

Comparing microbiological and molecular diagnostic tools for the surveillance of anthrax.

Sunday Ochonu Ochai^{1,2*}, Ayesha Hassim¹, Edgar H. Dekker³, Thuto Magome⁴, Kgaugelo Edward Lekota⁴, Marcus Sekgota Makgabo^{1,5}, Lin-Mari de Klerk-Loris², Louis O. van Schalkwyk^{1,3,6} Pauline L. Kamath⁷, Wendy C. Turner⁸, Henriette van Heerden¹

¹ Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa.

²Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa

³ Office of the State Veterinarian, Department of Agriculture, Forestry and Fisheries, Government of South Africa, Skukuza, South Africa

⁴ Unit for Environmental Sciences and Management, Microbiology, North West University, Potchefstroom, South Africa

⁵ Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa (UNISA), Florida Campus, Roodepoort, South Africa.

⁶ Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany

⁷ School of Food and Agriculture, University of Maine, Orono, Maine, U.S.A.
⁸ U.S. Geological Survey, Wisconsin Cooperative Wildlife Research Unit, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin, U.S.A.

*s.o.ochaijr@gmail.com

Abstract

The diagnosis of anthrax, a zoonotic disease caused by *Bacillus anthracis* can be complicated by detection of closely related species. Conventional diagnosis of anthrax involves microscopy, culture identification of bacterial colonies and molecular detection. Genetic markers used are often virulence gene targets such as *Bacillus anthracis* protective antigen (*pagA*, as also called BAPA, occurring on plasmid pXO1), lethal factor (*lef*, on pXO1), as well as chromosomal (Ba-1) and plasmid (capsule-encoding *capB/C*, located on pXO2). Combinations of genetic markers using real-time/quantitative polymerase chain reaction (qPCR) are used to confirm *B. anthracis* from culture but can also be used directly on diagnostic samples to avoid propagation and its associated biorisks and for faster identification. We investigated how the presence of

33 closely related species could complicate anthrax diagnoses with and without culture to
34 standardise the use of genetic markers using qPCR for accurate anthrax diagnosis. Using blood
35 smears from 2012-2020 from wildlife mortalities (n=1708) in Kruger National Park in South
36 Africa where anthrax is endemic, we contrasted anthrax diagnostic results based on qPCR,
37 microscopy, and culture. From smears, 113/1708 grew bacteria in culture, from which 506
38 isolates were obtained. Of these isolates, only 24.7% (125 isolates) were positive for *B.*
39 *anthracis* based on genetic markers or microscopy. However, among these, merely 4/125
40 (3.2%) were confirmed *B. anthracis* isolates (based on morphology, microscopy, and sensitivity
41 testing to penicillin and gamma-phage) from the blood smear, likely due to poor survival of
42 spores on stored smears. This study identified *B. cereus* *sensu lato*, which included *B. cereus*
43 and *B. anthracis*, *Peribacillus* spp., and *Priestia* spp. clusters using *gyrB* gene in selected
44 bacterial isolates positive for *pagA* region using BAPA probe. Using qPCR on blood smears,
45 52.1% (890 samples) tested positive for *B. anthracis* based on one or a combination of genetic
46 markers which included the 25 positive controls. Notably, the standard *lef* primer set displayed
47 the lowest specificity and accuracy. The BAPA+*lef*+Ba-1 combination showed 100%
48 specificity, sensitivity, and accuracy. Various marker combinations, such as Ba-1+*capB*,
49 BAPA+*capB*, Ba-1+BAPA+*capB*+*lef*, and BAPA+*lef*+*capB*, all demonstrated 100.0%
50 specificity and 98.7% accuracy, while maintaining a sensitivity of 96.6%. Using Ba-
51 1+BAPA+*lef*+*capB*, as well as Ba-1+BAPA+*lef* with molecular diagnosis accurately detects *B.*
52 *anthracis* in the absence of bacterial culture. Systematically combining microscopy and
53 molecular markers holds promise for notably reducing false positives. This significantly
54 enhances the detection and surveillance of diseases like anthrax in southern Africa and beyond
55 and reducing the need for propagation of the bacteria in culture.

56

57 **Authors Summary**

58 Our research tackles the challenges of diagnosing anthrax, a severe disease caused by the
59 bacterium *Bacillus anthracis*, especially in regions where similar bacteria coexist. Traditional
60 methods of identifying anthrax involve microscopic examination, bacterial culture, and genetic
61 testing. We aimed to enhance the accuracy and speed of genetic testing to identify anthrax
62 directly from samples, without the need for bacterial culture, thereby reducing the associated
63 risks.

64 We analysed blood samples from wildlife deaths in Kruger National Park, South Africa, where
65 anthrax is common. By applying advanced genetic tests, we found that over half of the samples
66 tested positive for anthrax. We discovered that combining certain genetic markers significantly
67 improved the accuracy of these tests, reaching up to 100% accuracy. This method helps reduce
68 false positives and enhances the reliability of anthrax detection.

69 Our findings suggest that using a combination of genetic markers can accurately identify
70 anthrax directly from blood samples, potentially bypassing the need for bacterial culture. This
71 approach not only speeds up the diagnostic process but also improves disease monitoring and
72 management. This is particularly important for regions like southern Africa, where anthrax
73 poses a significant threat to wildlife health. Our work contributes to better conservation efforts
74 and a deeper understanding of how to control anthrax outbreaks effectively.

75

76 **Introduction**

77 Anthrax is an ancient zoonotic disease with a documented history dating back to the Bible
78 [1]. While the disease affects many host species, herbivorous mammals are most susceptible,
79 with fatalities often observed in wildlife and livestock. In addition, humans are susceptible to
80 anthrax infections, and cases occur largely due to the handling or consumption of carcasses,
81 infected meat, and hides [2, 3]. Anthrax is generally known to be caused by *Bacillus*
82 *anthracis*, which is an aerobic or facultative anaerobic, non-motile, Gram-positive, rod-
83 shaped bacterium that produces endospores. This bacterium occurs in two forms, the spore
84 form and the vegetative form [4]. The virulence factors of *B. anthracis* are encoded on two
85 plasmids: pXO1, which is responsible for the production of the toxins, and pXO2, which
86 synthesizes the poly- γ -D-glutamic acid capsule [5, 6]. The pXO1 plasmid contains genes
87 responsible for the production of protective antigen (PA, also referred to as BAPA; W.H.O,
88 2008), lethal factor (LF) and edema factor (EF) proteins. These proteins are grouped as A₂B-
89 toxins. The A components, which consist of the EF or LF, bears the enzymatic activity [7-9].
90 The B component consists of PA, which is the receptor-binding component of the lethal toxin
91 (LT) and edema toxin (ET), and the courier of LF and EF respectively, into the host cells [8-
92 11].

93 For a century, identifying anthrax and its causative agent, *B. anthracis*, relied on
94 microbiological culture, microscopy, and biochemistry. Recently, new hypotheses about the
95 disease's presentation, prevention, and infective organisms have emerged in Africa [12-15].
96 There have been reports of serological cross-reactivity between pathogenic and non-
97 pathogenic *Bacillus* spp. [16, 17], including the high-incidence northern Kruger National Park
98 [18, 19]. Anti-PA and LT-neutralizing antibodies were also detected at higher rates than
99 expected in animals from southern KNP, a low-incidence area [19]. We hypothesized that
100 animals might be reacting to "anthrax-like" microbes with genes similar to *B. anthracis* [19].
101 Additionally, the discovery of anthrax cases caused by *B. cereus* biovar *anthracis* (Bcbva) in
102 West and Central Africa [20] prompted us to reassess the robustness of diagnostic tools
103 currently used for anthrax surveillance in southern Africa. Furthermore, anthrax-like illnesses
104 attributed to atypical strains of *B. cereus* and Bcbva. have been reported in animals, some of
105 which include chimpanzees (*Pan troglodytes*), gorilla (*Gorilla gorilla*), elephants (*Loxodonta*
106 *africana*), cattle (*Bos taurus*), and goats (*Capra hircus*) [12, 15, 20-24] in West and Central

107 Africa. Norris, Zincke [25] also reported Bcbva in archival bones and teeth of monkeys from
108 Côte d'Ivoire.

109 Different methods have been employed in the diagnosis of bacterial zoonoses such as *B.*
110 *anthracis* over the years. These methods include the identification of bacterial culture isolates,
111 microscopic examination of blood smears, molecular diagnosis targeting pathogen genetic
112 markers and serological identification employing antibodies targeting antigens produced by
113 the pathogen. The success of these techniques, however, depends largely on the specificity
114 and sensitivity of the test being employed [26]. *Bacillus anthracis* is in the phylum Firmicutes,
115 family Bacillaceae, and belongs to the group referred to as the *B. cereus* group. The *B. cereus*
116 group consists of 11 *Bacillus* species (*B. anthracis*, *B. cereus*, *B. thuringiensis*, *B. mycoides*,
117 *B. pseudomycoides*, *B. weihenstephanensis*, *B. cytotoxicus*, *B. toyonensis*, *B. gaemokensis*,
118 “*B. manliponensis*” and “*B. bingmayongensis*”) that have closely related phylogenies [27-29]
119 as reflected by high similarities in 16S rRNA gene sequences [24, 30] and other genetic
120 markers such as *gyrB* within the *B. cereus* group [31]. These species also differ in their
121 aetiology, pathogenesis, clinical manifestations and host preferences [28, 32-35]. The *gyrB*
122 gene encodes the B subunit of DNA gyrase, an enzyme critical for DNA replication,
123 transcription, and repair in bacteria. The *gyrB* gene sequence is highly conserved among
124 bacterial species but varies enough to distinguish between them [31, 36]. Studies have shown
125 that *gyrB* sequencing can offer higher resolution than the more commonly used 16S rRNA
126 gene sequencing in differentiating closely related bacterial species [37, 38].

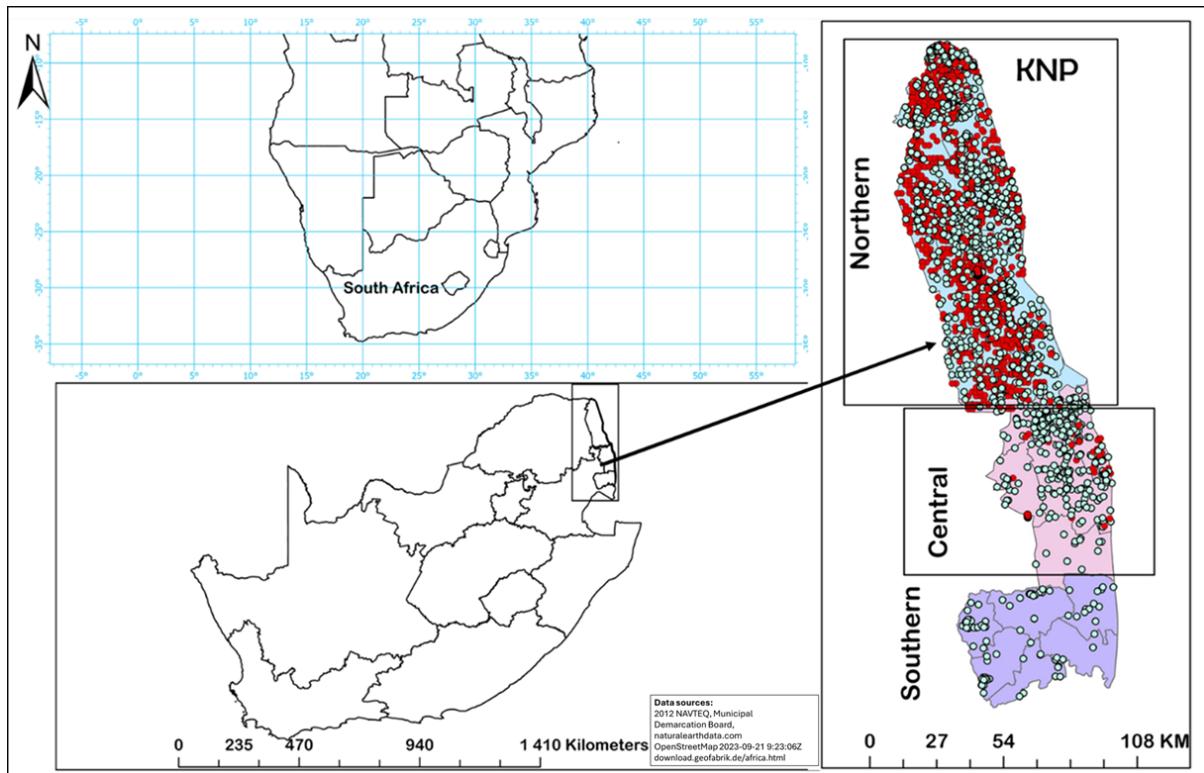
127 The initial step in the confirmation of *B. anthracis* in an anthrax-suspected carcass is the
128 examination of blood smears stained with either Gram or Giemsa stain to view the rod-shaped
129 bacterium [3]. The presence of encapsulated square-ended rod-shaped bacteria that react to
130 the polychrome methylene blue stain indicates the presence of *B. anthracis* and warrants a
131 sample to be sent to a reference laboratory for confirmation [3]. To confirm the presence of
132 *B. anthracis* in the reference laboratories, the samples are cultured on blood agar to check for
133 colony morphology [3], and the absence of haemolysis and sensitivity to penicillin and
134 bacteriophages [39, 40]. For additional verification, real-time/quantitative PCR (qPCR) is
135 conducted for the presence of *pagA* with BAPA probe, *lef* [3], *capB* (pXO2 [3]) and/or *Ba-1*
136 [41] genes that encode for virulence factors including the PA and capsule as well as *B.*
137 *anthracis* chromosome, respectively. The qPCR targeting *pagA* with BAPA probe (pXO1)
138 [3] and *capC* (pXO2) regions [3] used by Lekota, Hassim [42] reported that presence of *capC*

139 to be inadequate for distinguishing closely related *Bacillus* species from anthrax outbreaks,
140 while Zincke *et al.*, [41] used *capB*, *lef* and Ba-1 targets to differentiate *B. anthracis* from *B.*
141 *cereus sensu stricto*. Although the Ba-1 marker seems distinctive to *B. anthracis*, its validation
142 has been limited to *B. anthracis* strains of *B. cereus sensu stricto*, similar to the case of *lef*
143 [41, 43]. Typically, molecular targets involve the use of specific chromosomal regions unique
144 to *B. anthracis* together with virulence factors situated on either pXO1 or pXO2 plasmids
145 serving as markers [3, 42, 44], due to the genome similarity amongst closely related *Bacillus*
146 spp. [45, 46] and *B. anthracis* virulence plasmids or their parts detected in closely related
147 species [15, 47]. One of the most common diagnostic markers used in the detection of Bcbva
148 is the genomic island IV (GI4) which is unique to Bcbva [41]. Over the last decades, there
149 have been calls to move away from culture identification of *B. anthracis* in a bid to reduce
150 biosafety risk and avoid proliferation [48]. Thus, the ultimate goal of this study was to
151 investigate the best practices using culture-free methods for the diagnosis of anthrax.

152 In a typical *B. anthracis* investigation, the presence of *B. cereus* group species that are not *B.*
153 *anthracis* have been viewed as contaminants, and the absence of the genes linked to both
154 pXO1 and pXO2 further leads the investigator to view the closely related species as not of
155 importance are associated with less-severe disease [49]. However, toxigenic *B. cereus* are
156 known to have pXO1-like plasmids and other capsule-encoding plasmids that are not pXO2,
157 and *B. cereus* can cause foodborne infections without either pXO1 or pXO2 plasmids [50].
158 As a result, microbes that lack the *B. anthracis*-specific chromosomal gene (Ba-1) or the
159 pXO1 and pXO2 plasmids can be readily overlooked. In recent years, there have been reports
160 of atypical *B. cereus* strains that are known to cause anthrax-like infections in both humans
161 and animals [51] with very similar genes to those found on pXO1 and pXO2 plasmids found
162 in *B. anthracis* [47].

163 Anthrax is endemic in KNP, and park personnel employ a passive surveillance system where
164 blood smears are collected from any deceased animal and stored in an archival collection. We
165 utilised blood smears from the collection, covering the years 2012-2020. This period
166 encompassed known anthrax outbreaks from 2012 to 2015 [19, 52]. From these outbreaks,
167 *B. anthracis* bacilli were initially identified using the microscopic evaluation of blood smears
168 from wildlife carcasses in KNP with follow-up collection of bone, hair, and tissue samples
169 from positive carcass sites in previous study [53]. In this study, 25 *B. anthracis* isolates
170 previously confirmed using microbiology and PCR from tissue samples linked to positive

171 blood smears served as positive controls. Our investigation focused on employing
172 microscopy, culture, and molecular markers, including real-time/quantitative polymerase
173 chain reaction (qPCR), to identify *B. anthracis* and distinguish it from *B. cereus* or other
174 closely related microbes. Specifically, we examined: 1) the performance of five molecular
175 markers currently in use (*pagA* with BAPA probe, Ba-1, *lef*, *capB*, GI4) to identify *B.*
176 *anthracis* from other bacteria using cultures of blood smears; (2) the performance of five
177 molecular markers to identify *B. anthracis* from *B. cereus* and other closely related bacteria;
178 and 3) we evaluated the agreement between anthrax diagnoses based on blood smear
179 microscopy versus molecular techniques.


180 Materials and Methods

181 Ethics Statement

182 This study was reviewed and approved by University of Pretoria Research Ethics Committee,
183 Animal Ethics Committee (REC 049-21), Department of Agriculture, Forestry and Fisheries
184 (DAFF) in South Africa (Ref 12/11/1/1/6 (2382SR)) in South Africa, South African National
185 Parks (SANParks), South Africa (Ref: BMTA 006/22).

186 Study Area

187 The KNP (19,485 km²; Fig 1) is situated in the northeastern part of South Africa, bordering
188 Mozambique and Zimbabwe. The northern half of KNP (Fig 1) is considered the anthrax
189 endemic region, where most of the anthrax mortalities have been reported [19, 54]; this region
190 is classified as semi-arid and is highly wooded with some grassland savannah [55]. KNP has
191 variable elevations, with Pafuri (found in the northernmost part of KNP; 22.4206° S, 31.2296°
192 E) having lower elevation floodplains and mountains towards the northwestern part of the park.
193 In KNP, the high anthrax incidence (endemic) area extends from Pafuri to Shingwedzi
194 (23.1167° S, 31.4333° E) in the north, and the low incidence area extends from Skukuza
195 (24.9948° S, 31.5969° E) to Crocodile Bridge (25.3584° S, 31.8935° E) in the south (Fig 1).

196

197 **Fig 1:** The study area, Kruger National Park (KNP), is located in South Africa. The map of
 198 210 KNP divides the park into three regions, with the distribution of 1708 animal mortalities
 199 (S1 Table) investigated in this study are shown as dots; presumptive anthrax positive cases,
 200 identified through microscopic examination of blood smears, are marked with red dots, while
 201 green dots indicate anthrax-negative mortalities. South Africa provincial and municipal map
 202 obtained from africa-latest.osm.pbf. KNP shape files were obtained from from Navteq
 203 (2024). The Africa map was obtained from the natural earth
 204 data ([https://www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-admin-1-
 205 states-provinces/](https://www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-admin-1-states-provinces/))

206 **Sample preparation and DNA extraction**

207 Archival blood smears can be an important resource for retrospective studies and for retrieving
 208 pathogens like *B. anthracis* that can remain viable for years [52, 56]. In KNP, as part of the
 209 passive surveillance by the Skukuza State Veterinary Services, blood smears have been
 210 collected from all carcasses discovered during field surveys. Two smears were collected per
 211 carcass, one of which is stained (with Giemsa), while the other remains unstained. Metadata
 212 captured at the carcass sites include the date, Global Positioning System (GPS) coordinates,
 213 locality, species, and sex. These smears were first examined at the time of collection and then
 214 stored at room temperature since collection. Aminu, Lembo [57] demonstrated that Azure B
 215 staining is more robust, consistent and has a higher sensitivity compared to Giemsa only,

216 without Azure B and Polychrome Methylene Blue (PMB) stains. The Giemsa stain used in this
217 study contained Azure B.

218 A total of 1708 Giemsa-stained blood smear slides (from wildlife mortalities recorded 2012-
219 2020; S1 Table) were examined by microscopy at 1000X magnification for the presence of
220 square-ended cells indicative of *B. anthracis*. All phenotypic confirmation of *B. anthracis* by
221 microscopy and plate assays were performed as described by the World Health Organization
222 [3]. Each slide was examined by two examiners. The selection of smears from this time period
223 (2012-2020) was based on the findings of Hassim [52] who demonstrated that isolate recovery
224 reduced with age of the smears. We used the selected corresponding unstained smears
225 (N=1708) for additional genetic and microbiological work.

226 The unstained blood smears from each mortality were scraped into a collection plate and
227 transferred into a 1.5 mL centrifuge tube using a sterile scalpel. The smear scrapings were
228 added to 200 µL of phosphate buffered saline (PBS; Thermo Scientific, MA, USA) and divided
229 into two aliquots. The first aliquot was subjected to automated DNA extraction (QIAcube,
230 QIAGEN GmbH, Hilden, Germany) using the DNA Blood Mini kit (QIAGEN QIAamp,
231 QIAGEN GmbH, Hilden, Germany) and the manufacturer's instructions for DNA extraction
232 from blood were followed. The second aliquot was inoculated on 5% Sheep Blood Agar (SBA)
233 and incubated overnight at 37 °C for use in the morphological identification of bacterial
234 colonies, as described by Parry, Turnbull [58]. On each plate, all bacterial colonies
235 demonstrating different colony morphology were selected and treated as different isolates. All
236 isolates identified were further sub-cultured onto 5% Sheep Blood Agar (SBA) to obtain pure
237 cultures and check for the presence of haemolysis and colony morphology. The purified isolates
238 were further subjected to gamma-phage and penicillin sensitivity tests. Isolates that did not
239 present with a *B. anthracis* characteristic phenotype were retained and screened using
240 molecular methods. DNA extraction from pure isolates was performed using the Pure link
241 Genomic DNA kit (Thermo Fisher Scientific, MA USA) as prescribed by the manufacturer.

242 If a mortality was identified as positive for *B. anthracis* based on microscopy, a follow-up
243 sample (soil, bone and/or tissue) from the carcass site was collected as soon as possible (if
244 GPS coordinates were available). From these additional samples, 25 isolates confirmed to be
245 *B. anthracis* based on PCR, morphology, microscopy, lack of haemolytic activity, gamma-
246 phage and penicillin sensitivity were used in this study as internal positive controls. These
247 controls serve as a benchmark to verify that the assays are functioning correctly and to validate

248 the results obtained from the experimental samples. Additionally, these controls were obtained
249 at or close to the carcass site and from other tissues or samples of the respective animals,
250 providing a more accurate reference for comparison.

251 **Microscopic examination of bacterial isolates derived from blood smears**

252 For the blood smear scrapings that yielded bacterial growth, the colonies were subcultured (to
253 obtain pure colonies) and transferred directly to a microscope slide, and 5 μ l of saline was
254 added, emulsified, and spread evenly on the slide. The slide was allowed to dry and fixed with
255 95% methanol (Merck KGaA, Darmstadt, Germany) for one minute. The methanol was
256 allowed to dry and a Gram stain was conducted to visualise the presence of Gram positive rods.
257 Cell morphology was observed and recorded at 1000X magnification to confirm the culture
258 results to identify square-ended rod-shaped *B. anthracis*. Subsequently, to determine
259 encapsulation, polychrome methylene blue stain was performed.

260 **Quantitative polymerase chain reaction (qPCR) on bacterial isolates derived from smears**

261 The qPCR was performed on two different sample sets. First, cultured isolates from one of the
262 two aliquots of the blood smears (506 isolates from 113 smears) were screened, targeting 5
263 genetic markers for *pagA* with BAPA probe, Ba-1, *lef*, GI4 and *capB* in a stepwise manner. All
264 isolates were screened even if they were not phenotypically *B. anthracis*. The isolates were
265 first screened with the SYBR Green assays using primers and targets in Table 1 as described
266 by the manufacturer (CelGREEN, Celtic Molecular Diagnostics, Cape Town, South Africa).
267 Isolates that were positive with SYBR Green (n=125) PCR assays on all the markers were then
268 further confirmed using the TaqMan assay for targeting the Ba-1, *lef*, *capB*, GI4 targets (Table
269 1) as described by Zincke *et al.*, [41] and the fluorescence resonance energy transfer (FRET)
270 for BAPA [3]. The inclusion of the chromosomal marker, Ba-1 and GI4 in the assay was based
271 on the premise that it enhances the specificity of the assay, as detailed by [59]. The reaction
272 mixtures for the SYBR Green assay, targeting the *pagA* with BAPA probe, Ba-1, *lef*, GI4, and
273 *capB* primer sets, consisted of 0.5 μ M of each primer. For Ba-1, *lef*, GI4, and *capB*, the mix
274 included 1x SYBR Green (CelGREEN, Celtic Molecular Diagnostics, Cape Town, South
275 Africa), while the *pagA* assay utilized FastStart Essential Green Master (Roche, Basel,
276 Switzerland). Each mixture also contained 2 ng of DNA, resulting in a total volume of 20 μ L
277 per reaction. Cycling conditions were: a pre-incubation at 95°C for 10 min (20°C/sec ramp),
278 followed by 45 cycles of 95°C for 10 sec and 55°C for 20 sec (both at 20°C/sec ramp), then

72°C for 30 sec (20°C/sec ramp) with signal capture post-annealing. Denaturation involved an immediate 95°C step, cooling to 40°C for 30 sec (both at 20°C/sec ramp), then 80°C instantly with a 0.1°C/sec ramp for continuous signal reading. The process concluded with a cool-down to 40°C for 30 sec (20°C/sec ramp). The assay was performed using the QuantStudio 5 Real-time PCR system (Thermo Fisher Scientific, MA USA). Isolates that were positive for *pagA* (n=14) were selected for further identification using gyrase B (*gyrB*) gene PCR as described by [31]. We selected these isolates that were *pagA* PCR positives as it has been hypothesised that closely related bacterial species might be responsible for the anti-PA serological reaction observed in anthrax nonendemic regions [19]. The cycle threshold (CT) cutoff was established at 35 for Ba-1 and GI4, as well as for *pagA*, *lef*, and *capB* [41, 42, 53]. For *B. anthracis*, we used *B. anthracis* Vollum strain as the positive control, and the 25 smear samples confirmed to be *B. anthracis* in the study of Hassim [52] were used as internal controls. We obtained a positive control (DNA from pure culture) for Bcbva from the Robert Koch Institute, Germany.

292 qPCR from direct scrapings of blood smears

293 Secondly, the 1708 DNA samples obtained from blood smear scrapings were screened for the
294 presence of the pXO1 plasmid, with qPCR assays targeting the *pagA* and *lef*, as well as pXO2
295 plasmid targeting *capB*. We also screened for the chromosomal markers Ba-1 of *B. anthracis*
296 and GI4 region for Bcbva. To determine the presence of *pagA* with BAPA probe, qPCR was
297 conducted using the FRET on the Light Cycler Nano (Roche, Basel, Switzerland). For the
298 TaqMan assays, the reaction conditions were standardized to a 20- μ L mixture containing 1 μ L
299 of the DNA template, 1x concentration of PrimeTime Gene Expression Master Mix (IDT,
300 Coralville, IA, USA, Cat No. 1055772), along with primers and probes as listed in Table 1.

301 Table 1: Primers, probes and gene targets for the detection of *Bacillus anthracis* from bacterial
302 isolates cultured from blood smear samples from wildlife mortalities in Kruger National Park,
303 South Africa by quantitative polymerase chain reaction (qPCR) assays. *Bacillus anthracis*
304 protective antigen (BAPA), lethal factor (*lef*), chromosomal marker (Ba-1 and Genomic island
305 4: GI4) and the capsule region (*capB*) were used as molecular markers in this study. FRET
306 stands for fluorescence resonance energy transfer.

Primer/Probe (5'-3')	Chemistry	Target	Reference
Forward - GTACATCTTCTAGCTGTTGCAA	TaqMan	Ba-1	[41]
Reverse – ACGTAGGAAGACCCTTGATTA			

Probe - VIC-CGTTGTTGTGTATTG-MGB			
Forward – TAAGCCTGCGTTCTCGTAAATG Reverse – GTTCCCAAATACGTAATGTTGATGAG Probe - NED-TTGCAGCGAATGAT-MGB	TaqMan	<i>capB</i>	
Forward – CACTATCAACACTGGAGCGATTCT Reverse – AATTATGTCATCTTCTTGCTCAA Probe - Cy5-AGCTGCAGATTCC-MGB	TaqMan	<i>lef</i>	
Forward - GGAGATATTAACAAGAGATGGATTGGA Reverse - CAGTAGGCTTGTCTGCTCTAATAAAATT Probe - FAM- ACATGCCAGCGTTTGCCTCTACACA-BHQ1	Taqman	GI4	
Forward – CGGATCAAGTATATGGGAATATAGCAA Reverse - CCGGTTT AGTCGTTT CTAATGGAT BAPA-FL - TGCAGTAACACTT CACTCCAGTTCGA-X BAPA-LCRed 640 - CCTGTATCCACCCCTCACTCTT CCATTTC C-P	FRET	<i>pagA</i> with BAPA probe	[3]

307

308 The thermal cycling conditions for TaqMan assays were set as follows: an initial denaturation
 309 at 95°C for 3 minutes, followed by 45 cycles of denaturation at 95°C for 20 sec and
 310 annealing/extension at 60°C for 30 sec. For *lef*, Ba-1, *capB* and GI4, the quantitative PCR
 311 TaqMan assay was performed using the QuantStudio 5 Real-time PCR system (Thermo Fisher
 312 Scientific, MA USA). Two duplex assays were created for the simultaneous detection of FAM-
 313 and VIC-labeled probes. The first duplex targeted Ba-1 and GI4 markers for species
 314 identification, while the second targeted *lef* and *capB* virulence markers from pXO1 and pXO2
 315 plasmids, respectively. To prevent spectral overlap in the QuantStudio 5 instrument, colour
 316 compensation was conducted with FAM and VIC probes, applying the results to duplex assay
 317 data. Tests included all 26 confirmed positive *B. anthracis* strains (~1 ng DNA), and specificity
 318 checks involved DNA from *Bcbva*, and *B. cereus* ATCC 3999. The CT cutoff for positive
 319 samples was set at 35 for all the markers [42, 53].

320 **Molecular identification and phylogenetic analysis on bacterial isolates from smears**

321 The 14 bacterial isolates from blood smear scrapings that tested positive for *pagA* with BAPA
322 probe by the two qPCR approaches were subjected to additional molecular and phylogenetic
323 analysis. The gyrase B (*gyrB*) PCR product was sequenced for molecular taxonomic
324 identification of the isolates. The PCR fragments of the *gyrB* gene of the selected isolates (n =
325 14), including 4 *B. anthracis* isolates based on microbiology (square-ended bacilli, colony
326 morphology, penicillin and gamma phage sensitive), were sequenced at Inqaba Biotechnical
327 Industries (Pty) Ltd., Pretoria, South Africa. A BLAST search query was performed to compare
328 the *gyrB* nucleotide sequences from the *Bacillus* isolates with publicly available GenBank
329 sequences in NCBI (<http://www.ncbi.nlm.nih.gov>; accessed on 08, March, 2023). Multiple
330 sequence alignments of the mined *gyrB* reference sequences and *Bacillus* spp. strains
331 sequenced in this study were performed using BioEdit 7 [60] and using the algorithm found in
332 Clustal W MEGA11 as described by Tamura, Stecher [61]. With this alignment, we inferred
333 the phylogenetic relationships of the *Bacillus* spp. isolates with respect to other related species
334 and *B. anthracis*. The p-distance model was used to generate a neighbour-joining tree with
335 1000 bootstrapped replicates, using the MEGA 11.0 software [61], and the phylogenetic tree
336 was visualised using iTOL 5.0 [62].

337 The 240 bp amplicons, targeting the *pagA* gene and detected using the BAPA probe [3], were
338 analysed on the presumptive *Bacillus* spp. isolates bearing the following sample numbers:
339 AX2015 (1122; 1136; 1152; 1511 and 1277A) and AX2016 (1708NH and 1800) and sequenced
340 at Inqaba Biotechnical Industries (Pty) Ltd., Pretoria, South Africa. The BLASTn homology
341 searches of the sequences were performed to assess homologous hits against the *pagA* region
342 of the *B. anthracis* GenBank sequences available in NCBI [63]. Multiple sequence alignments
343 of the *pagA* (BAPA) probe region were performed using BioEdit 7 [60]. The isolates and/or
344 PCR fragments that failed quality control (low-base calling during sequencing: the sequences
345 where at least 90% of the nucleotides achieved a Phred score of less than 30) were excluded
346 from this analysis.

347 The analysis of the *gyrB* gene was performed to provide a broader phylogenetic context for the
348 bacterial isolates identified as *Bacillus anthracis* based on *pagA* sequencing and BAPA probes.
349 The BLASTn homology searches of the *pagA* region were used to assess homologous hits
350 against *B. anthracis* sequences available in GenBank (NCBI, 2023). This dual approach—first
351 targeting *pagA* for *B. anthracis* identification and then conducting broader *gyrB* phylogenetic

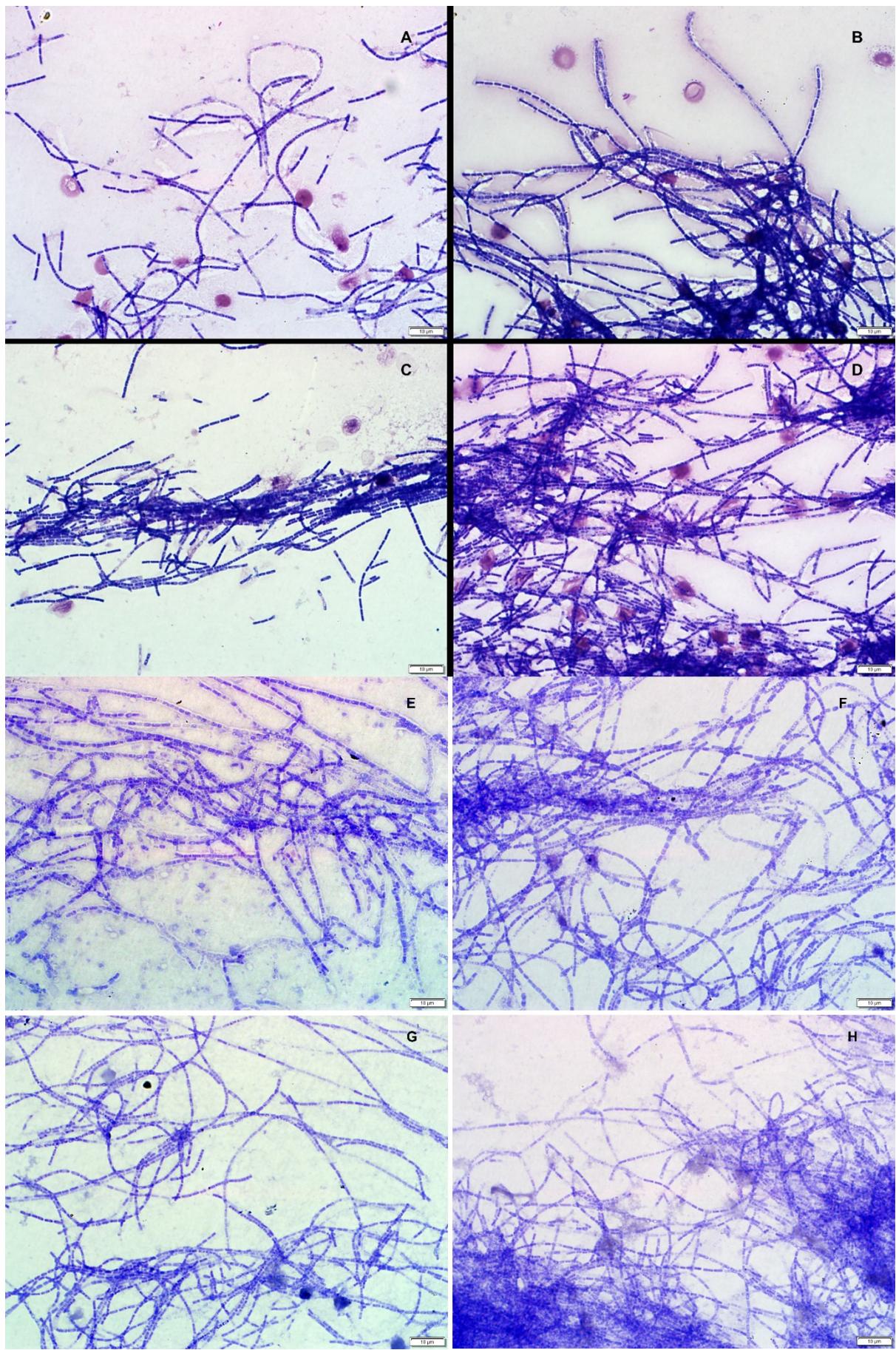
352 analysis—was necessary to confirm both species-level identification and the phylogenetic
353 relationships within these closely related genera.

354 **Data analysis**

355 **Performance analysis of markers on bacterial isolates**

356 All results for the qPCR of the isolates were presented as counts and percentages. To assess the
357 performance of these molecular markers, we analysed 80 isolates that tested qPCR positive for
358 individual markers or combinations of molecular markers using the probe-based approach. We
359 used culture, microscopy, penicillin sensitivity, and gamma-phage sensitivity results as the gold
360 standard (true positive/negative) for comparison with the assays [3]. For the isolates that tested
361 positive for any of the markers, we calculated the specificity, which detects true negative, and
362 the sensitivity, which detects true positive [64]. We also calculated the positive predictive value
363 (PPV); probability that *B. anthracis* is present when the test is positive, the negative predictive
364 value (NPV), probability that *B. anthracis* is absent when the test is negative, and the accuracy,
365 which refers to the overall probability that a case is correctly classified [64]. Results for
366 specificity, sensitivity, and accuracy were presented in percentages and confidence intervals
367 (CI) which are Clopper-Pearson CI [65] and the CI for the predictive values was calculated
368 using the log method as described by Altman, Machin [66].

369 **Analysis of smears and direct qPCR of scrapings**


370 The outcomes of the qPCR and microscopic examination of blood smears were represented as
371 counts and percentages of positive samples. We evaluated the extent of agreement between the
372 binary outcomes of the molecular tests and the results of the microscopic examination of the
373 blood smears. This was done using a Cohen's kappa (κ) test [67]. For this analysis, $\kappa \neq 0$
374 implies that the extent of agreement between the two tests mentioned was significantly different
375 from chance agreement. The measure of agreement was evaluated based on the criteria of
376 Landis and Koch [68], where <0 = poor; $0.01-0.20$ = slight; $0.21-0.40$ = fair; $0.41-0.60$ =
377 moderate; $0.61-0.80$ = substantial; $0.81-1.00$ = almost perfect. Statistical analyses were
378 conducted using R version 4.1.2 [69], and significance was evaluated with a threshold of alpha
379 < 0.05 .

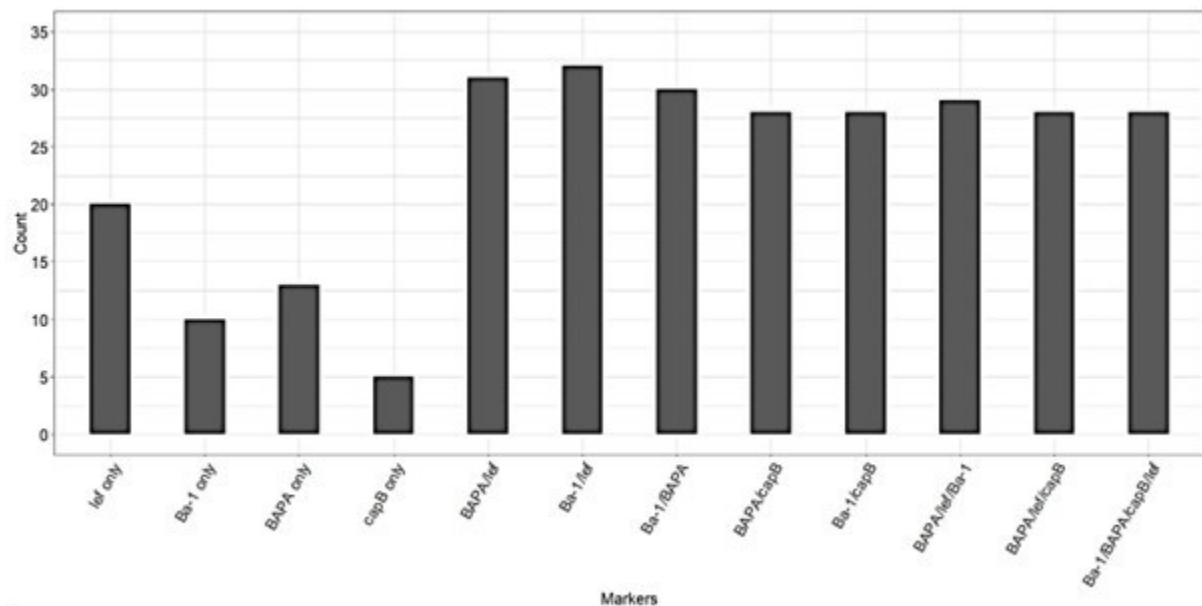
380 **Results**

381 **Isolation and identification of cultured samples**

382 Out of the 1708 blood smear scrapings that were cultured, only 113 samples had bacterial
383 growth from which a total of 506 pure colonies were isolated (some smears yielded multiple

384 different bacterial colony forming units). Only 4/506 colonies demonstrated morphological
385 features that were consistent with those of *B. anthracis* (AX2015-1270, AX2015-1277A,
386 AX2015-1152, and AX2015-1136). The colony morphology and structure of the four isolates
387 on 5% SBA demonstrated non-hemolytic features, forming typical white-gray colonies with
388 an oval, slightly granular appearance. The Gram-stained isolate smears from the 4/506 positive
389 samples showed square-ended bacilli that are classical to *B. anthracis* (Fig 2). Upon
390 examination of the polychrome methylene blue stained smears, the identified *B. anthracis*
391 isolates appeared square-ended and encapsulated (with the exception of AX2015-1136, Fig
392 2H). The remaining 502 isolates from this study failed on all or some of the criteria (colony
393 morphology, granularity or colour, hemolysis, capsule detection, penicillin and gammaphage
394 sensitivity). The smear samples that failed to produce any colonies (including 25 positive
395 internal controls) were established, suggesting the *B. anthracis* endospores were no longer
396 viable to germinate on culture media.

398


399 **Fig 2:** Microscopic examination of Gram and polychrome methylene blue-stained cultures
400 from bacterial isolates collected from wildlife blood smears in Kruger National Park, South
401 Africa, identified *Bacillus anthracis* based on morphology. Images show square-ended bacilli:
402 (A) Isolate AX2015-1270, (B) AX2015-1277A, (C) AX2015-1152, and (D) AX2015-1136.
403 Encapsulation is visible in (E) AX2015-1270, (F) AX2015-1277A, and (G) AX2015-1152,
404 except in (H) AX2015-1136, which lacked a capsule.

405 **Molecular analyses of bacterial isolates**

406 Of the 506 bacterial isolates, only 125 (24.7%) tested positive for one or more of the molecular
407 markers (Ba-1, *lef*, *pagA* with BAPA probe, *capB*) using SYBR Green. Further confirmation of
408 these 125 isolates using the probe-based approach showed that 80 isolates tested positive (Fig
409 3). The use of the "+" symbol in our context signifies the strategic combination of markers. The
410 combination of BAPA + *lef* + Ba-1 successfully identified the four *B. anthracis* isolates that
411 were confirmed through culture and microscopy. This combination yielded exclusively these
412 four positives representing 5% (n=4) of the total.

413 **Microbiological screening of the 14 bacterial isolates that were confirmed to be positive
414 on *pagA* (with BAPA probe)**

415 The most commonly used genetic marker for the diagnosis of *B. anthracis* is *pagA* with BAPA
416 probe, and the use of this marker is recommended by the W.H.O. [3]; however, in our samples
417 this marker was not specific to *B. anthracis*. Following a microbiologic screening of the 14
418 samples that tested positive for *pagA* by qPCR (S1 Fig), 7/14 showed penicillin sensitivity,
419 while only the samples that were identified as *B. anthracis* (i.e., by colony morphology, capsule
420 staining, haemolysis and molecular markers) showed gamma phage sensitivity (Table 2). Only
421 2 of the 14 samples were haemolytic, and the *B. anthracis* strains were all non-haemolytic
422 (Table 2). Three of the four *B. anthracis* strains tested positive for all four markers (*pagA* with
423 BAPA probe, Ba-1, *lef* and *capB*), while the one *B. anthracis* only demonstrated detection of
424 the Ba-1, *pagA* with BAPA probe and *lef* markers. This is consistent with the microscopic
425 analysis indicating the absence of a capsule. Most marker combinations of chromosome and
426 toxin genes, as well as combinations of different toxin gene targets, misclassified *B. anthracis*.
427 A combination of microscopy and molecular qPCR chromosome and toxin targets accurately
428 detected *B. anthracis*. In contrast, using a capsule target underestimated *B. anthracis* due to the
429 anomalous loss of the capsule encoding pXO2 (Fig 3).

430

431 **Fig 3:** Bar plots displaying the counts of bacterial isolates from blood smears testing positive
 432 for *Bacillus anthracis* using various molecular markers or combinations. Results are based on
 433 qPCR of 80 positive isolates, collected from wildlife mortalities in Kruger National Park, South
 434 Africa, between 2012 and 2020. Molecular markers include *Bacillus anthracis* protective
 435 antigen (*pagA* with BAPA probe), lethal factor (*lef*), chromosomal marker (*Ba-1*), and capsule
 436 region (*capB*).

437

438 Table 2: Results of penicillin and Gamma phage sensitivity, morphology and quantitative polymerase chain reaction (qPCR) for the Taqman
 439 probe-based chemistry using four different molecular markers (*Bacillus anthracis* protective antigen (BAPA refer to *pagA* region with BAPA
 440 probe/sequence), lethal factor (*lef*), and capsule (*capB*) genes and the chromosomal region (Ba-1)) for selected bacterial isolates collected from
 441 the scrapings of carcass blood smears from 2012-2015 from Kruger National Park, South Africa. These 14 isolates were those that tested positive
 442 for the *pagA* region with BAPA sequence. Genus identity was based on the *gyrase B* sequence data. The probe-based approach was only
 443 conducted on isolates that were positive with SYBR Green assay.

Markers		Ba-1		<i>lef</i>		BAPA		<i>capB</i>		Sensitivity and morphology		
Sample ID	Genus	SYBR Green	Probe	SYBR Green	Probe	SYBR Green	Probe	SYBR Green	Probe	Penicillin	Gammaphage	Haemolysis
AX2015-1122	<i>Peribacillus</i>	+	-	-	+	+	+	-	-	+	-	-
AX2016-1800	<i>Peribacillus</i>	+	+	-	+	+	+	-	-	+	-	-
AX2015-1277A*	<i>Bacillus</i>	+	+	+	+	+	+	+	+	+	+	-
AX2015-1136*	<i>Bacillus</i>	+	+	+	+	+	+	-	-	+	+	-
AX2015-1152*	<i>Bacillus</i>	+	+	+	+	+	+	+	+	+	+	-
AX2015-1270*	<i>Bacillus</i>	+	+	+	+	+	+	+	+	+	+	-
AX2016-1771A	<i>Bacillus</i>	-	-	+	+	+	+	-	-	-	-	+
AX2014-1037	<i>Bacillus</i>	-	-	+	+	+	+	-	-	-	-	+
AX2016-1708NH1	<i>Priestia</i>	+	+	-	-	+	+	-	-	+	-	-
AX2015-1511Nm	<i>Priestia</i>	+	+	-	+	+	+	-	-	-	-	-
AX2015-1511BE	<i>Priestia</i>	+	-	-	-	+	+	-	-	-	-	-
AX2016-1705	<i>Priestia</i>	-	-	-	-	+	+	-	-	-	-	-
AX2013-415	<i>Priestia</i>	+	-	+	-	+	+	-	-	-	-	-
AX2014-721	<i>Priestia</i>	-	-	+	+	+	+	-	-	-	-	-

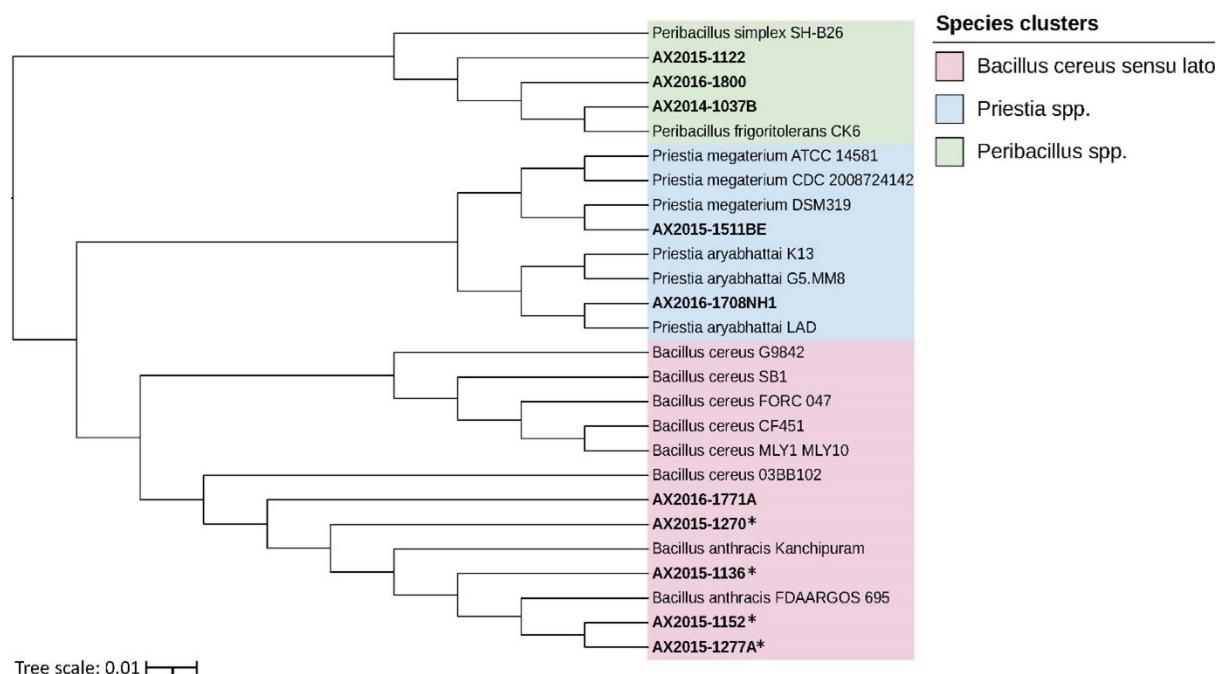
444 Asterisk (*) on sample IDs denotes *Bacillus anthracis*. The *Priestia* and *Peribacillus* species were previously identified as *Bacillus*: however,
 445 Bergey's manual [70] for the nomenclature of bacteria still refers to these as *Bacillus*.

446

447 **Performance of the pXO1, pXO2 gene and chromosomal markers**

448 The different molecular markers alone and in combination demonstrated varying specificity,
449 sensitivity, PPV, NPV, and accuracy (Table 3). The 80 isolates identified as positive for BAPA
450 by the qPCR/probe approach in this study include the 4 *B. anthracis* isolates identified from
451 the smears. The *lef* marker demonstrated the lowest specificity and accuracy (51.2% and
452 72.5%, respectively; Table 3). Specificity and accuracy for Ba-1, *pagA* with BAPA probe, and
453 *capB*, for qPCR were all above 60.0%, with Ba-1 having the lowest and *capB* having the
454 highest specificity and accuracy (Table 3). The combination of markers increased the
455 specificity and accuracy of these markers. Combinations of Ba-1+*lef*, BAPA+*lef*, and Ba-
456 1+BAPA showed specificities and accuracies of over 95% (Table 3). The specificity and
457 accuracy were 100% and 98.8%, respectively, for all combinations of Ba-1+*capB*,
458 BAPA+*capB*, Ba-1+BAPA+*capB*+*lef*, and BAPA+*lef*+*capB*, however, with a sensitivity of
459 96.55 % (Table 3). The combination of BAPA+*lef*+Ba-1 showed a specificity, sensitivity, and
460 accuracy of 100% which is the overall probability that a case is correctly classified.

461


462 Table 3: Performance of quantitative polymerase chain reaction (qPCR) probe-based diagnostic assays for detecting *Bacillus anthracis*, using
 463 individual markers as well as combinations of markers as assessed by their specificity, sensitivity, positive predictive value, negative predictive
 464 value and accuracy. All results are shown in percentages with confidence intervals (CI; 95%) in parentheses. The gold standard assessment of a
 465 true positive used in this analysis was culture identification, microscopy, and penicillin and Gamma phage sensitivity. Samples used here (n=80)
 466 include *Bacillus anthracis* (Ba) and other bacterial species isolated from cultured blood smears obtained from wildlife mortalities in Kruger
 467 National Park, South Africa. *Bacillus anthracis* protective antigen (*pagA* region with BAPA probe), lethal factor (*lef*), chromosomal marker (Ba-
 468 1) and the capsule region (*capB*) were used as molecular markers in this study.

Markers	Specificity (CI) %	Sensitivity (CI) %	Positive predictive value(CI) %	Negative predictive value (CI) %	Accuracy (CI) %
Ba-1 only	75.61(59.70-87.64)	72.50 (56.11-85.40)	74.36 (62.46-83.49)	73.81 (62.33-82.76)	74.07 (63.14-83.18)
<i>lef</i> only	51.22(35.13-67.12)	72.50 (56.11-85.40)	59.18(50.75-67.11)	65.62 (51.54-77.41)	75.00 (64.06-84.01)
BAPA only	67.50 (50.87-81.43)	72.50 (56.11-85.40)	69.05 (57.85-78.38)	71.05 (58.68-80.93)	70.00 (58.72-79.74)
<i>capB</i> only	90.00 (78.19-96.67)	96.67 (82.78-99.92)	85.29 (71.58-93.03)	97.83 (86.73-99.68)	92.50 (84.39-97.20)
Ba-1 + <i>lef</i>	94.12 (83.76-98.77)	100.00 (88.06-100.00)	90.62 (76.33-96.66)	100.00 (92.60-100.00)	96.25 (89.43-99.22)
BAPA + <i>lef</i>	96.08 (86.54-99.52)	100.00 (88.06-100.00)	93.55 (78.85-98.26)	100.00 (92.75-100.00)	97.50 (91.26-99.70)
Ba-1 + <i>capB</i>	100 (93.02-100)	96.55 (82.24-99.91)	100.00 (87.66-100.00)	98.08 (88.14-99.72)	98.75 (93.23-99.97)
BAPA + <i>capB</i>	100 (93.02-100)	96.55 (82.24-99.91)	100.00 (87.66-100.00)	98.08 (88.14-99.72)	98.75 (93.23-99.97)
Ba-1 + BAPA + <i>capB</i> + <i>lef</i>	100 (93.02-100)	96.55 (82.24-99.91)	100.00 (87.66-100.00)	98.08 (88.14-99.72)	98.75 (93.23-99.97)
BAPA + <i>lef</i> + <i>capB</i>	100 (93.02-100)	96.55 (82.24-99.91)	100.00 (87.66-100.00)	98.08 (88.14-99.72)	98.75 (93.23-99.97)
BAPA + <i>lef</i> + Ba-1	100.00 (93.02-100.00)	100.00 (88.06-100.00)	100.00 (88.06-100.00)	100.00 (93.02-100.00)	100.00 (95.49-100.00)
Ba-1 + BAPA	98.04 (89.55-99.95)	100.00 (88.06-100.00)	96.67 (80.64-99.51)	100.00 (92.89-100.00)	98.75 (93.23-99.97)

469

Bacillus spp. differentiation using *gyrB*

The BLASTn identification of the *gyrB* gene from the 14 selected bacterial isolates (i.e., those positive for *pagA* with BAPA probes/sequence) and subsequent phylogenetic analyses identified three genetic clusters, *B. cereus* *sensu lato* (comprising of *B. cereus* and *B. anthracis* found in this study), *Peribacillus* spp. and *Priestia* spp. (Fig 4). The latter two clusters were previously part of *Bacillus* and are recently proposed new genera [71] but are still documented as *Bacillus* spp. according to the Bergey's manual [70]. The AX2015 strains (1152, 1277A, 1270 and 1136) grouped in the *B. cereus* *sensu lato* cluster with reference isolates *B. anthracis* (FDAARGOS 695 and Kanchipuram) as the closest related strains. The isolated AX2016-1771A strain clustered with *B. anthracis*, and also within a cluster including atypical *B. cereus*, although it had phenotypic characteristics with *B. cereus* as it was classified as haemolytic. AX2014-1037B; AX2015-1122 and AX2016-1800 grouped in the *Peribacillus* cluster (Fig 4). AX2015-1511BE grouped with *Priestia megaterium* reference strains, and AX2016-1708NH1 grouped closely with the *Priestia aryabhattai* reference strains (Fig 4). The following isolates AX2013-415, AX2014-721, AX2015-1511 Nm and AX2016-1705 were excluded from the tree as they failed to pass the quality control.

Fig 4 : Phylogenetic tree of bacterial isolates from Kruger National Park, South Africa, based on the *gyrB* gene, constructed using the neighbor-joining method and p-distance model among

three closely related genera (formerly *Bacillus* spp.). Isolates labeled with AX are from this study and were compared to the closest reference isolates from the National Center for Biotechnology Information (NCBI) (via BLASTn searches) of *Bacillus cereus* sensu lato, *Prestia* spp., and *Peribacillus* spp. The scale bar represents 0.010 substitutions per nucleotide position. Isolates confirmed as *B. anthracis* through microscopy, culture, molecular diagnosis, and sensitivity to penicillin and gamma phage are marked with an asterisk (*).

The *pagA* (with BAPA probe) sequence alignment of the selected isolates

The 240 bp *pagA* (including BAPA probe) region of AX2014-721, AX2015 (1122; 1136; 1152;1277A) and AX2016 (1771A; 1705; 1800; 1708NH1) were aligned against the NCBI reference strain of *B. anthracis* DFRL BHE-12 *pagA* gene region and the BAPA probes (See Fig 5 with probe sequence) to confirm specific *pagA* binding. The results showed no difference in comparison to the reference *B. anthracis* strains and showed the *pagA* region was completely conserved across the isolates (Fig 5).

Fig 5: Multiple nucleotide sequence alignment of the *Bacillus anthracis* protective antigen (BAPA) region (targeting the *pagA* gene of *B. anthracis* with the BAPA probe) from isolates in this study (starting with AX) compared to the NCBI reference strain *B. anthracis* DFRL BHE-12. BAPA_S (Forward) and BAPA_R (Reverse) indicate the BAPA probe targeting sequences. Coloured blocks represent related species clusters, as shown in Fig 4. Sequences were aligned

using MAFFT V7.0 (Katoh and Standley, 2013). Two isolates (AX2014-721 and AX2016-1705) lack colour blocks since their species clusters were not included in the previous analysis (Fig 4).

Probe-based qPCR and microscopy results of scraped blood smears

DNA extracted from blood smears revealed that a substantial number of samples tested positive for at least one molecular marker (S1 Table). Among these, specific subsets tested positive exclusively for certain markers: *lef* and *pagA* with the BAPA probe sequence (S2 Table). Various combinations of markers, including a notable combination of Ba-1, BAPA, *capB*, and *lef*, accounted for a significant portion of the positive samples (S2 Table). Further details on other markers and their combinations are provided in S2 Table.

Microscopic evaluation of the 1708 blood smears detected 24.9% (425) of positive samples based on presence of bamboo-shaped, square-ended bacilli. However, when combining molecular and microscopy results, BAPA + *lef* + microscopy yielded 395 positives (23.1% of 1708 samples), Ba-1 + BAPA + microscopy had 398 positives (23.3% of 1708 samples), BAPA + *capB* + microscopy had 400 positives (44.9% of 890 samples), *lef* + *capB* + microscopy had 401 positives (23.4% of 1708 samples), Ba-1 + *capB* + microscopy had 397 positives (23.2% of 1708 samples), Ba-1 + BAPA + *lef* + microscopy had 393 positives (23.00% of 1708 samples), while Ba-1 + BAPA + *lef* + *capB* + microscopy yielded 391 positives (22.9% of 1708 samples).

There was a significant and moderate agreement between the binary outcomes of the molecular tests (combining Ba-1 + BAPA + *lef* + *capB*) and the results of the microscopic examination of the blood smears ($\kappa = 0.73$, 95% CI: 0.67-0.78, $p < 0.0001$). All samples were negative for the genomic island GI4 of *Bcbva*.

Discussion

This study explored whether bacteria closely related to *B. anthracis* complicate anthrax surveillance and diagnostics using molecular markers from wildlife mortalities in Kruger National Park (KNP), South Africa. The discovery of *Bcbva*, mobile genetic elements, and serological cross-reactions has highlighted the risk of misidentifying anthrax-causing bacteria. Molecular markers must therefore be carefully considered to avoid cross-reactions with closely related organisms in the same environment. Our analysis of the *gyrB* gene showed that blood smears can contain *Priestia* spp., *Peribacillus* spp. (both formerly *Bacillus* spp.), and *B. cereus* sensu stricto, which cross-react with common molecular markers like *pagA* (BAPA probe) or *lef* used in anthrax diagnostics [16, 72]. These bacteria may be pathogenic, commensal, or contaminants. Using a combination of markers, as we did, reduces misidentification. Our findings showed good agreement between diagnoses based on microscopy and molecular techniques, suggesting these methods could accurately diagnose anthrax, potentially reducing reliance on culture confirmation. This shift could lower biosafety risks associated with traditional culture methods (safe disposal of enumerated spores), though further studies are needed to confirm these results.

The identification of species closely related to *B. anthracis* on diagnostic blood smears can complicate anthrax diagnosis as these species may share similar genetic markers with *B. anthracis*, leading to false positive results from molecular diagnostics. In addition, other genera, such as *Peribacillus* and *Priestia* [73-75], can also complicate anthrax diagnosis. These species may not share as many genetic markers with *B. anthracis* as the *B. cereus* group, but still have some similarities that could lead to false positive results as seen in this study when performing qPCR diagnostics using only *lef*, Ba-1, or *pagA* with BAPA probe sequence markers (Fig 5). For instance, *Peribacillus* and *Priestia* genera have been reported to have similar 16S rRNA gene sequences and protein profiles as *Bacillus* [76], which can lead to misidentification. This suggests the presence of other bacterial species that share similar *pagA* with BAPA probe sequence to that of *B. anthracis* with significant implications for *pagA*-based ELISA. The results of our study show that other closely related organisms can react to *pagA* with BAPA probe sequence and produce false positive results as hypothesised in a serological study conducted in KNP [19]. It is therefore necessary to consider using other genetic markers or a combination of markers to confirm the presence of *B. anthracis*.

Specifically, Lekota *et al.*, [74] demonstrated that the genes for the capsular operons (*capABC*) are the ones that complicate anthrax diagnosis. Lekota *et al.*, [74] reported that *capC* is not specific to *B. anthracis*. Thus, combining capsule markers such as the *capB* in this study with other markers increased the specificity. However, in this study, *capB* had a lower sensitivity (96.67%) that should be interpreted with caution owing to the small number of samples that were confirmed as *B. anthracis*. Because the virulence factors of *B. anthracis* occur in closely related *Bacillus* species [47], the combination of chromosome, toxin and capsule genes may yield the best diagnostic result as seen in this study. The BAPA + *lef* + Ba-1 combination showed 100% specificity, sensitivity, and accuracy.

Archival smears are a useful resource for retrospective studies and retrieval of environmentally persistent pathogens like *B. anthracis* [56]. We were only able to culture *B. anthracis*, as defined by microscopy, culture, molecular diagnosis, and sensitivity to penicillin and gammophage, from four samples collected during the 2015 outbreak from impala (*Aepyceros melampus*). These samples did not include any of the 25 *B. anthracis* internal controls collected in 2012-2013. This indicates that the endospores were not viable after 10 years from these 25 smears, which were known to be *B. anthracis* cases from previous work. This agrees with the findings of Hassim [53] who reported that the longer a smear is stored, the harder it is to recover *B. anthracis*, and this may also affect the quality of the DNA extracted from such samples. The capsule found on the pXO2 plasmid was potentially missing for one of the 4 *B. anthracis* isolates obtained from the smears. This has previously been reported to occur in the long-term storage of isolates [77]. The mechanism of how the plasmids are lost is still not properly understood but it is hypothesised to be due to damage to the DNA or following nutrient deficiency over time [77]. This suggests the possibility that archival smears might benefit from storage in climate-controlled conditions to prolong their shelf life. Additionally, although *B. anthracis* can survive for extended periods, it doesn't guarantee it always will, indicating that storage conditions warrant further evaluation.

The chromosomal marker Ba-1 has been reported to be very specific to *B. anthracis* (Zincke *et al.*, [41]). However, in this study, of the isolates that tested positive for Ba-1, only 4/42 were confirmed to be *B. anthracis* based on morphological, microscopic and sensitivity tests (gamma-phage and penicillin). The difference between our study and Zincke *et al.*, [41] is likely due to the degradation of the samples in our study, which have been archived over time. It may also be due to the different samples pools, where Zincke *et al.*, [41] evaluated the Ba-1

marker using samples of *Bcbva*, *B. cereus*, and *B. thuringiensis*, whereas the majority of the bacteria isolated in this study were *Priestia* spp, and *Peribacillus* spp. It is known that *Priestia* spp. and *Peribacillus* spp. are quite ubiquitous as they can be found in soil, faeces and the plant rhizospheres [71], complicating anthrax diagnosis. All samples in this study were negative for GI4, and there have been no reports of *Bcbva* outside of West Africa, suggesting it may not be present in Kruger National Park, South Africa. Consequently, GI4 may not be a viable marker for pathogenic strains in southern Africa, although screening for *Bcbva* remains important since it could be overlooked in current diagnostic regimens. The ecological range of *Bcbva*, particularly in transitional areas between humid forests and dry savannas typical of *B. anthracis* habitats, is not fully understood. Investigating non-traditional regions using new diagnostic tools like *Bcbva*-specific proteins is crucial for understanding *Bcbva*'s distribution, assessing risks, and guiding future surveillance and research efforts. Developing geographic region-specific diagnostics could improve the identification of anthrax-like cases if such rare cases exist.

Accurate detection of *B. anthracis* can be enhanced by using a stepwise approach with multiple genetic markers, particularly when culture is not feasible. Studies by Blackburn *et al.*, [44] and Zincke *et al.*, [41] successfully employed Ba-1 in combination with MLVA-based or WGS-based methods to confirm species and prevent overestimation. In our study, relying on Ba-1 or *lef* markers alone produced non-specific results, but combining both markers reduced false positives, increasing specificity to 96.1%. More precise outcomes were achieved with combinations like BAPA + *capB*, Ba-1 + *capB*, and BAPA + *lef* + Ba-1, which showed high specificity and accuracy. However, these combinations risk misdiagnosing capsule-deficient *B. anthracis* isolates, as observed with AX2015-1136. The combination of BAPA + *lef* + Ba-1 proved to be the most reliable, achieving 100% specificity, sensitivity, and accuracy, making it a robust diagnostic strategy in the absence of culture and microscopy. Including *capB* is important for detecting capsule-producing *B. anthracis*, while MLVA and genotyping aid in identifying *pXO2*-positive samples and incorporating them into phylogenetic analyses, even when *capB* is absent [78, 79].

The absence of other genetic markers and negative microscopic results suggest that *lef* is non-specific to *B. anthracis* and can be found in other species. In this study, *lef* appeared less specific than *pagA* with the BAPA probe or other markers used for anthrax diagnosis. This aligns with Zincke *et al.*, [41], who demonstrated that *lef* could amplify *B. thuringiensis*

serovar Kurstaki HD1 and *B. cereus* G9241, both of which carry a *pXO1*-like plasmid with anthrax toxin genes. Similarly, *lef* has been detected in non-*B. anthracis* pathogenic *B. cereus* in humans [80]. Incorporating multiple markers or techniques improves diagnostic accuracy, with marker combinations from both plasmids or plasmids and the chromosome reducing false positives. Adding microscopy further increased accuracy, minimizing variation in positive samples. The combination of genetic markers and microscopy can effectively diagnose *B. anthracis*, reducing reliance on culture. *Lef* was less specific than *pagA* and *capB*, with penicillin sensitivity noted in two non-*B. anthracis* isolates, while gamma phage sensitivity was exclusive to *B. anthracis*. Only *B. anthracis* isolates, except for AX2015-1136 (missing the capsule), tested positive for Ba-1, BAPA, *capB*, and *lef*. Effective diagnosis requires positive results for BAPA + *lef* + Ba-1 or combinations including *capB* (e.g., BAPA + *capB*, Ba-1 + *capB*, or BAPA + *lef* + *capB*).

The absence of other genetic markers and microscopic results suggest that *lef* is also non-specific to *B. anthracis*, present in other species. In this study, *lef* appeared less specific than *pagA* with BAPA probe sequence or other gene markers used in anthrax diagnosis. This aligns with Zincke *et al.*, [41] who demonstrated that *lef* could amplify *B. thuringiensis* serovar Kurstaki HD1 and *B. cereus* G9241, both of which carry a *pXO1*-like plasmid with anthrax toxin genes. Similarly, *lef* has been detected in non-*B. anthracis* pathogenic *B. cereus* in humans [80]. Incorporating multiple markers or techniques improves diagnostic accuracy, with marker combinations from both plasmids or plasmids and the chromosome reducing false positives. Adding microscopy further increased accuracy, minimizing variation in positive samples. The combination of genetic markers and microscopy can effectively diagnose *B. anthracis*, reducing reliance on culture. *Lef* was less specific than *pagA* and *capB*, with penicillin sensitivity noted in two non-*B. anthracis* isolates, while gamma phage sensitivity was exclusive to *B. anthracis*. Only *B. anthracis* isolates, except for AX2015-1136 (missing the capsule), tested positive for Ba-1, BAPA, *capB*, and *lef*. Effective diagnosis requires positive results for BAPA + *lef* + Ba-1 or combinations including *capB* (e.g., BAPA + *capB*, Ba-1 + *capB*, or BAPA + *lef* + *capB*).

The strong significant agreement between microscopic and molecular diagnosis in this study highlights the value of microscopy for onsite *B. anthracis* detection. Combining microscopy with qPCR from blood smear scrapings offers a significant advancement, potentially reducing reliance on traditional culture methods. This is particularly important amid rising bioterrorism

threats, providing a rapid, specific, and safer alternative for identifying *B. anthracis* [81]. While microscopy can quickly identify *Bacillus* rods, it cannot offer a definitive diagnosis due to the presence of similar species, and its accuracy depends on the diagnostician's expertise. Additionally, spore formation complicates both culture-based and molecular methods, requiring extra steps like heat or chemical treatment for germination [3, 82]. qPCR, however, can directly target *B. anthracis* DNA, providing highly sensitive and specific identification. Using qPCR with blood smear scrapings bypasses the time-consuming culture process, enhancing diagnostic speed and safety [81], which is crucial for early response to anthrax outbreaks [83].

This study highlights the importance of not entirely replacing microscopy with molecular tests for diagnosing anthrax. While molecular techniques such as PCR often demonstrate higher sensitivity, as shown in a study where PCR outperformed microscopy in diagnosing cutaneous anthrax [84], microscopy remains a valuable tool. It provides critical insights into the clinical presentation and progression of the disease, especially in resource-limited or field settings. Previous studies have also emphasized the practicality of microscopy in such conditions [57], reinforcing its continued relevance alongside molecular diagnostics.

Combining different methods is especially important given recent reports of Bcbva possessing several characteristics of *B. anthracis* [12, 15]. For example, organisms are non-hemolytic and both form rods in chains that can be difficult to differentiate. With advancements in next-generation sequencing and decreasing costs, leveraging computational methods with robust bioinformatics can significantly improve anthrax diagnosis and differentiation from Bcbva and other anthrax-like pathogens. This study's findings have substantial implications for public health and One Health initiatives [85], contributing to more accurate, efficient, and accessible diagnostic approaches for anthrax detection, ultimately aiding in the prevention and control of the disease in livestock, wildlife, and human populations.

Limitations of the Study

Despite identifying *B. anthracis* in smears from the 2012-2015 outbreaks, culture success from these achieved slides was limited to the 2015 outbreak, likely due to challenges in the viability of *B. anthracis* endospores in blood smears over time. The storage of the blood smears over an extended period may have impacted their quality and introduced possible bacterial contamination. Additionally, the determination of sensitivity, specificity, and accuracy was based on only four positive samples and 25 internal controls. Therefore, assessing the performance of the assays

on a larger number of samples, including more culture/gold standard-confirmed positive cases, would be beneficial.

Conclusion

Results of this study demonstrate that diagnostic markers and techniques that are specific to *B. anthracis* could reduce the complications in detection that are currently experienced, especially with an increase in the exploration of the potential sharing of genetic material amongst the *B. cereus* *sensu lato* members. Microscopy remains a very valuable tool in confirming the presence of *B. anthracis* in the field and resource-limited settings, as well as a confirmatory tool. Accurate diagnosis with microscopy and combination of markers can reduce or eliminate the need for culture and bacterial proliferation. The presence of non-*B. anthracis* organisms harbouring similar genes may complicate anthrax diagnosis in the field. Lastly, the study identifies that the combination of BAPA+*lef*⁺Ba-1 yields the most specific, sensitive, and accurate results. However, employing combinations such as BAPA+*lef*⁺*capB* along with microscopic analysis can enhance diagnostic confirmation, reduce false positives, and potentially minimize the need for culture, as revealed in this research. Nonetheless, it is important to note that the presence or absence of pXO2 is a crucial step in characterizing *B. anthracis*, especially for identifying true capsule-forming strains. Additionally, cultivation remains essential for collecting strains and extracting high-quality pure DNA for genetic analyses, such as whole genome sequencing, which is a reliable tool for differentiating different strains within the *Bacillus cereus* group.

Acknowledgments

We wish to express our appreciation to the staff of the Skukuza State Veterinary Services for their critical and invaluable support during the experimental component of the research. We also extend our appreciation to the SANParks and all the rangers without whom the passive surveillance system would not work. We also would like to thank Dr Silke Klee of the Robert Koch Institute for the *Bacillus cereus* biovar *anthracis* DNA used as a control in this study. We also like to appreciate Dean J. Herbig for his assistance in the laboratory during this study. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

References

1. Ben-Noun L. [Characteristics of anthrax: its description and biblical name--Shehin]. *Harefuah*. 2002;141 Spec No:4-6, 124.
2. Kamal S, Rashid A, Bakar M, Ahad M. Anthrax: An update. *Asian Pacific journal of tropical biomedicine*. 2011;1:496-501.
3. W.H.O. Anthrax in humans and animals. In: Organization WH, editor. *World Health Organization*. 4. 4 ed. World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland: WHO Press; 2008. p. 1-33.
4. Vilas-Bôas GT, Peruca AP, Arantes OM. Biology and taxonomy of *Bacillus cereus*, *Bacillus anthracis*, and *Bacillus thuringiensis*. *Canadian journal of microbiology*. 2007;53(6):673-87.
5. Makino S, Uchida I, Terakado N, Sasakawa C, Yoshikawa M. Molecular characterization and protein analysis of the cap region, which is essential for encapsulation in *Bacillus anthracis*. *Journal of Bacteriology*. 1989;171(2):722.
6. Okinaka RT. Sequence and organization of pXO1, the large *Bacillus anthracis* plasmid harboring the anthrax toxin genes. *J Bacteriol*. 1999;181:6509.
7. Moayeri M, Leppla SH. The roles of anthrax toxin in pathogenesis. *Current Opinion in Microbiology*. 2004;7(1):19-24.
8. Moayeri M, Leppla SH. Cellular and systemic effects of anthrax lethal toxin and edema toxin. *Molecular aspects of medicine*. 2009;30(6):439-55.
9. Leppla SH. Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells. *Proceedings of the National Academy of Sciences of the United States of America*. 1982;79(10):3162-6.
10. Smith H, Keppie J, Stanley JL. The chemical basis of the virulence of *Bacillus anthracis*. V. The specific toxin produced by *B. Anthracis* in vivo. *Br J Exp Pathol*. 1955;36(5):460-72.
11. Barth H, Aktories K, Popoff MR, Stiles BG. Binary bacterial toxins: biochemistry, biology, and applications of common *Clostridium* and *Bacillus* proteins. *Microbiology and molecular biology reviews* : MMBR. 2004;68(3):373-402, table of contents.
12. Antonation KS, Grützmacher K, Dupke S, Mabon P, Zimmermann F, Lankester F, et al. *Bacillus cereus* Biovar Anthracis Causing Anthrax in Sub-Saharan Africa-Chromosomal Monophyly and Broad Geographic Distribution. *PLoS neglected tropical diseases*. 2016;10(9):e0004923-e.
13. Norris MH, Kirpich A, Bluhm AP, Zincke D, Hadfield T, Ponciano JM, et al. Convergent evolution of diverse *Bacillus anthracis* outbreak strains toward altered surface oligosaccharides that modulate anthrax pathogenesis. *PLOS Biology*. 2021;18(12):e3001052.
14. Tamborrini M, Bauer M, Bolz M, Maho A, Oberli MA, Werz DB, et al. Identification of an African *Bacillus anthracis* lineage that lacks expression of the spore surface-associated anthrose-containing oligosaccharide. *J Bacteriol*. 2011;193(14):3506-11.
15. Klee S, Ozel M, Appel B, Boesch C, Ellerbrok H, Jacob D, et al. Characterization of *Bacillus anthracis*-Like Bacteria Isolated from Wild Great Apes from Côte d'Ivoire and Cameroon. *Journal of bacteriology*. 2006;188:5333-44.
16. Marston CK, Ibrahim H, Lee P, Churchwell G, Gumke M, Stanek D, et al. Anthrax Toxin-Expressing *Bacillus cereus* Isolated from an Anthrax-Like Eschar. *PLoS One*. 2016;11(6):e0156987.
17. Zimmermann F, Köhler SM, Nowak K, Dupke S, Barduhn A, Düx A, et al. Low antibody prevalence against *Bacillus cereus* biovar anthracis in Taï National Park, Côte d'Ivoire, indicates high rate of lethal infections in wildlife. *PLOS Neglected Tropical Diseases*. 2017;11(9):e0005960.
18. Steenkamp PJ, van Heerden H, van Schalkwyk OL. Ecological suitability modeling for anthrax in the Kruger National Park, South Africa. *PloS one*. 2018;13(1):e0191704.
19. Ochai SO, Crafford JE, Hassim A, Byaruhanga C, Huang Y-H, Hartmann A, et al. Immunological evidence of variation in exposure and immune response to *Bacillus anthracis* in herbivores of Kruger and Etosha National Parks. *Frontiers in Immunology*. 2022;13.

20. Hoffmann C, Zimmermann F, Biek R, Kuehl H, Nowak K, Mundry R, et al. Persistent anthrax as a major driver of wildlife mortality in a tropical rainforest. *Nature*. 2017;548(7665):82-6.
21. Leendertz FH, Yumlu S, Pauli G, Boesch C, Couacy-Hymann E, Vigilant L, et al. A new *Bacillus anthracis* found in wild chimpanzees and a gorilla from West and Central Africa. *PLoS Pathog*. 2006;2(1):e8.
22. Leendertz F, Ellerbrok H, Boesch C, Couacy-Hymann E, Mätz-Rensing K, Hakenbeck R, et al. Anthrax kills wild chimpanzees in a tropical rainforest. *Nature*. 2004;430:451-2.
23. Pilo P, Rossano A, Bamamga H, Abdoukkadiri S, Perreten V, Frey J. Bovine *Bacillus anthracis* in Cameroon. *Applied and environmental microbiology*. 2011;77(16):5818-21.
24. Somerville HJ, Jones ML. DNA competition studies within the *Bacillus cereus* group of bacilli. *J Gen Microbiol*. 1972;73(2):257-65.
25. Norris MH, Zincke D, Daegling DJ, Krigbaum J, McGraw WS, Kirpich A, et al. Genomic and Phylogenetic Analysis of *Bacillus cereus* Biovar *anthracis* Isolated from Archival Bone Samples Reveals Earlier Natural History of the Pathogen. *Pathogens*. 2023;12(8).
26. Trevethan R. Sensitivity, Specificity, and Predictive Values: Foundations, Pliabilities, and Pitfalls in Research and Practice. *Frontiers in Public Health*. 2017;5.
27. Radnedge L, Agron PG, Hill KK, Jackson PJ, Ticknor LO, Keim P, et al. Genome differences that distinguish *Bacillus anthracis* from *Bacillus cereus* and *Bacillus thuringiensis*. *Applied and environmental microbiology*. 2003;69(5):2755-64.
28. Rasko DA, Altherr MR, Han CS, Ravel J. Genomics of the *Bacillus cereus* group of organisms. *FEMS Microbiology Reviews*. 2005;29(2):303-29.
29. Liu Y, Lai Q, Göker M, Meier-Kolthoff JP, Wang M, Sun Y, et al. Genomic insights into the taxonomic status of the *Bacillus cereus* group. *Scientific Reports*. 2015;5(1):14082.
30. Ash C, Farrow JAE, Wallbanks S, Collins MD. Phylogenetic heterogeneity of the genus *Bacillus* revealed by comparative analysis of small-subunit-ribosomal RNA sequences. *Letters in Applied Microbiology*. 1991;13(4):202-6.
31. Liu Y, Pei T, Yi S, Du J, Zhang X, Deng X, et al. Phylogenomic Analysis Substantiates the *gyrB* Gene as a Powerful Molecular Marker to Efficiently Differentiate the Most Closely Related Genera *Myxococcus*, *Corallococcus*, and *Pyxidicoccus*. *Front Microbiol*. 2021;12:763359.
32. Drobniowski FA. *Bacillus cereus* and related species. *Clinical microbiology reviews*. 1993;6(4):324-38.
33. Pilo P, Frey J. *Bacillus anthracis*: Molecular taxonomy, population genetics, phylogeny and patho-evolution. *Infection, Genetics and Evolution*. 2011;11(6):1218-24.
34. Helgason E, Økstad OA, Caugant DA, Johansen HA, Fouet A, Mock M, et al. *Bacillus anthracis*, *Bacillus cereus*, and *Bacillus thuringiensis*; One Species on the Basis of Genetic Evidence. *Applied and Environmental Microbiology*. 2000;66(6):2627-30.
35. Ehling-Schulz M, Lereclus D, Koehler TM. The *Bacillus cereus* Group: *Bacillus* Species with Pathogenic Potential. *Microbiology Spectrum*. 2019;7(3):10.1128/microbiolspec.gpp3-0032-2018.
36. Yamamoto S, Harayama S. PCR amplification and direct sequencing of *gyrB* genes with universal primers and their application to the detection and taxonomic analysis of *Pseudomonas putida* strains. *Appl Environ Microbiol*. 1995;61(3):1104-9.
37. La Duc MT, Satomi M, Agata N, Venkateswaran K. *gyrB* as a phylogenetic discriminator for members of the *Bacillus anthracis*–*cereus*–*thuringiensis* group. *Journal of Microbiological Methods*. 2004;56(3):383-94.
38. Fox GE, Wisotzkey JD, Jurtsuk P, Jr. How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. *Int J Syst Bacteriol*. 1992;42(1):166-70.
39. Turnbull PC, Lindeque PM, Le Roux J, Bennett AM, Parks SR. Airborne movement of anthrax spores from carcass sites in the Etosha National Park, Namibia. *Journal of applied microbiology*. 1998;84(4):667-76.
40. Turnbull PC. Definitive identification of *Bacillus anthracis*—a review. *J Appl Microbiol*. 1999;87(2):237-40.

41. Zincke D, Norris MH, Cruz O, Kurmanov B, McGraw WS, Daegling DJ, et al. TaqMan Assays for Simultaneous Detection of *Bacillus anthracis* and *Bacillus cereus* biovar *anthracis*. *Pathogens*. 2020;9(12).

42. Lekota KE, Hassim A, Mafofo J, Rees J, Muchadeyi FC, Van Heerden H, et al. Polyphasic characterization of *Bacillus* species from anthrax outbreaks in animals from South Africa and Lesotho. *J Infect Dev Ctries*. 2016;10(8):814-23.

43. Blackburn JK, Curtis A, Hadfield TL, O'Shea B, Mitchell MA, Hugh-Jones ME. Confirmation of *Bacillus anthracis* from flesh-eating flies collected during a West Texas anthrax season. *Journal of wildlife diseases*. 2010;46(3):918-22.

44. Blackburn JK, Van Ert M, Mullins JC, Hadfield TL, Hugh-Jones ME. The necrophagous fly anthrax transmission pathway: empirical and genetic evidence from wildlife epizootics. *Vector borne and zoonotic diseases* (Larchmont, NY). 2014;14(8):576-83.

45. Léonard C, Chen Y, Mahillon J. Diversity and differential distribution of IS231, IS232 and IS240 among *Bacillus cereus*, *Bacillus thuringiensis* and *Bacillus mycoides*. *Microbiology*. 1997;143(8):2537-47.

46. Lechner S, Mayr R, K.C. Hegewisch. *Bacillus weihenstephanensis* sp. nov. is a new psychrotolerant species of the *Bacillus cereus* group. *International Journal of Systematic and Evolutionary Microbiology*. 1998;48(4):1373-82.

47. Baldwin VM. You Can't *B. cereus* - A Review of *Bacillus cereus* Strains That Cause Anthrax-Like Disease. *Frontier Microbiology*. 2020;11:1731.

48. Riedel S. Anthrax: a continuing concern in the era of bioterrorism. *Proc (Bayl Univ Med Cent)*. 2005;18(3):234-43.

49. Logan NA, Turnbull PCB. Manual of Clinical Microbiology. In: Murray PR, editor. 1. Washington, DC: American Society for Microbiology; 1999. p. 357-69.

50. Dietrich R, Jessberger N, Ehling-Schulz M, Märtilbauer E, Granum PE. The Food Poisoning Toxins of *Bacillus cereus*. *Toxins (Basel)*. 2021;13(2).

51. Klee SR, Brzuszkiewicz EB, Nattermann H, Brüggemann H, Dupke S, Wollherr A, et al. The Genome of a *Bacillus* Isolate Causing Anthrax in Chimpanzees Combines Chromosomal Properties of *B. cereus* with *B. anthracis* Virulence Plasmids. *PLOS ONE*. 2010;5(7):e10986.

52. Hassim A. Distribution and molecular characterization of South African *Bacillus anthracis* strains and their associated bacteriophages. Pretoria: University of Pretoria; 2017.

53. Hassim A. Distribution and molecular characterization of South African *Bacillus anthracis* strains and their associated bacteriophages [PhD]. Pretoria: University of Pretoria; 2017.

54. De Vos V. The ecology of anthrax in the Kruger National Park, South Africa. *Salisbury Medical Bulletin*. 1990;68S::19-23.

55. Huntley BJ. Ecology of Tropical Savannas. In: Huntley BJ, Walker BH, editors. *Ecology of Tropical Savannas*: Springer-Verlag; 1982. p. 101-19.

56. Vince A, Poljak M, Seme K. DNA extraction from archival Giemsa-stained bone-marrow slides: comparison of six rapid methods. *British Journal of Haematology*. 1998;101(2):349-51.

57. Aminu OR, Lembo T, Zadoks RN, Biek R, Lewis S, Kiwelu I, et al. Practical and effective diagnosis of animal anthrax in endemic low-resource settings. *PLOS Neglected Tropical Diseases*. 2020;14(9):e0008655.

58. Parry JM, Turnbull PCB, Gibson JR. A colour atlas of *Bacillus* species: Wolfe Medical Publications Ltd; 1983.

59. Ågren J, Hamidjaja RA, Hansen T, Ruuls R, Thierry S, Vigre H, et al. In silico and in vitro evaluation of PCR-based assays for the detection of *Bacillus anthracis* chromosomal signature sequences. *Virulence*. 2013;4(8):671-85.

60. Hall TA, editor *A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT*. Nucleic Acids Symposium Series; 1999.

61. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. *Mol Biol Evol*. 2021;38(7):3022-7.

62. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. *Nucleic Acids Res.* 2021;49(W1):W293-w6.

63. NCBI. Home - Gene - NCBI. 2023.

64. Griner PF, Mayewski RJ, Mushlin AI, Greenland P. Selection and interpretation of diagnostic tests and procedures. Principles and applications. *Ann Intern Med.* 1981;94(4 Pt 2):557-92.

65. Clopper CJ, Pearson ES. The Use of Confidence or Fiducial Limits Illustrated in the Case of the Binomial. *Biometrika.* 1934;26(4):404-13.

66. Altman DG, Machin D, Bryant TN, Gardner MJ. confidence intervals and statistical guidelines. *Statistics with confidence.* soton:393017: BMJ Books; 2000.

67. Cohen J, Cohen, P., West, S., Aiken, L. . *Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences.* New York: Routledge. 3rd Edition ed. New York: Routledge2003. 736 pages p.

68. Landis JR, Koch GG. The measurement of observer agreement for categorical data. *Biometrics.* 1977;33(1):159-74.

69. R Core Team. R:A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria2021 [Available from: <http://www.R-project.org/>]

70. Bergey DH. *Bergey's manual of determinative bacteriology : a key for the identification of organisms of the class schizomycetes:* Baltimore : The Williams & Wilkins Company, 1923.; 1923.

71. Gupta RS, Patel S, Saini N, Chen S. Robust demarcation of 17 distinct *Bacillus* species clades, proposed as novel *Bacillaceae* genera, by phylogenomics and comparative genomic analyses: description of *Robertmurraya kyonggiensis* sp. nov. and proposal for an emended genus *Bacillus* limiting it only to the members of the *Subtilis* and *Cereus* clades of species. *International Journal of Systematic and Evolutionary Microbiology.* 2020;70(11):5753-98.

72. Brézillon C, Haustant M, Dupke S, Jean-Philippe C, Lander A, Franz T, et al. Capsules, Toxins and AtxA as Virulence Factors of Emerging *Bacillus cereus* Biovar *anthracis*. *PLoS neglected tropical diseases.* 2015;9:e0003455.

73. Loong SK, Teoh BT, Johari J, Khor CS, Abd-Jamil J, Nor'e SS, et al. Penicillin-Susceptible, Oxidase-Negative, Nonhemolytic, Nonmotile *Bacillus megaterium* in Disguise of *Bacillus anthracis*. *Case Reports in Infectious Diseases.* 2017;2017:2578082.

74. Lekota KE, Bezuidt OKI, Mafoko J, Rees J, Muchadeyi FC, Madoroba E, et al. Whole genome sequencing and identification of *Bacillus endophyticus* and *B. anthracis* isolated from anthrax outbreaks in South Africa. *BMC Microbiology.* 2018;18(1):67.

75. Lekota KE. Genomic study of *Bacillus anthracis* and *Bacillus* species isolated from anthrax outbreaks in South Africa. South Africa: University of Pretoria; 2018.

76. Bhattacharjee K, Barua S, Chrungoo NK, Joshi SR. Characterization of Biomineralizing and Plant Growth-Promoting Attributes of Lithobiontic Bacteria. *Curr Microbiol.* 2023;80(2):80.

77. Marston CK, Hoffmaster AR, Wilson KE, Bragg SL, Plikaytis B, Brachman P, et al. Effects of long-term storage on plasmid stability in *Bacillus anthracis*. *Appl Environ Microbiol.* 2005;71(12):7778-80.

78. Mullins JC, Garofolo G, Van Ert M, Fasanella A, Lukhnova L, Hugh-Jones ME, et al. Ecological niche modeling of *Bacillus anthracis* on three continents: evidence for genetic-ecological divergence? *PLoS One.* 2013;8(8):e72451.

79. Easterday WR, Van Ert MN, Simonson TS, Wagner DM, Kenefic LJ, Allender CJ, et al. Use of single nucleotide polymorphisms in the *plcR* gene for specific identification of *Bacillus anthracis*. *J Clin Microbiol.* 2005;43(4):1995-7.

80. Hoffmaster AR, Ravel J, Rasko DA, Chapman GD, Chute MD, Marston CK, et al. Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax. *Proceedings of the National Academy of Sciences of the United States of America.* 2004;101(22):8449-54.

81. Binkley CE, Cinti S, Simeone DM, Colletti LM. *Bacillus anthracis* as an agent of bioterrorism: a review emphasizing surgical treatment. *Ann Surg.* 2002;236(1):9-16.
82. Luna VA, Cannons AC, Amuso PT, Cattani J. The inactivation and removal of airborne *Bacillus atrophaeus* endospores from air circulation systems using UVC and HEPA filters. *J Appl Microbiol.* 2008;104(2):489-98.
83. Sabra DM, Krin A, Romeral AB, Frieß JL, Jeremias G. Anthrax revisited: how assessing the unpredictable can improve biosecurity. *Frontiers in Bioengineering and Biotechnology.* 2023;11.
84. Berg T, Suddes H, Morrice G, Hornitzky M. Comparison of PCR, culture and microscopy of blood smears for the diagnosis of anthrax in sheep and cattle. *Letters in Applied Microbiology.* 2006;43(2):181-6.
85. Bhattacharya D, Kshatri JS, Choudhary HR, Parai D, Shandilya J, Mansingh A, et al. One Health approach for elimination of human anthrax in a tribal district of Odisha: Study protocol. *PLoS One.* 2021;16(5):e0251041.

Supplementary Information

Comparing microbiological and molecular diagnostic tools for the surveillance of anthrax.

Sunday O. Ochai^{1,2*}, Ayesha Hassim¹, Edgar H. Dekker³, Thuto Magome⁴, Kgaugelo E. Lekota⁴, S. Marcus Makgabo^{1,5}, Lin-Mari de Klerk-Loris², O. Louis van Schalkwyk^{1,3,6}
Pauline L. Kamath⁷, Wendy C. Turner⁸, Henriette van Heerden¹

¹ Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa.

²Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, South Africa

³ Office of the State Veterinarian, Department of Agriculture, Forestry and Fisheries, Government of South Africa, Skukuza, South Africa

⁴ Unit for Environmental Sciences and Management, Microbiology, North West University, Potchefstroom, South Africa

⁵ Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa (UNISA), Florida Campus, Roodepoort 1709, South Africa.

⁶ Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany

⁷ School of Food and Agriculture, University of Maine, Orono, Maine, U.S.A.

⁸ U.S. Geological Survey, Wisconsin Cooperative Wildlife Research Unit, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, Wisconsin, U.S.A

* Correspondence: Sunday O. Ochai; s.o.ochaijr@gmail.com

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Table S1: Wildlife species in Kruger National Park, South Africa that tested positive for *Bacillus anthracis* protective antigen (BAPA), lethal factor (*lef*), chromosomal marker (Ba-1) and the capsule region (*capB*) or a combination of these genetic markers and count of animals positive.

Common name of species	Scientific name of species	Number examined	Percent and number (n) of smears positive for <i>B. anthracis</i> by one or more markers
African buffalo	<i>Syncerus caffer</i>	288	38.2%(110)
African Elephant	<i>Loxodonta africana</i>	142	36.0%(51)
African wild dog	<i>Lycaon pictus</i>	1	0%(0)
Banana bat	<i>Musonycteris harrisoni</i>	1	0%(0)
Black-backed jackal	<i>Lupulella mesomelas</i>	2	0%(0)
Blue wildebeest	<i>Connochaetes taurinus</i>	20	20.0%(4)
Bushbuck	<i>Tragelaphus scriptus</i>	6	50.0%(3)
Brown hyena	<i>Hyaena brunnea</i>	1	0%(0)
Chacma Baboon	<i>Papio ursinus</i>	11	81.9%(9)
Cheetah	<i>Acinonyx jubatus</i>	2	0%(0)
Common duiker	<i>Sylvicapra grimmia</i>	1	0%(0)
Common eland	<i>Taurotragus oryx</i>	4	25.0%(1)
Giraffe	<i>Giraffa camelopardalis</i>	32	25.0%(8)
Hippopotamus	<i>Hippopotamus amphibius</i>	49	34.7%(17)
Impala	<i>Aepyceros melampus</i>	525	70.3%(369)
Greater kudu	<i>Tragelaphus strepsiceros</i>	120	76.7%(92)
Large-spotted genet	<i>Genetta tigrina</i>	1	100%(1)
Leopard	<i>Panthera pardus</i>	2	0%(0)
Lion	<i>Panthera leo</i>	2	0%(0)
Nile crocodile	<i>Crocodylus niloticus</i>	1	100%(1)
Nyala	<i>Tragelaphus angasii</i>	47	44.7%(21)
Ostrich	<i>Struthio camelus</i>	3	0%(0)
Roan antelope	<i>Hippotragus equinus</i>	29	72.5%(21)
Spotted hyena	<i>Crocuta crocuta</i>	16	0%(0)
Steenbok	<i>Raphicerus campestris</i>	11	27.3%(3)
Common tsessebe	<i>Damaliscus lunatus</i>	4	25.0%(1)
Vervet monkey	<i>Chlorocebus pygerythrus</i>	4	50.0%(2)
Warthog	<i>Phacochoerus africanus</i>	10	40.0%(4)
Waterbuck	<i>Kobus ellipsiprymnus</i>	22	41.0%(9)
White rhinoceros	<i>Ceratotherium simum</i>	114	18.5%(21)
Not labelled		150	64.0%(96)
	Total	1708	890

Table S2: Positive results of scraped blood smears using *Bacillus anthracis* protective antigen (BAPA), lethal factor (*lef*), chromosomal marker (Ba-1) and the capsule region (*capB*) molecular markers and marker combinations in probe-based qPCR, with "only" indicating exclusive positivity for the respective marker or combination.

Molecular Markers	Count (%)
Ba-1 only	13 (1.5)
<i>lef</i> only	165 (18.5)
BAPA only	112(12.6)
<i>capB</i> only	5 (0.6)
Ba-1+ <i>lef</i> only	13(1.5)
Ba-1+ <i>capB</i> only	3(0.3)
Ba-1 + BAPA only	45(5.1)
BAPA + <i>lef</i> only	131(14.7)
BAPA + <i>capB</i> only	10(1.1)
Ba-1+BAPA+ <i>capB</i> + <i>lef</i>	393 (44.2)