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Abstract—Dysregulation of histones has been implicated in
several medical conditions, including various cancers and neu-
rodegenerative disorders. Histone-specific biosensors are key in
detecting and quantifying them, advancing our understanding
of chromatin dynamics and epigenetic regulation for potential
breakthroughs in cancer research and personalized medicine.
The focus of this paper is on quantifying a biosensor’s ability to
distinguish between Human Histones (H4) and non-target ana-
Iytes. Classification methods are used to provide complementary
analysis to biosensor data derived from sensor manufactured
using a KU7 RNA aptamer bonded to a gold electrode. The
features found provide high classification performance (F1 score
over 0.99) and suggest physical insights to the operation of the
sensor not provided by typical analysis. Furthermore, machine
learning techniques are used in an exploratory analysis to test
the effects of faulty manufacturing or differences in testing
environments on histone detection accuracy.

I. INTRODUCTION

Histones play a crucial role in the field of medicine,
particularly in understanding the intricacies of gene regulation
and chromatin structure. These proteins, around which DNA
is tightly wound, contribute significantly to the packaging
and organization of genetic material within the cell nucleus.
The modifications and interactions of histones are pivotal
in regulating gene expression, influencing various cellular
processes such as cell differentiation, proliferation, and apop-
tosis [1]. Dysregulation of histone modifications has been
implicated in several diseases, including various cancers and
neurodegenerative disorders [2]. Researchers are exploring the
therapeutic potential of targeting histones to modulate gene ex-
pression patterns and develop novel treatments for conditions
where epigenetic regulation is perturbed [3]. Understanding
the medical relevance of histones provides valuable insights
into the molecular mechanisms underlying diseases and opens
avenues for the development of therapeutics.

Biosensors dedicated to histones play a pivotal role in
contemporary scientific and technological endeavors, offering
a specialized means to detect and quantify these biological
molecules[4]. Histone-specific biosensors integrate elements
designed for selectively interacting with histones, such as
aptamers or proteins, with transducers that translate the bio-
chemical signals into measurable outputs [5]. These biosensors
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prove essential in unraveling the intricacies of histone modifi-
cations, facilitating real-time, precise, and sensitive detection.
Their application extends across diverse domains, particularly
in biomedical research where they aid in understanding epi-
genetic mechanisms and unraveling the role of histones in
various diseases [1]. The unique capabilities of histone biosen-
sors contribute to advancing our comprehension of chromatin
dynamics and epigenetic regulation, fostering breakthroughs
in fields like cancer research, [6] and personalized medicine.
As these technologies continue to evolve, histone biosensors
hold the promise of transforming our ability to scrutinize and
manipulate epigenetic processes for therapeutic and diagnostic
purposes. Further research in this domain focuses on lower-
ing detection limits and introducing real time detection and
quantification of the biomolecule.

The focus of this paper will be on using machine learning
to quantify the ability of the sensor to distinguish between the
target analyte, Human Histones (H4), and non-target analytes,
Calf Thymus Histone (CTH) and Bovine Serum Albumin
(BSA). This work focuses on using machine learning methods
to determine relationships between features of the signal and
model performance, providing indicators of what features
provide the most information about the target analyte. The
focus here is not on maximizing model performance, rather
on using relative model performances to provide insight on
how to better characterize sensor specificity and provide a
complementary analysis for finding features that delineate the
differences between analytes and sensors, providing insight in
greater detail than traditional analysis alone.

II. METHODOLOGY
A. Data Collection

The data was collected using an extended-gate field effect
transistor (EGFET). The experimental setup involved a gold

VREF +0.5V
&
U 1= (‘l: -
Electr'*di o : I"g S‘jm 110A
L (8] E E Iz L ,

Fig. 1: Diagram of EGFET Data Collection Apparatus
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Fig. 2: Typical EGFET Analysis Pipeline. a) I-V transfer characteristics of EGFET sensor from -0.2 V to 1.0 V of 0 nM (HBS
buffer), 1 nM, and 100 nM H4. b) Focused window of semi-logarithmic Ipg demonstrating shift in Vi due to H4 binding.
c) Differential Vizs for H4, CTH, and BSA over a range of concentrations. Error bars represent four I-V sweeps.

planar electrode with a KU7 aptamer bonded [7] to the surface,
specifying it to promote histone adsorption onto the surface.
This sensor configuration has been previously used and is fully
described in [8]. Presence of histones was measured by using a
reference electrode to induce a potential on the test electrode.
The electrode was connected to a ZVNLI120A field effect
transistor (FET). The drain current of the FET was measured
and is related to the density of aptamer-target complex sites
on the electrode. A diagram of the set up is shown in Figure
1. The data was collected by testing various electrodes with
different preparation methods which are summarized in Table
I. Figure 2 illustrates some of the data and a typical EGFET
analysis pipeline.

B. Dataset Description

The dataset is composed of experiments done using target
analyte, H4, and non-target analytes, CTH and BSA, at 10pM,
100pM, 1nM, 10nM, and 100nM with at least two repetitions
at each concentration. Each trial is composed of 17-57 cycles,
where each cycle is defined as ¢; : R — R mapping input
voltages to output current response values. Individual cycles
are used for feature extraction and training. The dataset is
denoted as C' = {¢; };cs and contains a total of 117 trials and
5121 cycles. The number of cycles per analyte is provided in
Table 11",

IThe code and data can be found at https:/github.com/ARoS-

NCSU/Histones-EGFET-Classification

TABLE I: Experiment Abbreviations and Descriptions

Abbreviation | Experiment Description
PEG+KU7 | Electrode is cleaned and a HBS buffer
PEG+KU7-AS | Electrode is cleaned and an artificial sweat buffer

is used

PEG+KU7-Polished | Electrode is polished before binding aptamer and

C. Model Description

The main goal of our modeling efforts is to differenti-
ate between the different analytes. The first set of analyses
were done using a Random Forest model using 1000 trees
and a maximum depth of 5. The model was selected by
random hyperparameter optimization, selecting among mul-
tiple model types including Adaboost, Logistic Regression,
Quadratic Discriminant Analysis, K-Neighbors classification,
and Gaussian Processes. Using the catch22 [9], tsfel [10]
and tsfresh [11] libraries, a set of over 1400 features was
extracted?. This set is composed of spectral, wavelet, temporal,
and statistical features. Spectral features include FFT, LPCC,
and MFCC coefficients along with entropy measures of power
spectral density. Temporal features include autocorrelation
values at different lags, Langevin fixed points, subsequence
similarity scores, among others. Statistical features include
absolute energy, kurtosis, and other standard statistical fea-
tures. Wavelet features include coefficient values of wavelet
transforms using a Ricker wavelet, the number of peaks of
the signal obtained after smoothing with Ricker wavelets
at various wavelet widths, and others. A full list of these
features can be obtained from the library documentation. These
features, denoted by f; : R" — R where j is the index
corresponding to the type of feature and n is the number of
samples in a cycle, were extracted from the EGFET data and
the time derivative of the EGFET data using second order
central differences. We define the matrix F' = [f;;] where

fij = fi(s:) and s; = [ei(v(1)), ci(v(2)), - .-, ci(v(n))] with

2Code will be made public if accepted

TABLE II: Overall Dataset Distribution

PEG+KU7-24Hr
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a HBS buffer solution is used.

Electrode is cleaned before binding aptamer and
a HBS buffer solution is used. The electrode is
soaked in the buffer solution for 24 hours before
testing.

Analyte | Number of Cycles
CTH 974
BSA 1180
H4 2967
Total 5121




v(k) = 0.02k — 0.2 as the k-th value of the input voltage ramp
from -0.2 to 1 V applied to the electrode. We set n = 60. We
define the matrix F' = [f];] where f;; = f;(s}) and s] is
the numerical derivative of s;. The resulting feature matrix is
defined as G = [F'| F'] where G is a concatenation of the two
matrices.

Colinear features were filtered out by computing absolute
pairwise Pearson correlation coefficients between feature pairs

on the matrix G = [g;;], as shown below:

llcor(giz, gin) || = >icr(9i — 95)(9ik — gk) '
o V2ie1(9ii = 9)° e (9ik — gi)?

A standard correlation threshold of 0.95 was used for filtering
by column on the correlation matrix. Features that had cor-
relation coefficients of higher than 0.95 were dropped from
the feature matrix G. This was done to reduce overfitting.
No significant differences in performance were observed when
using other correlation computation methods.

Remaining features were filtered by using a variance thresh-
old of 0.01 to remove nearly constant features. The remaining
features were then standardized by the following rule:

o Jij — g}
7 ars({i ) — s ({93)

where g; is the median of the features {g;;|¢ € I} and gy,
is the value of the m-th quantile of the features. This method
assumes no distribution on the features and helps mitigates
the effects of outliers. The resulting features set contained
384 features with a ratio of 3:2:2 of spectral, temporal, and
statistical features, respectively.

A thousand repetitions of 5-Fold Cross Validation were used
for training and validation for each of the experiments where
the data in each fold was sampled without replacement from
the dataset. No additional hyperparameter selection was per-
formed. Furthermore, the data used for training and validation
were stratified by the experiment set, concentration of analyte,
and trial number. Effectively, no data from any single trial
performed at a given concentration could be shared between
training and validation folds. For each training fold, a separate
Random Forest model was trained and a feature importance
threshold set at the median importance value derived from
the model was used to further prune features. The pruned
features and their importance score were recorded. The cross
validation metrics were obtained by training and validating
Random Forest models using only the pruned features.

D. Magnitude Controlled Experiments

For these experiments, the model is trained on data where
each cycle is independently scaled to have values between O
and 1 before feature extraction and filtering. Effectively, we
are eliminating the magnitude differences between different
analytes and purely looking at transient and morphological
differences between the signal. The goal is to discern potential
features of the signal that can be used for specificity compar-
ison outside of the traditional methods.

E. Sampling Frequency Controlled Experiments

For these experiments, we downsample the signals from the
data collection, yielding applied voltage intervals of 40mV
instead of 20mV. The goal of this is to change the amount of
transient information available in the model, providing insight
on the role of (relatively) higher frequency features on the
model. We limit the analysis to a downsampling factor of 2 to
keep the statistical features extracted from this data accurate.

F. Cross Surface Analysis

The purpose of these sensors is to detect the presence
of histones. Traditionally, the specificity of these sensors is
determined through the magnitude of the responses of the
target analyte relative to other non-target analytes. Our non-
target analytes are BSA and CTH, which are treated in the
analysis as a single category. We hypothesize that morpholog-
ical and transient features of the EGFET response can also be
used to discriminate between target and non-target analytes,
providing additional tools to characterize sensor performance.
We consider two variants of our analysis:

1) One to Many: For these experiments, we train the
model on the data from a single electrode type and gather
its performance metrics on other surface types. The goal is
to provide a heuristic of how similar these surfaces are. In
other words, is the difference in manufacturing and testing
environments between these surfaces meaningful in terms of
histone response? Large drops in performance would indicate
that the surfaces yield significantly different responses to
the target analyte whereas similar model performance would
indicate an insignificant difference. In terms of modeling, we
are examining the generalizability of models trained on data
using the manufacturing and testing process specified, i.e.
robustness of data derived from this sensor.

2) Many to One: For these experiments, we train the model
on the data from multiple surfaces and test it on surface data
left out of the training dataset. This is used to determine
surface outliers, i.e., surfaces that are vastly different from
all other surface data, providing insight on anomalies caused
by manufacturing processes.

Using data from multiple surfaces causes a class imbalance
during training which was mitigated using SMOTE[12].

III. RESULTS

The main metrics used to measure performance of these
models are sensitivity, specificity, and F1 score where F1
score is defined as the geometric mean of precision and
recall. Sensitivity and specificity are used to provide additional
context for model performance. We define sensitivity as

TP
TP+ FN’
and we define specificity as
TN
TN+ FP
where T'P, I'N, TN, and F'P refer to true positive, false
negative, true negative, and false positive predictions, respec-
tively.
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TABLE III: Cross-Surface Baseline Case

One-To-Many Many-To-One
Sens.  Spec. F1 Sens.  Spec. F1
PEG+KU7-AS 0.78 091 0.69 098 096 097
PEG+KU7 0.94 096 092 0.80 096  0.80
PEG+KU7-Polished ~ 0.50 1.0 020 073 096 0.74
PEG+KU7-24Hr 0.63 096 048 098 096  0.98
Average 0.71 096 057 0.87 096  0.87

A. Single Surface

These experiments serve as a check for sanity for our
approach. We train models for each individual surface and
test it to verify that it can identify the target and non-target
analytes for that same surface. This validates our choice of
features as descriptive enough to distinguish the responses of
the different analytes. For each of the surfaces and buffers,
using 1000 x 5-fold cross-validation, we find that we have
average F1 scores > 0.99 for each of the cases examined:
baseline, magnitude controlled, and down sampled input data.

For our baseline case (i.e., without magnitude normalization
or down sampling), the top features selected by the model
were the variance of the difference between the 60th and
10th quantile of the binned signal, mean FFT coefficients at
0.5Hz, and the absolute energy of the signal gradient. When
controlling for magnitude, the most relevant features were
energy ratios by signal segment, and the standard errors of
a fitted linear model measuring the change in spread of the
signal.

B. Cross Surface Comparisons

Tables III, IV and V show the results for the one-to-many
and many-to-one variants considered. Overall, we see that
performance in these cases is much lower than the ideal single
surface scenario. Values of specificity remain relatively high;
however, sensitivity drops significantly leading to F1 scores
ranging from 0.43 to 0.87. The one-to-many variant yield
the lowest performance (F1 score of 0.57 for the baseline
case) as expected since we used the least amount of data
for training. Meanwhile, the many-to-one variant did much
better (F1 score 0.87 for the baseline case). This variant is
more representative of what we would expect for testing of
generalization on a new surface. Out of the four surfaces, the
PEG+KU7-Polished produced the lowest performance on the
one-to-many and many-to-one variants which indicates that
this surface has some different properties.

As expected, the magnitude controlled cases (when the
response were normalized) led to a decrease on detection
performance. That was a nearly 30% decrease for the F1 score
of the many-to-one variant. On the other hand, down-sampling
only lead to a 1% decrease for the F1 score of the many-to-
one variant. This indicates that information about the response
can be captured appropriately at lower frequencies, while the
magnitudes are more essential at differentiating the analytes.
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IV. DISCUSSION

For the single surface experiments, the baseline case makes
use of variance of quantile changes in the signal gradient,
FFT coefficients at the high frequency end of what can be
measured at the sampling frequency, and the energy carried in
the signal gradient to make classifications. In our magnitude
controlled case, energy density ratios of the first two segments
of the EGFET and the spread of binned segments of the
signal provide most of the information needed to discriminate
between H4 and the control analytes. We see that, despite
removing magnitude entirely from the signal, we still achieve
F1 scores above 0.99, indicating that the most valuable features
for classification do not depend on differences in magnitude
between the analytes.

According to Pullano et. al. [5], an EGFET’s drain current
can be described, in the linear region, by

W . 1
Ips = ,U'Comf (Veesr = Vi) Vbs — QVBS

where the threshold voltage V7, dependent on analyte behav-
ior, can be described by

* Wm
V;gh:‘/;fh'i_Eref""Xsol_ q _¢

where E,.. is the reference electrode potential, x 0 is the su-
petficial dipole potential of electrolytes in the buffer solution,
W, is the work function of the reference electrode, ¢ is the is
the potential of the surface at the sensing membrane interface,
and ¢ is the charge. Given that differences in the Ipg signal’s
morphological characteristics — and not only aggregate signal
differences — are indicative of different analytes implies that
V3, is not constant and changes with V...

Across the board, we’re able to differentiate between H4
and the non-target analytes fairly easily. However, to better
determine the robustness of the sensor, another indicator of
the generalizability and robustness of the data generated by

TABLE IV: Cross-Surface Magnitude Controlled Case

One-To-Many Many-To-One
Sens.  Spec. F1 Sens.  Spec. F1
PEG+KU7-AS 0.59 093 042 0.83 0.83  0.81
PEG+KU7 0.76 096 0.64 0.50 095 040
PEG+KU7-Polished  0.50 1.0 0.19 044 084 036
PEG+KU7-24Hr 0.58 081 046 087 075  0.87
Average 0.61 093 043 0.66 0.84  0.61

TABLE V: Cross-Surface 40mV Resampling Case

One-To-Many Many-To-One
Sens.  Spec. Fl1 Sens.  Spec. Fl1
PEG+KU7-AS 076 091 066 090 085 0.88
PEG+KU7 0.92 1.0 087 080 092 0.80
PEG+KU7-Polished  0.50 1.0 020 076 093 0.77
PEG+KU7-24Hr 0.62 095 047 098 096  0.98
Average 070 097 055 0.86 092 0.86

. Restrictions apply.



sensor with respect to manufacturing and usage is needed.
Here we take advantage of the fact that models generated with
data from one distribution typically performs worse on data
from a different distribution. The cases where a simpler media,
faulty manufacturing, and sensor degradation are examined,
represented by the PEG+KU7-AS, PEG+KU7-Polished, and
PEG+KU7-24Hr experiments, respectively. Data from our best
case, normal manufacturing and testing, can still reliably be
used to train a model with good performance on the faulty
sensors and the case with a different, although simpler buffer
medium. On the other hand, we see that using the data from
the other sensors has a significantly worse performance in both
the one-to-many and many-to-one tests.

V. CONCLUSION

Results indicate that data from normal manufacturing and
testing can reliably train a model with good performance
on faulty sensors and different buffer mediums. Conversely,
using data from other sensors shows significantly worse per-
formance in various testing scenarios. It is also demonstrated
that machine learning methods lends itself to determining the
specificity of sensors when standard methods are inconclusive.
Future works will extend this to more complex buffer media
and a wider variety of sensor conditions. Furthermore, we aim
to use the physical insights gathered to simulate the sensor and
use machine learning methods to suggest manufacturing steps.
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