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ABSTRACT 26 

Background: Although the rate of emerging infectious diseases that originate in wildlife has 27 

been increasing globally in recent decades, there is currently a lack of epidemiological data 28 

from wild animals. 29 

Methodology: We used serology to determine prior exposure to foot-and-mouth disease virus 30 

(FMDV), Brucella spp., and Coxiella burnetii, and used genetic testing to detect blood-borne 31 

parasitic infections in the genera Ehrlichia, Anaplasma, Theileria and Babesia from wildlife in 32 

two national parks, Kruger National Park (KNP), South Africa and Etosha National Park (ENP), 33 

Namibia. Serum and whole blood samples were obtained from free-roaming plains zebra 34 

(Equus quagga), greater kudu (Tragelaphus strepsiceros), impala (Aepyceros melampus) and 35 

blue wildebeest (Connachaetes taurinus). Risk factors (host species, sex, sampling park) of 36 

infection for each pathogen were assessed, as well as the prevalence and distribution of co-37 

occurring infections. 38 

Results: In KNP, none of the 13/29 (45%; CI: 26-64%) kudu tested positive for FMD. For 39 

brucellosis, seropositive results were obtained for 3/29 (10%; CI: 2-27%) kudu samples. 40 

Antibodies against C. burnetii were detected in 6/29 (21%; CI: 8-40%) kudu, 14/21 (67%; CI: 41 

43-85%) impala and 18/39 (46%; CI: 30-63%) zebra. A total of 28/28 kudu tested positive for 42 

Theileria spp. (100%; CI: 88-100%) and 27/28 to Anaplasma/Ehrlichia spp. (96%; CI: 82-43 

100%) whereas 12/19 impalas (63%) and 2/39 zebra (5%) tested positive for Anaplasma 44 

centrale. In ENP, only 1/29 (3%; CI: 0-18%) wildebeest samples tested positive for FMD. None 45 

of the samples tested positive for brucellosis while C. burnetii antibodies were detected in 26/30 46 

wildebeest (87%; CI: 69-96%), 16/40 kudu (40%; CI: 25-57%) and 26/26 plains zebra (100%; 47 

CI: 87-100%). A total of 60% Anaplasma/Ehrlichia spp. and 35% Theileria/Babesia spp. in 48 

kudu; 37% wildebeest tested positive to Theileria sp. (sable), 30% to Babesia occultans, 3-7% 49 
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to Anaplasma spp. The seroprevalence of Q fever was significantly higher in ENP, while 50 

Brucella spp., Anaplasma, Ehrlichia, Theileria and Babesia species were significantly higher 51 

in KNP. Significant co-infections were also identified. 52 

Conclusion: This work provided baseline serological and molecular data on 40+ pathogens in 53 

four wildlife species from two national parks in southern Africa. 54 

Keywords: brucellosis, foot-and-mouth disease, wildlife disease, tick-borne disease, Q fever, 55 

epidemiology, zoonosis. 56 

INTRODUCTION 57 

Wildlife are often linked with emerging infectious diseases relevant to human and animal 58 

health, and are considered to be the source of 70% of zoonoses worldwide (1,2, USGS 2024). 59 

Several studies have highlighted the wide range of pathogens that wild animals may carry 60 

without necessarily showing overt clinical signs (3–9). Multiple endemic diseases (i.e. bovine 61 

tuberculosis, brucellosis, rabies, Ebola, leptospirosis) have been associated with a wildlife 62 

source, and their management imposes serious challenges at the wildlife/human interface (8–63 

15). As a result of increased mortality, reduced productivity, costs related to disease control, 64 

loss in trade, decreased market value, and food insecurity, wildlife-emerging diseases constitute 65 

an additional and important threat to the economy of the livestock industry (16,17). Moreover, 66 

many wildlife diseases have caused important decrease in endangered animal populations, 67 

affecting their conservation status (18). Most infectious diseases are still largely neglected in 68 

wildlife, especially those that are endemically persistent and do not cause obvious clinical signs 69 

or have long incubation period. 70 

In this study, we investigated the exposure to Foot-and-Mouth Disease Virus (FMDV), Brucella 71 

spp. and Coxiella burnetii, as well as infection with several tick-borne pathogens (Anaplasma, 72 

https://www.usgs.gov/mission-areas/ecosystems/news/usgs-one-health-approach-infectious-diseases-wildlife-and
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Ehrlichia, Theileria and Babesia spp.) in greater kudu (Tragelaphus strepsiceros), plains zebra 73 

(Equus quagga), impala (Aepyceros melampus) and blue wildebeest (Connachaetes taurinus) 74 

from two national parks namely Kruger National Park, South Africa, and Etosha National Park, 75 

Namibia. 76 

FMDV causes Foot-and-Mouth Disease (FMD), a World Organization for Animal Health listed 77 

disease that has been reported from more than 70 wildlife species (6, 19). FMD is endemic in 78 

various African countries (e.g. South Africa, Mozambique, Zimbabwe) and has a negative 79 

impact on the national economy of a disease-endemic setting, also having the potential to spread 80 

across boundaries (20). The circulation of FMDV in wildlife represents a significant burden on 81 

wildlife management and conservation of endangered species (21,22). In livestock animals, 82 

FMD primarily occurs in an acute form with fever, lameness, inappetence, and the formation 83 

of vesicles in and around the mouth and on the feet. Clinical signs are often severe in pigs, 84 

obvious in cattle and mild in sheep and goats (23). Clinical FMD in wildlife seems to be a rare 85 

event, but it can occasionally be devastating to some species of antelope as has been 86 

documented in South Africa in impala (Aepyceros melampus) (24) and in mountain gazelles 87 

(Gazella gazella) in Israel (25). 88 

Important subsets of infectious diseases that are neglected in wildlife include intracellular 89 

bacterial pathogens. Inter alia, Brucella spp. and C. burnetii cause important veterinary and 90 

zoonotic diseases worldwide. Brucellosis is a disease of great economic importance, especially 91 

for the livestock industry, causing significant production losses and impediments to trade and 92 

exportation (26). Brucellosis has been recorded in a wide range of African wildlife, but the 93 

effect of the disease in sylvatic settings has been largely ignored and understudied. The 94 

circulation of the pathogen in wildlife raises challenges for disease control and management. 95 

For instance, France was bovine brucellosis free since 2005 but experienced bovine and human 96 
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cases due to B. melitensis in 2012 in French Alps. The investigation identified spillover from 97 

wild Alpine ibex (Capra ibex) to domestic ruminants (27). Few serological tests have been 98 

validated for use in wild animal species. The standard indirect enzyme-linked immunosorbent 99 

assays (ELISAs) are designed to be specific to livestock species and thus limited for wildlife 100 

testing. As none of the serological tests are 100% sensitive and specific (28), the criteria for 101 

seropositive brucellosis diagnosis require two positive test results in series. 102 

Q fever is an emerging disease caused by bacterium C. burnetii which has a high impact on 103 

public health, animal health and economy. It is listed by WOAH as a multi-species disease of 104 

concern for its high zoonotic potential, worldwide distribution, airborne spread, persistent 105 

infection (potentially lifelong) and direct production losses for the dairy industry (abortions, 106 

dead or weak offspring, infertility, metritis). Coxiella burnetii is severely under-reported and 107 

under-appreciated throughout Africa (29,30), even though wildlife have been demonstrated to 108 

play an important role in Europe and elsewhere (31–33). 109 

Among the emergent threats, tick-borne pathogens (TBPs) have a great impact on animal and 110 

human health throughout the African continent (29,34). The epidemiology of ticks and TBPs is 111 

complex and multimodal such that environmental variables and contact among wildlife, 112 

livestock, and humans participate in the transmission dynamics of TBPs. Therefore, wildlife 113 

loss and climate changes may result in the increase of disease risk (35). Anaplasmataceae and 114 

Piroplasmida are two major taxa of obligate intracellular pathogens transmitted by blood-115 

sucking arthropods (especially ticks). Members of the family Anaplasmataceae are frequently 116 

reported in African wildlife, especially African buffalo (Syncerus caffer) and several antelope 117 

species (36–39). The most important tick-borne diseases affecting livestock in Africa are 118 

Theileria parva (East Coast fever, January disease and corridor disease), Ehrlichia ruminantium 119 

(heartwater), Anaplasma marginale (gallsickness), Theileria annulata (tropical theileriosis), 120 



 

 

6 

Babesia bovis and Babesia bigemina (Asiatic and African redwater, respectively) (40). 121 

Anaplasmosis, heartwater, theileriosis and babesiosis are known to cause 18% of reported cattle 122 

mortalities in South Africa (41). 123 

Kruger National Park (KNP) in South Africa is classified as an endemic zone for FMD and an 124 

infected zone for brucellosis and corridor disease, where sporadic outbreaks are reported 125 

(19,42). In contrast, Etosha National Park (ENP) is a protected, non-infected FMD zone with 126 

no brucellosis detected in wildlife. According to the systematic review performed by Simpson 127 

et al. (7), three prevalence studies have been conducted on Brucella spp. in Namibian wildlife, 128 

all of them reporting negative results although with small sample sizes i.e. 0/23 white rhinoceros 129 

(Ceratotherium simum) and 0/9 black rhinoceros (Diceros bicornis) from Waterberg National 130 

Park (43), 0/27 impala from ENP (44) and 0/122 farmed springbok (Antidorcas marsupialis) 131 

and gemsbok (Oryx gazella) (45). Only one publication investigated and reported the presence 132 

of C. burnetii in KNP wildlife i.e. in vervet monkeys (Chlorocebus pygerythrus) (46) with no 133 

investigations or reports on C. burnetii available from ENP, highlighting the lack of research 134 

on these diseases in South African wildlife. The two parks differ in many aspects with the main 135 

difference that might play a significant role in diseases is the presence of African buffalo in 136 

KNP. 137 

The objectives of this study were to (1) assess the presence/absence and estimate the prevalence 138 

of infection or serological prevalence of selected pathogens in four free-ranging wild animal 139 

species in KNP and ENP, (2) evaluate risk factors for infection, including animal species, sex, 140 

and sampling park, and (3) assess significance of co-infections and/or co-exposure to multiple 141 

pathogens.  142 
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MATERIALS AND METHODS 143 

Study design 144 

Whole blood and serum samples were collected during May 2018 to September 2019 from two 145 

national Parks, KNP and ENP, and the host species targeted in this study included free roaming 146 

greater kudu (n=72; 32 from KNP and 40 from ENP), plains zebra (n = 65; 39 from KNP and 147 

26 from ENP), impala (n=21 from KNP) and blue wildebeest (n=30 from ENP) (Figure 1). 148 

These samples were originally tested for the presence of antibodies against Bacillus anthracis 149 

(causal agent of anthrax) (47). The sample size was small due to budget constraints as the 150 

animals were chemically immobilized and collared to monitor their movement and exposure to 151 

B. anthracis in KNP and ENP (48). In the framework of the present work, the same samples 152 

were also screened using serology to detect FMDV, Brucella spp. and C. burnetii and DNA 153 

from blood using molecular reverse line blot method (RLB) to detect Anaplasma, Ehrlichia, 154 

Theileria and Babesia spp. 155 

Each animal was selected randomly from different herds. When working with wildlife, it is 156 

often infeasible to count each individual of the reference population so as to select a random 157 

sample, so we cannot exclude a selection bias. All animals were adults or sub-adults as was 158 

required for the collaring study. Each sample was assigned a unique identification number. 159 

Supplementary data on sampling date and GPS location were recorded. 160 
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 161 

Figure 1: Spatial distribution of serum and EDTA blood samples collected in Kruger National Park (on the 162 
right) and Etosha National Park (on the left). Color legend stratifies samples per animal species, including 163 
impala (Aepyceros melampus), plains zebra (Equus quagga), greater kudu (Tragelaphus strepsiceros) and 164 
blue wildebeest (Connachaetes taurinus). 165 

Study area 166 

Kruger National Park (KNP) is situated in the Limpopo and Mpumalanga provinces of South 167 

Africa. It is regarded as one of the largest and most important National Parks in Africa, hosting 168 

a total of 148 wild mammal species, including the big five (i.e. lion, leopard, elephant, rhino 169 

and buffalo), in a 19,485 km2 fenced conservation area situated in the FMD infected zone (49). 170 

Population estimates for the selected wildlife species in KNP include: 11,200-17,300 greater 171 

kudu, 132,300-176,400 impala, and 23,700-35,300 plains zebra (https://www.sanparks.org). 172 

Etosha National Park (ENP), also situated in the FMD protected zone (50), is an almost 23,000 173 

km2 wildlife reserve located in northern Namibia. ENP is home to 114 mammal species but it 174 

https://www.sanparks.org/
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is not considered a big five reserve as African buffaloes are not present in the park (51). Aerial 175 

estimates of selected wildlife include: 2,822-5,592 blue wildebeest, 11,338-17,126 plains zebra 176 

(51) and 394-580 greater kudu (52). 177 

Laboratory protocols 178 

Blood-borne parasite detection 179 

Pure-Link DNA extraction kit (Invitrogen, Germany) was used to extract DNA from 200 μl of 180 

each blood sample according to the manufacturer’s instructions and eluted in 100 μl of elution 181 

buffer. The RLB hybridization assay was performed as previously described (53–56) to detect 182 

Theileria, Babesia, Ehrlichia and Anaplasma species. Negative and known positive controls 183 

were included for each pathogen species. The probes included in the RLB membrane are listed 184 

in Table S1. 185 

Serological tests 186 

For serological screening, we employed commercially available ELISA kits produced by ID-187 

VET. The ID Screen FMD is a non-structural protein competitive ELISA (NSPCE) and was 188 

used for the detection of antibodies against the 3ABC proteins of FMDV. Similarly, the ID 189 

Screen Brucellosis Serum Indirect Multi-species ELISA was used to detect antibodies against 190 

the lipopolysaccharide (LPS) of smooth Brucella spp., while the ID Screen Q Fever Indirect 191 

Multi-species ELISA was used in the detection of antibodies against C. burnetii antigenic 192 

phases I and II. All the serum samples were run in duplicates and the coefficient of variation 193 

(%CV) was ensured to be less than 20% for all duplicates and less than 10% overall. FMDV 194 

SAT serotyping of NSPCE positive sera were tested by Agricultural Research Council – 195 

Onderstepoort Veterinary Institute (ARC-OVI), South Africa, and Central Veterinary 196 
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Laboratory in Namibia for all serotypes with a solid-phase cELISA (SPCE). SPCE is the official 197 

screening test in South Africa and Namibia. 198 

For Brucella spp., serum was first screened using Rose Bengal Test (RBT) obtained from 199 

Onderstepoort Biological Products (OBP) as per manufacturer’s instruction with the Brucella 200 

positive serum from OBP. Sera were analyzed using ID-VET Multi-species iELISA as per the 201 

manufacturer’s instructions. Negative RBT sera were tested with iELISA in pools of 10 animals 202 

grouped animal species. If positive reactions were obtained in the pools, the samples were re-203 

tested individually. Animals were confirmed seropositive only if positive to both RBT and 204 

iELISA due to the well documented problem of extensive serological cross-reactions with other 205 

bacteria (57). 206 

Data analysis and reporting 207 

Data were analyzed in R programming language (version 4.2.1) using the R studio IDE software 208 

(RStudio Team, 2021). To account for our small sample sizes, confidence intervals and 209 

hypothesis testing were estimated employing exact/non-parametric methods, and the results 210 

were interpreted with great caution. The 95% confidence intervals (CI) were calculated to 211 

measure variability and error of our estimated point prevalences by species. Because of small 212 

sample sizes, we opted for the more conservative Clopper Pearson method (58) using the R 213 

function “exactci” from the “PropCIs” package. 214 

To determine which infections were most likely to co-occur in hosts, we used the Spearman’s 215 

correlation coefficient (rs) using function “cor” (with method = “Spearman”) from package 216 

“stats” in R. Coefficient (rs) values from 0 to 0.25 or from 0 to -0.25 indicate absence of 217 

correlation, whereas values from 0.25 to 0.50 or from -0.25 to -0.50 point to poor correlation 218 

between variables; values ranging from 0.50 to 0.75 or -0.50 to -0.75 are regarded as moderate 219 
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to good correlation, and r values from 0.75 to 1 or from -0.75 to -1 indicate very good to 220 

excellent correlation between variables (59). This correlation was considered significant if the 221 

t Test for Spearman Rank Correlation indicated a p-value <0.05 under the null hypothesis of no 222 

correlation (58). When performing multiple comparisons, the family-wise error rate increases 223 

hence the probability of finding at least one false positive (Type I error) (60). To yield 224 

conservative results, p-values were adjusted using the Bonferroni correction in which the p-225 

values are multiplied by the number of comparisons (61). This was achieved by applying 226 

function “p.adjust” (method “bonferroni”) from package “stats”. 227 

To assess correlation between prevalence and independent variables (i.e. animal species, sex 228 

and sampling park), we employed the Chi-squared test. An alternative when the conditions for 229 

a chi squared test are not met (i.e. no cells with expected values < 1, and no more than 20% of 230 

cells with values < 5), is a Monte Carlo simulation (62) performed with the option 231 

“simulate.p.value = TRUE” in the function “chisq.test”. We set the number of replicates in the 232 

simulation of B = 2000. Again, p-values were adjusted using the Bonferroni correction and 233 

statistical level was set at α = 0.05. 234 

RESULTS 235 

A summary of the laboratory diagnostic results, including estimates and errors (95% confidence 236 

intervals) of prevalences in each animal species and park are reported in Table 1.237 
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Table 1: Seroprevalence of Foot-and-Mouth Disease Virus (FMDV), Brucella spp., and Coxiella burnetii, and prevalence of infection of 238 

Anaplasma, Ehrlichia, Theileria and Babesia species in blue wildebeest (Connachaetes taurinus), kudu (Tragelaphus strepsiceros), impala 239 

(Antidorcas marsupialis) and zebra (Equus quagga) from Kruger National Park, South Africa, and Etosha National Park, Namibia. Pathogens that 240 

have not been detected in any of the wildlife species are not included here. 241 

Pathogen species 
(DIagnostic) 

Positive/Tested = Prevalence 
[95% confidence interval] 

Blue wildebeest Greater kudu Impala Plains zebra 
Etosha National Park Etosha National Park Kruger National Park Kruger National Park Etosha National Park Kruger National Park 

Anaplasma/Ehrlichia spp. 

(RLB) 
18/30 = 60% 

[41-77%] 
24/40 = 60% 

[43-75%] 
27/28 = 96% 
[82-100%] 

19/19 = 100% 
[82-100%] 

4/17 = 24% 
[7-50%] 

28/39 = 72% 
[55-85%] 

Anaplasma bovis 

(RLB) 
1/30 = 3% 
[0-17%] 

0/40 = 0% 
[0-9%] 

6/28 = 21% 
[8-41%] 

0/19 = 0% 
[0-18%] 

0/17 = 0% 
[0-20%] 

0/39 = 0% 
[0-9%] 

Anaplasma centrale 

(RLB) 
2/30 = 7% 
[1-22%] 

0/40 = 0% 
[0-9%] 

0/28 = 0% 
[0-12%] 

12/19 = 63% 
[38-84%] 

0/17 = 0% 
[0-20%] 

2/39 = 5% 
[1-17%] 

Anaplasma platys 

(RLB) 
0/30 = 0% 
[0-12%] 

0/40 = 0% 
[0-9%] 

3/28 = 11% 
[2-28%] 

1/19 = 5% 
[0-26%] 

0/17 = 0% 
[0-20%] 

0/39 = 0% 
[0-9%] 

Anaplasma sp. (Omatjenne) 

(RLB) 
1/30 = 3% 
[0-17%] 

0/40 = 0% 
[0-9%] 

11/28 = 39% 
[22-59%] 

5/19 = 26% 
[9-51%] 

0/17 = 0% 
[0-20%] 

0/39 = 0% 
[0-9%] 

Ehrlichia ruminantium 

(RLB) 
0/30 = 0% 
[0-12%] 

0/40 = 0% 
[0-9%] 

0/28 = 0% 
[0-12%] 

0/19 = 0% 
[0-18%] 

0/17 = 0% 
[0-20%] 

2/39 = 5% 
[1-17%] 
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Pathogen species 
(DIagnostic) 

Positive/Tested = Prevalence 
[95% confidence interval] 

Blue wildebeest Greater kudu Impala Plains zebra 
Etosha National Park Etosha National Park Kruger National Park Kruger National Park Etosha National Park Kruger National Park 

Theileria/Babesia spp. 

(RLB) 

 

15/30 = 50% 
[31-69%] 

14/40 = 35% 
[21-52%] 

28/28 = 100% 
[88-100%] 

19/19 = 100% 
[82-100%] 

14/17 = 82% 
[57-96%] 

38/39 = 97% 
[87-100%] 

Babesia spp. (1) 

(RLB) 
1/30 = 3% 
[0-17%] 

0/40 = 0% 
[0-9%] 

0/28 = 0% 
[0-12%] 

0/19 = 0% 
[0-18%] 

8/17 = 47% 
[23-72%] 

37/39 = 95% 
[83-99%] 

Babesia occultans 

(RLB) 
9/30 = 30% 

[15-49%] 
0/40 = 0% 

[0-9%] 
0/28 = 0% 
[0-12%] 

0/19 = 0% 
[0-18%] 

0/17 = 0% 
[0-20%] 

0/39 = 0% 
[0-9%] 

Brucella spp. 

(RBT and iELISA) 
0/29 = 0% 
[0-12%] 

0/40 = 0% 
[0-9%] 

3/29 = 10% 
[2-27%] 

0/21 = 0% 
[0-16%] 

0/25 = 0% 
[0-14%] 

0/35 = 0% 
[0-10%] 

Coxiella burnetii 

(iELISA) 
26/30 = 87% 

[69-96%] 
16/40 = 40% 

[25-57%] 
6/29 = 21% 

[8-40%] 
14/21 = 67% 

[43-85%] 
26/26 = 100% 

[87-100%] 
18/39 = 46% 

[30-63%] 

Foot-and-mouth disease virus 

(NSPCE) 
1/29 = 3%* 

[0-18%] 
0/40 = 0% 

[0-9%] 
13/29 = 45%* 

[26-64%] 
0/21 = 0% 
[0-16%] Not tested Not tested 

Theileria spp. 

(RLB) 
10/30 = 33% 

[17-53%] 
0/40 = 0% 

[0-9%] 
27/28 = 96% 
[82-100%] 

19/19 = 100% 
[82-100%] 

7/17 = 41% 
[18-67%] 

33/39 = 85% 
[69-94%] 

Theileria bicornis 

(RLB) 
0/30 = 0% 
[0-12%] 

0/40 = 0% 
[0-9%] 

27/28 = 96% 
[82-100%] 

19/19 = 100% 
[82-100%] 

0/17 = 0% 
[0-20%] 

1/39 = 3% 
[0-13%] 

Theileria buffeli 

(RLB) 
0/30 = 0% 
[0-12%] 

0/40 = 0% 
[0-9%] 

27/28 = 96% 
[82-100%] 

19/19 = 100% 
[82-100%] 

0/17 = 0% 
[0-20%] 

1/39 = 3% 
[0-13%] 
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Pathogen species 
(DIagnostic) 

Positive/Tested = Prevalence 
[95% confidence interval] 

Blue wildebeest Greater kudu Impala Plains zebra 
Etosha National Park Etosha National Park Kruger National Park Kruger National Park Etosha National Park Kruger National Park 

Theileria equi 

(RLB) 
0/30 = 0% 
[0-12%] 

0/40 = 0% 
[0-9%] 

0/28 = 0% 
[0-12%] 

0/19 = 0% 
[0-18%] 

1/17 = 6% 
[0-29%] 

1/39 = 3% 
[0-13%] 

Theileria sp. (kudu) 

(RLB) 
0/30 = 0% 
[0-12%] 

0/40 = 0% 
[0-9%] 

27/28 = 96% 
[82-100%] 

0/19 = 0% 
[0-18%] 

0/17 = 0% 
[0-20%] 

0/39 = 0% 
[0-9%] 

Theileria sp. (sable) 

(RLB) 
11/30 = 37% 

[20-56%] 
0/40 = 0% 

[0-9%] 
25/28 = 89% 

[72-98%] 
5/19 = 26% 

[9-51%] 
0/17 = 0% 
[0-20%] 

0/39 = 0% 
[0-9%] 

Theileria taurotragi 

(RLB) 
0/30 = 0% 
[0-12%] 

0/40 = 0% 
[0-9%] 

27/28 = 96% 
[82-100%] 

0/19 = 0% 
[0-18%] 

0/17 = 0% 
[0-20%] 

0/39 = 0% 
[0-9%] 

RLB = Reverse Line Blot; RBT = Rose Bengal Test; iELISA = indirect ELISA; NSPCE = non-structural protein competitive ELISA. * A subset 242 

of samples positive for Foot-and-Mouth Disease Virus (FMDV) based on NSPCE were tested for confirmation based on structural protein 243 

competitive ELISA (SPCE). All of these were negative by SPCE, including the wildebeest in Etosha and 4 kudu from KNP.244 
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The NSP-cELISA for FMDV detected antibody in the sera of 13 greater kudu samples (40.6%; 245 

13/32) from KNP, 12 of which had high titres (i.e. 10 < SN < 30; Supplementary Figure S1; 246 

Table 1). These animals were sampled during October 2018, mostly in the northern area of 247 

KNP. Only four of the 12 FMDV positive kudu samples were tested with SPCE ELISA due to 248 

financial constraints, none of which could be serotyped and thus interpreted as negative by 249 

SPCE. In ENP, only one blue wildebeest (3.3%; 1/30), sampled near Ozonjuitji m’Bbari 250 

(Central ENP) in July 2018, tested weakly positive using the NSP-cELISA for FMDV, but 251 

tested negative using SPCE. 252 

For Brucella spp., the first serological screening with RBT indicated four clear positive sera 253 

(three kudu and one zebra from KNP), and an additional five (two kudu and one zebra from 254 

KNP, and two wildebeest from ENP) were regarded as suspect due to a faint positive reaction. 255 

At the second testing with the commercial Brucella spp. iELISA seven animals tested positive 256 

and one suspect. From KNP, 3/29 kudu (10%) tested positive using both serological techniques 257 

and were thus considered as confirmed seropositive. Additionally, eight greater kudu (28%; 258 

8/29), one impala (5%; 1/21) and three plains zebra (9%; 3/35) tested positive using either the 259 

RBT or iELISA assay and were regarded as negative results. The brucellosis positive animals 260 

originate from KNP and were sampled mostly in the northern part of KNP. No animals in ENP 261 

were positive for Brucella spp. 262 

A summary of C. burnetii serology is reported in Table 1. As a general trend, the prevalence of 263 

antibodies against C. burnetii in all samples collected from ENP (71%) was much higher than 264 

those collected from KNP (43%). We also report the presence of several strong reactions i.e. 265 

high iELISA titers in most individuals (Supplementary Figure S1). 266 

We investigated co-infection and co-exposure to the different pathogens (Figure Figure 2). We 267 

highlight that in kudu from KNP, T. buffeli, T. bicornis, Theileria sp. (sable) and Theileria sp. 268 
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(kudu) occurred almost always together. In zebra from KNP, T. bicornis and T. buffeli occurred 269 

always together and were positively correlated with A. centrale (p < 0.001; rs = 0.7) but 270 

negatively correlated to Babesia spp (p < 0.001; rs = -0.7). On the other hand, in zebra from 271 

ENP positivity to the Theileria spp. probe was positively correlated to the Babesia spp. (1) 272 

probe ((p < 0.001; rs = 0.87). In impala from KNP, infection with A. centrale was negatively 273 

correlated to infection with Anaplasma sp. (Omatjenne) (p < 0.001; rs = -0.78). In wildebeest 274 

from ENP, B. occultans infected animals were almost always co-infected with Theileria sp. 275 

(sable). Interestingly, one kudu from KNP (ID: TS-E-10, female, adult, sampled in KNP) bore 276 

most infections/exposures at the same time, as it was seropositive to FMDV, Brucella spp. and 277 

C. burnetii, and co-infected with A. platys, Anaplasma sp. (Omatjenne), T. bicornis, T. buffeli, 278 

Theileria sp. (kudu), Theileria sp. (sable) and T. taurotragi.  According to the Pearson’s Chi-279 

squared test (with Monte-Carlo replicates), the variables “Sampling Park” and “Animal 280 

species” were the most associated with pathogen prevalence and seroprevalence (Table 2). 281 
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 282 

Figure 2: Correlation matrix representing correlation coefficients for concurrence of pathogen 283 
infection/exposure in kudu (Tragelaphus strepsiceros) (A-B), zebra (Equus quagga) (C-D), 284 
impala (Antidorcas marsupialis) (E) and wildebeest (Connachaetes taurinus) (F) from Kruger 285 
National Park (left panel) and Etosha National Park (right panel). Blue squares indicate positive 286 
correlation, red squares indicate negative correlation. Color intensity indicates strength of 287 
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correlation. Asterisks indicate significant correlation: *** = p-value <0.001; ** = p-value < 0.01; 288 
* = p-value < 0.05. P-values were adjusted with Bonferroni correction. 289 

Table 2: Sample sizes, Bonferroni corrected p-values and X2 values of Pearson's Chi-squared 290 

test with Monte Carlo simulation where prevalence has been used as outcome variable. 291 

Significant p-values are displayed in bold. 292 

Pathogen (sample size) 
Bonferroni corrected p-values (X2 values) 

Animal species Sex Sampling Park 

Anaplasma bovis (173) 1 (7.2) 1 (1) 1 (3.8) 

Anaplasma centrale (173) < 0.001 (75.1) 1 (0.6) 0.152 (10.1) 

Anaplasma platys (173) 1 (4.1) 1 (0) 1 (4.1) 

Anaplasma sp. (Omatjenne) (173) 0.076 (16.5) 1 (0) < 0.001 (14.9) 

Babesia occultans (173) < 0.001 (45.3) 1 (0.7) 0.38 (9.4) 

Babesia spp. (1) (173) < 0.001 (122.8) 1 (1.5) < 0.001 (23.7) 

Ehrlichia ruminantium (173) 1 (4.2) 1 (2.3) 1 (2) 

Ehrlichia/Anaplasma spp. (173) 0.304 (14.6) 1 (0.4) < 0.001 (22.4) 

Theileria bicornis (173) < 0.001 (85.8) 1 (0.1) < 0.001 (65.3) 

Theileria buffeli (173) < 0.001 (85.8) 1 (0.1) < 0.001 (65.3) 

Theileria equi (173) 1 (4.2) 1 (0) 1 (0) 

Theileria sp. (kudu) (173) < 0.001 (49.4) 1 (0) < 0.001 (32.4) 

Theileria sp. (sable) (173) < 0.001 (26.7) 1 (0) 0.076 (11.8) 

Theileria spp. (173) < 0.001 (33.8) 1 (1.5) < 0.001 (91.6) 

Theileria taurotragi (173) < 0.001 (49.4) 1 (0) < 0.001 (32.4) 

Theileria/Babesia spp. (173) < 0.001 (31.3) 1 (1.9) < 0.001 (54.9) 

Brucella spp. (179) 1 (4.9) 1 (0.3) 1 (3.4) 

Coxiella burnetii (183) < 0.001 (32.4) 1 (1.7) 0.076 (14.9) 

Foot-and-Mouth Disease Virus (111) 1 (8.1) 1 (0.3) < 0.001 (16.8) 

 293 
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DISCUSSION 294 

This study established baseline data of infection with tick borne diseases as well as exposure to 295 

FMD, coxiellosis and brucellosis in four wild animal species in two national parks. Laboratory 296 

analysis revealed very high prevalence (70-100%) of Theileria/Babesia and 297 

Anaplasma/Ehrlichia spp. infection in kudu, impala and zebra from KNP. Moreover, most or 298 

even all of the zebra and wildebeest sampled in ENP were seropositive for Q fever. Indeed, the 299 

seroprevalence of Q fever was found to be significantly higher in ENP while Brucella spp., 300 

Anaplasma, Ehrlichia, Theileria and Babesia species were significantly higher in KNP. 301 

Anaplasma/Ehrlichia and Theileria/Babesia prevalences are higher in 302 

KNP compared to ENP 303 

As highlighted by the comparison of the 95% CI and the chi-square statistics, infection 304 

prevalences of Anaplasma/Ehrlichia and Theileria/Babesia genera were significantly higher in 305 

KNP compared to ENP in both kudu and zebra. This may be due to the relative diversity and 306 

abundance of ticks inhabiting the parks. Indeed, the prevalence of tick infestation in ENP 307 

wildlife is reportedly well below those reported in other parts of southern Africa (63–65). Tick 308 

distribution and ultimately the survival of pathogens in ticks and animal hosts are, in turn, 309 

affected by abiotic factors. Indeed, hot dry conditions and desiccating winds adversely affect 310 

the population of questing ticks by imposing mortality on unfed ticks (66). Moisture-related 311 

indices significantly affect the presence of ticks and TBDs, with wetter conditions almost 312 

always beneficial (66). ENP is located in a semi-arid region of Namibia characterized by a large 313 

salt pan, which may be dry for extended periods of the year, especially during the dry season 314 

(67). On the other hand, KNP is situated in northeastern South Africa and has a more diverse 315 

climate with a greater availability of water throughout the year compared to ENP. Overall, ENP 316 

is considerably drier than KNP and therefore a less suitable region than KNP for tick 317 
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proliferation, infestation and transmission of TBDs. For instance, Amblyomma hebraeum, 318 

Amblyomma variegatum (vectors of Ehrlichia ruminantium), Rhipicephalus decoloratus 319 

(vector of Babesia bigemina and Anaplasma marginale), Rhipicephalus appendiculatus (vector 320 

of Theileria parva and Anaplasma bovis) are present mainly or only in KNP, whereas 321 

Hyalomma rufipes (vector of Babesia occultans), Hyalomma truncatum (vector of several 322 

Anaplasma/Ehrlichia spp.) and Rhipicephalus evertsi (vector of T. equi and B.caballi) are found 323 

in both parks (68–70). 324 

High prevalence and co-infection of Theileria spp. in kudu and impala 325 

from KNP 326 

In the present study, we report extremely high prevalence of T. buffeli and T. bicornis in 27/28 327 

kudu (96%; CI: 82-100%) and 19/19 impala (100%; CI: 82-100%) from KNP. In addition, in 328 

KNP kudu, there was high prevalence (90-100%) and significantly associated co-infections of 329 

pathogens from the genera Theileria, including T. taurotragi, T. buffeli, Theileria sp. (kudu) 330 

and Theileria sp. (sable) (Table 1). Theileria spp. (sable) was also detected in 5/19 impala (26%; 331 

CI: 9-51%) from KNP. None of the 40 kudu from ENP tested positive for any of the tested 332 

Theileria species. 333 

Theileria taurotragi and T. buffeli are “schizont non transforming” Theileria spp. and therefore 334 

classified as benign parasites, with rare clinical signs that mainly occur due to piroplasm-335 

induced acute hemolytic anemia (71). Indeed, T. taurotragi caused bovine cerebral theileriosis 336 

in young African shorthorn cattle (71) and theileriosis in eland (Tragelaphus oryx) (71). 337 

Theileria sp. (sable) and Theileria sp. (kudu) (56) are regarded as pathogenic species in African 338 

wild artiodactyls. Mortalities in roan antelope (Hippotragus equinus) due to Theileria sp. 339 

(Sable) have been reported after translocation (56). Infection with Theileria sp. (sable) 340 
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negatively affects attempts to establish breeding herds and reintroduction efforts into the wild 341 

due to calf mortalities (72). Theileria bicornis has not been found to cause mortality but has 342 

been reported in free-ranging white and black rhinoceroses in South Africa and Kenya 343 

(55,73,74), as well as from apparently healthy nyalas (Tragelaphus angasii), (75), impalas, 344 

eland (Taurotragus oryx) and sable antelope (Hippotragus niger) in South Africa (76). The very 345 

high T. bicornis prevalences obtained in this study in kudu and impala from KNP (Table 1) 346 

might raise concerns for the rhino populations as they are already suffering from poaching and 347 

stress induced by unavoidable translocations (77,78). 348 

Further studies may assist in determinating the health effects of the above-mentioned Theileria 349 

infections in wildlife species. Co-infections may alter virulence of pathogens and subsequent 350 

disease outcomes in the hosts (79–81). As a general rule, co-infections may lead to worse health 351 

outcomes for hosts and increase within host pathogen titers, altering transmission ecologies. 352 

Nevertheless, the impact on animal fitness due to coinfections between pathogenic and benign 353 

Theileria species appears to be intricate. For instance, apathogenic T. mutans and T. velifera 354 

seem to protect cattle from the detrimental consequences of T. parva infection (82). This could 355 

also be our case, with the benign T. taurotragi, T. bicornis, T. buffeli protecting wild antelopes 356 

from the adverse effects of pathogenic Theileria sp. (sable) and Theileria sp. (kudu), but this 357 

hypothesis needs further investigation. The occurrence and effects of co-infection of multiple 358 

pathogen species within wildlife populations remains largely unknown. Indeed, understanding 359 

dynamics of co-infection or co-exposure to different pathogens are useful in improving our 360 

knowledge of pathogen epidemiology in wildlife and in the development of risk models for 361 

diseases in various epidemiological contexts. 362 
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Anaplasma centrale in impala and zebra from KNP and wildebeest from 363 

ENP 364 

Anaplasma centrale and A. marginale are closely related species that cause bovine 365 

anaplasmosis in cattle (83). Anaplasma centrale is known to be less pathogenic than A. 366 

marginale in domestic animals as it induces a low degree of anaemia, with rare clinical 367 

outbreaks (84) but it confers immunity against infection by A. marginale. Nonetheless, a clinical 368 

case of bovine anaplasmosis caused by A. centrale was reported in Europe in 2008 (85). 369 

Anaplasma centrale seems to be largely subclinical in wildlife (38) where it occurs with 370 

moderate prevalences (10 to 30%), especially in African buffalo, impala, eland, waterbuck 371 

(Kobus ellipsiprymnus), blue and black wildebeest (Connachaetes gnou) (37–39,76,86). These 372 

wild animal species may be able to maintain A. centrale much more efficiently than tick vectors. 373 

In fact, although experimental transmission of A. centrale by ticks (e.g. Rhipicephalus simus, 374 

Dermacentor andersoni) has been proven (87,88), secretion of this pathogen into tick saliva 375 

occurs at a much lower rate than A. marginale and, hence, transmission is achieved only when 376 

tick numbers are dramatically increased to compensate for the low pathogen load (88). In 377 

addition, A. centrale prevalence in ticks is very low in all tick species considered (89), making 378 

them an inefficient reservoir for A. centrale. In support of this hypothesis, we report infection 379 

with A. centrale in 12 impalas (63%; 12/19) and two zebra (5%; 2/39) from KNP, and in two 380 

wildebeest (7%; 2/30) from ENP. The occurrence of A. centrale in impala from KNP is not 381 

surprising as the pathogen was already reported in the same species and in buffalo, black 382 

wildebeest, common eland and waterbuck from South Africa (37–39,76,86), while the 383 

occurrence of A. centrale in zebra from KNP and wildebeest from ENP is a new finding that 384 

sheds light on the geographic and host range of the pathogen. 385 
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Anaplasma platys in kudu and impala from KNP 386 

Anaplasma platys is the etiologic agent of thrombocytic anaplasmosis in dogs and is the only 387 

recognized Rickettsiales species known to infect platelets (90). After the first description, A. 388 

platys has been reported worldwide, including the Americas, Eurasia, Africa, and Australia, 389 

mainly in tropical and subtropical areas (91–93). For a long time, A. platys was considered only 390 

a canine pathogen, but a wider host tropism for A. platys has been demonstrated in recent 391 

decades. Cases of A. platys infection have been reported in cats, goats, cattle, Bactrian camels 392 

(Camelus bactrianus), red deer (Cervus elaphus), sika deer (Cervus nippon) and sable antelope 393 

(94–101). Occurrences in atypical hosts have been attributed to A. platys-like bacteria 394 

(102,103). However, A. platys-like species cannot be distinguished from A. platys based on 16S 395 

rRNA as they are very closely related. These A. platys-like species in atypical hosts are 396 

considered the probable cause of human infections (104), with clinical signs varying from 397 

chronic and nonspecific, including headaches and muscle pains (105) to migraines and seizures 398 

due to mixed A. platys, Bartonella henselae, and “Candidatus Mycoplasma haematoparvum” 399 

infection (106). 400 

Rhipicephalus sanguineus is considered the primary vector for A. platys (98,107,108) which 401 

rarely infests impala and kudu. The agent has also been detected in Haemaphysalis longicornis 402 

and Ixodes persulcatus in Korea, Rhipicephalus turanicus in Israel, and Rhipicephalus spp. in 403 

China (98,109–111). 404 

Here, we found three kudu (11%; 3/28) and one impala (5%; 1/19) positive to A. platys by 405 

means of RLB hybridization. Given the limited information available on A. platys infections in 406 

Africa, it is of particular interest to understand the sylvatic cycle of A. platys in kudu and impala 407 

and which tick vector (if any) is involved in pathogen transmission. 408 
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Babesia occultans in wildebeest from ENP 409 

Babesia occultans is considered less pathogenic than other Babesia species (112). Observable 410 

clinical signs due to infection with B. occultans in cows include anorexia, weakness, fever (≤ 411 

40 °C), anaemia, and pale mucous membranes. However, unlike B. bigemina, B. bovis, and B. 412 

divergens infections, no jaundice, hemoglobinuria, gastrointestinal disorders, and nervous 413 

symptoms have been found in cows infected with B. occultans (113,114). 414 

In this study, we identified nine B. occultans positive wildebeest (30%; 9/30). Since its clinical 415 

signs are nearly identical to those of piroplasm infections, it is important for local animal health 416 

officers and veterinarians to acknowledge the presence of the pathogen and consider it in 417 

diagnoses and treatment strategies. 418 

Ehrlichia ruminantium in KNP zebra 419 

Reports of E. ruminantium in African non-ruminant wildlife are rare and controversial. For 420 

instance, E. ruminantium-like colonies were detected in brain endothelial cells of a Nigerian 421 

African elephant (Loxodonta africana) that reportedly died of anthrax (115). This report 422 

requires verification due to the unusual nature of the case and the possible presence of pathogens 423 

similar to E. ruminantium. Black and white rhinoceroses from Zimbabwe tested serologically 424 

positive to E. ruminantium using a MAP1 competitive ELISA (116). However, this technique 425 

is known to cross-react with other Anaplasmataceae (117) and, therefore, no confirmation can 426 

be drawn from these findings. 427 

In our study, two plains zebra from KNP tested positive to E. ruminantium with RLB. The 428 

occurrence of the pathogen in a wild equid could be most likely incidental, but it may still be 429 

of epidemiological importance to understand the source of infection and transmission 430 
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dynamics, for which further molecular characterization of the pathogen may provide significant 431 

insights. 432 

Seropositivity to FMDV in greater kudu in KNP 433 

A total of 13 greater kudu (41%; 13/32) from KNP sampled in October 2018, South Africa, 434 

were found seropositive to FMD by means of NSPCE. While natural infection with FMD has 435 

already been reported in greater kudu from Botswana by means of reverse-transcriptase PCR 436 

(118,119), the present study represents the first report of FMD based on NSPCE in greater kudu 437 

in South Africa using serology. This test has not been validated for wildlife. Risk factor analysis 438 

(Table 2) indicates that greater kudu has significantly higher prevalence of FMD among the 439 

affected animal species investigated. The location (sampling park) was a significant predictor 440 

of infection. Antibodies against 3ABC complex of FMDV can be detected in a window of 441 

between 1 week to 6 months after exposure to the pathogen (120). These observations point to 442 

circulation of FMD in kudu population from the northern area of KNP that were exposed to the 443 

pathogen anytime during April-October 2018. Interestingly, this event might have occurred in 444 

proximity and just a few months before the January 2019 outbreak in Vhembe district, 445 

Limpopo, South Africa in cattle. Greater kudu has been reported to shed the virus up to 160 446 

days after experimental infection, more than any other African non-buffalo bovid (“antelope”), 447 

and clinical signs have been reported from this species without mortality (118,119,121). 448 

Nonetheless, the role of kudu in maintaining and spreading FMDV is still to be investigated 449 

and clarified. This report underscores the importance of further investigation into the role of 450 

kudu in the epidemiology of FMD in Kruger National Park and validation of FMD serological 451 

tests for wildlife. The lack of seropositive kudu from ENP- – where buffalo populations are 452 

absent – may indicate that the source of infection for kudu in KNP was most likely the contact 453 

with FMD-infected buffaloes. As highlighted by Thomson et al. (19) and Hargreaves et al. 454 
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(122), antelope species (like kudu and impala) infected through contact with buffalo herds 455 

within the park, have the potential to jump over the fences and transmit the virus to the cattle 456 

living in adjacent communal farms. SPCE is the official screening test in South Africa and 457 

Namibia for livestock, which is not validated for wildlife. In this study, the SPCE for SAT-1, 2 458 

and 3 was negative in KNP and all serotypes in ENP. However, to our knowledge this work 459 

represents the first attempt of FMD SAT serotyping in African non-buffalo species by SPCE 460 

(6); hence the sensitivity of the technique in these animals is not known as there has been no 461 

report, to our knowledge of SPCE for SAT in kudu and wildebeest. SPCE is serotype specific 462 

meaning that it targets the structural proteins whose aminoacidic variability is per definition the 463 

highest among all viral proteins (119). Antigenic variation is considered more common in wild 464 

animal populations, due to repeated exposure and immune selective pressure of a highly diverse 465 

population of infected host species (120,121). The strains of the serotypes (SAT1-2-3) coated 466 

to the plate of the SPCE may be significantly different than the ones circulating in KNP wildlife, 467 

as the SPCE is validated for livestock animals. Hence the sensitivity of the SPCE might be 468 

mildly to markedly lower than the NSPCE, which on the other hand targets a highly conserved 469 

component of the FMDV capsid i.e. the 3ABC complex. Alternatively, positive reactions in 470 

kudu by NSPCE might be considered as false positive results, although this is very unlikely due 471 

to the high specificity of the test (>99%) which does not depend on a species-specific conjugate 472 

(being a competitive ELISA), and also due to the high titres observed in 12 kudu from KNP 473 

(38%; 12/32). Additional research and characterization (using VNT or other tests) are strongly 474 

expected to shed light on this phenomenon and could be investigated in the future using 475 

available samples. 476 
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Seropositivity to FMDV in a blue wildebeest from Etosha National Park 477 

One blue wildebeest (CT05, male, adult; 3%; 1/30) from Etosha National Park, Namibia, was 478 

found seropositive for FMD by means of NSPCE but seronegative using SPCE. This finding 479 

has to be interpreted cautiously because: the positive sample had a S/N percentage close to the 480 

ELISA cutoff (Figure S1); all the other animals (kudu and wildebeest) from the same park, area 481 

and sampling period, tested negative by the assay; buffalo, considered the main maintenance 482 

host for FMD in wildlife, are not present in ENP (67). FMD infection in blue wildebeest from 483 

Tanzania, Botswana and Kenya has been reported by means of RT-PCR with serotypes O, A, 484 

SAT-1 and SAT-2 (121,123). Blue wildebeest may also suffer the clinical disease, developing 485 

oral and foot lesions associated with lameness, fever and inappetence (123). However, the 486 

NSPCE results were not confirmed with SPCE and thus require further investigation using a 487 

larger samples size and alternative techniques such as RT-PCR on oropharyngeal lymph nodes. 488 

Confirmed Brucella exposure in KNP kudu, questionable for plains 489 

zebra, blue wildebeest and impala 490 

Three kudu (10%; 3/29) in KNP could be considered seropositive for Brucella spp. These 491 

animals reacted to two serological tests and an additional five kudu were positive to only one 492 

serological technique. Numerous studies conducted in southern Africa could not find any 493 

serological response in greater kudu, although sample sizes were often small (<30) and used 494 

serological tests validated for livestock (124–128). In this study, seropositivity means that kudu 495 

were exposed to Brucella spp. and it remains unknown whether they are incidental hosts or part 496 

of the maintenance host community for Brucella spp. in wildlife. Three plains zebra from KNP 497 

(9%; 3/35) tested positive either with RBT (two animals) or iELISA (one animal) and were 498 

regarded as suspect cases. This is an area for additional research as agglutination reaction to 499 
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Brucella spp. in zebra has been reported by a previous study (129). The domestic horse, which 500 

is evolutionarily related to zebra, has been demonstrated to harbor different Brucella spp. 501 

(i.e. B. abortus and B. suis under natural circumstances and B. canis after experimental 502 

challenge), and may eventually experience clinical signs (fistulous withers, abortion and other 503 

reproductive problems) (130). Moreover, a study from Nigeria conducted by Bertu et al. (131), 504 

isolated B. abortus from asymptomatic horses living in a multispecies farm in Nigeria. 505 

However, the risk of transmission of brucellosis from equids is still to be clarified as horses 506 

have been indicated as dead-end host (132). 507 

Widespread exposure to Coxiella burnetii in KNP and ENP 508 

In this study, a remarkably high number of individuals (57%; 106/185) across all evaluated wild 509 

animal species (44/65 zebra, 22/69 kudu, 14/21 impala, 26/30 wildebeest) tested positive to the 510 

C. burnetii iELISA (Table 1). We also obtained many strong positive reactions (19%; 35/185) 511 

in any species considered (33/65 zebra, 9/69 kudu, 9/21 impala, 18/30 blue wildebeest). Finally, 512 

our seroprevalence estimates were significantly different than those reported by Gakuya et al. 513 

(133), where similar wildlife species were investigated in Kenya using the same serological 514 

technique (iELISA). These findings led us to assume that C. burnetii is ubiquitous in both KNP 515 

and ENP and might have a predilection for southern Africa’s ecosystems and/or soils. A 516 

significantly higher seroprevalence was registered in animals from ENP. Coxiellosis 517 

seroprevalence was especially higher in blue wildebeest, plains zebra and impala. However, the 518 

multispecies C. burnetii iELISA has only been validated for use in domestic animals and not 519 

wildlife and has not been validated for wildlife species as iELISA tests are designed to be host 520 

specific. Use of inaccurate tests could overestimate the prevalence of disease. In multiple 521 

species iELISA assays, IgG-binding proteins (such as protein A, protein G and protein A/G) 522 

are suggested and used as conjugates (134–137) but it is not known how these react with every 523 
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wildlife host species. According to Kelly et al. (135) and Stobel et al. (137), impala, wildebeest, 524 

greater kudu and zebra react weakly with protein A and strongly with protein A/G, while 525 

binding affinity with protein G varies; for impala and wildebeest, reactivity is weak, whereas 526 

for kudu it is moderate and for zebra is strong. The binding affinity with protein A/G is 527 

particularly strong for kudu (135). The Q fever iELISA kit employed in this study used protein 528 

A/G. Considering all the facts discussed above, additional investigation may determine if kudu 529 

is less affected/exposed to C. burnetii than the other species. 530 

Further testing on tissues of wild animals matched with investigation in feeding ticks, may 531 

provide important details for the clarification of Q fever epidemiology in African wildlife. Also, 532 

the expansion of C. burnetii investigations in predator animals may provide further information 533 

on the sylvatic cycle of the pathogen. 534 

Limitations of the study and suggestions 535 

We could detect reactions to nonspecific probes for Anaplasma/Ehrlichia and 536 

Theileria/Babesia in ENP, but not too many of the species-specific probes investigated. This 537 

suggests that the strains present in ENP may not be detectable by the probes which were 538 

designed for strains occurring in South Africa due to the presence of local SNPs that do not 539 

allow binding with RLB probes. Sequencing data could characterize Anaplasma/Ehrlichia and 540 

Theileria/Babesia species occurring in ENP wildlife and thus design probes that can hybridize 541 

reliably also with these strains. It may also indicate the occurrence of new species not reported 542 

in literature. 543 

RLB probes cross-reactions are not infrequent and a subset of positive samples should be 544 

sequenced to confirm specificity of the RLB probes. However, due to funding constraints, we 545 

could not sequence nor characterize any positive RLB occurrences. As a future study, it would 546 
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be particularly interesting to sequence and confirm the occurrence of A. platys in kudu and 547 

impala and E. ruminantium in zebra from KNP, given their relevance for human and animal 548 

health. 549 

For serology, there is lack of known positive reference material from wild animals. Multispecies 550 

ELISA make use of conjugates that react with multispecies with cutoffs that are not animal 551 

species-specific. It is ideal to develop and validate ELISA assays specifically tailored for 552 

detecting FMDV, brucellosis, and coxiellosis across a range of wildlife species. 553 

Our prevalence estimates have wide confidence intervals due to small sample sizes and need to 554 

be interpreted cautiously. Interpretations and interventions are conducted by considering both 555 

the point estimate/prevalence as well as the entire confidence interval, that is where the true 556 

population lies with 95% confidence. 557 

Samples used in this study were part of another project that aimed to unravel differences in 558 

exposure to anthrax in endemic and non-endemic locations. Although randomization was 559 

introduced as much as possible when selecting sampling units, a moderate-high selection bias 560 

has to be considered as it is not possible to extract a proper random sample from wildlife. 561 

Moreover, due to prior use in other research, the total number of available samples was reduced 562 

leading to a slight discrepancy in the number of animals tested for certain pathogens. For 563 

instance, out of the total 32 kudu samples collected from KNP, we had only 28 sera and 29 564 

DNA samples available for testing. This depletion meant that for four of the 32 kudu, we had 565 

only one of the two sample types available (either DNA or sera, but not both). 566 

CONCLUSION 567 

With the present study, we report infections and exposure to several pathogens in wild animal 568 

species. We provided evidence-based information that increased the knowledge of 569 
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pathogen/disease epidemiology in natural settings. This work constitutes a baseline of data 570 

useful for implementation and improvement of surveillance and monitoring tools, which are 571 

highly valuable for public and animal health stakeholders (i.a. farmers, communities, 572 

governments), and lay the foundations for considerable research advancement. 573 

SUPPORTING MATERIAL 574 

Table S1: Oligonucleotide probes fixed on the RLB membrane for the detection of Anaplasma, 575 

Ehrlichia, Theileria and Babesia spp. DNA.; References (53–56, 138–151) are here cited. 576 
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 578 

Figure S1: Boxplots of A) ELISA S/N percentages for foot and mouth disease virus (FMDV) 579 

and B) ELISA S/P percentages for Coxiella burnetii. TH = Threshold. Boxplot for Brucella 580 

spp. iELISA S/P percentages are not shown since some of the samples were tested in pools. 581 
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