
COAXIAL: A CXL-Centric Memory System
for Scalable Servers

Albert Cho† Anish Saxena† Moinuddin Qureshi Alexandros Daglis
Georgia Institute of Technology

Abstract—The memory system is a major performance de-

terminant for server processors. Ever-growing core counts and

datasets demand higher memory bandwidth and capacity. DDR—

the dominant processor interface to memory—requires a large

number of on-chip pins, which is a scarce resource, thus limiting

the processor’s memory bandwidth. With limited bandwidth,

multiple concurrent memory requests experience significant

queuing delays that often overshadow DRAM’s service time and

degrade performance. We present COAXIAL, a memory system

design for throughput-oriented manycore servers that replaces

all of the processor’s DDR interfaces with the pin-efficient

CXL interface, which offers 4⇥ higher bandwidth per pin.

While such replacement incurs a considerable latency overhead,

we demonstrate that, for many workloads, and with careful

integration, CXL’s higher bandwidth more than offsets its latency

premium. Our evaluation shows that COAXIAL improves the

performance of manycore throughput-oriented servers by 1.39⇥
on average and by up to 3⇥.

I. INTRODUCTION

Manycore processor architectures have been delivering per-
formance gains despite the end of Dennard scaling and
Moore’s law slowdown in the past two decades. To accom-
modate exponential data growth, technological breakthroughs
have enabled higher-capacity memory with new media like
non-volatile RAM (NVRAM) or via remote memory access
over fast networks (e.g., RDMA), yet at significantly inferior
memory access latency and bandwidth compared to the DDR-
based main memory. As a result, servers continue to predom-
inantly rely on DDR-attached memory for performance while
optionally retaining a slower memory tier like NVRAM or
remote DRAM for capacity expansion.

The Compute Express Link (CXL) standard aims to bridge
the performance gap between low-bandwidth, high-capacity
memory and DDR-based main memory. CXL enables vast
expansion of a processor’s memory capacity and bandwidth
availability, while retaining DDR-like characteristics at a mod-
est latency premium. Consequently, there is much interest
in architecting CXL-based memory systems that leverage
memory pooling and capacity expansion capabilities [3], [21],
[30], [38], [57]. This paper studies how CXL, a technology
based on an open standard with widespread industry adoption,
can be leveraged to reshape the memory system of future
scalable (i.e., manycore) server processors.

CXL’s high bandwidth stems from its underlying PCI Ex-
press (PCIe) serial interface, which currently delivers about 4⇥
higher bandwidth per processor pin compared to the parallel

† Equal contribution.

DDR interface, with technological roadmaps projecting this
bandwidth gap to grow further. Hence, by repurposing the pro-
cessor’s DDR-allocated pins to CXL, it is possible to quadru-
ple the available memory bandwidth, a welcome boost for
throughput-oriented, bandwidth-constrained manycore servers.
Consider modern server processors that feature 4–12 cores per
memory channel. The higher-end ratio represents recent and
upcoming throughput-optimized server processors with 128+
cores, such as AMD’s EPYC Bergamo [42] and Intel’s Granite
Rapids and Sierra Forest [43]. Given rigid pin constraints,
shifting from conventional DDR-centric to CXL-centric mem-
ory systems can overcome the bandwidth wall for such servers,
by leveraging CXL’s bandwidth-per-pin advantage.

The key drawback of bandwidth-rich CXL-centric memory
systems is their associated memory access latency overhead,
currently ⇠50ns for directly connected (non-multiplexed) CXL
memory devices [51]. Such high latency overhead, which
seemingly doubles DRAM access latency of ⇠50ns, has
relegated CXL-related research so far to treat the technology
exclusively as a memory expansion technique rather than a po-
tential replacement of local DDR-attached memory. However,
focusing on the increase in unloaded DRAM access latency
alone paints an incomplete picture that does not accurately
represent a system’s effective memory access latency. First, in
a loaded memory system, queuing delays dominate the raw
memory access time. Second, on large CPU chips, on-chip
time constitutes a considerable fraction of end-to-end memory
access latency. We posit that ample bandwidth availability can
be leveraged to offset CXL’s latency premium in two ways.

First, the effective memory access latency of heavily loaded
memory systems is dominated by queuing delays at the
DDR memory controllers. Mitigating these queuing delays
by provisioning more memory channels would require more
processor pins, which are a scarce resource. Instead, the
pin-efficient CXL interface can be used to indirectly attach
more channels to the processor, thus reducing memory access
latency by mitigating queuing. Second, increased bandwidth
use—afforded by higher bandwidth availability—can be traded
off for latency reduction. We propose mechanisms for selective
“Concurrent Access of Last-Level Cache (LLC) and Memory”
(CALM) to remove the LLC’s latency from the critical path
to memory, thus offsetting the CXL latency overhead by as
much as 40%. While CALM is not fundamentally tied to CXL,
it is more effective in CXL-enabled bandwidth-rich memory
systems.

Given the bandwidth superiority of CXL-based memory

SC24, November 17-22, 2024, Atlanta, Georgia, USA
979-8-3503-5291-7/24/$31.00 ©2024 IEEE

http://crossmark.crossref.org/dialog/?doi=10.1109%2FSC41406.2024.00101&domain=pdf&date_stamp=2024-11-17

systems and the opportunities of leveraging that strength to
mitigate latency concerns, we argue that a memory system
attached to the processor entirely over CXL is a key enabler
for scalable manycore server processors that deploy memory-
intensive workloads. Our design, COAXIAL, replaces all of
the processor’s direct DDR interfaces with CXL for a ma-
jor memory bandwidth boost, which additionally affords the
CALM mechanism to further reduce memory access latency.

In summary, we make the following contributions:
• We make the radical proposal of using high-bandwidth

CXL as a complete replacement of pin-inefficient DDR
interfaces to scale the memory bandwidth wall faced by
manycore server processors, a shift that disrupts decades-
long DDR-centric memory system design practices. By
directly addressing the memory bandwidth wall, we mit-
igate queuing delay, consequently reducing the effective
memory access latency.

• We propose selective CALM mechanisms that leverage
memory bandwidth abundance to further offset CXL’s la-
tency overhead, in addition to the memory access latency
gains derived from queuing delay reduction.

• Across a wide range of workloads, we show that despite
its high unloaded memory access latency, COAXIAL
drastically reduces the effective memory access time in
typical scenarios with a loaded memory system, yielding
a 1.39⇥ speedup on average, and up to 3⇥.

• We identify limitations imposed on CXL by the current
PCIe standard and highlight opportunities that a revised
standard could leverage, to achieve a higher average
speedup of 1.52⇥.

Paper outline: §II motivates the replacement of DDR with
CXL in server processors and §III highlights the opportunities
of leveraging bandwidth abundance to address latency con-
cerns. §IV introduces the design of COAXIAL, a new CXL-
based memory system for scalable servers. We outline our
methodology in §V and analyze performance results in §VI.
Finally, §VII covers related work and §VIII concludes.

II. BACKGROUND

A. Low-latency DDR-based Memory
Servers predominantly access DRAM over the Double Data

Rate (DDR) parallel interface. The interface’s processor pin
requirement is determined by the width of the data bus,
command/address bus, and configuration pins. A DDR4 and
DDR5 [26] interface is 288 pins wide. While several of those
pins are terminated at the motherboard, most of them (160+
for an ECC-enabled DDR4 channel [25], and likely more for
DDR5 [49]) are driven to the processor chip.

The DDR interface’s 64 data bits directly connect to the
processor and are bit-wise synchronous with the memory con-
troller’s clock, enabling a worst-case unloaded access latency
of ⇠50ns. Scaling a DDR-based memory system’s bandwidth
requires either clocking the channels at a higher rate, or
attaching more channels to the processors. The former entails
signal integrity challenges [44] and a reduction in supported

PCIe1.0

PCIe2.0
PCIe3.0

PCIe4.0

PCIe5.0
PCIe6.0 PCIe7.0

DDR4-2133 DDR4-3200

DDR5-4800 DDR5-8000

DDR6-9600
DDR6-16000

1

2

4

8

16

32

64

2000 2005 2010 2015 2020 2025 2030

Re
la

tiv
e

ba
nd

w
id

th
 p

er
 p

in

Year

Fig. 1: Bandwidth per processor pin for DDR and CXL (PCIe)
interface, norm. to PCIe-1.0. Note the y-axis log scale.

ranks per channel, limiting rank-level parallelism and memory
capacity. The latter requires more on-chip pins, which cost
significant area and power, and complicate placement, routing,
and packaging [67]. Therefore, the pin-count on processor
packages has only been doubling about every six years [55].

Given these pin limitations and the steady growth of core
counts on high-end server processors, reducing the number
of cores that contend over a memory channel is difficult
without clean-slate technologies, which we discuss in §VII.
The emerging CXL interconnect is bound to bridge this gap by
leveraging a widely deployed high-bandwidth serial interface.

B. The High-bandwidth CXL Interconnect

CXL [12] is a recent interconnect standard developed as
a concerted industry effort for a standardized interconnect
to replace a wide motley collection of competing solutions
(e.g., OpenCAPI [60], Gen-Z [15], CCIX [13]). CXL aims to
present a unified solution for coherent accelerators, peripheral
IO devices, and memory expansion devices and is bound
to become a dominant interconnect, as PCIe has been for
peripheral devices over the past twenty years. We focus on
CXL’s capability of attaching DDR-based memory (“Type-3”
devices) over PCIe to the processor and making it directly
accessible via default load/store instructions. CXL’s underlying
PCIe physical layer affords higher bandwidth per pin at
the cost of increased latency. Therefore, most recent works
perceive CXL as a technology enabling an auxiliary slower
memory tier directly attached to the processor. In contrast, we
argue that despite its associated latency overhead, CXL can
play a central role in future memory systems design, replacing,
rather than simply augmenting, DDR-attached memory in
bandwidth-constrained manycore server processors.

C. Scaling the Memory Bandwidth Wall with CXL

CXL’s high bandwidth owes to its underlying PCIe physical
layer. PCIe [50] is a high-speed serial interface featuring multi-
ple independent lanes capable of bi-directional communication
using just four pins per lane: two for transmitting data (TX),
and two for receiving data (RX). Data is sent over each lane as
a serial bit stream at very high bit rates in an encoded format.

Figure 1 shows the bandwidth per pin for PCIe and DDR,
derived by dividing each interface’s peak bandwidth by the
processor pins required: 160 for DDR and 4 per lane for

� �� 	�
� �� ��
�

�� "#(���!�'��%���%���)�%�"!��$�
��"�����"#�%���������

�

���

	��

��

���

���
�
�
"#
(�
��
��
$$
��
�%
�!
�(
��!
$�
� �&�#������%�!�(

������%�!�(

(a) Average and p90 memory access latency in a DDR5-
4800 channel (38.4GB/s) at varying bandwidth utiliza-
tion points. p90 grows faster than the average latency.

�

	��

��

1
"
-
�
$
"
��
	
�
��

&.
.

��
�
/
"
*

4
��
*
.
� �0"0&*$��"(�4
 "..��"-1& "��&)" �*� %&,��&)"

�
�
�

+
,
4

�
�
�
.

�
("

�
�
�
�
!
!

�
�
�
/-
&�
!

�
�
��

�
+
)
,
�.

�
+
)
,

�
�

�
�

�
�
!
&&

�
�

�
�
�
�
�

�
"
((
)
�

�
�
�

�
�
�
��
�

�-
&�
*
$
("

�
��

#(
0
&!
�

#�

"
.
&)

-�
4
/-
�

"

.

(0
.
/"
-

�
*
*
"
�
(

(�
)

�
2
�
1
"
.

�

/0
�

#+
/+
*
&'

�
)

2
-#

)

#

-+
)
.

,
+
,
	

+
)
*
"
/,
,

3
�
(�
*

$

)
�
.
.
/-
"
"

'
)
"
�
*
.

�

	�

��

��

�
"
)
+
-
4
��
�
*
!
2
&!
/
%

�
/
&(
&5
�
/
&+
*
��
�
�

(b) Memory latency breakdown (DRAM access time and queuing delay) and % memory bandwidth
utilization for a range of workloads. Higher utilization increases queuing delay, which constitutes
60% of L2 miss latency on average.

Fig. 2: Queuing delays dictate memory access time on a loaded system.

PCIe. The present bandwidth gap is 4⇥ (PCIe5.0 vs. DDR5-
4800) and may grow to 8⇥ by 2025, even when ignoring
that PCIe’s stated bandwidth is per direction, while DDR’s
reported values refer to combined read/write bandwidth. For
example, a DDR5-4800’s channel needs 160 pins to drive
an aggregate bandwidth of 38.4GB/s. Requiring only 20% of
these pins, 8 PCIe5.0 lanes (over which CXL operates) offer
32GB/s per direction—i.e., a theoretical peak of 32GB/s for
reads and 32GB/s for writes.

D. CXL Latency Concerns

CXL’s increased bandwidth comes at the cost of higher
latency compared to DDR. The latency premium for the
simplest CXL memory attached to a single CPU is currently
about 50ns, based on reports by Intel and PLDA on existing
CXL-2.0 controller implementations [51]. The expectation of
such high latency premium has led memory system researchers
and designers to predominantly focus on CXL as a technology
for enabling a secondary tier of slower memory that augments
conventional DDR-attached memory. Notably, CXL’s latency
overhead will likely further shrink as the technology matures.

We show in §III that a 50ns latency overhead often pales in
comparison to queuing delays at the memory controller that
are common in a commercially significant class of servers, and
such queuing delays can be curtailed by CXL’s considerable
bandwidth boost. Furthermore, ample bandwidth availability
can be leveraged to devise mechanisms that trade off additional
bandwidth usage for latency optimization. We thus argue that
CXL is a strong candidate to completely replace the DDR-
attached memory for the subset of server processors optimized
for high-throughput, memory-intensive workloads.

III. EFFECTIVE MEMORY ACCESS LATENCY BREAKDOWN

We now characterize the latency breakdown for a loaded
memory system, highlighting the latency opportunity reduction
via a bandwidth-rich CXL-based memory system. Figure 2a
shows a DDR5-4800 channel’s memory access latency as its
load increases. We model the memory using DRAMSim3 [31]

and control the load with random memory accesses of config-
urable arrival rate. The resulting load-latency curve is shaped
by queuing effects at the memory controller.

When the system is unloaded, a hypothetical CXL interface
adding 50ns to each memory access would correspond to a
seemingly prohibitive 125% latency overhead compared to the
unloaded latency of ⇠40ns. However, as the memory load
increases, latency rises exponentially, with its average value
increasing by 3⇥ and 4⇥ at 50% and 60% load, respectively.
p90 tail latency grows even faster, rising by 4.7⇥ and 7.1⇥
at the same load points. As a result, in a loaded system,
trading off additional interface latency for considerably higher
bandwidth availability can yield significant net latency gain.

To illustrate, consider a baseline DDR-based system oper-
ating at 60% utilization, corresponding to 160ns average and
285ns p90 memory access latency (Figure 2a). A CXL-based
alternative offering a 4⇥ memory bandwidth boost would
shrink the system’s bandwidth utilization to 15%, yielding
37%/61% lower average/p90 memory access latency compared
to the baseline, after accounting for CXL’s latency premium.

Figure 2a shows that the system experiences queuing effects
at bandwidth utilization as low as 20%, that are initially re-
flected on tail latency. Beyond 40% utilization, queuing effects
also noticeably affect average latency. Utilization beyond such
level is common, as we show with our simulation of a server
processor with one DDR5 memory channel per 12 cores across
server and desktop applications, representing workloads that
run on modern high-end manycore servers (methodological
details in §V). Figure 2b shows that with all processor cores
under use, the vast majority of workloads exceed 30% memory
bandwidth utilization, and most exceed 50% utilization (except
several workloads from SPEC and PARSEC benchmarks).

Figure 2b also breaks down the average memory access
time, as measured from the L2 cache miss register, into
on-chip time (NOC and LLC), DRAM service time, and
queuing delay at the memory controller. We observe a trend in
high bandwidth consumption leading to long queuing delays,
although queuing delay doesn’t present itself as a direct func-

tion of bandwidth utilization. Queuing delay is also affected
by application characteristics such as read/write pattern and
spatio-temporal distribution of accesses (e.g., bursts and inter-
bank load imbalance). In Figure 2b’s wide range of workloads,
queuing delay constitutes 60% of the L2 miss latency on
average, and up to 84% in the case of lbm. On-chip time is
less pronounced but sizable, accounting for 15% of L2 miss
latency on average.

In conclusion, a bandwidth-rich memory system can mit-
igate the queuing and on-chip components of memory ac-
cess time. Higher bandwidth availability directly ameliorates
queuing, but can also be leveraged to curb on-chip time by
removing LLC access from the critical path. Considering
the dual role of the LLC as a latency reduction mechanism
and a memory traffic filter, memory bandwidth abundance
diminishes the significance of the latter, motivating selective
Concurrent Access of the LLC and Memory (CALM). Hence,
the CXL-afforded bandwidth boost can be used to mitigate
both queuing delays and on-chip time, more than compen-
sating for the CXL interface’s latency overhead for effective
memory access time reduction.

IV. THE COAXIAL SERVER ARCHITECTURE

Figure 3b depicts COAXIAL, which replaces each on-chip
DDR5 channel with several CXL channels, providing 2–4⇥
higher aggregate memory bandwidth to the processor. Fig-
ure 3a shows the baseline DDR-based design for comparison.
Each CXL channel is attached to a “Type-3” CXL device,
which features an unmodified DDR5 controller connecting to
DRAM. The processor implements the CXL.mem protocol of
the CXL standard, which orchestrates data consistency and
memory semantics management. The implementation of the
caches and cores remains unchanged, as the memory controller
still supplies 64B cache lines.

A. Processor Pin Considerations

A DDR5-4800 channel requires at least 160 processor pins
to account for data and ECC bits, command/address bus, etc.
(§II-A), for a peak unidirectional bandwidth of 38.4GB/s. A
single PCIe lane delivers 4GB/s of bidirectional bandwidth.
and requires just four processor pins—two per TX/RX direc-
tion. Higher-bandwidth channels are constructed by grouping
2, 4, 8, 12, or 16 lanes.

We opt for an x8 (i.e., 8-lane) configuration with a peak
theoretical bandwidth of 32GB/s per direction, requiring 32
pins—5⇥ fewer than a DDR5 channel’s. Factoring in PCIe and
CXL’s header overheads, an x8 channel’s effective bandwidth
is 26GB/s in the DRAM-to-CPU (RX) direction and 13GB/s
in the opposite direction (TX) [51]. Considering a typical 2:1
Read:Write ratio, only 25.6GB/s of the DDR5-4800 channel’s
theoretical bandwidth would be used in the RX direction, and
13GB/s in the TX direction. Additionally, a DDR channel’s
effective bandwidth is typically 70–90% of its theoretical peak.
Hence, an x8 CXL channel can support a full DDR5 channel
on the Type-3 device without becoming a bottleneck.

cores, caches, NoC, etc.

DD
RDDR

DDR DDR

......

(a) Baseline DDR-based server.

...

...

...

CX
L

CX
L

CX
L

CX
L

CX
L

CX
L

CX
L

CX
LCXL

CXL
CXL
CXL
CXL

CXL
CXL
CXL
CXL
CXL

cores, caches, NoC, etc.

DDRty
pe

-3

DDR

type-3

(b) COAXIAL replaces each DDR channel with several CXL channels. Each
CXL channel connects to a type-3 device with one DDR memory channel.

Fig. 3: Overview of the baseline and COAXIAL systems.

B. Silicon Area Considerations
Based on processor pin requirements alone, COAXIAL can

replace each DDR channel (i.e., PHY and memory controller)
with five x8 PCIe PHY and controllers, for a 5⇥ memory
bandwidth boost. However, the relative pin requirements of
DDR and PCIe do not directly correspond to their relative
on-chip silicon area requirements. Lacking publicly available
silicon area information, we study relevant die shots.

Table I shows the relative silicon die area key components
of the processor account for. We derive the relative area of
1MB LLC, PCIe, and DDR from a Golden Cove die shot
(Intel 10nm), and the size of a Zen 3 core relative to 1MB LLC
from a Zen 3 die shot (TSMC 7nm) [34]. While the density of
the two process technologies is comparable (reportedly within
7–11%), we only compare component areas within the same
technology (not across technologies) to derive their relative
size. An x8 PCIe controller accounts for 55% of a DDR
controller’s area. Hence, replacing each DDR controller C with
four x8 PCIe controllers requires 2.2⇥ more silicon area than
C. However, DDR controllers account for a small fraction of
the total CPU die. Notably, the relative on-chip area of DDR
versus PCIe, which is the most consequential aspect of our
analysis, is similar in both Intel and AMD chips [34], [58].

Leveraging Table I’s data, we consider alternative
COAXIAL server designs, shown in Table II. We focus on
high-core-count servers optimized for throughput, such as the
AMD EPYC Bergamo (128 cores) [42], and Intel Granite
Rapids (128 cores) and Sierra Forest (144 cores) [43]. All three
feature 12 DDR5 channels, resulting in a core-to-memory-
controller (core:MC) ratio of 10.7:1 to 12:1. A common design
choice to accommodate such high core counts is a reduced
LLC capacity; e.g., moving from the 96-core Genoa [56] to
the 128-core Bergamo, AMD halves the LLC per core to 2MB.
We thus consider a 144-core baseline server processor with 12
DDR5 channels and 2MB of LLC per core (Table II, first row).

With pin count as its only limitation, COAXIAL-5⇥ re-

TABLE I: Area of proces-
sor components, relative to
1MB of LLC (L3 cache).

L3 cache (1MB) 1
Zen 3 Core 6.5
(including 512 KB L2)
x8 PCIe (PHY + ctrl) 5.9
DDR channel (PHY + ctrl) 10.8

TABLE II: DDR-based versus alternative COAXIAL server configurations.

Server design
Core LLC Memory Relative Relative

Comment
count per core interfaces mem. BW area

DDR-based

144

2 MB
12 DDR 1⇥ 1 baseline

COAXIAL-5⇥ 60 x8 CXL 5⇥ 1.17 iso-pin
COAXIAL-2⇥ 24 x8 CXL 2⇥

1.01 iso-area

iso-LLC
COAXIAL-4⇥

1 MB
48 x8 CXL 4⇥ balanced

COAXIAL-asym 48 x8 CXL-asym asym. R/W max BW
(see §IV-D)

places each DDR channel with 5 x8 CXL interfaces, for a 5⇥
bandwidth increase. However, that results in a 17% die area
increase to accommodate all the PCIe PHYs and controllers.
Hence, we consider two iso-area alternatives. COAXIAL-
2⇥ leverages CXL to double memory bandwidth without
any microarchitectural changes. COAXIAL-4⇥ quadruples the
available memory bandwidth compared to the baseline CPU,
but halves the total LLC size from 288MB to 144MB.

C. Latency Mitigation via Concurrent LLC/Memory Access
All COAXIAL configurations in §IV-B leverage CXL to

boost memory bandwidth availability at the cost of latency.
Given the high LLC miss ratios of bandwidth-intensive work-
loads, we propose Concurrent Access of LLC and Memory
(CALM) as a latency mitigation technique, whereby selected
L2 misses look up memory and the LLC in parallel, thereby
removing LLC lookup latency from the critical path. Due to
its ample bandwidth, COAXIAL is more amenable to CALM,
as every concurrent LLC/Memory access decision that hits in
the LLC adds memory bandwidth pressure, which is already
a constrained resource in the baseline DDR-based system.

Figure 4 summarizes CALM logic. An L2 miss results in
either a normal (i.e., serial LLC and memory access) or a
CALM memory hierarchy access. In the case of a CALM
access, the L2 receives two responses: one from the LLC and
one from memory. If the requested data already resides on
chip, the response from memory may be stale. To preserve
coherence, CALM lookups always wait for a response from the
LLC, even in the rare case when memory’s response returns
earlier, to ensure the most recent data value (from LLC, if
present, otherwise from memory) is returned to the processor.

We consider two designs for producing the per-L2-miss
decision of whether to perform CALM. The first design,
CALMR, regulates L2 misses that perform CALM to ensure
the memory bandwidth utilization remains below R%. By
monitoring L2 misses that hit or miss in the LLC, each
L2 controller can estimate its memory bandwidth demand
with and without the LLC acting as a filter (bw f iltered and
bwun f iltered). If the estimated LLC-filtered memory bandwidth
(bw f iltered) exceeds R, CALM lookup is not performed as the
system is already bandwidth-constrained. Otherwise, the L2
miss performs CALM with a probability of min(1, R�bw f iltered

bwun f iltered
),

thus adjusting to the estimated bandwidth utilization and R.
In the second design, an L2 miss performs CALM based

on its predicted probability of also missing in the LLC. We
employ the MAP-I to drive this decision, a PC-based predictor
from prior work, shown to be highly accurate [48].

Yes

Do CALM?

LLC hit?

Send miss to both
LLC and memory

Normal path
(serial LLC/memory

access)

No No

Miss notification to
L2 & wait for data

from memory

Yes

Get data from LLC,
ignore memory

response

L2 miss

Fig. 4: Flowchart of Concurrent LLC/Memory Access.

We evaluate CALMR and MAP-I in §VI-B and find that
CALM70% (i.e., CALMR with R= 70%⇥bwmax) strikes the best
balance of performance and simplicity. Unlike MAP-I, CALMR
does not require additional hardware for the predictor’s state
or making the PC available at the L2. Our default COAXIAL
design therefore employs CALM70%.

D. Additional Opportunities from CXL Standard Evolution
Unlike DDR, CXL has dedicated pins and wires for each

data movement direction (RX and TX). The PCIe standard
defines a 1:1 match of TX and RX pins: e.g., an x8 PCIe
configuration implies 8 TX and 8 RX lanes. While uniform
bandwidth provisioning in each direction is reasonable for a
peripheral device like a NIC, memory traffic directionality is
inherently imbalanced. Because (i) most workloads read more
data than they write and (ii) every written cache block must
typically be read first, R:W ratios are usually in the 3:1 to 2:1
range rather than 1:1. Thus, in the typical 1:1 provisioning,
when read bandwidth is depleted, write bandwidth remains
underutilized. Given this insight and that serial interfaces do
not fundamentally require 1:1 RX:TX bandwidth provision-
ing [64], we consider a COAXIAL design with asymmetric
RX:TX lane provisioning to better match memory traffic char-
acteristics. While currently unsupported by the PCIe standard,
we investigate the potential performance benefits of revisiting
that statutory restriction. We call such a channel CXL-asym.

We consider a system leveraging such CXL-asym channels
to compose a COAXIAL-asym configuration. An x8 CXL
channel consists of 32 pins, 16 each way. Without the current
1:1 PCIe restriction, COAXIAL-asym repurposes the same pin
count to 20 RX pins and 12 TX pins, resulting in 40GB/s RX
and 24GB/s TX of raw bandwidth. Accounting for PCIe and
CXL’s header overheads, the realized bandwidth is 32GB/s for
reads and 10GB/s for writes (compared to 26GB/s for reads
and 13GB/s for writes in a normal x8 CXL channel) [51].
While such asymmetric provisioning must be determined at
processor design time, our proposed balance outperforms

the symmetric design for all of our workloads (see §VI-C).
COAXIAL-asym does not require processor modifications be-
yond the CXL interface.

To utilize COAXIAL-asym’s additional read bandwidth, we
provision two DDR controllers per CXL-asym channel on
the Type-3 device. The number of CXL channels and their
on-die area overhead remain unchanged. While CXL-asym’s
read bandwidth can only support 62% of the 52GB/s peak
combined read bandwidth of two DDR channels (assuming a
2:1 R:W ratio), queuing delays at the DDR controller typically
become significant at a much lower utilization point (Fig-
ure 2a). Therefore, COAXIAL-asym still provides sufficient
bandwidth to reduce relative utilization and contention at all
queues (CXL and DDR) on the way to memory.

E. COAXIAL Benefits on Memory Capacity and Cost
While this paper’s scope focuses on the performance impact

of a CXL-based memory system, COAXIAL can also have
noteworthy benefits on memory capacity and cost. Servers op-
timized for memory capacity deploy two high-density DIMMs
per DDR channel (2DPC). First, such 2DPC configurations
increase capacity over 1DPC at the cost of ⇠15% memory
bandwidth. Second, DIMM cost grows superlinearly with
density; for example, 128GB/256GB DIMMs cost 5⇥/20⇥
more than 64GB DIMMs. By enabling more DDR channels,
COAXIAL allows the same or higher DRAM capacity with
1DPC and lower-density (i.e., lower-cost) DIMMs.

V. EVALUATION METHODOLOGY

System configurations. We compare COAXIAL to a typical
DDR-based server processor by simulating the following sys-
tem configurations in ChampSim [1] coupled with DRAM-
sim3 [31]. Table III summarizes the configuration parameters
used.

• DDR-based baseline. We simulate 12 cores and one
DDR5-4800 memory channel (comprising two 32-bit
sub-channels) as a scaled-down version of Table II’s 144-
core CPU.

• COAXIAL servers. We evaluate COAXIAL-2⇥,
COAXIAL-4⇥, and COAXIAL-asym (Table II).
“COAXIAL” without a qualifier implies the -4⇥
configuration. All COAXIAL variants employ CALM70%
by default, as described in §IV-C.

TABLE III: System parameters used for simulation.

DDR baseline COAXIAL-*
CPU 12 OoO cores, 2.4GHz, 4-wide, 256-entry ROB
L1 32KB L1-I & L1-D, 8-way, 64B blocks, 4-cycle hit
L2 512 KB, 8-way, 8-cycle hit

LLC distributed, shared & non-inclusive, 16-way, 20-cycle hit
2 MB/core 1–2 MB/core (see Table II)

Memory

DDR5-4800 [40], 2 sub-channels per channel,
1 rank per sub-channel, 32 banks per rank

1 channel 2–4 CXL-attached channels (see Table II)
8 channels for COAXIAL-asym (see §IV-D)

NoC 2D mesh, 3 cycles/hop

CXL performance modeling. For COAXIAL, we model CXL
controllers and PCIe bus on both the processor and the Type-3
device. A CXL port incurs an unloaded uni-directional delay of
12.5ns accounting for flit-packing, encoding/decoding, packet
processing, etc., as reported by PLDA and Intel’s IP [47],
[51]. The PCIe bus traversal latency is determined by the link
direction, bus width, and channel bandwidth. As discussed in
§IV-D, the 32GB/s x8 CXL channel bandwidth results in 26/13
GB/s RX/TX goodput when header overheads are factored
in (32/10 GB/s RX/TX for CXL-asym). Therefore, an 8-bit
CXL channel receives 64B line in 2.5ns (2ns for 10-bit CXL-
asym) and transmits it in 5.5ns (9ns for CXL-asym). Overall,
COAXIAL adds a minimum of 4⇥12.5ns+2.5ns= 52.5ns for
reads and 55.5ns for writes (or more, in §VI-D’s sensitivity
analysis) from/to DRAM. Additionally, the CXL controller
maintains message queues to buffer requests, capturing any
queuing effects in our evaluation.
Workloads. We evaluate 36 diverse workloads after fast-
forwarding to their region of interest. We deploy the same
workload on all cores and simulate 200 million instructions
per core after 50 million instructions of warmup per core.
• Graph analytics: We use 13 workloads from the LIGRA

benchmark suite [52].
• STREAM: We run the STREAM benchmark’s four ker-

nels (copy, scale, add, triad) [39] to represent bandwidth-
intensive matrix operations in which ML workloads spend
a significant portion of their execution time.

• SPEC and PARSEC: We evaluate 12 SPEC-speed 2017 [54]
workloads in ref mode and five PARSEC workloads [6].

• We evaluate masstree [37] and kmeans [33] to represent key
value store and data analytics workloads, respectively.

Table IV summarizes all our evaluated workloads, along with
their IPC and MPKI as measured on the DDR-based baseline.

TABLE IV: Workload IPC and LLC MPKI metrics for the
DDR-based baseline system.

Application IPC
LLC

MPKI
Application IPC

LLC

MPKI

SPEC Ligra

lbm 0.14 64 PageRank Delta 0.30 27
bwaves 0.33 14 Comp.-shortcut 0.34 48
cactusBSSN 0.68 8 Components 0.36 48
fotonik3d 0.32 22 BC 0.33 34
cam4 0.87 6 PageRank 0.36 40
wrf 0.61 11 Radii 0.41 33
mcf 0.79 13 CF 0.8 12
roms 0.77 6 BFSCC 0.65 17
pop2 1.5 3 BellmanFord 0.82 9
omnetpp 0.50 10 BFS 0.66 15
xalancbmk 0.50 12 BFS-Bitvector 0.84 15
gcc 0.27 19 Triangle 0.61 21

STREAM MIS 1.19 8
Stream-copy 0.17 58 PARSEC

Stream-scale 0.21 48 fluidanimate 0.73 7
Stream-add 0.16 69 facesim 0.74 6
Stream-triad 0.18 59 raytrace 1.1 5

KVS & Data Analytics streamcluster 0.95 14
Masstree 0.37 21 canneal 0.61 7
Kmeans 0.50 36

	�	

	��

�	

��

��	

���

��	
�
3
5
1
&
0.
=
*
)

�
*
5
+3
5
1
&
2
(
* �

��
�

��

�	
�

�

�

��
�

	

		

�		

�		

		

�
9
*
5
&
,
*
��
�
�
��
.6
6

��
&
7
*
2
(
<
��
2
6
�

�8*8.2,��*0&< �((*66� *59.(*�!.1* �$���27*5+&(*��*0&< �2�(-.4�!.1*

!
%(
3
4
<

!
%6
(
&
0*

!
%&
)
)

!
%7
5.
&
)

�
�
��

�
3
1
4
�6
(

�
3
1
4
�
�
�
�

�
&
)
..
�
�

�
�

�
�

�
*
00
1
�
�
�

�
�

��
#

!5
.&
2
,
0*
�
�

+0
8
.)
&

+&
(
*
6.
1

5&
<
75
&
(
*

6(
08
67
*
5

(
&
2
2
*
&
0

0'
1

'
:
&
9
*
6

(
&
(
78
�

+3
73
2
./

(
&
1

:
5+

1
(
+

53
1
6

4
3
4
�

3
1
2
*
74
4

;
&
0&
2
(
,
(
(

1
&
66
75
*
*

/
1
*
&
2
6

�
*
&
2
%
!
�
�

�
*
&
2
%�
��
�
�

�
*
&
2
%�
�
�

�
*
&
2
%
�
�
�

�
*
&
2
%&
00

	

�	

	

�	

�
*
1
3
5
<
��
&
2
)
:
.)
7
-

"
6
&
,
*
��
�
�
�6
�

�&6*0.2* �3&$.&�

Fig. 5: COAXIAL speedup over DDR-based baseline (top), memory access latency breakdown (middle), and memory bandwidth
usage (bottom). Despite higher absolute bandwidth usage, COAXIAL operates at lower utilization, due to its 4⇥ higher
bandwidth availability. Reduced queuing lowers average memory access latency, resulting in 1.39⇥ average speedup.

Figures of merit. Our key metric is the speedup (normalized
IPC improvement compared to the baseline) afforded by
COAXIAL configurations. We also analyze the impact on
memory access latency and bandwidth utilization.

VI. EVALUATION RESULTS

In this section, we perform a thorough evaluation of
COAXIAL and demonstrate the following key takeaways:

1) COAXIAL drastically reduces queuing delays and on-chip
time, resulting in 29% lower average L2 miss latency and
1.39⇥ average speedup (§VI-A).

2) Bandwidth-rich systems like COAXIAL are amenable
to concurrent LLC/memory access techniques that can
effectively curb on-chip time for sizable latency reduction
(§VI-B).

3) Provisioning CXL lanes in a read/write demand-aware
manner considerably improves performance (by 13%)
compared to the default 1:1 read:write ratio (§VI-C).

4) Even with an increased 70ns CXL latency overhead,
COAXIAL achieves a substantial 1.26⇥ average speedup
(§VI-D).

5) Even at 66% server utilization—or 8:1 core:MC ratio—
COAXIAL delivers a 1.17⇥ speedup (§VI-E).

6) In addition to major performance gains, COAXIAL af-
fords 25% lower EDP and 47% lower ED2P (§VI-F).

A. Main Results
Figure 5 (top) shows the performance of COAXIAL-4⇥

relative to the baseline DDR-based system. Most workloads

exhibit significant speedup, up to 3⇥ for lbm and 1.39⇥ on
average. The speedup for 15 of the 36 workloads exceeds
1.5⇥. Seven workloads lose performance, with gcc most
significantly impacted at 26% IPC loss. Workloads that suffer
performance loss are those with low to moderate memory
traffic, heavy dependencies among memory accesses (low
memory-level parallelism), and high LLC hit rate.

Figure 5 (bottom) shows memory bandwidth usage for both
systems. COAXIAL distributes memory requests over more
channels which, given its 4⇥ higher bandwidth availability
versus the baseline, reduces relative bandwidth utilization,
and thus contention and queuing delay for memory-intensive
workloads. Figure 5 (middle) demonstrates this reduction with
a breakdown of the average L2 miss latency into on-chip time
(NoC and LLC), DRAM access service time, queuing delay,
and CXL interface delay (only applicable to COAXIAL).

COAXIAL enables several workloads to use significantly
more memory bandwidth. Despite the absolute bandwidth use
increase, the 4⇥ higher bandwidth availability results in an
average bandwidth utilization drop from 54% to 34%, reducing
queuing delays. For instance, stream-copy is bottlenecked by
the baseline’s constrained bandwidth, resulting in an average
queuing delay over 230ns that dominates the overall L2 miss
latency. For the same workload, COAXIAL reduces queuing
delay to just 34ns, thanks to its ample bandwidth, and also
average on-chip time from 24ns to 6ns, thanks to CALM70%.
These two effects combined more than compensate for the
45ns CXL interface latency overhead an average L2 miss

��
��

��
��

��
��

��
�	

��
�

��
��

��
��

��
�

��
��

��
��
� ��

���

��

���

��

���
��

��
���

��
��
��

��
��

Fig. 6: COAXIAL’s performance for workload mixes, normal-
ized to DDR-based server.

experiences (50ns ⇥ LLC miss-ratio), reducing stream-copy’s
baseline L2 miss latency from 336ns to just 176ns. Lower
effective memory access latency enables COAXIAL to drive
memory requests at a 2.6⇥ higher rate and achieve commen-
surate speedup.

For most workloads, COAXIAL yields lower L2 miss la-
tency than the baseline, despite the CXL interface’s latency
overhead. It is noteworthy that speedup, while generally cor-
relating well with latency reduction, is not a direct function of
memory access latency. The resulting speedup is also affected
by each workload’s specific characteristics (e.g., memory-level
parallelism, temporal memory access pattern, etc.). Therefore,
the same latency reduction across two different workloads does
not necessarily yield the same speedup.

On average, workloads experience 102ns in queuing delay
and 24ns in on-chip time on top of ⇠40ns DRAM service time.
COAXIAL slashes queuing delay by 5⇥, to just 20ns, and
on-chip time by 66% to 8ns, on average. Overall, COAXIAL
reduces average memory access latency by 29%.

Mixed Workloads. In Figure 5’s results, all cores execute the
same workload. We also evaluated 10 workload mixes, shown
in Figure 6, with each mix comprising 12 randomly sampled
workloads from Table IV. COAXIAL’s min/max/geomean
speedup is 1.5⇥ /1.9⇥ /1.7⇥. Thus, our main results likely
underestimate the extent of performance gain from COAXIAL.
Mixed workloads are common in throughput-oriented servers,
and are more likely to contain bandwidth-intensive workloads
running with latency-sensitive workloads, driving up the aver-
age memory utilization in the baseline.

B. Effect of Concurrent Access of LLC and Memory (CALM)

COAXIAL’s performance gains are a composite effect of
its bandwidth superiority and its CALM70% mechanism that
removes the LLC from the critical path. Figure 7 decomposes
the gains delivered by CALM70%, compares against alternative
CALM mechanisms, and shows the effect of adding such a
mechanism to the baseline as well. We evaluate both systems
(i) with the default serial LLC/memory access; (ii) combined
with §IV-C’s different CALM mechanisms; and (iii) with an
ideal predictor that always correctly predicts if an L2 miss also
misses in the LLC. For brevity, we only show results for four
workloads and the average behavior across all 36 workloads.

����#$(!�&&'%�� ��� ��� ��#���"���

��

���

��

	��

	�

�#
%!

�
�)�

��
��

�&

��%�� �����&&
�
���
�
��
��
�
�����

�
�����
����
��&� �"�
�#�����

(a) Normalized performance with different CALM mechanisms.

���� !' ��##$"�� �
� ��� �������

��	

���

��	

�
��
%"
"�
�$
��
��

��
��

�
��
��
##
�$'

!�
���

 "
�
��$
 �
��
��

�

�#�����
� �����

������� ��%""��$�����##
���#������$�&�#

���#��� #�$�&�#

(b) Characterization of CALM decisions across different CALM mechanisms.
Each of the five bars in each cluster corresponds to a CALM mechanism, in the
following order: MAP-I, CALM50%, CALM60%, CALM70%, Ideal.

Fig. 7: Sensitivity study of different CALM mechanisms.

Figure 7a shows speedup relative to baseline with serial
LLC/memory access. For workloads where COAXIAL wins
considerably, removing the LLC from the critical path doesn’t
substantially benefit the baseline, as bandwidth scarcity is
the main bottleneck. All versions of CALM can considerably
benefit the baseline with latency-bound workloads like gcc.
However, the baseline’s average gain from CALM is negligi-
ble, due to its bandwidth-constrained nature, while all CALM
mechanisms substantially benefit COAXIAL. Due to the high
LLC miss ratio of 88% in COAXIAL, all predictors perform,
on average, very close to an ideal predictor. Hence, we use
CALMR over MAP-I due to its simplicity and choose R =
70% as it marginally outperforms lower thresholds. CALM70%
boosts COAXIAL’s speedup over baseline from 1.28⇥ (where
LLC and memory access are serialized) to 1.39⇥.

Figure 7b further analyzes the CALM mechanisms’ be-
havior. The penalty of a false positive (i.e., an assumed
LLC miss hits) is wasteful memory bandwidth use, while
the penalty of a false negative (i.e., an assumed LLC hit
misses) is increased latency, as LLC and memory access
get serialized. Due to COAXIAL’s ample bandwidth, false
positives are preferable to false negatives. The opposite is
true for the bandwidth-bottlenecked baseline. CALM70% is the
best choice for COAXIAL, as it minimizes false negatives.
On average, CALM70% incurs false positives corresponding
to 4% of memory accesses, while false negatives make up
11% of all LLC misses. MIS is an outlier, where false
positives incur a 21% increase in memory accesses. Despite
its high value, that memory bandwidth overutilization is not
detrimental to performance as the total memory bandwidth
utilization remains below 15% of COAXIAL’s theoretical peak

��
� *

+3

��
�-

�'"

��
��!

!

��
�.,
%�! ��

��

�*
(+

�-
�*
(+
� ��

��
!%% ��

�
��
�

"
''(
�

�
�

�
��

�

�,%�
)$
'" ��� #'/

%!�

#�
"-%
(

,�3
.,�
 "

- '
/-.
",

 �)
)"
�' '�(

�1
�0
"-
 �

./

#*.
*)
%&
 �(

 1,
#
(
#
,*(

-
+*
+�

*(
)"
.++
2�
'�)

$

(�
--.
,""

&(
"�
)-

��
���

��

��
���
��
�

��
���

��

��
���

��
��

��'
'

���
���
���
���
���
���
	��
	��

�*
,(

���
",
#*
,(

�)
 " �*��%����� �*��%���
� �*��%����-3(

Fig. 8: Performance of different COAXIAL configurations normalized to DDR-based server baseline. COAXIAL-4⇥ consider-
ably outperforms COAXIAL-2⇥, despite half the LLC size. COAXIAL-asym provides a 13% speedup over COAXIAL-4⇥.

��
��
)*
2

��
�,�

�&
��
��
��

��
�-+
$�� ��
��

�)
'*

�,�
�)
'*
� ��

��
�$$ ��

�
��
�

&&'
�

�
�

�
��

�
�+$
�(
"& ��
�

!&.
$��

!��
 ,
$'

+�2
-+�
�

,�
&.,
- +

��
((
 �
&

&�'
�0
�/
 ,

��
�-.

!)-
)(
$%

��
'� 0+
!

'�
!

+)'
,

*)
*

)'
(
-**

1�
&�(
�

"�
�

'�
,,-
+

%'
 �
(,

�

	�

�

��

��

�
 '

)+
2�

�

(�
0$
�-
#

�,
�"

 �
��

�
,�

� �� �+$-

Fig. 9: Read/write bandwidth usage in the baseline system.

(see Figure 5 (bottom)). Due to the high LLC miss ratio, false
negatives far exceed false positives, suggesting that CALM
mechanisms are better suited to bandwidth-rich systems like
COAXIAL.

C. Alternative COAXIAL Designs

Figure 8 evaluates the two alternative COAXIAL designs
from §IV—COAXIAL-2⇥ and COAXIAL-asym—in addition
to our default COAXIAL-4⇥. COAXIAL-2⇥ achieves a 1.17⇥
average speedup over the baseline, down from the 1.39⇥
gain of COAXIAL-4⇥, confirming that doubling memory
bandwidth availability at the cost of halving the LLC is ben-
eficial for practically all workloads. COAXIAL-asym boosts
performance by 1.52⇥ on average—a considerable 13% gain
over COAXIAL-4⇥—and no workload is negatively affected
by COAXIAL-asym’s reduced write bandwidth. This result
highlights the opportunities of tailoring bandwidth provision-
ing to the workloads’ asymmetric read/write demands.

To further explain COAXIAL-asym’s performance gains,
Figure 9 breaks down the baseline system’s bandwidth uti-
lization into read and write traffic. The results align with
the expectation that read traffic significantly outweighs write
traffic: the average R:W ratio is 3.7:1 across our 36 workloads.
Cam4 is the most write-intensive workload, approaching a
1:1 R:W ratio. However, even such workloads benefit from
COAXIAL-asym’s provisioned 3.2:1 R:W bandwidth, because
(i) the reduced available write bandwidth of 40GB/s remains
sufficient; and (ii) overprovisioning read bandwidth optimizes
for performance-critical loads, while writebacks are more
tolerant to queuing delays.

D. Sensitivity to CXL’s Latency Overhead
We based our evaluation so far on an unloaded latency

penalty of 50ns for CXL, based on expectations set by current
technological evidence (see §II-D and §V). We also evaluate
a more pessimistic latency overhead of 70ns, as early products
may incur higher latency. Such higher latency may also
better represent CXL-attached memory located further from
the CPU, or devices with an additional multiplexing overhead
(e.g., memory devices shared by several processors [21], [30]).

Figure 10 shows COAXIAL’s performance at 50ns and 70ns
CXL interface latency overhead, normalized to the DDR-based
baseline. Although a 70ns overhead reduces COAXIAL’s aver-
age speedup, it remains significant at 1.26⇥. Several memory-
intensive workloads continue to enjoy drastic speedups of over
50%, but more workloads (ten, up from seven in the case of
50ns latency penalty) take a performance hit. These results
imply that while a COAXIAL design with a higher CXL
latency is still worth pursuing, it should be used selectively
for memory-intensive workloads. Deploying different server
classes for different optimization goals is common practice
not only in both public [20] and private clouds (e.g., different
web and backend server configurations) [16], [23].

E. Sensitivity to Core Utilization
Figure 11 evaluates COAXIAL under varying levels of

system utilization by provisioning proportionately less work
on a fraction of the system’s cores. We first study the extreme
case of using a single core on our 12-core simulated system
(8% utilization). In this scenario, the vast majority of work-
loads suffer performance degradation with COAXIAL, for a
27% average slowdown. The extreme single-core experiment
showcases a worst-case scenario that every operator strives to
avoid, as the whole system is severely underutilized.

We then increase the system utilization to 33% and 66%,
by deploying workload instances on 4 and 8 cores of the
12-core CPU, respectively. COAXIAL’s bandwidth abundance
gradually starts paying off, by eliminating the slowdown
at 33% utilization for most workloads, and then delivering
significant gains—1.17⇥ on average and up to 2.67⇥—even at
66% utilization. The 66% utilization point is also a good proxy
for a fully loaded system where cores and DDR controllers are
provisioned at an 8:1 ratio. An 8:1 core:MC ratio is the design
point of many server processors with fewer than 100 cores

��
�!,
-5

��
�/!
�)#

��
��"
"

��
�0.
'�" ��

��

�,
*-
�/!
�,
*- �� ��

��
"'' ��

��
��
�
�#
))*
�
��
�
��
���
�

�.'�
+%
)# ��� $)1

'"�

$�!
#/'
*

.�5
0.�
!#

/!)
1/0
#.

!�+
+#
�)) *

 3
�2
#/
!�!
01�
$,0
,+
'(
!�*

 3.
$
*!
$
.,*

/
-,
-�

,*
+#
0--
4�
)�+
!
%!
!

*�
//0
.##

(*
#�
+/

��
���
��

��
���
��

��
��

��

��
���
��
��
��)
)

���
���
���
���
���
���
	��
	��

�,
.*

���
#.
$,
.*

�+
!# ��+/�����,2#.&#�"

��+/�����,2#.&#�"

Fig. 10: COAXIAL’s performance for different CXL latency premium, normalized to the DDR-based server.

��
!$.
/7

��
!1$
"+&

��
!"%
%

��
!20
)"% ��

��

�.
,/
�1$
�.
,/ �� ��

�"
%)) ��

��
��
�
�&
++,
�
��
�
��
���

�0)"
-(
+& ��� '+3

)%"

'"$
&1)
,

0"7
20"
$&

1$+
312
&0

$"-
-&
"+ +#,

#5
"4
&1
$"$
23�
'.2
.-
)*
$",

 50
'
,$
'
0.,

1
/.
/�

.,
-&
2//
6"
+"-
$
($
$

,"
112
0&&

*,
&"
-1

��
!��
��

��
!��
��
�

��
!��
��

��
!��
��
��
!"+
+	�	

	��

�	

��
��	
���
��	
���

�.
0,

���
&0
'.
0,

"-
$&
��.0&������

��.0&1������
�����.0&1������

���.0&1��
		��

Fig. 11: Performance of COAXIAL as a function of active cores, normalized to the DDR-based server baseline at the same
number of active cores.

today, such as AMD EPYC Milan and Genoa [11], [56]. Thus,
the 66% utilization results imply that COAXIAL’s approach
is applicable beyond high-end throughput-oriented processors
that already exhibit 12:1 core:MC oversubscription.

A few outlier workloads (cactusBSSN, bwaves, lbm) benefit
from COAXIAL’s bandwidth boost even at single-core system
utilization. We observe surprisingly high LLC miss latencies
in the baseline system, 30–210ns on average, much higher than
the average of 63ns observed across workloads. We hypothe-
size that these workloads exhibit highly bursty memory access
behavior, leading to queuing effects that COAXIAL amelio-
rates. Finally, xalanc’s single-instance dataset is entirely LLC-
resident, resulting in equal performance of the baseline and
COAXIAL. With 4+ instances, xalanc’s working set exceeds
the LLC capacity, but its memory bandwidth requirements
remain too low (20% utilization even with all 12 cores active—
see Figure 5 (bottom)) to benefit from COAXIAL.

F. Power Requirements and Energy Efficiency
COAXIAL significantly improves performance while draw-

ing more power, due to additional DDR and CXL channels.
Performance and energy are two metrics at odds, as optimizing
for one typically hurts the other. Servers are performance-
optimized systems that routinely employ performance opti-
mizations at the cost of non-linear increase in energy, essen-
tially optimizing for the composite metric of Energy Delay
Product (EDP = system power ⇥ CPI2, lower is better). For
high-end servers, it is also common to use ED2P to further em-
phasize performance [7], [17], [53]. We evaluate COAXIAL’s
impact on both metrics of EDP and ED2P and additionally
report performance per watt, emphasizing that this metric

is more relevant for low-power than performance-optimized
systems, and hence has limited value as a point of comparison.
Still, we show that COAXIAL achieves 96% of the baseline’s
performance-per-watt, while improving performance by 1.39⇥
on average.

We model power for a manycore CPU similar to Intel’s
Sierra Forest (144 cores) [43], which has a 500W TDP, in
line with other comparable CPUs (e.g., 96-core AMD EPYC
Genoa [56] has a TDP of 360W). We estimate controller and
interface power per DDR5 channel to be 1.1W [62], or 13W
for 12 channels. COAXIAL eschews 50% of LLC capacity
to accommodate the added serial links, which reduces LLC
power draw (leakage + access) from 94W in baseline to 51W
(from Cacti 7.0 [4] at 22nm technology). We estimate power
consumption of common components (cores, L1, L2, etc.) to
be 393W (= 500 - 13 - 94). Finally, PCIe 5.0’s interface power
is ⇠0.2W per lane [5], adding 77W to package power for the
384 lanes required for COAXIAL’s 48 DDR5 channels.

We model memory power using DRAMSim3’s power model
with a 32GB DDR5-4800MT/s RDIMM [41] per DDR5 chan-
nel. For an iso-capacity comparison, the baseline must feature
4⇥ denser DIMMs than COAXIAL, meaning the baseline
would require 128GB RDIMMs. As power parameters for
128GB RDIMMs are not yet available, we assume the same
power characteristics as 32GB RDIMMs, underestimating the
baseline’s power consumption. Nonetheless, even with 4⇥
more DIMMs, COAXIAL’s DRAM power is only 2.45⇥
higher, due to lower memory utilization than the baseline.

Table V summarizes the key power components for the
baseline and COAXIAL systems. The overall system power

TABLE V: Energy/power comparison for 144-core server.

EDP Component Baseline COAXIAL

Processor Core + L1 + L2 Power 393W 393W
DDR5 MC & PHY power (all) 13W 52W
LLC Power (leakage and access) 94W 51W
CXL’s Interface power (idle and dynamic) N/A 77W
DDR5 DIMM power (static and access) 146W 358W
Total system power 646W 931W

Average CPI (all workloads) 2.05 1.48
Relative Perf/Watt (all workloads) 1 0.96
EDP (all workloads) (lower is better) 2,715 2,039 (0.75⇥)

ED
2
P (all workloads) (lower is better) 5,566 3,018 (0.53⇥)

consumption is 646W for the baseline system and 931W for
COAXIAL. Thanks to COAXIAL’s 39% performance boost,
the relevant server-centric metrics of EDP and ED2P drasti-
cally reduce by 25% and 47%, respectively.

VII. RELATED WORK

Emerging CXL-based memory systems. Industry is rapidly
adopting CXL and already investigating its deployment in
production systems to reap the benefits of memory expansion
and memory pooling. Microsoft’s Pond leverages CXL to
pool memory across servers, improving utilization and thus
cost [30]. StarNUMA employs a CXL pool to host hot data
shared by many sockets and thus reduce expensive multi-
hop interconnect link traversals in large NUMA machines [9].
Gouk et al. [21] prototype a practical CXL-based instance of
disaggregated memory [32]. Meta leverages CXL as a mem-
ory expansion technique enabling a secondary high-capacity
memory tier [38]. Ahn et al. evaluate database workloads
on a hybrid DDR/CXL memory system and demonstrate
that CXL-based memory expansion can be cost-efficient and
performant [3]. Instead of using CXL-attached memory as
a memory system expansion, COAXIAL is the first work to
investigate the potential of CXL-based memory as a complete
replacement of DDR-attached memory for manycore server
processors handling memory-intensive workloads.
Serial interfaces. Several prior memory system proposals
leverage serial links for high-bandwidth, energy-efficient data
transfers. Micron’s HMC was connected to the host over 16
SerDes lanes, delivering up to 160GB/s [46]. Open Memory
Interface (OMI) is IBM’s high-bandwidth memory intercon-
nect leveraging serial links to connect DDR memory [10]
and is now part of the CXL Consortium. IBM’s Centaur is
a memory capacity expansion solution, where the host uses
OMI to connect to a buffer-on-board populated with several
DDR channels [59]. COAXIAL distinctly differs from Centaur-
like solutions, focusing on memory bandwidth—rather than
capacity—expansion. Additionally, given OMI’s very low la-
tency overhead of 10ns, latency optimizations have not been
considered in IBM’s products. We find that if CXL approaches
similarly low latency overhead in the future, COAXIAL would
gain massively, with 1.71⇥ average speedup (and up to 3.1⇥).
Moreover, combined with CALM (§IV-C), no workload would

experience a performance hit, as a 10ns latency premium can
be fully offset by removing the LLC from the critical path.

FBDIMM [19] leverages a similar concept to Centaur’s
buffer-on-board to increase memory bandwidth and capacity.
An “advanced memory buffer” is connected to the processor
over serial links, delivering pin abundance that enables mul-
tiple parallel interfaces to DRAM modules. Similar to CXL-
attached memory, FBDIMM’s drawback is increased latency.

Several proposed memory system architectures leverage
high-bandwidth serial interfaces. In MeSSOS, high-bandwidth
serial links connect to a DRAM cache, which is then chained
to planar DRAM over DDR [63]. Ham et al. propose “disin-
tegrated” memory controllers attached over SerDes to make
the memory system more modular and support heterogeneous
memory technologies [22]. Alloy combines parallel and serial
interfaces to access memory, maintaining the former for lower-
latency memory access [64]. Alloy’s approach is closer to the
hybrid DDR/CXL memory systems most ongoing CXL-related
research envisions than our proposal of fully replacing DDR
processor interfaces with CXL for memory-intensive servers.
Circuit-level techniques to boost memory bandwidth.

HBM [28] and die-stacked DRAM caches offer an order of
magnitude higher bandwidth than planar DRAM, but suffer
from limited capacity [27], [35], [48]. BOOM [65] buffers
outputs from multiple LPDDR ranks to reduce power and
sustain server-level performance, but offers modest gains due
to low-frequency LPDDR and limited bandwidth improve-
ment. Chen et al. [8] dynamically reallocate power pins to
boost data transfer capability from memory during memory-
intensive phases, during which processors are memory bound
and hence draw less power. Pal et al. [45] propose packageless
processors to mitigate pin limitations and boost the memory
bandwidth that can be routed to the processor. Unlike these
exotic technologies, we focus on conventional processors,
packaging, and commodity DRAM, aiming to reshape the
memory system of server processors by leveraging the widely
adopted up-and-coming CXL interconnect.
Other memory system optimizations. Transparent memory
compression techniques can increase effective memory band-
width [66]. Malladi et al. [36] leverage mobile LPDDR devices
to design a more energy-efficient memory system for servers
without performance loss. These works are orthogonal to
COAXIAL. Storage-class memory, like Phase-Change Mem-
ory [18] or Intel’s Optane [24], has attracted significant interest
as a way to boost a server’s memory capacity, triggering
research activity on transforming the memory hierarchy to best
accommodate such new memories [2], [14], [29], [61]. Unlike
our work, such systems often trade off bandwidth for capacity.

VIII. CONCLUSION

Technological trends motivate a server processor design
where all memory is attached to the processor over the emerg-
ing CXL interface instead of DDR. CXL’s superior bandwidth
per pin helps bandwidth-hungry manycore server processors
scale the bandwidth wall. By distributing memory requests

over 4⇥ more memory channels, CXL reduces detrimental
queuing effects on the memory bus. In addition, COAXIAL
leverages ample bandwidth availability to curb on-chip laten-
cies, via selective concurrent access of the LLC and memory.
By mitigating queuing and on-chip delays, COAXIAL more
than offsets the interface latency overhead introduced by CXL.
Our evaluation using a diverse range of workloads shows that
COAXIAL delivers 1.39⇥ speedup on average, and up to 3⇥.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and Marina Vemmou,
Hamed Seyedroudbari, Divya Kadiyala for their feedback and
suggestions that helped improve this paper. This research was
supported by NSF grant 2333049, an Intel research gift, a
CRNCH PhD Fellowship, and a generous donation of Azure
credits from Microsoft made available via GT Cloud Hub.

APPENDIX

Note about the paper’s artifact: The following artifact had
to be finalized before the paper’s camera-ready version and
Figures 6 and 9 were added after the artifact’s submission.
The data presented in these new figures can be acquired using
the same, unmodified artifact. However, a side-effect of the
addition is that figure numbers referenced in the artifact are
inconsistent: mentions to Figures 6 and 7 in the artifact refer
to the paper’s Figures 7 and 8; mentions to Figures 8 and 9
in the artifact refer to the paper’s Figures 10 and 11.

REFERENCES

[1] “ChampSim.” [Online]. Available: https://github.com/ChampSim/
ChampSim

[2] N. Agarwal and T. F. Wenisch, “Thermostat: Application-transparent
Page Management for Two-tiered Main Memory,” in Proceedings of
the 22nd International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS-XXII), 2017, pp.
631–644.

[3] M. Ahn, A. Chang, D. Lee, J. Gim, J. Kim, J. Jung, O. Rebholz, V. Pham,
K. T. Malladi, and Y.-S. Ki, “Enabling CXL Memory Expansion for
In-Memory Database Management Systems,” in Proceedings of the
18th International Workshop on Data Management on New Hardware
(DaMoN), 2022, pp. 8:1–8:5.

[4] R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee,
and V. Srinivas, “Cacti 7: New tools for interconnect exploration in
innovative off-chip memories,” ACM Transactions on Architecture and
Code Optimization (TACO), vol. 14, no. 2, pp. 1–25, 2017.

[5] M. Bichan, C. Ting, B. Zand, J. Wang, R. Shulyzki, J. Guthrie,
K. Tyshchenko, J. Zhao, A. Parsafar, E. Liu, A. Vatankhahghadim,
S. Sharifian, A. Tyshchenko, M. D. Vita, S. Rubab, S. Iyer, F. Spagna,
and N. Dolev, “A 32Gb/s NRZ 37dB SerDes in 10nm CMOS to Support
PCI Express Gen 5 Protocol,” in Proceedings of the 2020 IEEE Custom
Integrated Circuits Conference, 2020, pp. 1–4.

[6] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark
suite: characterization and architectural implications,” in Proceedings
of the 17th International Conference on Parallel Architecture and
Compilation Techniques (PACT), 2008, pp. 72–81.

[7] D. M. Brooks, P. Bose, S. Schuster, H. M. Jacobson, P. Kudva,
A. Buyuktosunoglu, J.-D. Wellman, V. V. Zyuban, M. Gupta, and
P. W. Cook, “Power-Aware Microarchitecture: Design and Modeling
Challenges for Next-Generation Microprocessors,” IEEE Micro, vol. 20,
no. 6, pp. 26–44, 2000.

[8] S. Chen, Y. Hu, Y. Zhang, L. Peng, J. Ardonne, S. Irving, and A. Sri-
vastava, “Increasing off-chip bandwidth in multi-core processors with
switchable pins,” in Proceedings of the 41st International Symposium
on Computer Architecture (ISCA), 2014, pp. 385–396.

[9] A. Cho and A. Daglis, “StarNUMA: Mitigating NUMA Challenges
with Memory Pooling,” in Proceedings of the 57th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2024.

[10] T. M. Coughlin and J. Handy, “Higher Performance and Capacity with
OMI Near Memory,” in Proceedings of the 2021 Annual Symposium on
High-Performance Interconnects, 2021, pp. 68–71.

[11] D. I. Cutress and A. Frumusanu, “Amd 3rd gen epyc milan review:
A peak vs per core performance balance,” 2021. [Online]. Available:
https://www.anandtech.com/show/16529/amd-epyc-milan-review

[12] CXL Consortium, “Compute Express Link (CXL) Spec-
ification, Revision 3.0, Version 1.0,” 2022. [On-
line]. Available: https://www.computeexpresslink.org/ files/ugd/
0c1418 1798ce97c1e6438fba818d760905e43a.pdf

[13] CXL Consortium, “Compute Express Link Consortium, Inc.
and CCIX Consortium, Inc. announce agreement for CXL
Consortium to receive CCIX Consortium Specifications and
other CCIX Consortium assets,” 2023. [Online]. Avail-
able: https://www.computeexpresslink.org/post/compute-express-link-
consortium-inc-and-ccix-consortium-inc-announce-agreement-for-cxl

[14] S. Dulloor, A. Roy, Z. Zhao, N. Sundaram, N. Satish, R. Sankaran,
J. Jackson, and K. Schwan, “Data tiering in heterogeneous memory
systems,” in Proceedings of the 2016 EuroSys Conference, 2016, pp.
15:1–15:16.

[15] EE Times, “CXL will absorb Gen-Z,” 2021. [Online]. Available:
https://www.eetimes.com/cxl-will-absorb-gen-z/

[16] Engineering at Meta, “ Introducing “Yosemite”:
the first open source modular chassis for high-
powered microservers,” 2015. [Online]. Available:
https://engineering.fb.com/2015/03/10/core-data/introducing-yosemite-
the-first-open-source-modular-chassis-for-high-powered-microservers/

[17] M. J. Flynn, P. Hung, and K. W. Rudd, “Deep submicron microprocessor
design issues,” IEEE Micro, vol. 19, no. 4, pp. 11–22, 1999.

[18] S. W. Fong, C. M. Neumann, and H.-S. P. Wong, “Phase-change mem-
ory—towards a storage-class memory,” IEEE Transactions on Electron
Devices, vol. 64, no. 11, pp. 4374–4385, 2017.

[19] B. Ganesh, A. Jaleel, D. Wang, and B. L. Jacob, “Fully-Buffered
DIMM Memory Architectures: Understanding Mechanisms, Overheads
and Scaling,” in Proceedings of the 13th IEEE Symposium on High-
Performance Computer Architecture (HPCA), 2007, pp. 109–120.

[20] Google Cloud, “Machine families resource and comparison guide.”
[Online]. Available: https://cloud.google.com/compute/docs/machine-
resource

[21] D. Gouk, S. Lee, M. Kwon, and M. Jung, “Direct Access, High-
Performance Memory Disaggregation with DirectCXL,” in Proceedings
of the 2022 USENIX Annual Technical Conference (ATC), 2022, pp.
287–294.

[22] T. J. Ham, B. K. Chelepalli, N. Xue, and B. C. Lee, “Disintegrated
control for energy-efficient and heterogeneous memory systems,” in Pro-
ceedings of the 19th IEEE Symposium on High-Performance Computer
Architecture (HPCA), 2013, pp. 424–435.

[23] K. M. Hazelwood, S. Bird, D. M. Brooks, S. Chintala, U. Diril,
D. Dzhulgakov, M. Fawzy, B. Jia, Y. Jia, A. Kalro, J. Law, K. Lee,
J. Lu, P. Noordhuis, M. Smelyanskiy, L. Xiong, and X. Wang, “Applied
Machine Learning at Facebook: A Datacenter Infrastructure Perspec-
tive,” in Proceedings of the 24th IEEE Symposium on High-Performance
Computer Architecture (HPCA), 2018, pp. 620–629.

[24] Intel Corporation, “Intel Optane DC Persistent Memory.” [Online].
Available: https://www.intel.com/content/www/us/en/products/memory-
storage/optane-dc-persistent-memory.html

[25] J. Jaffari, A. Ansari, and R. Beraha, “Systems and methods for a hybrid
parallel-serial memory access,” 2015, US Patent 9747038B2.

[26] JEDEC, “DDR5 SDRAM standard (JESD79-5B),” 2022.
[27] D. Jevdjic, S. Volos, and B. Falsafi, “Die-stacked DRAM caches for

servers: hit ratio, latency, or bandwidth? have it all with footprint cache,”
in Proceedings of the 40th International Symposium on Computer
Architecture (ISCA), 2013, pp. 404–415.

[28] J. Kim and Y. Kim, “HBM: Memory solution for bandwidth-hungry
processors,” in Hot Chips Symposium, 2014, pp. 1–24.

[29] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change
memory as a scalable dram alternative,” in Proceedings of the 36th
International Symposium on Computer Architecture (ISCA), 2009, pp.
2–13.

https://github.com/ChampSim/ChampSim
https://github.com/ChampSim/ChampSim
https://www.anandtech.com/show/16529/amd-epyc-milan-review
https://www.computeexpresslink.org/_files/ugd/0c1418_1798ce97c1e6438fba818d760905e43a.pdf
https://www.computeexpresslink.org/_files/ugd/0c1418_1798ce97c1e6438fba818d760905e43a.pdf
https://www.computeexpresslink.org/post/compute-express-link-consortium-inc-and-ccix-consortium-inc-announce-agreement-for-cxl
https://www.computeexpresslink.org/post/compute-express-link-consortium-inc-and-ccix-consortium-inc-announce-agreement-for-cxl
https://www.eetimes.com/cxl-will-absorb-gen-z/
https://engineering.fb.com/2015/03/10/core-data/introducing-yosemite-the-first-open-source-modular-chassis-for-high-powered-microservers/
https://engineering.fb.com/2015/03/10/core-data/introducing-yosemite-the-first-open-source-modular-chassis-for-high-powered-microservers/
https://cloud.google.com/compute/docs/machine-resource
https://cloud.google.com/compute/docs/machine-resource
https://www.intel.com/content/www/us/en/products/memory-storage/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/products/memory-storage/optane-dc-persistent-memory.html

[30] H. Li, D. S. Berger, S. Novakovic, L. Hsu, D. Ernst, P. Zardoshti,
M. Shah, S. Rajadnya, S. Lee, I. Agarwal, M. D. Hill, M. Fontoura,
and R. Bianchini, “Pond: CXL-Based Memory Pooling Systems for
Cloud Platforms,” Proceedings of the 28th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-XXVIII), 2023.

[31] S. Li, Z. Yang, D. Reddy, A. Srivastava, and B. L. Jacob, “DRAMsim3:
A Cycle-Accurate, Thermal-Capable DRAM Simulator,” IEEE Comput.
Archit. Lett., vol. 19, no. 2, pp. 110–113, 2020.

[32] K. T. Lim, J. Chang, T. N. Mudge, P. Ranganathan, S. K. Reinhardt,
and T. F. Wenisch, “Disaggregated memory for expansion and sharing
in blade servers,” in Proceedings of the 36th International Symposium
on Computer Architecture (ISCA), 2009, pp. 267–278.

[33] S. P. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inf.
Theory, vol. 28, no. 2, pp. 129–136, 1982.

[34] Locuza, “Die walkthrough: Alder Lake-S/P and a touch of
Zen 3,” 2022. [Online]. Available: https://locuza.substack.com/p/
die-walkthrough-alder-lake-sp-and

[35] G. H. Loh and M. D. Hill, “Efficiently enabling conventional block
sizes for very large die-stacked DRAM caches,” in Proceedings of the
44th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2011, pp. 454–464.

[36] K. T. Malladi, F. A. Nothaft, K. Periyathambi, B. C. Lee, C. Kozyrakis,
and M. Horowitz, “Towards energy-proportional datacenter memory
with mobile DRAM,” in Proceedings of the 39th International Sym-
posium on Computer Architecture (ISCA), 2012, pp. 37–48.

[37] Y. Mao, E. Kohler, and R. T. Morris, “Cache craftiness for fast multicore
key-value storage,” in Proceedings of the 2012 EuroSys Conference,
2012, pp. 183–196.

[38] H. A. Maruf, H. Wang, A. Dhanotia, J. Weiner, N. Agarwal, P. Bhat-
tacharya, C. Petersen, M. Chowdhury, S. O. Kanaujia, and P. Chauhan,
“TPP: Transparent Page Placement for CXL-Enabled Tiered Memory,”
Proceedings of the 28th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-
XXVIII), 2023.

[39] J. D. McCalpin, “Memory Bandwidth and Machine Balance in Cur-
rent High Performance Computers,” IEEE Computer Society Technical
Committee on Computer Architecture (TCCA) Newsletter, 1995.

[40] Micron Technology Inc., “DDR5 SDRAM Datasheet,” 2022.
[Online]. Available: https://media-www.micron.com/-/media/client/
global/documents/products/data-sheet/dram/ddr5/ddr5 sdram core.pdf

[41] Micron Technology Inc., “DDR5 32GB RDIMM
with 16Gb die Datasheet,” 2023. [Online]. Available:
https://media-www.micron.com/-/media/client/global/documents/
products/data-sheet/modules/rdimm/ddr5/mtc20f1045s1rc srx4
rdimm dierevg.pdf?rev=75f439eb3916453cb6032efec835ed24

[42] H. Mujtaba, “AMD EPYC Bergamo ‘Zen 4C’ CPUs Being
Deployed In 1H 2023 To Tackle Arm CPUs, Instinct
MI300 APU Back In Labs,” 2022. [Online]. Available:
https://wccftech.com/amd-epyc-bergamo-zen-4c-cpus-being-deployed-
in-1h-2023-tackle-arm-instinct-mi300-apu-back-in-labs/amp/

[43] H. Mujtaba, “Intel Granite Rapids & Sierra Forest Xeon
CPU Detailed In Avenue City Platform Leak: Up To 500W
TDP & 12-Channel DDR5,” 2023. [Online]. Available: https:
//wccftech.com/intel-granite-rapids-sierra-forest-xeon-cpu-detailed-in-
avenue-city-platform-leak-up-to-500w-tdp-12-channel-ddr5/

[44] B. Nitin, W. Randy, I. Shinichiro, F. Eiji, R. Shibata, S. Yumiko, and
O. Megumi, “DDR5 design challenges,” in 2018 IEEE 22nd Workshop
on Signal and Power Integrity (SPI), 2018, pp. 1–4.

[45] S. Pal, D. Petrisko, A. A. Bajwa, P. Gupta, S. S. Iyer, and R. Kumar,
“A Case for Packageless Processors,” in Proceedings of the 24th IEEE
Symposium on High-Performance Computer Architecture (HPCA), 2018,
pp. 466–479.

[46] J. T. Pawlowski, “Hybrid memory cube (HMC),” in Hot Chips Sympo-
sium, 2011, pp. 1–24.

[47] PLDA and AnalogX, “PLDA and AnalogX Announce Market-leading
CXL 2.0 Solution featuring Ultra-low Latency and Power,”
2021. [Online]. Available: https://www.businesswire.com/news/home/
20210602005484/en/PLDA-and-AnalogX-Announce-Market-leading-
CXL-2.0-Solution-featuring-Ultra-low-Latency-and-Power

[48] M. K. Qureshi and G. H. Loh, “Fundamental Latency Trade-off in
Architecting DRAM Caches: Outperforming Impractical SRAM-Tags

with a Simple and Practical Design,” in Proceedings of the 45th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2012, pp. 235–246.

[49] R. Rooney and N. Koyle, “Micron® DDR5 SDRAM: New Features,”
Micron Technology Inc., Tech. Rep, 2019.

[50] D. D. Sharma, “PCI Express® 6.0 Specification at 64.0 GT/s with PAM-
4 signaling: a low latency, high bandwidth, high reliability and cost-
effective interconnect,” in Proceedings of the 2020 Annual Symposium
on High-Performance Interconnects, 2020, pp. 1–8.

[51] D. D. Sharma, “Compute Express Link®: An open industry-standard in-
terconnect enabling heterogeneous data-centric computing,” in Proceed-
ings of the 2022 Annual Symposium on High-Performance Interconnects,
2022, pp. 5–12.

[52] J. Shun and G. E. Blelloch, “Ligra: a lightweight graph processing
framework for shared memory,” in Proceedings of the 18th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP), 2013, pp. 135–146.

[53] V. Srinivasan, D. M. Brooks, M. Gschwind, P. Bose, V. V. Zyuban, P. N.
Strenski, and P. G. Emma, “Optimizing pipelines for power and perfor-
mance,” in Proceedings of the 35th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2002, pp. 333–344.

[54] Standard Performance Evaluation Corporation, “SPEC CPU2017
Benchmark Suite.” [Online]. Available: http://www.spec.org/cpu2017/

[55] P. Stanley-Marbell, V. C. Cabezas, and R. P. Luijten, “Pinned to the
walls: impact of packaging and application properties on the memory
and power walls,” in Proceedings of the 2011 International Symposium
on Low Power Electronics and Design, 2011, pp. 51–56.

[56] StorageReview, “4th Gen AMD EPYC Review (AMD Genoa),”
2022. [Online]. Available: https://www.storagereview.com/review/4th-
gen-amd-epyc-review-amd-genoa

[57] Y. Sun, Y. Yuan, Z. Yu, R. Kuper, I. Jeong, R. Wang, and N. S.
Kim, “Demystifying CXL memory with genuine cxl-ready systems and
devices,” in Proceedings of the 56th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2023.

[58] TechPowerUp, “AMD ”Matisse” and ”Rome” IO Controller Dies
Mapped Out,” 2020. [Online]. Available: https://www.techpowerup.com/
266287/amd-matisse-and-rome-io-controller-dies-mapped-out

[59] The Next Platform, “IBM POWER Chips Blur the
Lines to Memory and Accelerators,” 2018. [Online].
Available: https://www.nextplatform.com/2018/08/28/ibm-
power-chips-blur-the-lines-to-memory-and-accelerators/#:⇠:text=
The%20Centaur%20memory%20adds%20about

[60] The Register, “CXL absorbs OpenCAPI on the road to interconnect
dominance,” 2022. [Online]. Available: https://www.theregister.com/
2022/08/02/cxl absorbs opencapi/

[61] D. Ustiugov, A. Daglis, J. Picorel, M. Sutherland, E. Bugnion, B. Falsafi,
and D. N. Pnevmatikatos, “Design guidelines for high-performance SCM
hierarchies,” in Proceedings of the 2018 International Symposium on
Memory Systems (MEMSYS), 2018, pp. 3–16.

[62] S. Volos, “Memory Systems and Interconnects for Scale-Out Servers,”
Ph.D. dissertation, EPFL, Switzerland, 2015.

[63] S. Volos, D. Jevdjic, B. Falsafi, and B. Grot, “Fat Caches for Scale-Out
Servers,” IEEE Micro, vol. 37, no. 2, pp. 90–103, 2017.

[64] H. Wang, C.-J. Park, G. Byun, J. H. Ahn, and N. S. Kim, “Alloy:
Parallel-serial memory channel architecture for single-chip heteroge-
neous processor systems,” in Proceedings of the 21st IEEE Symposium
on High-Performance Computer Architecture (HPCA), 2015, pp. 296–
308.

[65] D. H. Yoon, J. Chang, N. Muralimanohar, and P. Ranganathan, “BOOM:
Enabling mobile memory based low-power server DIMMs,” in Proceed-
ings of the 39th International Symposium on Computer Architecture
(ISCA), 2012, pp. 25–36.

[66] V. Young, S. Kariyappa, and M. K. Qureshi, “Enabling Transparent
Memory-Compression for Commodity Memory Systems,” in Proceed-
ings of the 25th IEEE Symposium on High-Performance Computer
Architecture (HPCA), 2019, pp. 570–581.

[67] Q. Zhu, S. Venkataraman, C. Ye, and A. Chandrasekhar, “Package
design challenges and optimizations in density efficient (Intel® Xeon®
processor D) SoC,” in 2016 IEEE Electrical Design of Advanced
Packaging and Systems (EDAPS), 2016.

https://locuza.substack.com/p/die-walkthrough-alder-lake-sp-and
https://locuza.substack.com/p/die-walkthrough-alder-lake-sp-and
https://media-www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr5/ddr5_sdram_core.pdf
https://media-www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr5/ddr5_sdram_core.pdf
https://media-www.micron.com/-/media/client/global/documents/products/data-sheet/modules/rdimm/ddr5/mtc20f1045s1rc_srx4_rdimm_dierevg.pdf?rev=75f439eb3916453cb6032efec835ed24
https://media-www.micron.com/-/media/client/global/documents/products/data-sheet/modules/rdimm/ddr5/mtc20f1045s1rc_srx4_rdimm_dierevg.pdf?rev=75f439eb3916453cb6032efec835ed24
https://media-www.micron.com/-/media/client/global/documents/products/data-sheet/modules/rdimm/ddr5/mtc20f1045s1rc_srx4_rdimm_dierevg.pdf?rev=75f439eb3916453cb6032efec835ed24
https://wccftech.com/amd-epyc-bergamo-zen-4c-cpus-being-deployed-in-1h-2023-tackle-arm-instinct-mi300-apu-back-in-labs/amp/
https://wccftech.com/amd-epyc-bergamo-zen-4c-cpus-being-deployed-in-1h-2023-tackle-arm-instinct-mi300-apu-back-in-labs/amp/
https://wccftech.com/intel-granite-rapids-sierra-forest-xeon-cpu-detailed-in-avenue-city-platform-leak-up-to-500w-tdp-12-channel-ddr5/
https://wccftech.com/intel-granite-rapids-sierra-forest-xeon-cpu-detailed-in-avenue-city-platform-leak-up-to-500w-tdp-12-channel-ddr5/
https://wccftech.com/intel-granite-rapids-sierra-forest-xeon-cpu-detailed-in-avenue-city-platform-leak-up-to-500w-tdp-12-channel-ddr5/
https://www.businesswire.com/news/home/20210602005484/en/PLDA-and-AnalogX-Announce-Market-leading-CXL-2.0-Solution-featuring-Ultra-low-Latency-and-Power
https://www.businesswire.com/news/home/20210602005484/en/PLDA-and-AnalogX-Announce-Market-leading-CXL-2.0-Solution-featuring-Ultra-low-Latency-and-Power
https://www.businesswire.com/news/home/20210602005484/en/PLDA-and-AnalogX-Announce-Market-leading-CXL-2.0-Solution-featuring-Ultra-low-Latency-and-Power
http://www.spec.org/cpu2017/
https://www.storagereview.com/review/4th-gen-amd-epyc-review-amd-genoa
https://www.storagereview.com/review/4th-gen-amd-epyc-review-amd-genoa
https://www.techpowerup.com/266287/amd-matisse-and-rome-io-controller-dies-mapped-out
https://www.techpowerup.com/266287/amd-matisse-and-rome-io-controller-dies-mapped-out
https://www.nextplatform.com/2018/08/28/ibm-power-chips-blur-the-lines-to-memory-and-accelerators/#:~:text=The%20Centaur%20memory%20adds%20about
https://www.nextplatform.com/2018/08/28/ibm-power-chips-blur-the-lines-to-memory-and-accelerators/#:~:text=The%20Centaur%20memory%20adds%20about
https://www.nextplatform.com/2018/08/28/ibm-power-chips-blur-the-lines-to-memory-and-accelerators/#:~:text=The%20Centaur%20memory%20adds%20about
https://www.theregister.com/2022/08/02/cxl_absorbs_opencapi/
https://www.theregister.com/2022/08/02/cxl_absorbs_opencapi/

Appendix: Artifact Description/Artifact Evaluation
Artifact Description (AD)

I. OVERVIEW OF CONTRIBUTIONS AND ARTIFACTS

A. Paper’s Main Contributions

The paper proposes CoaXiaL, a radical server architecture
redesign that replaces DDR memory interfaces with high-
bandwidth CXL. In the context of relating the artifact descrip-
tion, the relevant contribution is:

C1 Demonstrate that the performance of manycore
servers running bandwidth-heavy workloads can sig-
nificantly improve by replacing the conventional
DDR-based memory system with CoaXiaL, a care-
fully designed interface based memory system.

B. Computational Artifacts

A1 https://zenodo.org/doi/10.5281/zenodo.13329058

Artifact ID Contributions Related
Supported Paper Elements

A1 C1 Figures 5-9

II. ARTIFACT IDENTIFICATION

A. Computational Artifact A1

Relation To Contributions

The artifact consists of our Champsim-based simulation
infrastructure, and a set of run-dispatching and post-processing
scripts. All evaluation results (that are used to demonstrate
performance gain from CoaXiaL) are generated with this
artifact.

Expected Results

CoaXiaL will show significantly improved performance
over baseline DDR system by reducing contention at memory
controller from limited bandwidth.

Expected Reproduction Time (in Minutes)

Downloading traces might take a few hours (depends on
network bandwidth). Compiling the simulators takes less than
a minute per configuration, with 8 configurations. Each ex-
periment runs for about 6 hours on average, so recreating all
280 experiments requires 1,680 core-hours (approximately 1-
2 days on a 64-core server). Recreating the 70 representative
experiments requires about 420 core-hours (approximately 7
hours on a single 64-core server). Note that some experiments
can take up to 12 hours.

Artifact Setup (incl. Inputs)
1) Hardware dependencies: The artifact requires many-

core server(s) to run all configurations and workloads. There
are 280 simulations stemming from 8 configurations with 35
workloads. As all workloads can run in parallel, it would
take about 1-2 days of runtime on a 64-core server. The 70
representative simulations require about 6-12 hours of runtime
on a 64-core server (the rest are sensitivity studies). At least
4GB of memory per core is required.

2) Software dependencies: Compilation requires gcc/ g++,
cmake, and make. Launch scripts use Bash. Trace download
is streamlined using Megatools utility, although they can also
be downloaded using wget. The plotting scripts use Python
(specifically, matplotlib library).

3) Data sets: SPEC2017, LIGRA, and PARSEC workload
dynamic execution traces that are publicly accessible online.
Few additional traces taken for this work (STREAM, Masstree,
Kmeans) will also be uploaded to a public repo.

4) Installation: Please clone the repository (see URL in
Section I-B) and follow the step-by-step instructions available
in the README file.

Artifact Execution
The workflow setup includes downloading the execution

traces, cloning simulator repositories, compiling simulator bi-
naries, and making changes to run-scripts (either using helper-
scripts or manually) as required. Once set up, experiments
are launched in parallel (depending on compute resources).
Finally, the simulation results are parsed and graphs are plotted
to recreate relevant figures.

Artifact Analysis (incl. Outputs)
The artifact provides scripts to parse the simulation results

to derive the normalized IPC, weighted speedup, cache miss-
rate, or cache capacity loss metrics, as required. The relevant
commands are provided in the README. Note that coalescing
the data from different benchmarks into a single file is not
currently automated. The Python scripts plot the relevant
graphs. This artifact enables recreation of figures 5, 6, 7, 8,
and 9.

https://zenodo.org/doi/10.5281/zenodo.13329058

Artifact Evaluation (AE)
A. Computational Artifact A1

Artifact Setup (incl. Inputs)
Refer to Artifact Setup from Description. Installation guide

is in the anonymous repo - which needs to be downloaded and
unzipped for now.

Artifact Execution
Step by step guides are in the repo’s READMEs. Order of

execution is:
building
• Download availble traces (as per guided README.md)
• install(compile) DRAMSim3 - simply calling ’make’ is

usually all it takes.
• compile ChampSim

For compiling ChampSim, volunteer will have to update
PATHS to DRAMSim and input files as per their environment,
pointed in the README. Lines to be modified are tagged with
#SCAE

Running
Go to SCRIPTS directory.

• python3 runall.py
Before calling the script, volunteer must update file paths to
the Champsim directory and trace files, in champsim run.py
and runall.py. Lines to be modified are tagged with #SCAE.
champsim run.py launches a single simulation. runall.py finds
the traces and launches the Baseline and CoaXiaL run.

Collecting and Plotting Results
• collect stats.py finds IPC, memory latency and bandwidth

from the output files, and generates collected stats.csv
• generate pickles.py takes the csv file and generates .pkl

files to be used by plotting script
• plot all.py takes the .pkl files to plot the speedup and

difference in latency and bandwidth between baseline and
CoaXiaL across traces.

Artifact Analysis (incl. Outputs)
The execution flow should result in plots (.png, .pdf) of

the speedup and difference in latency and bandwidth between
baseline and CoaXiaL across traces(benchmarks). We’ve sim-
plified the plot (and the running/collecting process) for the
volunteers. The results may not be identical to the plots
presented in the submission, as for many benchmarks we take
the geometric mean of multiple runs from the same benchmark
into a single data point in the paper, but skip the step in this
automated process.

	Introduction
	Background
	Low-latency DDR-based Memory
	The High-bandwidth CXL Interconnect
	Scaling the Memory Bandwidth Wall with CXL
	CXL Latency Concerns

	Effective Memory Access Latency Breakdown
	The CoaXiaL Server Architecture
	Processor Pin Considerations
	Silicon Area Considerations
	Latency Mitigation via Concurrent LLC/Memory Access
	Additional Opportunities from CXL Standard Evolution
	CoaXiaL Benefits on Memory Capacity and Cost

	Evaluation Methodology
	Evaluation Results
	Main Results
	Effect of Concurrent Access of LLC and Memory (CALM)
	Alternative CoaXiaL Designs
	Sensitivity to CXL's Latency Overhead
	Sensitivity to Core Utilization
	Power Requirements and Energy Efficiency

	Related Work
	Conclusion
	Appendix
	References
	Overview of Contributions and Artifacts
	Paper's Main Contributions
	Computational Artifacts

	Artifact Identification
	Computational Artifact A1
	Hardware dependencies
	Software dependencies
	Data sets
	Installation

	Computational Artifact A1

