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ARTICLE INFO ABSTRACT

Edited by: Dr Assaf Sukenik Algal blooms can threaten human health if cyanotoxins such as microcystin are produced by cyanobacteria.

Regularly monitoring microcystin concentrations in recreational waters to inform management action is a tool

Keywords: for protecting public health; however, monitoring cyanotoxins is resource- and time-intensive. Statistical models
Microcystin ) that identify waterbodies likely to produce microcystin can help guide monitoring efforts, but variability in
](j:lz:zobacterla bloom severity and cyanotoxin production among lakes and years makes prediction challenging. We evaluated
Reservoir the skill of a statistical classification model developed from water quality surveys in one season with low tem-
Harmful algal blooms poral replication but broad spatial coverage to predict if microcystin is likely to be detected in a lake in sub-
Cyanotoxins sequent years. We used summertime monitoring data from 128 lakes in Iowa (USA) sampled between 2017 and

2021 to build and evaluate a predictive model of microcystin detection as a function of lake physical and
chemical attributes, watershed characteristics, zooplankton abundance, and weather. The model built from 2017
data identified pH, total nutrient concentrations, and ecogeographic variables as the best predictors of micro-
cystin detection in this population of lakes. We then applied the 2017 classification model to data collected in
subsequent years and found that model skill declined but remained effective at predicting microcystin detection
(area under the curve, AUC > 0.7). We assessed if classification skill could be improved by assimilating the
previous years’ monitoring data into the model, but model skill was only minimally enhanced. Overall, the
classification model remained reliable under varying climatic conditions. Finally, we tested if early season ob-
servations could be combined with a trained model to provide early warning for late summer microcystin
detection, but model skill was low in all years and below the AUC threshold for two years. The results of these
modeling exercises support the application of correlative analyses built on single-season sampling data to
monitoring decision-making, but similar investigations are needed in other regions to build further evidence for
this approach in management application.

1. Introduction

Earth’s changing climate, land use intensification, and widespread
nutrient enrichment (Stoddard et al., 2016) are altering the frequency
and intensity of algal blooms in some, but not all lakes (Ho et al., 2019;
Wilkinson et al., 2022). Variability in bloom severity among lakes and
across years makes year-to-year prediction difficult (Beal et al., 2023;
Rousso et al., 2020). Similarly, predicting whether a cyanobacterial

bloom will produce cyanotoxins at concentrations high enough to
threaten human, pet, and livestock health remains challenging given the
variability in cyanotoxin production among lakes and years (Beversdorf
etal., 2015; Gorney et al., 2023). Human exposure to microcystin, one of
the most prevalent cyanotoxins in inland waters (Rastogi et al., 2014),
can result in headaches and gastrointestinal symptoms (Carmichael and
Boyer, 2016), with higher or chronic exposure being linked to colorectal
cancer, liver damage, and in some cases, death (de Figueiredo et al.,
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2004). Regular monitoring of microcystin concentrations in recreational
waters to inform management action is a tool for protecting public
health; however, monitoring cyanotoxins is both resource- and
time-intensive, which can leave communities near waterbodies at risk if
cyanotoxins are insufficiently monitored.

The likelihood of occurrence and magnitude of an algal bloom is
shaped by the complex interaction of in-lake conditions, watershed
characteristics, and climatic drivers (Rousso et al., 2020; Taranu et al.,
2017). Cyanobacterial blooms that produce high concentrations of
microcystin most frequently occur in eutrophic lakes at low nitrogen to
phosphorus (N:P) ratios (Harris et al., 2014; Orihel et al., 2012).
Nutrient-rich lakes with high phytoplankton biomass generally have
watersheds dominated by agriculture or urban land uses (Arbuckle and
Downing, 2001; Beaver et al., 2014). Availability of N in particular is
tied to cyanobacteria biomass and microcystin concentrations in
eutrophic lakes, likely because of microcystins being an N-rich group of
molecules (Beversdorf et al., 2015; Gobler et al., 2016; Van De Waal
et al., 2014; Wagner et al., 2021). In addition to nutrient availability,
blooms are regulated by a combination of light availability, water
temperatures, stratification, and zooplankton grazing (Carpenter et al.,
2022a; Reinl et al., 2023; Rousso et al., 2020). Interannual variation in
climatic drivers such as precipitation and temperature can influence
in-lake conditions that either suppress or promote cyanobacteria
dominance and cyanotoxin production. The magnitude, stoichiometry,
and timing of nutrient loading to lakes varies with precipitation (Kincaid
et al., 2020), with extremes in precipitation linked to extremes in cya-
nobacteria biomass (Carpenter et al, 2022b). Similarly, when
comparing lakes at a continental scale, warmer spring temperatures
have been linked to higher cyanobacteria biomass but lower microcystin
concentrations (Ho and Michalak, 2020).

There have been several calls for ecology to become a more predic-
tive science (e.g., Clark et al., 2001; Dietze et al., 2018), emphasizing the
benefits of prediction for applications to conservation and ecosystem
management, and as a strong test of conceptual understandings. Despite
a growing literature on predicting and forecasting ecological phenom-
ena (Aboal et al., 2005; Lofton et al., 2023; Rousso et al., 2020; Walter
et al., 2023; Wheeler et al., 2024), the extent to which correlative
models can yield useful predictions has not been widely evaluated. As
one example, large-scale single sample ‘snapshot surveys’ of lakes have
provided valuable insight into the in-lake, watershed, and climatic
conditions correlated with microcystin detection at regional to conti-
nental scales (Beaver et al., 2014; Ho and Michalak, 2020; MacKeigan
et al., 2023; Taranu et al., 2017). These surveys leverage broad envi-
ronmental gradients to detect drivers of microcystin concentration
among lakes. A frequently stated goal of large-scale microcystin corre-
lation analyses is to allow managers to identify bloom drivers and lakes
likely to have toxic blooms based on more easily monitored water
quality variables; however, the predictive ability of these statistical
models is rarely evaluated.

Given the potentially substantial time and financial resources needed
to test for microcystin across the portfolio of recreational waters a small
private or government agency oversee, correlative predictors can help
direct limited resources for monitoring. However, large-scale snapshot
surveys are not necessarily designed to capture the dynamic nature of
microcystin production and cycling (Shingai and Wilkinson, 2023),
which could potentially lead to the misclassification of lakes and
misdirection of resources. Additionally, if the survey design does not
encompass the full range of conditions for important environmental
drivers, statistical relationships among these variables and microcystin
may be weak or misleading and may therefore not be informative to
managers. A snapshot survey conducted in a single year will reflect the
unique climatic conditions of that year and may therefore generate
particular statistical relationships between drivers such as nutrient
loading (Carpenter et al., 2022b; Loecke et al., 2017) and microcystin,
which may not be consistent in years with differing climatic conditions.
For example, extreme precipitation events that follow long dry periods
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generate larger loads of N relative to when events of similar magnitude
occur following wetter conditions (Loecke et al. 2017). The utility and
limitations of applying statistical models developed from surveys with
low temporal replication (e.g., one sampling event) but broad spatial
coverage to predict if lakes are likely to produce microcystin have not
been fully evaluated.

We used five years of summertime water quality monitoring data
from 129 lakes in Iowa (USA) to build and test a machine learning
classification model for microcystin detection. The goal of this modeling
effort was to evaluate the accuracy and limitations of applying a
microcystin detection model based on one year’s data to subsequent
years for a large population of lakes in a highly modified landscape.
Iowa has the largest area of land in row crop agriculture of any state in
the US, and as a result the lakes and reservoirs of the state are highly
enriched in N and P (e.g., Table 1) (Arbuckle and Downing, 2001;
Filstrup and Downing, 2017). Cyanobacteria biomass is high in many of
Iowa’s lakes and reservoirs (Filstrup et al., 2014) with microcystin
frequently detected above state drinking water and recreational expo-
sure thresholds (Fig. 1). We used routine monitoring data of physical,
chemical, and biological variables collected during the summer of 2017
to construct a machine learning classification model for microcystin
detection. From this model we were able to identify the best predictors
of microcystin detection in lakes embedded in this nutrient-rich land-
scape. We then applied the 2017 classification model to monitoring data
collected in subsequent years to evaluate model skill under varying
climate conditions. We assessed if classification skill could be improved
by assimilating the previous years’ monitoring data into the trained
model. Finally, we used early summer monitoring data in the trained
classification model to predict late summer microcystin detection. This
was done to test if early season monitoring observations could be
combined with a trained model to provide early warning for late sum-
mer microcystin detection. Overall, these modeling exercises allowed us
to evaluate the utility and accuracy of using correlative models built
from snapshot survey monitoring data to provide support to decision
makers regarding microcystin monitoring and public health protection.

2. Methods
2.1. Field sampling and laboratory analysis

The study lakes (Fig. 1b) are all publicly owned waterbodies in the
state of Iowa, and are designated primarily for recreational use
(although some supply drinking water), and are a part of the Iowa

Table 1
Select characteristics and measurements in the surface water (0-2 m) of the
population of study lakes (n = 67-129 per year) located in Iowa, USA from 2017
to 2021.

Variable Min 25th 50th 75th Max
Percentile Percentile Percentile

Surface Area (ha) 4 12.5 32 117 4452

Watershed Area 4 277 779 2723 142,190
(ha)

% area of 0.0 23.8 45.8 60.4 89.2
watershed as
Cropland

Maximum Depth 2.0 4.9 6.3 8.5 423
(m)

Total P (ug L™Y) 7.8 50.9 82.7 134.8 975.7

Total N (mgL™!) 0.3 1.1 1.6 2.3 9.7

N:P ratio (molar) 5.5 29.0 41.8 61.8 898.4

Chlorophyll a (ug 1.0 9.2 19.7 44.3 301.4
LhH

pH 7.4 8.1 8.3 8.5 9.4

Total Dissolved 85.0 166.4 211.5 265.2 576.0
Solids (mg L™1)

Zooplankton (mg 1.9 47.4 106.6 207.9 3323.8
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Fig. 1. (A) Mean total microcystins concentration by lake in each year. The concentrations are ranked in order from lowest to highest by year to show the distribution
of values. The values along the horizontal axis are the percentage of lakes that year with detectable microcystin (>0.6 ug L™). Advisory thresholds for recreation and
drinking water set by the US Environmental Protection Agency are noted (some, but not all lakes in the data set are drinking water sources). Fewer lakes were
sampled in summer 2020 because of COVID-19 restrictions. (B) Map of the study lakes (semi-transparent white circles) and US Environmental Protection Agency

level IV ecoregions.

Department of Natural Resources Ambient Lake Monitoring program.
The waterbodies are a mix of natural lakes, impoundments, and filled
borrow pits and quarries. Through the Ambient Lake Monitoring pro-
gram, all lakes were sampled three times each between mid-May
through the end of September from 2017 to 2021 with six weeks be-
tween each sampling event. Only 67 lakes were sampled in 2020 due to
personnel and laboratory limitations from the COVID-19 pandemic.

At a location above the deepest point in each lake, a profile of water
temperature, dissolved oxygen, pH, turbidity, and specific conductance
was measured every 0.5 m with a YSI ProDSS handheld multiparameter
sonde (YSI, Yellow Springs, Ohio). Secchi depth was also measured. The
sensors were calibrated weekly except for dissolved oxygen which was
calibrated daily. A column sampler was used to take an integrated water
sample from the surface to the top of the thermocline when present
(defined as a >1 C decrease in temperature over <1 m and beginning at
>1 m depth) or to 2 m depth, whichever was shallowest. The water from
the integrated column sample was placed into a bucket rinsed in the
matrix of the sample water, and then dispensed into sample bottles and
placed in a cooler for transport. Water from the integrated column
sample was analyzed for total microcystins and nodularins, phyto-
plankton biovolume, suspended solids, pigments (chlorophyll a and
phycocyanin), total and inorganic nutrients, and alkalinity. Water
samples for total microcystins were transferred to PETG amber vials
with Teflon-lined caps to minimize the sorption of microcystin to the
sample bottle. Phytoplankton samples were preserved with Lugol’s so-
lution and stored in amber bottles. Zooplankton were sampled by
vertically towing a Wisconsin net with 63 ym mesh from the top of the
thermocline to the surface, or from 0.5 m above the sediment surface if
no thermocline was present. The zooplankton samples were preserved in
the field with formalin and then transferred to 70 % ethanol after 24 h.
All samples were kept on ice and in the dark until returning to the
laboratory.

Sample preservation methods, holding times, quality control
methods, and long-term method detection limits for each year are re-
ported in Appendix 1, Table S1. Briefly, alkalinity was measured using
end point titration. Total P and total Kjeldahl N were analyzed spec-
trophotometrically following digestion. Dissolved inorganic nutrient
samples (orthophosphate, nitrate + nitrite, and ammonium + ammonia)
were filtered through a Whatman glass fiber (GF) filter (pore size 0.45
um) and preserved with sulfuric acid prior to analysis. Orthophosphate
and ammonium + ammonia were measured spectrophotometrically as
was nitrate + nitrite following cadmium reduction using a Seal AQ2

Discrete analyzer. Total N was calculated as the sum of total Kjeldahl N
and nitrate + nitrite (Stanley et al., 2019). Chlorophyll-a and phyco-
cyanin samples were filtered onto Whatman GF filters (pore size 1 ym),
frozen, extracted in acetone and sodium phosphate buffer, respectively,
sonicated, and measured fluorometrically. Suspended solids were
measured by filtering water through a pre-weighed 934-AH GF filters
(pore size 1.5 pm), drying and reweighing the filter, then combusting at
500 °C and reweighing the filter.

Total microcystins and nodularins (hereafter, total microcystins)
were measured via the enzyme-linked immunosorbance assay method
(ELISA) using kits from Gold Standard Diagnostics, following the USEPA
546 method. In 2017, the project reporting limit for total microcystins
was set at 0.6 pg L1, Despite a decrease in laboratory reporting limits in
later years, the initial project reporting limit of 0.6 pg L™ was main-
tained for all years of data collection for the purpose of this statistical
analysis. This reporting limit lies within the range or below the
thresholds used by the state of Iowa for enhanced raw water monitoring
(0.3-5 pg L’l), finished drinking water advisories (1.6 pg L’l), and
recreational exposure advisory limit (8 pg L™1).

Phytoplankton cells were concentrated through settling to a target of
30 natural units in each view field at 400x magnification. A subsample
was placed in a Palmer-Maloney style nanoplankton chamber for iden-
tification and enumeration of all natural units in a minimum of eight
view fields and 300 natural units. The dimensions of the first 50 natural
units for each genus were measured in addition to the individual cells of
colonies and filaments. Biovolume per liter was calculated based on
phytoplankton shape and then converted to wet biomass per liter
assuming a 1:1 ratio of wet mass and biovolume (Hillebrand et al., 1999;
Holmes et al., 1969). Zooplankton and phytoplankton samples were
identified and enumerated to the lowest taxonomic unit possible using
light microscopy. For zooplankton, a 1 mL subsample of the vertical net
tow was enumerated and identified using a dissecting scope to genus for
Cladocera and Rotifera and to order for Copepoda. Zooplankton biomass
was calculated for each taxonomic group using allometric equations
(Dumont et al., 1975; Mccauley, 1984).

2.2. Microcystin detection classification using snapshot survey

To evaluate if the coarse temporal resolution of the Ambient Lake
Monitoring program influenced the classification of a lake as having
detectable microcystin or not in a year, we used a weekly microcystin
beach monitoring data set from a subset of lakes (n = 31) in this study
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(Villanueva et al., 2023) to evaluate classification accuracy. For the
beach monitoring program, samples are taken weekly between Memo-
rial Day (end of May) and Labor Day (beginning of September) at public
beaches and analyzed for total microcystins concentration in the same
manner as the lake monitoring samples. We classified beaches as having
detectable microcystin in a given year if one weekly sample was above
the detection limit, or non-detectable if no samples exceeded the
reporting limit of 0.6 ug L™!. We then compared if the detection clas-
sification was the same at the beach as the deep site for the same lake in
the same year.

2.3. Classification model development

We used conditional inference forests (Strobl et al., 2007), a machine
learning technique, to build a predictive model of microcystin detection
from the Ambient Lake Monitoring data set (snapshot survey) as a
function of lake physical and chemical attributes, watershed charac-
teristics, zooplankton abundance, and weather. Conditional inference
forests (Strobl et al., 2007) are an extension of random forests (Breiman,
2001) designed to overcome particular weaknesses of the traditional
random forest algorithm. Like random forests, conditional inference
forests build ensembles of tree-based classifiers using random subsets of
predictor variables, and share their strengths in dealing with large
numbers of predictor variables that may be correlated and have complex
interactive effects on the response (Strobl et al., 2009, 2007). Tradi-
tional random forests are an ensemble of classification trees (alterna-
tively, regression trees for continuous response variables), which are
prone to over-fitting and are biased toward selecting variables for which
many splits are possible (i.e., continuous variables or multi-level factors)
(Strobl et al., 2007). Conditional inference forests replace classification
trees with conditional inference trees, a method overcoming both these
weaknesses, resulting in greater parsimony and unbiased variable se-
lection (Hothorn et al., 2006; Strobl et al., 2007). More specifically,
classification trees tend to overfit in the sense of making “deep” trees
having extra splits in the data that contribute little additional explana-
tory power, but conditional inference trees implement an explicit test of
whether further splits contribute significant explanatory power, thus
limiting overfitting. Conditional inference forests were implemented in
R version 4.2.1 using the ‘party’ package (Hothorn, 2005; Strobl et al.,
2008, 2007).

We predicted microcystin detection as a function of 37 predictor
variables (Appendix S1: Table S1, Fig. 2). Predictors included lake
physical attributes (e.g., surface area, stratification), lake chemical
measurements (e.g., nutrient concentrations), watershed characteristics
(e.g., land cover composition, ecoregion), and zooplankton abundance.
Variables from field sampling were annualized by averaging across the
three measurements taken each summer. Land cover data for each
watershed was provided by the Iowa Department of Natural Resources
and ecoregions were defined by the level IV ecoregions from the US
Environmental Protection Agency. Two weather variables were
computed using PRISM monthly gridded (4 km x 4 km) climate data:
total precipitation from October of the prior year through May of the
focal year (e.g., October 2016 to May 2017 for microcystin detections in
2017), and mean springtime (March through May) temperature in the
current year (PRISM Climate Group, Oregon State University, 2014).
The concentration of phycocyanin, a pigment found in cyanobacteria,
was excluded from the set of candidate variables because of its obvious
association with detection of microcystin. Alternate model results with
phycocyanin included in the predictor set are presented in Appendix S1:
Figs. S4, S5. The forest consisted of 30,000 trees, which ensured stability
of model performance and of the rank-order of absolute variable
importance of predictors.

2.4. Model evaluation

We first built a model trained on data from 2017 (n = 128 lakes),
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Fig. 2. Variable importance values for predictors for the model trained on
2017 data.

evaluated its overall performance, quantified which variables contrib-
uted the most explanatory power, and assessed the effects of the most
important variables on the probability of microcystin detection. We
evaluated model performance using the area under the curve (AUC) of a
receiver-operator characteristic (ROC) curve, a widely used metric that,
in its application here, balances the model’s ability to correctly classify
lakes with microcystin detection with its ability to identify lakes where
microcystin was not detected. AUC ranges from 0 to 1 with 0.5 indi-
cating a model no better than random assignment and 1 indicating a
perfect model. We considered a prediction effective if AUC > 0.7. We
computed absolute variable importances and selected the 6 most
important predictors for further investigation. We evaluated these var-
iables’ partial dependences to assess their effect on microcystin detec-
tion using the ‘pdp’ R library (Greenwell, 2017). The model trained on
2017 data was applied forward in time to predict microcystin detection
in 2018-2021 and model performance was assessed using AUC. The
number of lakes included for years 2018-2021 were 127, 129, 67 (in
2020 a smaller number of lakes were sampled due to the COVID-19
pandemic disruptions), and 128.
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While model performance was assessed primarily using AUC, we also
produced confusion matrices for these predictions to further evaluate
model performance (Table S2). An optimal threshold on the predicted
probability of microcystin detection for assigning predictions to detect
and non-detect classes was determined using Youden’s Index (Youden,
1950). Youden’s Index (J) is the sum of sensitivity and specificity minus
one, and by balancing sensitivity and specificity it is consistent with our
use of AUC as an evaluation metric. We also calculated total accuracy
based on the confusion matrices by summing the number of lakes that
were true positives (microcystin detection predicted, microcystin
detection observed) and true negatives (no detection predicted, no
detection observed) and dividing by the total number of lakes sampled
that year.

We next tested whether accumulating training data through time (e.
g., the model used to predict 2019 microcystin detections was trained on
data from 2017 to 2018) improved model performance. Accumulating
training data as it’s collected is a tenet of iterative near-term forecasting
(Dietze, 2017) and previously has been shown to improve model per-
formance in applications to different questions than we focus on here
(Carey et al., 2022). As above, model performance was evaluated using
AUC.

Finally, we tested the skill of our trained models at predicting
microcystin detections later in the season using only field data from the
first sampling event of the summer (mid-May through end of June) and
variables not derived from field sampling (which were temporally
invariant except for the weather variables). Cyanotoxin-producing
blooms are most prevalent in late summer, so the ability of our model
to predict late-season microcystin detection from early-season obser-
vations corresponds to the potential for the combination of a trained
model and early-season limnological observations to serve as an early
warning system. For this experiment, trained models accumulated ob-
servations from subsequent years as they became available (e.g., the
model used to predict 2019 microcystin detections was trained on data
from 2017 to 2018).

3. Results

There was substantial variability in the number of lakes with
microcystin detected and concentration among years. Each year,
microcystin was detected above the project reporting limit of 0.6 g L™
in 37.9-59.8 % of lakes (Fig. 1A). Microcystin concentrations varied
among lakes and years, with only 2-3 lakes with mean summer con-
centrations above the recreational limit of 8 pg L™! in 2020 and 2021,
whereas 24 lakes were above this threshold in 2019. There was sub-
stantial variability in precipitation among years. Cumulative water year
precipitation was 2.4 times higher in 2018 compared to 2021 (Appendix
S1: Fig. S1). The classification of lakes as having detectable versus non-
detectable microcystin was dynamic. Every year, 19 to 36 lakes changed
classification from the previous year. Finally, 81 % of lake-years had the
same classification of detectable or non-detectable microcystin when
comparing between the beach monitoring program and the lake moni-
toring program (Appendix S1: Fig. S2). Additionally, 11 % of lake-years
did not agree in detection classification between the two monitoring
programs, because of a transient period of microcystin detection at the
beach (e.g., only 1 week), with no additional detections that summer.

The AUC for the model trained on 2017 data when classifying the
same 2017 microcystin detections was 0.972 (95 % CI: 0.950-0.993).
Based on the confusion matrix, total accuracy of the 2017 model was 88
% (Table S2). The six most important predictors of microcystin detection
in this model were pH, total Kjeldahl N, total P, total dissolved solids,
ecoregion, and total zooplankton (Fig. 2). In general, in-lake chemical
variables were better predictors than other classes of variables, but the
relatively high importance of ecoregion and total zooplankton demon-
strate a role for eco-geographic contexts and food web structure in
harmful algal bloom dynamics. All continuous variables in the top
predictors had threshold-like relationships with the probability of
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microcystin detection. Threshold values from the partial dependence
plots were assessed visually and reported here. The probability of
microcystin detection increased with increasing pH (threshold between
8.4-8.6), total Kjeldahl N (threshold 0.6-1.7 mg L'l), total P (threshold
30-70 pg L‘l), and total zooplankton (threshold 5-155 mg LY (Fi g. 3).
Total dissolved solids had a negative relationship with the probability of
microcystin detection at a threshold from 253 to 347 mg L™ (Fig. 3d).
Microcystin detections were most prevalent in the Des Moines Lobe
(ecoregion 47b), steeply rolling loess prairie (ecoregion 47e), and
eastern IA and MN drift plains (ecoregion 47c), and lowest in the MO
alluvial plain (ecoregion 47d) and western loess hills ecoregions (ecor-
egion 47 m) (Fig. 3e).

The next six most important variables (Fig. 2) for predicting micro-
cystin detection also align with in-lake variables (molar N:P ratio,
orthophosphate, Secchi depth, specific conductance) and plankton
(copepod biomass, Cladocera biomass). The probability of detection was
substantially higher at a molar N:P ratio <30 and decreased sharply
from 30 to 80 (Appendix S1: Fig. S3). Orthophosphate had a similar
relationship with the probability of microcystin detection as total P, but
the threshold at which probabilities plateaued was lower at 30 pg L™
Specific conductance had a similar relationship with probability of
detection as total dissolved solids (Appendix S1: Fig. S3; threshold
389-535 uS cm'l). Higher Secchi depths (>2 m) were associated with
lower probability of detecting microcystin (Appendix S1: Fig. S2).
Finally, both copepod and Cladocera biomass had similar relationships
as total zooplankton with similar threshold biomasses (Appendix S1:
Fig. S3). Overall, weather variables were not important for predicting
microcystin detection in the 2017 model.

In general, the model trained on 2017 data made skilled predictions
when applied to 2018-2021 conditions (Fig. 4a, Table S2). Importantly,
the model was at least moderately successful at classifying lakes that
changed class from year to year (53 % to 67 % correct), indicating that
the model reflected how changing in-lake conditions affect the proba-
bility of microcystin detection. Alternatively, the model could have
performed well because the same lakes consistently had microcystin-
producing blooms and therefore the model succeeded at distinguishing
data signatures of groups of lakes that are unrelated to mechanisms of
cyanotoxin production, but this does not explain the performance of our
model. When applied to future years, model performance did decline
and was somewhat variable across years (Fig. 4a). From 2017 to 2019,
AUC declined to 0.841 (95 % CI: 0.773-0.910) and remained near this
level and above the effective prediction threshold of AUC > 0.7 through
2021. When we used a model built with a training set that accumulated
data over time, model performance for predicting microcystin detection
in a lake was modestly improved, primarily for 2020 (Fig. 4a). For the
model trained on 2017 data, AUC in 2020 was 0.811 (95 % CI:
0.710-0.912) whereas the model built with accumulated training data
increased in AUC for 2020 to 0.851 (95 % CI: 0.763-0.939). While the
AUC of model predictions based on early observations in the 2017 model
only was lower than those based on all observations in all years, using
early-season conditions was effective (AUC > 0.7) in predicting late-
season microcystin detections in some but not all years (Fig. 4b).
Furthermore, in 2018 and 2021, the quality of predictions based on
early-season conditions from that year in the 2017 model rivaled the
quality of predictions from the full dataset (95 % CIs overlap point
estimates).

We also built a version of the 2017 model with phycocyanin, a
pigment found in cyanobacteria, as a potential predictor. In this version
of the model, phycocyanin was the most important predictor of micro-
cystin detection in a lake (Appendix S1: Fig. S4), followed by a similar
set of predictor variables as the non-phycocyanin model. While phyco-
cyanin was an important variable, its inclusion did not improve model
skill. The AUC of the models trained on 2017 data with and without
phycocyanin were nearly identical (Fig. S5). Similarly, when the 2017
model with phycocyanin was applied to make predictions in 2018-2021,
the skill was unchanged from the non-phycocyanin model.
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Probability of microcystin detection
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4. Discussion

A conditional inference tree model built with snapshot data collected
in one year performed well at identifying which lakes had detections of
microcystin in subsequent summers. Unlike other snapshot surveys that
take advantage of large gradients in nutrient enrichment to statistically

identify cyanotoxin-producing conditions, the studied lakes in Iowa are
primarily classified as eutrophic and hypereutrophic (i.e., a narrower
gradient of enrichment). Regardless, the model was able to differentiate
between lakes with and without microcystin present through a combi-
nation of productivity, trophic, and eco-region variables. In addition to
shedding light on drivers of cyanotoxin production in nutrient-rich
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lakes, this exercise demonstrated the utility of developing correlative
models based on a single year of data to inform public health decision
making, and provided evidence that model performance may not sub-
stantially decline under varying climate conditions.

4.1. Drivers of cyanotoxin presence in lakes

The most important variable in the microcystin detection model was
pH. When phytoplankton production is high (such as during a bloom),
aqueous CO3 can be depleted and pH increases (Balmer and Downing,
2011; MacKeigan et al., 2023). Cyanobacteria have the ability to over-
come this brief CO, scarcity through a bicarbonate concentrating
mechanism, which helps to maintain productivity (Morales-Williams
et al., 2017). There was a substantial increase in microcystin detection
between pH 8.4 and 8.6 which coincides with the pH range where CO; is
a vanishingly small proportion of the inorganic carbon pool (<1 %). This
threshold is consistent with the relationship between pH and cyano-
bacteria biomass observed across a latitudinal gradient in the Americas
(Bonilla et al., 2023) and the relationship between pH and hazardous
versus safe microcystin concentrations in a subset of Iowa lakes (Villa-
nueva et al., 2023). From this relationship, it is evident that the
biogeochemical conditions favoring cyanobacteria dominance and the
current degree of productivity during a bloom are important predictors
of cyanotoxin production.

Total nutrient concentrations were the next most important pre-
dictors, with total P and total Kjeldahl N having positive, saturating
relationships with microcystin detection. The importance of these pre-
dictors and direction of the relationship is consistent with numerous
other cyanobacteria prediction models (Rousso et al., 2020). Iowa is a
nutrient-rich landscape with more than 75 % of the lakes having total P
concentrations well above the threshold for ‘eutrophic’ classification.
Between 30-60 pg L~ of total P, microcystin detection increased sub-
stantially. This range in concentration aligns with the delineation be-
tween mesotrophic and eutrophic conditions on the low end (total P =
24 pg LY Carlson 1970) to the mid-point between eutrophic and
hypereutrophic conditions (total P = 96 ug L™1) on the high end. In this
nutrient-rich landscape, discrete trophic state classification was not as
useful as direct measurements of total P concentrations for predicting
cyanotoxin presence (Kraemer, 2020). Increases in total Kjeldahl N from
0 to 1.7 mg L' were associated with higher detection probability of
microcystin. Interestingly, total N, which is effectively a measure of the
same pool with the addition of nitrate (Stanley et al., 2019) was not an
important variable in the model. In general, inorganic nutrients were not
important, which indicates that the measured total nutrient concentra-
tions are likely an index of planktonic biomass, and available inorganic
nutrients in concentrations near the model thresholds identified were
rapidly taken up to support planktonic production. The molar ratio of
total N to total P was a less important predictor, but the threshold over
which the probability of detection declined was consistent with the
range of molar ratios associated with high microcystin concentrations in
other regions (Orihel et al. 2012).

Eco-geographic context of the lake was an important variable in the
model indicated by the rank importance of level IV ecoregion and total
dissolved solids for the probability of microcystin detection. The ecor-
egions with the highest probability of microcystin detection coincided
with areas of the most extensive cropland in the state, providing a
substantial non-point source of nutrients that support cyanobacteria
production. These ecoregions tended to have lower concentrations of
total dissolved solids. The pattern observed here is consistent with other
continental-scale analyses that showed agriculturally-dominated ecor-
egions were dominated by microcystin detection in lakes (Beaver et al.,
2014). Conversely, any ecoregions in Iowa that include substantial
pasture and other land cover types besides croplands were less likely to
have microcystin detections for lakes in that region. Even in this highly
modified landscape, small differences in land use influence the proba-
bility of microcystin detection in a waterbody.
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Finally, higher zooplankton biomass was associated with a greater
probability of detecting microcystin in Iowa lakes, a pattern which has
been observed in other regions as well (Ger et al., 2016; MacKeigan
et al., 2023). The biomass of N-rich zooplankton taxa such as cyclopoid
copepods increase with eutrophication in these lakes, possibly
enhancing P availability through excretion (Moody and Wilkinson,
2019) and thereby supporting cyanobacteria production. Copepod
biomass was a significant predictor of microcystin presence or absence
in a large-scale snapshot survey across Canada (MacKeigan et al., 2023).
Selective grazing by zooplankton on non-toxic phytoplankton taxa could
support the dominance of microcystin-producing cyanobacteria (Ger
et al., 2011; Wang et al., 2010). Both copepods and Daphnia have
demonstrated selective grazing behavior in the presence of toxic cya-
nobacteria (Ger et al., 2011; Tillmanns et al., 2011). Alternatively (but
perhaps not mutually exclusive), predation release on zooplankton
seasonally coinciding with toxic bloom formation may explain the
positive relationship between zooplankton and microcystin detection
probability. As such, the positive association between zooplankton
biomass and probability of microcystin detection may be a direct effect
of zooplankton grazing or indirect association between the two
variables.

4.2. Model performance and application

Overall and across modeling experiments, we were able to explain
and predict microcystin detections in Iowa lakes. Several prior studies
have statistically modeled microcystin detections and/or concentrations
as a function of lake, watershed and weather variables using snapshot
survey data (e.g., Beaver et al., 2014; MacKeigan et al., 2023; Taranu
et al., 2017), with the goal of identifying the conditions associated with
cyanotoxin detection to inform management. Here, we had the oppor-
tunity to evaluate the skill of such predictions from year to year as
climate and in-lake conditions changed, a critical component of the
continuous improvement process for cyanobacteria prediction models
(2020). Our results show that a model of microcystin detection among
lakes trained from one year of survey data can be applied forward to
predict microcystin detections at a season-wide temporal scale with
reasonably high accuracy. In some, but not all, instances model skill can
be improved by accumulating data over time as in iterative near-term
forecasting (Carey et al., 2022), but in our study this effect was quite
modest even though meteorological conditions changed markedly
across years (Appendix S1: Fig. S1).

In general, weather variables were not informative predictors of
microcystin detection in our study within a single year (Fig. 2) or when
including springtime conditions (Fig. 4b). In fact, the model predictions
built on springtime conditions alone performed worse overall (although
still moderately skilled), compared to all other modeling scenarios.
Water temperature is an important predictor in most within-season
cyanobacteria bloom forecasting models for a single ecosystem
(Rousso et al., 2020). At broader continental scales there is evidence that
temperature may drive total cyanobacteria abundance but reduces
toxicity (Ho and Michalak, 2020), whereas temperature was not an
important predictor of cyanobacteria biomass across larger latitudinal
gradients (Bonilla et al., 2023). Similarly, the relationship between
precipitation and cyanobacteria abundance at broader spatial scales is
uncertain (Ho and Michalak, 2020), whereas extreme precipitation
events within a year have been tied to extreme blooms in a lake within
the same year (Carpenter et al., 2022b). While meteorological variables
may play an important role in microcystin congener dominance (Taranu
et al., 2019) and bloom initiation, in our study overall microcystin
detection was not influenced by meteorological variability among years
(despite variability in precipitation), providing evidence that the sta-
tistical models from snapshot surveys can be reliable in future years.

Cyanobacterial blooms are both spatially and temporally dynamic
(Buelo et al., 2022; Ortiz and Wilkinson, 2021), which may influence our
ability to detect microcystin with the monitoring program design of
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sampling at one location (i.e., over the deepest part of the lake), three
times per summer. Using a weekly monitoring data set for microcystin at
beaches in a subset of the lakes in the study, we found strong agreement
(81 % of lake years) between detection of microcystin at the deep site at
some point during the summer and detection at the beach. The agree-
ment among these two data sets supports the use of the less frequent
monitoring program data in this study to evaluate the performance of a
model built on one year of data, applied forward to subsequent years. In
other words, it is less likely that model performance, evaluated as skill in
categorizing a lake as having detectable microcystin or not each year,
was influenced by misclassification in the observational data.

5. Conclusions

Despite the threat to public health, effective cyanotoxin monitoring
of recreational waters can be inadequate because it is both resource- and
time- intensive to accomplish. Data-driven decision-making tools that
help direct limited resources are valuable for resource managers, but
only when there is confidence in the tool. Using five years of microcystin
and water quality monitoring data from lakes in a nutrient-rich, highly
modified landscape, we were able to evaluate the utility and accuracy of
correlative models built on a single year’s worth of data applied to future
years. While the performance of the 2017 model declined when applied
to future years, model skill remained relatively high despite lakes
shuffling microcystin detection categories each year and a narrow range
of trophic state classifications. Our results support the application of
correlative analyses built on single-season sampling data to decision-
making for resource allocation, but we call for similar investigations
in other regions to build further evidence for this approach.
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