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A B S T R A C T   

Algal blooms can threaten human health if cyanotoxins such as microcystin are produced by cyanobacteria. 
Regularly monitoring microcystin concentrations in recreational waters to inform management action is a tool 
for protecting public health; however, monitoring cyanotoxins is resource- and time-intensive. Statistical models 
that identify waterbodies likely to produce microcystin can help guide monitoring efforts, but variability in 
bloom severity and cyanotoxin production among lakes and years makes prediction challenging. We evaluated 
the skill of a statistical classification model developed from water quality surveys in one season with low tem
poral replication but broad spatial coverage to predict if microcystin is likely to be detected in a lake in sub
sequent years. We used summertime monitoring data from 128 lakes in Iowa (USA) sampled between 2017 and 
2021 to build and evaluate a predictive model of microcystin detection as a function of lake physical and 
chemical attributes, watershed characteristics, zooplankton abundance, and weather. The model built from 2017 
data identified pH, total nutrient concentrations, and ecogeographic variables as the best predictors of micro
cystin detection in this population of lakes. We then applied the 2017 classification model to data collected in 
subsequent years and found that model skill declined but remained effective at predicting microcystin detection 
(area under the curve, AUC ≥ 0.7). We assessed if classification skill could be improved by assimilating the 
previous years’ monitoring data into the model, but model skill was only minimally enhanced. Overall, the 
classification model remained reliable under varying climatic conditions. Finally, we tested if early season ob
servations could be combined with a trained model to provide early warning for late summer microcystin 
detection, but model skill was low in all years and below the AUC threshold for two years. The results of these 
modeling exercises support the application of correlative analyses built on single-season sampling data to 
monitoring decision-making, but similar investigations are needed in other regions to build further evidence for 
this approach in management application.   

1. Introduction 

Earth’s changing climate, land use intensification, and widespread 
nutrient enrichment (Stoddard et al., 2016) are altering the frequency 
and intensity of algal blooms in some, but not all lakes (Ho et al., 2019; 
Wilkinson et al., 2022). Variability in bloom severity among lakes and 
across years makes year-to-year prediction difficult (Beal et al., 2023; 
Rousso et al., 2020). Similarly, predicting whether a cyanobacterial 

bloom will produce cyanotoxins at concentrations high enough to 
threaten human, pet, and livestock health remains challenging given the 
variability in cyanotoxin production among lakes and years (Beversdorf 
et al., 2015; Gorney et al., 2023). Human exposure to microcystin, one of 
the most prevalent cyanotoxins in inland waters (Rastogi et al., 2014), 
can result in headaches and gastrointestinal symptoms (Carmichael and 
Boyer, 2016), with higher or chronic exposure being linked to colorectal 
cancer, liver damage, and in some cases, death (de Figueiredo et al., 

Open Research Statement: Collated data sets and analysis scripts used for this study are available at https://doi.org/10.5281/zenodo.12005095. 
* Corresponding author. 

E-mail address: gwilkinson@wisc.edu (G.M. Wilkinson).  

Contents lists available at ScienceDirect 

Harmful Algae 

journal homepage: www.elsevier.com/locate/hal 

https://doi.org/10.1016/j.hal.2024.102679 
Received 14 March 2024; Received in revised form 10 June 2024; Accepted 15 June 2024   

https://doi.org/10.5281/zenodo.12005095
mailto:gwilkinson@wisc.edu
www.sciencedirect.com/science/journal/15689883
https://www.elsevier.com/locate/hal
https://doi.org/10.1016/j.hal.2024.102679
https://doi.org/10.1016/j.hal.2024.102679
https://doi.org/10.1016/j.hal.2024.102679
http://crossmark.crossref.org/dialog/?doi=10.1016/j.hal.2024.102679&domain=pdf


Harmful Algae 137 (2024) 102679

2

2004). Regular monitoring of microcystin concentrations in recreational 
waters to inform management action is a tool for protecting public 
health; however, monitoring cyanotoxins is both resource- and 
time-intensive, which can leave communities near waterbodies at risk if 
cyanotoxins are insufficiently monitored. 

The likelihood of occurrence and magnitude of an algal bloom is 
shaped by the complex interaction of in-lake conditions, watershed 
characteristics, and climatic drivers (Rousso et al., 2020; Taranu et al., 
2017). Cyanobacterial blooms that produce high concentrations of 
microcystin most frequently occur in eutrophic lakes at low nitrogen to 
phosphorus (N:P) ratios (Harris et al., 2014; Orihel et al., 2012). 
Nutrient-rich lakes with high phytoplankton biomass generally have 
watersheds dominated by agriculture or urban land uses (Arbuckle and 
Downing, 2001; Beaver et al., 2014). Availability of N in particular is 
tied to cyanobacteria biomass and microcystin concentrations in 
eutrophic lakes, likely because of microcystins being an N-rich group of 
molecules (Beversdorf et al., 2015; Gobler et al., 2016; Van De Waal 
et al., 2014; Wagner et al., 2021). In addition to nutrient availability, 
blooms are regulated by a combination of light availability, water 
temperatures, stratification, and zooplankton grazing (Carpenter et al., 
2022a; Reinl et al., 2023; Rousso et al., 2020). Interannual variation in 
climatic drivers such as precipitation and temperature can influence 
in-lake conditions that either suppress or promote cyanobacteria 
dominance and cyanotoxin production. The magnitude, stoichiometry, 
and timing of nutrient loading to lakes varies with precipitation (Kincaid 
et al., 2020), with extremes in precipitation linked to extremes in cya
nobacteria biomass (Carpenter et al., 2022b). Similarly, when 
comparing lakes at a continental scale, warmer spring temperatures 
have been linked to higher cyanobacteria biomass but lower microcystin 
concentrations (Ho and Michalak, 2020). 

There have been several calls for ecology to become a more predic
tive science (e.g., Clark et al., 2001; Dietze et al., 2018), emphasizing the 
benefits of prediction for applications to conservation and ecosystem 
management, and as a strong test of conceptual understandings. Despite 
a growing literature on predicting and forecasting ecological phenom
ena (Aboal et al., 2005; Lofton et al., 2023; Rousso et al., 2020; Walter 
et al., 2023; Wheeler et al., 2024), the extent to which correlative 
models can yield useful predictions has not been widely evaluated. As 
one example, large-scale single sample ‘snapshot surveys’ of lakes have 
provided valuable insight into the in-lake, watershed, and climatic 
conditions correlated with microcystin detection at regional to conti
nental scales (Beaver et al., 2014; Ho and Michalak, 2020; MacKeigan 
et al., 2023; Taranu et al., 2017). These surveys leverage broad envi
ronmental gradients to detect drivers of microcystin concentration 
among lakes. A frequently stated goal of large-scale microcystin corre
lation analyses is to allow managers to identify bloom drivers and lakes 
likely to have toxic blooms based on more easily monitored water 
quality variables; however, the predictive ability of these statistical 
models is rarely evaluated. 

Given the potentially substantial time and financial resources needed 
to test for microcystin across the portfolio of recreational waters a small 
private or government agency oversee, correlative predictors can help 
direct limited resources for monitoring. However, large-scale snapshot 
surveys are not necessarily designed to capture the dynamic nature of 
microcystin production and cycling (Shingai and Wilkinson, 2023), 
which could potentially lead to the misclassification of lakes and 
misdirection of resources. Additionally, if the survey design does not 
encompass the full range of conditions for important environmental 
drivers, statistical relationships among these variables and microcystin 
may be weak or misleading and may therefore not be informative to 
managers. A snapshot survey conducted in a single year will reflect the 
unique climatic conditions of that year and may therefore generate 
particular statistical relationships between drivers such as nutrient 
loading (Carpenter et al., 2022b; Loecke et al., 2017) and microcystin, 
which may not be consistent in years with differing climatic conditions. 
For example, extreme precipitation events that follow long dry periods 

generate larger loads of N relative to when events of similar magnitude 
occur following wetter conditions (Loecke et al. 2017). The utility and 
limitations of applying statistical models developed from surveys with 
low temporal replication (e.g., one sampling event) but broad spatial 
coverage to predict if lakes are likely to produce microcystin have not 
been fully evaluated. 

We used five years of summertime water quality monitoring data 
from 129 lakes in Iowa (USA) to build and test a machine learning 
classification model for microcystin detection. The goal of this modeling 
effort was to evaluate the accuracy and limitations of applying a 
microcystin detection model based on one year’s data to subsequent 
years for a large population of lakes in a highly modified landscape. 
Iowa has the largest area of land in row crop agriculture of any state in 
the US, and as a result the lakes and reservoirs of the state are highly 
enriched in N and P (e.g., Table 1) (Arbuckle and Downing, 2001; 
Filstrup and Downing, 2017). Cyanobacteria biomass is high in many of 
Iowa’s lakes and reservoirs (Filstrup et al., 2014) with microcystin 
frequently detected above state drinking water and recreational expo
sure thresholds (Fig. 1). We used routine monitoring data of physical, 
chemical, and biological variables collected during the summer of 2017 
to construct a machine learning classification model for microcystin 
detection. From this model we were able to identify the best predictors 
of microcystin detection in lakes embedded in this nutrient-rich land
scape. We then applied the 2017 classification model to monitoring data 
collected in subsequent years to evaluate model skill under varying 
climate conditions. We assessed if classification skill could be improved 
by assimilating the previous years’ monitoring data into the trained 
model. Finally, we used early summer monitoring data in the trained 
classification model to predict late summer microcystin detection. This 
was done to test if early season monitoring observations could be 
combined with a trained model to provide early warning for late sum
mer microcystin detection. Overall, these modeling exercises allowed us 
to evaluate the utility and accuracy of using correlative models built 
from snapshot survey monitoring data to provide support to decision 
makers regarding microcystin monitoring and public health protection. 

2. Methods 

2.1. Field sampling and laboratory analysis 

The study lakes (Fig. 1b) are all publicly owned waterbodies in the 
state of Iowa, and are designated primarily for recreational use 
(although some supply drinking water), and are a part of the Iowa 

Table 1 
Select characteristics and measurements in the surface water (0–2 m) of the 
population of study lakes (n = 67–129 per year) located in Iowa, USA from 2017 
to 2021.  

Variable Min 25th 
Percentile 

50th 
Percentile 

75th 
Percentile 

Max 

Surface Area (ha) 4 12.5 32 117 4452 
Watershed Area 

(ha) 
4 277 779 2723 142,190 

% area of 
watershed as 
Cropland 

0.0 23.8 45.8 60.4 89.2 

Maximum Depth 
(m) 

2.0 4.9 6.3 8.5 42.3 

Total P (µg L−1) 7.8 50.9 82.7 134.8 975.7 
Total N (mg L−1) 0.3 1.1 1.6 2.3 9.7 
N:P ratio (molar) 5.5 29.0 41.8 61.8 898.4 
Chlorophyll a (µg 

L−1) 
1.0 9.2 19.7 44.3 301.4 

pH 7.4 8.1 8.3 8.5 9.4 
Total Dissolved 

Solids (mg L−1) 
85.0 166.4 211.5 265.2 576.0 

Zooplankton (mg 
L−1) 

1.9 47.4 106.6 207.9 3323.8  
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Department of Natural Resources Ambient Lake Monitoring program. 
The waterbodies are a mix of natural lakes, impoundments, and filled 
borrow pits and quarries. Through the Ambient Lake Monitoring pro
gram, all lakes were sampled three times each between mid-May 
through the end of September from 2017 to 2021 with six weeks be
tween each sampling event. Only 67 lakes were sampled in 2020 due to 
personnel and laboratory limitations from the COVID-19 pandemic. 

At a location above the deepest point in each lake, a profile of water 
temperature, dissolved oxygen, pH, turbidity, and specific conductance 
was measured every 0.5 m with a YSI ProDSS handheld multiparameter 
sonde (YSI, Yellow Springs, Ohio). Secchi depth was also measured. The 
sensors were calibrated weekly except for dissolved oxygen which was 
calibrated daily. A column sampler was used to take an integrated water 
sample from the surface to the top of the thermocline when present 
(defined as a >1̊ C decrease in temperature over <1 m and beginning at 
>1 m depth) or to 2 m depth, whichever was shallowest. The water from 
the integrated column sample was placed into a bucket rinsed in the 
matrix of the sample water, and then dispensed into sample bottles and 
placed in a cooler for transport. Water from the integrated column 
sample was analyzed for total microcystins and nodularins, phyto
plankton biovolume, suspended solids, pigments (chlorophyll a and 
phycocyanin), total and inorganic nutrients, and alkalinity. Water 
samples for total microcystins were transferred to PETG amber vials 
with Teflon-lined caps to minimize the sorption of microcystin to the 
sample bottle. Phytoplankton samples were preserved with Lugol’s so
lution and stored in amber bottles. Zooplankton were sampled by 
vertically towing a Wisconsin net with 63 µm mesh from the top of the 
thermocline to the surface, or from 0.5 m above the sediment surface if 
no thermocline was present. The zooplankton samples were preserved in 
the field with formalin and then transferred to 70 % ethanol after 24 h. 
All samples were kept on ice and in the dark until returning to the 
laboratory. 

Sample preservation methods, holding times, quality control 
methods, and long-term method detection limits for each year are re
ported in Appendix 1, Table S1. Briefly, alkalinity was measured using 
end point titration. Total P and total Kjeldahl N were analyzed spec
trophotometrically following digestion. Dissolved inorganic nutrient 
samples (orthophosphate, nitrate + nitrite, and ammonium + ammonia) 
were filtered through a Whatman glass fiber (GF) filter (pore size 0.45 
µm) and preserved with sulfuric acid prior to analysis. Orthophosphate 
and ammonium + ammonia were measured spectrophotometrically as 
was nitrate + nitrite following cadmium reduction using a Seal AQ2 

Discrete analyzer. Total N was calculated as the sum of total Kjeldahl N 
and nitrate + nitrite (Stanley et al., 2019). Chlorophyll-a and phyco
cyanin samples were filtered onto Whatman GF filters (pore size 1 µm), 
frozen, extracted in acetone and sodium phosphate buffer, respectively, 
sonicated, and measured fluorometrically. Suspended solids were 
measured by filtering water through a pre-weighed 934-AH GF filters 
(pore size 1.5 µm), drying and reweighing the filter, then combusting at 
500 ◦C and reweighing the filter. 

Total microcystins and nodularins (hereafter, total microcystins) 
were measured via the enzyme-linked immunosorbance assay method 
(ELISA) using kits from Gold Standard Diagnostics, following the USEPA 
546 method. In 2017, the project reporting limit for total microcystins 
was set at 0.6 µg L−1. Despite a decrease in laboratory reporting limits in 
later years, the initial project reporting limit of 0.6 µg L−1 was main
tained for all years of data collection for the purpose of this statistical 
analysis. This reporting limit lies within the range or below the 
thresholds used by the state of Iowa for enhanced raw water monitoring 
(0.3–5 µg L−1), finished drinking water advisories (1.6 µg L−1), and 
recreational exposure advisory limit (8 µg L−1). 

Phytoplankton cells were concentrated through settling to a target of 
30 natural units in each view field at 400x magnification. A subsample 
was placed in a Palmer-Maloney style nanoplankton chamber for iden
tification and enumeration of all natural units in a minimum of eight 
view fields and 300 natural units. The dimensions of the first 50 natural 
units for each genus were measured in addition to the individual cells of 
colonies and filaments. Biovolume per liter was calculated based on 
phytoplankton shape and then converted to wet biomass per liter 
assuming a 1:1 ratio of wet mass and biovolume (Hillebrand et al., 1999; 
Holmes et al., 1969). Zooplankton and phytoplankton samples were 
identified and enumerated to the lowest taxonomic unit possible using 
light microscopy. For zooplankton, a 1 mL subsample of the vertical net 
tow was enumerated and identified using a dissecting scope to genus for 
Cladocera and Rotifera and to order for Copepoda. Zooplankton biomass 
was calculated for each taxonomic group using allometric equations 
(Dumont et al., 1975; Mccauley, 1984). 

2.2. Microcystin detection classification using snapshot survey 

To evaluate if the coarse temporal resolution of the Ambient Lake 
Monitoring program influenced the classification of a lake as having 
detectable microcystin or not in a year, we used a weekly microcystin 
beach monitoring data set from a subset of lakes (n = 31) in this study 

Fig. 1. (A) Mean total microcystins concentration by lake in each year. The concentrations are ranked in order from lowest to highest by year to show the distribution 
of values. The values along the horizontal axis are the percentage of lakes that year with detectable microcystin (>0.6 µg L−1). Advisory thresholds for recreation and 
drinking water set by the US Environmental Protection Agency are noted (some, but not all lakes in the data set are drinking water sources). Fewer lakes were 
sampled in summer 2020 because of COVID-19 restrictions. (B) Map of the study lakes (semi-transparent white circles) and US Environmental Protection Agency 
level IV ecoregions. 
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(Villanueva et al., 2023) to evaluate classification accuracy. For the 
beach monitoring program, samples are taken weekly between Memo
rial Day (end of May) and Labor Day (beginning of September) at public 
beaches and analyzed for total microcystins concentration in the same 
manner as the lake monitoring samples. We classified beaches as having 
detectable microcystin in a given year if one weekly sample was above 
the detection limit, or non-detectable if no samples exceeded the 
reporting limit of 0.6 µg L−1. We then compared if the detection clas
sification was the same at the beach as the deep site for the same lake in 
the same year. 

2.3. Classification model development 

We used conditional inference forests (Strobl et al., 2007), a machine 
learning technique, to build a predictive model of microcystin detection 
from the Ambient Lake Monitoring data set (snapshot survey) as a 
function of lake physical and chemical attributes, watershed charac
teristics, zooplankton abundance, and weather. Conditional inference 
forests (Strobl et al., 2007) are an extension of random forests (Breiman, 
2001) designed to overcome particular weaknesses of the traditional 
random forest algorithm. Like random forests, conditional inference 
forests build ensembles of tree-based classifiers using random subsets of 
predictor variables, and share their strengths in dealing with large 
numbers of predictor variables that may be correlated and have complex 
interactive effects on the response (Strobl et al., 2009, 2007). Tradi
tional random forests are an ensemble of classification trees (alterna
tively, regression trees for continuous response variables), which are 
prone to over-fitting and are biased toward selecting variables for which 
many splits are possible (i.e., continuous variables or multi-level factors) 
(Strobl et al., 2007). Conditional inference forests replace classification 
trees with conditional inference trees, a method overcoming both these 
weaknesses, resulting in greater parsimony and unbiased variable se
lection (Hothorn et al., 2006; Strobl et al., 2007). More specifically, 
classification trees tend to overfit in the sense of making “deep” trees 
having extra splits in the data that contribute little additional explana
tory power, but conditional inference trees implement an explicit test of 
whether further splits contribute significant explanatory power, thus 
limiting overfitting. Conditional inference forests were implemented in 
R version 4.2.1 using the ‘party’ package (Hothorn, 2005; Strobl et al., 
2008, 2007). 

We predicted microcystin detection as a function of 37 predictor 
variables (Appendix S1: Table S1, Fig. 2). Predictors included lake 
physical attributes (e.g., surface area, stratification), lake chemical 
measurements (e.g., nutrient concentrations), watershed characteristics 
(e.g., land cover composition, ecoregion), and zooplankton abundance. 
Variables from field sampling were annualized by averaging across the 
three measurements taken each summer. Land cover data for each 
watershed was provided by the Iowa Department of Natural Resources 
and ecoregions were defined by the level IV ecoregions from the US 
Environmental Protection Agency. Two weather variables were 
computed using PRISM monthly gridded (4 km × 4 km) climate data: 
total precipitation from October of the prior year through May of the 
focal year (e.g., October 2016 to May 2017 for microcystin detections in 
2017), and mean springtime (March through May) temperature in the 
current year (PRISM Climate Group, Oregon State University, 2014). 
The concentration of phycocyanin, a pigment found in cyanobacteria, 
was excluded from the set of candidate variables because of its obvious 
association with detection of microcystin. Alternate model results with 
phycocyanin included in the predictor set are presented in Appendix S1: 
Figs. S4, S5. The forest consisted of 30,000 trees, which ensured stability 
of model performance and of the rank-order of absolute variable 
importance of predictors. 

2.4. Model evaluation 

We first built a model trained on data from 2017 (n = 128 lakes), 

evaluated its overall performance, quantified which variables contrib
uted the most explanatory power, and assessed the effects of the most 
important variables on the probability of microcystin detection. We 
evaluated model performance using the area under the curve (AUC) of a 
receiver-operator characteristic (ROC) curve, a widely used metric that, 
in its application here, balances the model’s ability to correctly classify 
lakes with microcystin detection with its ability to identify lakes where 
microcystin was not detected. AUC ranges from 0 to 1 with 0.5 indi
cating a model no better than random assignment and 1 indicating a 
perfect model. We considered a prediction effective if AUC ≥ 0.7. We 
computed absolute variable importances and selected the 6 most 
important predictors for further investigation. We evaluated these var
iables’ partial dependences to assess their effect on microcystin detec
tion using the ‘pdp’ R library (Greenwell, 2017). The model trained on 
2017 data was applied forward in time to predict microcystin detection 
in 2018–2021 and model performance was assessed using AUC. The 
number of lakes included for years 2018–2021 were 127, 129, 67 (in 
2020 a smaller number of lakes were sampled due to the COVID-19 
pandemic disruptions), and 128. 

Fig. 2. Variable importance values for predictors for the model trained on 
2017 data. 
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While model performance was assessed primarily using AUC, we also 
produced confusion matrices for these predictions to further evaluate 
model performance (Table S2). An optimal threshold on the predicted 
probability of microcystin detection for assigning predictions to detect 
and non-detect classes was determined using Youden’s Index (Youden, 
1950). Youden’s Index (J) is the sum of sensitivity and specificity minus 
one, and by balancing sensitivity and specificity it is consistent with our 
use of AUC as an evaluation metric. We also calculated total accuracy 
based on the confusion matrices by summing the number of lakes that 
were true positives (microcystin detection predicted, microcystin 
detection observed) and true negatives (no detection predicted, no 
detection observed) and dividing by the total number of lakes sampled 
that year. 

We next tested whether accumulating training data through time (e. 
g., the model used to predict 2019 microcystin detections was trained on 
data from 2017 to 2018) improved model performance. Accumulating 
training data as it’s collected is a tenet of iterative near-term forecasting 
(Dietze, 2017) and previously has been shown to improve model per
formance in applications to different questions than we focus on here 
(Carey et al., 2022). As above, model performance was evaluated using 
AUC. 

Finally, we tested the skill of our trained models at predicting 
microcystin detections later in the season using only field data from the 
first sampling event of the summer (mid-May through end of June) and 
variables not derived from field sampling (which were temporally 
invariant except for the weather variables). Cyanotoxin-producing 
blooms are most prevalent in late summer, so the ability of our model 
to predict late-season microcystin detection from early-season obser
vations corresponds to the potential for the combination of a trained 
model and early-season limnological observations to serve as an early 
warning system. For this experiment, trained models accumulated ob
servations from subsequent years as they became available (e.g., the 
model used to predict 2019 microcystin detections was trained on data 
from 2017 to 2018). 

3. Results 

There was substantial variability in the number of lakes with 
microcystin detected and concentration among years. Each year, 
microcystin was detected above the project reporting limit of 0.6 µg L−1 

in 37.9–59.8 % of lakes (Fig. 1A). Microcystin concentrations varied 
among lakes and years, with only 2–3 lakes with mean summer con
centrations above the recreational limit of 8 µg L−1 in 2020 and 2021, 
whereas 24 lakes were above this threshold in 2019. There was sub
stantial variability in precipitation among years. Cumulative water year 
precipitation was 2.4 times higher in 2018 compared to 2021 (Appendix 
S1: Fig. S1). The classification of lakes as having detectable versus non- 
detectable microcystin was dynamic. Every year, 19 to 36 lakes changed 
classification from the previous year. Finally, 81 % of lake-years had the 
same classification of detectable or non-detectable microcystin when 
comparing between the beach monitoring program and the lake moni
toring program (Appendix S1: Fig. S2). Additionally, 11 % of lake-years 
did not agree in detection classification between the two monitoring 
programs, because of a transient period of microcystin detection at the 
beach (e.g., only 1 week), with no additional detections that summer. 

The AUC for the model trained on 2017 data when classifying the 
same 2017 microcystin detections was 0.972 (95 % CI: 0.950–0.993). 
Based on the confusion matrix, total accuracy of the 2017 model was 88 
% (Table S2). The six most important predictors of microcystin detection 
in this model were pH, total Kjeldahl N, total P, total dissolved solids, 
ecoregion, and total zooplankton (Fig. 2). In general, in-lake chemical 
variables were better predictors than other classes of variables, but the 
relatively high importance of ecoregion and total zooplankton demon
strate a role for eco-geographic contexts and food web structure in 
harmful algal bloom dynamics. All continuous variables in the top 
predictors had threshold-like relationships with the probability of 

microcystin detection. Threshold values from the partial dependence 
plots were assessed visually and reported here. The probability of 
microcystin detection increased with increasing pH (threshold between 
8.4–8.6), total Kjeldahl N (threshold 0.6–1.7 mg L-1), total P (threshold 
30–70 µg L−1), and total zooplankton (threshold 5–155 mg L−1) (Fig. 3). 
Total dissolved solids had a negative relationship with the probability of 
microcystin detection at a threshold from 253 to 347 mg L−1 (Fig. 3d). 
Microcystin detections were most prevalent in the Des Moines Lobe 
(ecoregion 47b), steeply rolling loess prairie (ecoregion 47e), and 
eastern IA and MN drift plains (ecoregion 47c), and lowest in the MO 
alluvial plain (ecoregion 47d) and western loess hills ecoregions (ecor
egion 47 m) (Fig. 3e). 

The next six most important variables (Fig. 2) for predicting micro
cystin detection also align with in-lake variables (molar N:P ratio, 
orthophosphate, Secchi depth, specific conductance) and plankton 
(copepod biomass, Cladocera biomass). The probability of detection was 
substantially higher at a molar N:P ratio <30 and decreased sharply 
from 30 to 80 (Appendix S1: Fig. S3). Orthophosphate had a similar 
relationship with the probability of microcystin detection as total P, but 
the threshold at which probabilities plateaued was lower at 30 µg L−1. 
Specific conductance had a similar relationship with probability of 
detection as total dissolved solids (Appendix S1: Fig. S3; threshold 
389–535 µS cm-1). Higher Secchi depths (>2 m) were associated with 
lower probability of detecting microcystin (Appendix S1: Fig. S2). 
Finally, both copepod and Cladocera biomass had similar relationships 
as total zooplankton with similar threshold biomasses (Appendix S1: 
Fig. S3). Overall, weather variables were not important for predicting 
microcystin detection in the 2017 model. 

In general, the model trained on 2017 data made skilled predictions 
when applied to 2018–2021 conditions (Fig. 4a, Table S2). Importantly, 
the model was at least moderately successful at classifying lakes that 
changed class from year to year (53 % to 67 % correct), indicating that 
the model reflected how changing in-lake conditions affect the proba
bility of microcystin detection. Alternatively, the model could have 
performed well because the same lakes consistently had microcystin- 
producing blooms and therefore the model succeeded at distinguishing 
data signatures of groups of lakes that are unrelated to mechanisms of 
cyanotoxin production, but this does not explain the performance of our 
model. When applied to future years, model performance did decline 
and was somewhat variable across years (Fig. 4a). From 2017 to 2019, 
AUC declined to 0.841 (95 % CI: 0.773–0.910) and remained near this 
level and above the effective prediction threshold of AUC > 0.7 through 
2021. When we used a model built with a training set that accumulated 
data over time, model performance for predicting microcystin detection 
in a lake was modestly improved, primarily for 2020 (Fig. 4a). For the 
model trained on 2017 data, AUC in 2020 was 0.811 (95 % CI: 
0.710–0.912) whereas the model built with accumulated training data 
increased in AUC for 2020 to 0.851 (95 % CI: 0.763–0.939). While the 
AUC of model predictions based on early observations in the 2017 model 
only was lower than those based on all observations in all years, using 
early-season conditions was effective (AUC ≥ 0.7) in predicting late- 
season microcystin detections in some but not all years (Fig. 4b). 
Furthermore, in 2018 and 2021, the quality of predictions based on 
early-season conditions from that year in the 2017 model rivaled the 
quality of predictions from the full dataset (95 % CIs overlap point 
estimates). 

We also built a version of the 2017 model with phycocyanin, a 
pigment found in cyanobacteria, as a potential predictor. In this version 
of the model, phycocyanin was the most important predictor of micro
cystin detection in a lake (Appendix S1: Fig. S4), followed by a similar 
set of predictor variables as the non-phycocyanin model. While phyco
cyanin was an important variable, its inclusion did not improve model 
skill. The AUC of the models trained on 2017 data with and without 
phycocyanin were nearly identical (Fig. S5). Similarly, when the 2017 
model with phycocyanin was applied to make predictions in 2018–2021, 
the skill was unchanged from the non-phycocyanin model. 
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4. Discussion 

A conditional inference tree model built with snapshot data collected 
in one year performed well at identifying which lakes had detections of 
microcystin in subsequent summers. Unlike other snapshot surveys that 
take advantage of large gradients in nutrient enrichment to statistically 

identify cyanotoxin-producing conditions, the studied lakes in Iowa are 
primarily classified as eutrophic and hypereutrophic (i.e., a narrower 
gradient of enrichment). Regardless, the model was able to differentiate 
between lakes with and without microcystin present through a combi
nation of productivity, trophic, and eco-region variables. In addition to 
shedding light on drivers of cyanotoxin production in nutrient-rich 

Fig. 3. Partial dependence plots for predictors with the highest variable importance scores in the model trained on 2017 data. A rug plot of the continuous variable 
(data from 2017) is on the horizontal axis. The ecoregion codes in panel e are described in Figure 1; color gradient in this panel is the probability of microcystin 
detection (ranging from 0.53 to 0.61, same as the vertical axis in other panels of this figure). Gray polygons indicate the range of values in a variable over which the 
probability of microcystin detection changed rapidly. 

Fig. 4. Model performance (AUC) at classifying microcystin detections across years a) comparing a model trained on 2017 data only to one where the training set 
accumulates data from all prior years to predict microcystin detections in the next; and b) comparing model performance with predictions based on all observations 
in a year to predictions using only data from the first sampling event of the season. We considered a prediction effective if AUC ≥ 0.7. 
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lakes, this exercise demonstrated the utility of developing correlative 
models based on a single year of data to inform public health decision 
making, and provided evidence that model performance may not sub
stantially decline under varying climate conditions. 

4.1. Drivers of cyanotoxin presence in lakes 

The most important variable in the microcystin detection model was 
pH. When phytoplankton production is high (such as during a bloom), 
aqueous CO2 can be depleted and pH increases (Balmer and Downing, 
2011; MacKeigan et al., 2023). Cyanobacteria have the ability to over
come this brief CO2 scarcity through a bicarbonate concentrating 
mechanism, which helps to maintain productivity (Morales-Williams 
et al., 2017). There was a substantial increase in microcystin detection 
between pH 8.4 and 8.6 which coincides with the pH range where CO2 is 
a vanishingly small proportion of the inorganic carbon pool (<1 %). This 
threshold is consistent with the relationship between pH and cyano
bacteria biomass observed across a latitudinal gradient in the Americas 
(Bonilla et al., 2023) and the relationship between pH and hazardous 
versus safe microcystin concentrations in a subset of Iowa lakes (Villa
nueva et al., 2023). From this relationship, it is evident that the 
biogeochemical conditions favoring cyanobacteria dominance and the 
current degree of productivity during a bloom are important predictors 
of cyanotoxin production. 

Total nutrient concentrations were the next most important pre
dictors, with total P and total Kjeldahl N having positive, saturating 
relationships with microcystin detection. The importance of these pre
dictors and direction of the relationship is consistent with numerous 
other cyanobacteria prediction models (Rousso et al., 2020). Iowa is a 
nutrient-rich landscape with more than 75 % of the lakes having total P 
concentrations well above the threshold for ‘eutrophic’ classification. 
Between 30–60 µg L−1 of total P, microcystin detection increased sub
stantially. This range in concentration aligns with the delineation be
tween mesotrophic and eutrophic conditions on the low end (total P =
24 µg L−1; Carlson 1970) to the mid-point between eutrophic and 
hypereutrophic conditions (total P = 96 µg L−1) on the high end. In this 
nutrient-rich landscape, discrete trophic state classification was not as 
useful as direct measurements of total P concentrations for predicting 
cyanotoxin presence (Kraemer, 2020). Increases in total Kjeldahl N from 
0 to 1.7 mg L−1 were associated with higher detection probability of 
microcystin. Interestingly, total N, which is effectively a measure of the 
same pool with the addition of nitrate (Stanley et al., 2019) was not an 
important variable in the model. In general, inorganic nutrients were not 
important, which indicates that the measured total nutrient concentra
tions are likely an index of planktonic biomass, and available inorganic 
nutrients in concentrations near the model thresholds identified were 
rapidly taken up to support planktonic production. The molar ratio of 
total N to total P was a less important predictor, but the threshold over 
which the probability of detection declined was consistent with the 
range of molar ratios associated with high microcystin concentrations in 
other regions (Orihel et al. 2012). 

Eco-geographic context of the lake was an important variable in the 
model indicated by the rank importance of level IV ecoregion and total 
dissolved solids for the probability of microcystin detection. The ecor
egions with the highest probability of microcystin detection coincided 
with areas of the most extensive cropland in the state, providing a 
substantial non-point source of nutrients that support cyanobacteria 
production. These ecoregions tended to have lower concentrations of 
total dissolved solids. The pattern observed here is consistent with other 
continental-scale analyses that showed agriculturally-dominated ecor
egions were dominated by microcystin detection in lakes (Beaver et al., 
2014). Conversely, any ecoregions in Iowa that include substantial 
pasture and other land cover types besides croplands were less likely to 
have microcystin detections for lakes in that region. Even in this highly 
modified landscape, small differences in land use influence the proba
bility of microcystin detection in a waterbody. 

Finally, higher zooplankton biomass was associated with a greater 
probability of detecting microcystin in Iowa lakes, a pattern which has 
been observed in other regions as well (Ger et al., 2016; MacKeigan 
et al., 2023). The biomass of N-rich zooplankton taxa such as cyclopoid 
copepods increase with eutrophication in these lakes, possibly 
enhancing P availability through excretion (Moody and Wilkinson, 
2019) and thereby supporting cyanobacteria production. Copepod 
biomass was a significant predictor of microcystin presence or absence 
in a large-scale snapshot survey across Canada (MacKeigan et al., 2023). 
Selective grazing by zooplankton on non-toxic phytoplankton taxa could 
support the dominance of microcystin-producing cyanobacteria (Ger 
et al., 2011; Wang et al., 2010). Both copepods and Daphnia have 
demonstrated selective grazing behavior in the presence of toxic cya
nobacteria (Ger et al., 2011; Tillmanns et al., 2011). Alternatively (but 
perhaps not mutually exclusive), predation release on zooplankton 
seasonally coinciding with toxic bloom formation may explain the 
positive relationship between zooplankton and microcystin detection 
probability. As such, the positive association between zooplankton 
biomass and probability of microcystin detection may be a direct effect 
of zooplankton grazing or indirect association between the two 
variables. 

4.2. Model performance and application 

Overall and across modeling experiments, we were able to explain 
and predict microcystin detections in Iowa lakes. Several prior studies 
have statistically modeled microcystin detections and/or concentrations 
as a function of lake, watershed and weather variables using snapshot 
survey data (e.g., Beaver et al., 2014; MacKeigan et al., 2023; Taranu 
et al., 2017), with the goal of identifying the conditions associated with 
cyanotoxin detection to inform management. Here, we had the oppor
tunity to evaluate the skill of such predictions from year to year as 
climate and in-lake conditions changed, a critical component of the 
continuous improvement process for cyanobacteria prediction models 
(2020). Our results show that a model of microcystin detection among 
lakes trained from one year of survey data can be applied forward to 
predict microcystin detections at a season-wide temporal scale with 
reasonably high accuracy. In some, but not all, instances model skill can 
be improved by accumulating data over time as in iterative near-term 
forecasting (Carey et al., 2022), but in our study this effect was quite 
modest even though meteorological conditions changed markedly 
across years (Appendix S1: Fig. S1). 

In general, weather variables were not informative predictors of 
microcystin detection in our study within a single year (Fig. 2) or when 
including springtime conditions (Fig. 4b). In fact, the model predictions 
built on springtime conditions alone performed worse overall (although 
still moderately skilled), compared to all other modeling scenarios. 
Water temperature is an important predictor in most within-season 
cyanobacteria bloom forecasting models for a single ecosystem 
(Rousso et al., 2020). At broader continental scales there is evidence that 
temperature may drive total cyanobacteria abundance but reduces 
toxicity (Ho and Michalak, 2020), whereas temperature was not an 
important predictor of cyanobacteria biomass across larger latitudinal 
gradients (Bonilla et al., 2023). Similarly, the relationship between 
precipitation and cyanobacteria abundance at broader spatial scales is 
uncertain (Ho and Michalak, 2020), whereas extreme precipitation 
events within a year have been tied to extreme blooms in a lake within 
the same year (Carpenter et al., 2022b). While meteorological variables 
may play an important role in microcystin congener dominance (Taranu 
et al., 2019) and bloom initiation, in our study overall microcystin 
detection was not influenced by meteorological variability among years 
(despite variability in precipitation), providing evidence that the sta
tistical models from snapshot surveys can be reliable in future years. 

Cyanobacterial blooms are both spatially and temporally dynamic 
(Buelo et al., 2022; Ortiz and Wilkinson, 2021), which may influence our 
ability to detect microcystin with the monitoring program design of 
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sampling at one location (i.e., over the deepest part of the lake), three 
times per summer. Using a weekly monitoring data set for microcystin at 
beaches in a subset of the lakes in the study, we found strong agreement 
(81 % of lake years) between detection of microcystin at the deep site at 
some point during the summer and detection at the beach. The agree
ment among these two data sets supports the use of the less frequent 
monitoring program data in this study to evaluate the performance of a 
model built on one year of data, applied forward to subsequent years. In 
other words, it is less likely that model performance, evaluated as skill in 
categorizing a lake as having detectable microcystin or not each year, 
was influenced by misclassification in the observational data. 

5. Conclusions 

Despite the threat to public health, effective cyanotoxin monitoring 
of recreational waters can be inadequate because it is both resource- and 
time- intensive to accomplish. Data-driven decision-making tools that 
help direct limited resources are valuable for resource managers, but 
only when there is confidence in the tool. Using five years of microcystin 
and water quality monitoring data from lakes in a nutrient-rich, highly 
modified landscape, we were able to evaluate the utility and accuracy of 
correlative models built on a single year’s worth of data applied to future 
years. While the performance of the 2017 model declined when applied 
to future years, model skill remained relatively high despite lakes 
shuffling microcystin detection categories each year and a narrow range 
of trophic state classifications. Our results support the application of 
correlative analyses built on single-season sampling data to decision- 
making for resource allocation, but we call for similar investigations 
in other regions to build further evidence for this approach. 
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