8 f  with 28−1) ∗

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 4. Publication date: March 2024.



4:28 Jianyi Yang, Pengfei Li, Mohammad J. Islam, & Shaolei Ren

� �
7 ��

7
7 �

7

����

�� = ��

��

�7�

��7&�

��
���7&�

��

���7&�

��
��

Fig. 2. An example of budget assignment with ) = 7) ∗. Colored rectangles indicate the amount of re-
mained budget and white rectangles are the spaces in the storage. Dark blue rectangles indicate permanent
budgets 28−1) ∗d for the current frame. Light blue rectangles indicate permanent budgets for the future

frames () − (2(8 ) − 1)) ∗)d . Green rectangles indicate the budget accumulation min{�)ğ−1+1 − () − (28−1 −
1)) ∗)d, 28−2) ∗dmax » V}.

rounds, the additive budget ¬8 is greater or equal to equivalent additive budget ¬̂8 , 1 f 8 f  − 1

which is expressed as

¬̂1 = 0 (21a)

¬̂2 = min{)dmax −)d, �′min} (21b)

¬̂8 = min{)dmax − 28−3) ∗dmax » V − () − (28−2 − 1)) ∗)d, 28−2�′min}, 3 f 8 f  (21c)

where �′min = min{�min,)
∗dmax » V}.

Proof. We prove that the equivalent additive budget ¬̂8 does not exceed the true additive budget
¬8 for any frame 8 .

For the �rst frame, it is obvious that ¬̂1 f ¬1 = 0 holds. For the second frame, we discuss the
value of ¬2 in the following cases.

Firstly, if for a resource< ∈ ["], �) ∗+1,< − () −) ∗)d< f ) ∗V<dmax,< , the additive budget ¬2,<

is �) ∗+1,< − () −) ∗)d< , and it comprises the replenishment in the �rst frame
∑)1
C=1 �C,< and the

unconsumed budget in the �rst frame �1< − ∑)1
C=1 GC,< . We can bound the replenishment in the �rst

frame as

)1
∑

C=1

�C,< g min{�max,< −)d<, �min,<} g min{�max,< −)d, �′min,<} = ¬̂2,< . (22)

The reason is that if the truly replenished budget of resource< at each round of the �rst frame is

not constrained by �max,< , i.e. �C,< = �̂C,<,∀C ∈ [1,)1], we have
∑)1
C=1 �C,< =

∑)1
C=1 �̂C,< g �min,< g

�′min,< . Otherwise, we must have
∑)1
C=1 �C,< g �max,< −)d< since �max,< −)d< is the minimum

replenished budget such that the replenishment is constrained by the budget cap �max,< . Therefore

for the �rst case, we always have for the resource<, ¬̂2,< f ∑)1
C=1 �C,< f ¬2,< .
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For the second case when �) ∗+1,< − () −) ∗)d< > ) ∗V<dmax,< for resource<, we have ¬2,< =

) ∗V<dmax,< . Thus, we still have ¬̂2,< f �′min,< f ) ∗V<dmax,< = ¬2,< .

Since the inequality holds for all the resources<, we have ¬̂2 f ¬2.
For the 8th (3 f 8 f  ) frame, we discuss for the value of ¬8 in the following cases.
Firstly, if for a resource<, �)ğ−1+1,< − () − (28−1 − 1)) ∗)d< f 28−2) ∗V<dmax,< , then the additive

budget ¬8,< includes the replenishment in the (8 − 1)th frame
∑)ğ−1
C=)ğ−2+1 �C,< , the unconsumed

assigned budget in the (8−1)th frame �8−1< −∑)ğ−1
C=)ğ−2+1 GC,< , and the possibly saved budget [�)ğ−2+1,<−

() − (28−2 − 1)) ∗)d< − 28−3) ∗V<dmax,<]+ at the beginning of (8 − 1)th frame. The truly replenished
budget in the (8 − 1)th frame can be bounded as

)ğ−1
∑

C=)ğ−2+1
�C,< g min{�max,< − �)ğ−2+1,<, 28−2�′min,<}. (23)

The reason is that if the replenishment at each round of the (8 − 1)th frame is not constrained by

�max,< , i.e. �C,< = �̂C,<,∀C ∈ [)8−2 + 1,)8−1], we have
∑)ğ−1
C=)ğ−2+1 �C,< =

∑)ğ−1
C=)ğ−2+1 �̂C,< g 28−2�min,< g

28−2�′min,< . Otherwise, we must have
∑)ğ−1
C=)ğ−2+1 �C,< g �max,< − �)ğ−2+1,< since �max,< − �)ğ−2+1,< is

the minimum replenished budget such that the replenishment is constrained by the budget cap
�max,< .
If it holds at the beginning of the (8 − 1)th frame that �)ğ−2+1,< f () − (28−2 − 1)) ∗)d< +

28−3) ∗V<dmax,< , we further have

¬8,< g
)ğ−1
∑

C=)ğ−2+1
�C,< g min{�max,< − 28−3) ∗V<dmax,< − () − (28−2 − 1)) ∗)d<, 28−2�′min,<} = ¬̂8,< .

(24)
Otherwise, [�)ğ−2+1,< − () − (28−2 − 1)) ∗)d< − 28−3) ∗V<dmax,<]+ is positive and is included in ¬8,< .
Under such a case, we have

¬̂8,< =min{() − 28−3) ∗V<)dmax,< − () − (28−2 − 1)) ∗)d<, 28−2�′min,<}
fmin{�max,< − �)ğ−2+1,<, 28−2�′min,<} + �)ğ−2+1,< − () − (28−2 − 1)) ∗)d< − 28−3) ∗V<dmax,<

f
)ğ−1
∑

C=)ğ−2+1
�C,< + �)ğ−2+1,< − () − (28−2 − 1)) ∗)d< − 28−3) ∗V<dmax,< f ¬8,<,

(25)

where the �rst inequality holds because min{� + �,�} f min{�,�} + � for �, �,� g 0, the second

inequality holds by (23), and the last inequality holds since
∑)ğ−1
C=)ğ−2+1 �C,< and [�)ğ−2+1,< − () −

(28−2 − 1)) ∗)d< − 28−3) ∗V<dmax,<]+ are both included in ¬8,< .
Secondly, if �)ğ−1+1,< − () − (28−1 − 1)) ∗)d< > 28−2) ∗V<dmax,< , the additive budget ¬8,< =

28−2) ∗V<dmax,< , and we have ¬̂8,< f 28−2�′min,< f 28−2) ∗V<dmax,< = ¬8,< .

Since the inequality holds for all the resources<, we have ¬̂8 f ¬8 for 3 f 8 f  . □

Proof of Theorem 3.2

Proof. Since dual mirror descent is applied to each frame, using similar techniques as the proof
of Theorem 3.1, we can prove that within each frame 8, 8 ∈ [ ], given the choice of [ and `, it holds
that

)ğ
∑

C=)ğ−1

5C (G∗C ) − U8 5C (GC ) f U8 5̄ + U8 (d̄ (8 ) + ∥Ḡ ∥∞)
√

+ℎ (`, `1) (28−1) ∗)
2f

, (26)
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where G∗C is the o�ine-optimal solution for the whole episode with length ) , U8 = sup<∈[" ]
Ḡģ

d
(ğ )
ģ

,

and d̄ (8 )
= sup<∈[" ] d

(8 )
< .

To use the doubling trick, we need to bound d (8 )
=

� (ğ )

2ğ−1) ∗ . By Lemma B.1, we have d1 = d ,

d2 =
2) ∗d+¬ğ

2) ∗ g 2) ∗d+min{)dmax−)d,�′min
}

2) ∗ = d + min{)dmax−)d
2) ∗ ,

dmax»V
2

, �min

2) ∗ }, and for 3 f 8 f  , we
have

d (8 )
=� (8 )/(28−1) ∗) = 28−1) ∗d + ¬8

28−1) ∗ g 28−1) ∗d + ¬̂8

28−1) ∗

=d +
min

{

)dmax − 28−3) ∗dmax » V − () − (28−2 − 1)) ∗)d, 28−2�′min

}

28−1) ∗

=d +min

{

1

28−1

(

)dmax

) ∗ − ) +) ∗

) ∗ d

)

+ d
2
− dmax » V

4
,
dmax » V

2
,
�min

2) ∗

}

,

(27)

where the �rst inequality holds since ¬8 g ¬̂8 , and the last equality holds since �′min = min{�min,

) ∗dmax»V}. If it holds for a resource< that �max,< < () +) ∗)d< , we have 1
2ğ−1

(

)dmax,ģ

) ∗ − )+) ∗

) ∗ d<

)

+
dģ
2
− Vģdmax,ģ

4
g )dmax,ģ−()+) ∗ )dģ

4) ∗ + dģ
2
− Vdmax,ģ

4
. By optimally choosing V< =

)
3) ∗ − )−) ∗

3) ∗
dģ

dmax,ģ
, we

have

d
(8 )
< gd< +min

{

)dmax,< − () +) ∗)d<
4) ∗ + d<

2
− V<dmax,<

4
,
V<dmax,<

2
,
�min,<

2) ∗

}

=d< +min

{

)dmax,<

6) ∗ − () −) ∗)d<
6) ∗ ,

�min,<

2) ∗

}

.

(28)

If it holds for a resource < that �max,< g () + ) ∗)d< , we have 1
2ğ−1

(

)dmax,ģ

) ∗ − )+) ∗

) ∗ d<

)

+ dģ
2

−
Vģdmax,ģ

4
g 1

2ć−1

(

)dmax,ģ

) ∗ − )+) ∗

) ∗ d<

)

+ dģ
2
− Vģdmax,ģ

4
g )dmax,ģ−()+) ∗ )dģ

)+) ∗ + dģ
2
− Vģdmax,ģ

4
given that

) g (2 −1 − 1)) ∗. By optimally choosing V< =
4)

3()+) ∗ ) −
2dģ

3dmax,ģ
, we have

d
(8 )
< gd< +min

{

)dmax,< − () +) ∗)d<
) +) ∗ + d<

2
− V<dmax,<

4
,
V<dmax,<

2
,
�min,<

2) ∗

}

=d< +min

{

2)dmax,<

3() +) ∗) −
d<

3
,
�min,<

2) ∗

}

.

(29)

Therefore, we can bound d
(8 )
< as d

(8 )
< g d< +min

{

2)dmax,ģ

3()+) ∗ ) − dģ
3
,
�min,ģ

2) ∗

}

when �max,< g () +) ∗)d<
and d

(8 )
< g d< + min

{

)dmax,ģ

6) ∗ − ()−) ∗ )dģ
6) ∗ ,

�min,ģ

2) ∗

}

when �max,< < () + ) ∗)d< . We de�ne �d< =

min{ 2)dmax,ģ

3()+) ∗ ) −
dģ
3
,
�min,ģ

2) ∗ } when �max,< g () +) ∗)d< and �d< = min
{

)dmax,ģ

6) ∗ − ()−) ∗ )dģ
6) ∗ ,

�min,ģ

2) ∗

}

when �max,< < () +) ∗)d< . Thus, we have d (8 )
< g d< + �d< .

Also, we can get the upper bound of d (8 ) for 8 ∈ [2,  ] as d (8 ) f 2ğ−1) ∗d+2ğ−2) ∗dmax»V
2ğ−1) ∗ = d + dmax»V

2
,

where the inequality holds because ¬8 f 28−2) ∗ (V»dmax). Thus we have d̄ (8 )
= sup<∈[" ] d

(8 )
< f d̄+

V̄

2
d̄max, where d̄max = max< dmax,< , V̄ = max< V< . When �max,< g () +) ∗)d< , the optimal d< f 4

3

as ) → ∞. When �max,< < () +) ∗)d< , the optimal d< f 2
3
as ) → ∞ since )

)+) ∗ <
dģ

dmax,ģ
f 1.
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De�ne Û = min<∈[" ]
Ḡģ

dģ+�dģ . By summing up frames with the lower and upper bounds of d (8 ) ,
we get

)
∑

C=1

5C (G∗C ) − Û 5C (GC ) f
3) ∗
∑

C=1

5C (G∗C ) − Û 5C (GC ) +
 
∑

8=3

)ğ
∑

C=)ğ−1

5C (G∗C ) − U8 5C (GC )

f 3 5̄ ) ∗ +
 
∑

8=3

U8 5̄ + U8 (d̄ +
V̄

2
d̄max + ∥Ḡ ∥∞)

√

+ℎ (`, `1) (28−1) ∗)
2f

f 3 5̄ ) ∗ + Û 5̄ + Û (d̄ + V̄
2
d̄max + ∥Ḡ ∥∞)

√

+ℎ (`, `1)
2f

 
∑

8=3

√

(28−1) ∗)

f 3 5̄ ) ∗ + Û 5̄ + Û (d̄ + V̄
2
d̄max + ∥Ḡ ∥∞)

√

+ℎ (`, `1)
2f

(1 +
√
2)
√
),

(30)

where the second inequality holds by (26) and the third inequality holds due to the fact that Û g U8
for any 8 ∈ [3,  ].
Since  =

⌈

log2 () /) ∗)
⌉

= $ (log() )), it holds for any sequence ~ that

lim
)→∞

1

)

)
∑

C=1

5C (G∗C ) − Û 5C (GC ) f 0, (31)

indicating an asymptotic competitive ratio of �'OACP+ = 1
Û
= min<∈[" ]

dģ+�dģ
Ḡģ

. □

C PROOF OF THEOREM 4.1

Proof. To prove the wost-case robustness of LA-OACP, we need to prove that there exists at

least one feasible action in each round. We prove by induction that ǦC = min{G C , �C + �C } is always
feasible for constraint (8).

When C = 1, G C is obviously a feasible solution of (8). Let �C =
∑C
g=1 5g (Gg ) for any C ∈ [) ].

Assume that at round C − 1, �C−1 − �(GC−1) + ' g _�  C−1. At round C , we have

�C − �(GC ) + ' − _�  C
=�C−1 − _�  C−1 − �(GC ) + ' + 5C (GC ) − _5C (G C )
g (�(GC−1) − �(GC )) + 5C (GC ) − _5C (G C )

=_!

(

"
∑

<=1

|� <,C − �<,C |+ − |� <,C+1 − �<,C+1 |
+
)

+ 5C (GC ) − _5C (G C ),

(32)

where �<,C+1 = �<,C + �<,C − G<,C and � <,C+1 = �
 
<,C + �

 
<,C − G

 
<,C by the budget dynamics.

Next, we prove GC = ǦC is always a feasible solution for constraint (8). If GC = ǦC , we have

�C+1 = �C + �C − ǦC . If �<,C + �<,C g G <,C holds for<, then Ǧ<,C = G
 
<,C and we have

|� <,C+1 − �<,C+1 |
+
= |� <,C + �

 
<,C − �<,C − �<,C |+

= |min{� <,C + �̂<,C , �max} −min{�<,C + �̂<,C , �max}|+

f |� <,C − �<,C |+,
(33)
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where the last inequality holds by 1-Lipschitz of the function min{·, �max}. On the other hand, if

�<,C + �<,C < G <,C holds for<, then Ǧ<,C = �<,C + �C holds for<. Thus

|� <,C − �<,C |+ − |� <,C+1 − �<,C+1 |
+

=(� <,C − �<,C ) − |� <,C + �
 
<,C − G

 
<,C − �<,C+1 |+

= − �<,C − � <,C + G
 
<,C

gG <,C − Ǧ<,C ,

(34)

where the �rst equality holds because min{�<,C + �̂<,C , �max} = �<,C + �<,C < G <,C f � <,C + �
 
<,C =

min{� <,C+�̂<,C , �max}, so �<,C f � <,C , the second equality holds because �<,C+1 = �<,C+�<,C−Ǧ<,C =
0, and the inequality holds because �<,C g � <,C given �<,C f � <,C . Thus we have for any< ∈ ["],

!

(

"
∑

<=1

|� <,C − �<,C |+ − |� <,C+1 − �<,C+1 |
+
)

g !(G <,C − Ḡ<,C ). (35)

Thus, by the Lipschiz continuity of 5 , we have

5C (G C ) − 5C (ǦC )

f
"
∑

<=1

! |G <,C − Ǧ<,C |

f
"
∑

<=1

!( |� <,C − �<,C |+ − |� <,C+1 − �<,C+1 |
+).

(36)

Continuing with (32), when GC = ǦC , since _ ∈ [0, 1], we have

�C − �(GC ) + ' − _�  C g (1 − _) 5C (ǦC ) g 0. (37)

Thus we prove that there always exists ǦC = min{G C , �C + �C } such that �C − �(GC ) + ' f _�  C
holds for each round C . Since �(GC ) g 0, if (8) holds for each round, we have (8) holds for the last
round, thus satisfying the worst-case utility constraint (7b). □

D PROOF OF THEOREM 4.2

Proof. The ML policy optimally trained aware of the projection for worst-case utility constraint
is the policy that optimizes the average utility that satis�es (8) for each round. Thus we bound the
average utility by bounding the average utility of the policy c◦ based on the optimal unconstrained
ML policy c̃∗ and OACP c , i.e. c◦

= Wc̃∗ + (1 − W)c . The constructed policy c◦ gives the action
G◦C = WG̃∗C + (1 − W)G C where G̃∗) is the output of ML policy c̃∗ and G C is the output of c

 .
We �rst prove that G◦C is always a feasible action for the budget constraints. To show this, we

prove by induction that the remaining budget �◦C of c◦ at each round is no less than a linear

combination of the remaining budget �̃∗ of c̃∗ and the remaining budget � of c . At the �rst round,
it holds that

�◦2 = min{�1 + �̂1, �max} − G◦1
= W�̃∗2 + (1 − W)� 2 .

(38)
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Assume for the round C, C > 2, we have �◦C g W�̃∗C + (1 − W)� C . Then we have

�◦C+1 = min{�◦C + �̂C , �max} − G◦C
g min{W�̃∗C + (1 − W)� C + �̂C , �max} − WG̃∗C − (1 − W)G C
g W

(

min{�̃∗C + �̂C , �max} − G̃∗C
)

+ (1 − W)
(

min{� C + �̂C , �max} − G C
)

= W�̃∗C+1 + (1 − W)� C+1,

(39)

where the second inequality holds because min{·, �max} is a concave function. Thus, for any round

C ∈ [) ], we have �◦C g W�̃∗C + (1 − W)� C . Since the ML policy and OACP both guarantee that �̃∗C g 0

and � C g 0, we have �◦C g 0 which means G◦C is a feasible action for budget constraints.
Next, we need to �nd an W such that the policy c◦ satisfy the robustness constraints. By the

robust algorithm design, we need to satisfy the robust constraint for each step C which can be
expressed as

C
∑

8=1

58 (G◦8 ) g _

C
∑

8=1

58 (G 8 ) + _!
"
∑

<=1

|� <,C+1 − �
◦
<,C+1 |+ − ' (40)

By Lipschitz continuity of 5C , we have 58 (G 8 ) f 58 (G◦8 ) + !∥G
 
8 − G◦8 ∥1 (We can use !1-norm since

it returns the largest value among !? -norms (? g 1). ), and thus get a su�cient condition for the
robust constriant (40) as

−_!
C

∑

8=1

∥G◦8 − G 8 ∥1 − _!
"
∑

<=1

|� <,C+1 − �
◦
<,C+1 |+ g (_ − 1)

C
∑

8=1

58 (G◦8 ) − '. (41)

By (39) and the monotonicity of ReLU operation, we have

|� <,C+1 − �
◦
<,C+1 |+ f |� <,C+1 − W�̃

∗
<,C+1 − (1 − W)� <,C+1 |

+
= W |� <,C+1 − �̃

∗
<,C+1 |+. (42)

Substituting the expressions of G◦C and (42) into the inequality, the su�cient condition for the robust
constraint (40) becomes

−W_!
C

∑

8=1

∥G̃∗8 − G 8 ∥1 − W_!
"
∑

<=1

|� <,C+1 − �̃
∗
<,C+1 |+ g (_ − 1)

C
∑

8=1

58 (G◦8 ) − '. (43)

By the de�nition of � C and �̃
∗
C , we have

"
∑

<=1

|� <,C+1 − �̃
∗
<,C+1 |+

=

"
∑

<=1

�

�

�

(

min{� <,C + �̂<,C , �max} − G <,C
)

−min{�̃∗<,C + �̂<,C , �max} − G̃∗<,C
�

�

�

+

f
"
∑

<=1

|� <,C − �̃∗<,C |+ + |G <,C − G̃∗<,C |+ f
C

∑

8=1

"
∑

<=1

|G <,C − G̃∗<,C |+ f
C

∑

8=1

∥G C − G̃∗C ∥1,

(44)

where the second inequality holds by 1-Lipschitz of min{·, �max}, and the second inequality holds
by iteratively applying the �rst inequality. Thus, the su�cient condition for the robust constraint
(40) becomes

2W_!

C
∑

8=1

∥G̃∗8 − G 8 ∥1 f (1 − _)
C

∑

8=1

58 (G◦8 ) + '. (45)
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Since (1 − _)∑C
8=1 58 (G◦8 ) g 0, if W ∈ [0, 1] satis�es

W f min

{

1,
'

2_!
∑C
8=1 ∥G̃∗8 − G

 
8 ∥1

}

, (46)

then G◦C satis�es the robust constraint (40) for each round C .

Thus, by the de�nition of \ = max~
∑)
C=1 ∥G̃∗C − G

 
C ∥1, we further have the su�cient condition

that ĜC satis�es the robust constraint is W ∈ [0, 1] satis�es

W f min

{

1,
'

2_!\

}

:= W_,', (47)

Next, we can bound the average utility of c◦
= W_,'c̃

∗ + (1 − W_,')c which is also the bound of
the average utility of the proposed policy. Since the function 5 is !−Lipschitz continuous, then we
have

E~

[

�c
◦

) (~)
]

= E~

[

� c̃
∗

) (~)
]

− E~
[�

�

��c
◦

) (~) − � c̃∗
) (~)

�

�

�

]

g E~
[

� c̃
∗

) (~)
]

− !E~

[

)
∑

C=1

∥G◦C − G̃∗C ∥
]

= E~

[

� c̃
∗

) (~)
]

− !(1 − W_,')E~

[

)
∑

C=1

∥G C − G̃∗C ∥
]

= E~

[

� c̃
∗

) (~)
]

− !max{0, 1 − '

2_!\
}E~

[

)
∑

C=1

∥G C − G̃∗C ∥
]

,

(48)

where the inequality holds by the Lipschitz continuity of reward functions, and the second equality

holds since G◦C − G̃∗C = (1 − W_,') (G C − G̃∗C ). Since the ML policy c̃◦ is optimally trained under the

constraint (40), we have E~

[

�
LA-OACP(c̃◦ )
)

(~)
]

g E~
[

�c
◦

)
(~)

]

, so we prove the average bound in our

theorem. □
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