

1 **Detection of tick-borne pathogen co-infections and co-**
2 **exposures to foot-and-mouth disease, brucellosis and Q**
3 **fever in selected wildlife from Kruger National Park, South**
4 **Africa, and Etosha National Park, Namibia**

5 Cossu, C.A.¹, Ochai, S.¹, Troskie, M.¹, Hartmann, A.², Godfroid, J.³, de Klerk, L.-M.⁴, Turner,
6 W.C.⁵, Kamath, P.L.⁶, van Schalkwyk, L. O.⁴, Cassini, R.⁷, Bhoora, R.¹, van Heerden, H.¹

7

8 ¹ Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University
9 of Pretoria, Onderstepoort 0110, South Africa

10 ² Etosha Ecological Institute, Etosha National Park, Ministry of Environment, Forestry
11 and Tourism, Namibia

12 ³ Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and
13 Economics, UiT – The Arctic University of Norway, Tromsø, Norway

14 ⁴ Office of the State Veterinarian, Department of Agriculture, Land Reform and Rural
15 Development, Kruger National Park, P.O. Box 12, Skukuza 1350, South Africa

16 ⁵ U.S. Geological Survey, Wisconsin Cooperative Wildlife Research Unit, Department of
17 Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Dr.,
18 Madison, WI, 53706, USA

19 ⁶ University of Maine, School of Food and Agriculture, Orono, ME, 04469, USA

20 ⁷ Department of Animal Medicine, Production and Health, University of Padova, Legnaro
21 (PD), Italy

22

23 Correspondence: ca.cossu@tuks.co.za; Tel: +27 0795323033

24

25

26 **ABSTRACT**

27 **Background:** Although the rate of emerging infectious diseases that originate in wildlife has
28 been increasing globally in recent decades, there is currently a lack of epidemiological data
29 from wild animals.

30 **Methodology:** We used serology to determine prior exposure to foot-and-mouth disease virus
31 (FMDV), *Brucella* spp., and *Coxiella burnetii*, and used genetic testing to detect blood-borne
32 parasitic infections in the genera *Ehrlichia*, *Anaplasma*, *Theileria* and *Babesia* from wildlife in
33 two national parks, Kruger National Park (KNP), South Africa and Etosha National Park (ENP),
34 Namibia. Serum and whole blood samples were obtained from free-roaming plains zebra
35 (*Equus quagga*), greater kudu (*Tragelaphus strepsiceros*), impala (*Aepyceros melampus*) and
36 blue wildebeest (*Connachetes taurinus*). Risk factors (host species, sex, sampling park) of
37 infection for each pathogen were assessed, as well as the prevalence and distribution of co-
38 occurring infections.

39 **Results:** In KNP, none of the 13/29 (45%; CI: 26-64%) kudu tested positive for FMD. For
40 brucellosis, seropositive results were obtained for 3/29 (10%; CI: 2-27%) kudu samples.
41 Antibodies against *C. burnetii* were detected in 6/29 (21%; CI: 8-40%) kudu, 14/21 (67%; CI:
42 43-85%) impala and 18/39 (46%; CI: 30-63%) zebra. A total of 28/28 kudu tested positive for
43 *Theileria* spp. (100%; CI: 88-100%) and 27/28 to *Anaplasma/Ehrlichia* spp. (96%; CI: 82-
44 100%) whereas 12/19 impalas (63%) and 2/39 zebra (5%) tested positive for *Anaplasma*
45 *centrale*. In ENP, only 1/29 (3%; CI: 0-18%) wildebeest samples tested positive for FMD. None
46 of the samples tested positive for brucellosis while *C. burnetii* antibodies were detected in 26/30
47 wildebeest (87%; CI: 69-96%), 16/40 kudu (40%; CI: 25-57%) and 26/26 plains zebra (100%;
48 CI: 87-100%). A total of 60% *Anaplasma/Ehrlichia* spp. and 35% *Theileria/Babesia* spp. in
49 kudu; 37% wildebeest tested positive to *Theileria* sp. (sable), 30% to *Babesia occultans*, 3-7%

50 to *Anaplasma* spp. The seroprevalence of Q fever was significantly higher in ENP, while
51 *Brucella* spp., *Anaplasma*, *Ehrlichia*, *Theileria* and *Babesia* species were significantly higher
52 in KNP. Significant co-infections were also identified.

53 **Conclusion:** This work provided baseline serological and molecular data on 40+ pathogens in
54 four wildlife species from two national parks in southern Africa.

55 **Keywords:** brucellosis, foot-and-mouth disease, wildlife disease, tick-borne disease, Q fever,
56 epidemiology, zoonosis.

57 INTRODUCTION

58 Wildlife are often linked with emerging infectious diseases relevant to human and animal
59 health, and are considered to be the source of 70% of zoonoses worldwide (1,2, USGS 2024).
60 Several studies have highlighted the wide range of pathogens that wild animals may carry
61 without necessarily showing overt clinical signs (3–9). Multiple endemic diseases (*i.e.* bovine
62 tuberculosis, brucellosis, rabies, Ebola, leptospirosis) have been associated with a wildlife
63 source, and their management imposes serious challenges at the wildlife/human interface (8–
64 15). As a result of increased mortality, reduced productivity, costs related to disease control,
65 loss in trade, decreased market value, and food insecurity, wildlife-emerging diseases constitute
66 an additional and important threat to the economy of the livestock industry (16,17). Moreover,
67 many wildlife diseases have caused important decrease in endangered animal populations,
68 affecting their conservation status (18). Most infectious diseases are still largely neglected in
69 wildlife, especially those that are endemically persistent and do not cause obvious clinical signs
70 or have long incubation period.

71 In this study, we investigated the exposure to Foot-and-Mouth Disease Virus (FMDV), *Brucella*
72 spp. and *Coxiella burnetii*, as well as infection with several tick-borne pathogens (*Anaplasma*,

73 *Ehrlichia, Theileria* and *Babesia* spp.) in greater kudu (*Tragelaphus strepsiceros*), plains zebra
74 (*Equus quagga*), impala (*Aepyceros melampus*) and blue wildebeest (*Connachetes taurinus*)
75 from two national parks namely Kruger National Park, South Africa, and Etosha National Park,
76 Namibia.

77 FMDV causes Foot-and-Mouth Disease (FMD), a World Organization for Animal Health listed
78 disease that has been reported from more than 70 wildlife species (6, 19). FMD is endemic in
79 various African countries (e.g. South Africa, Mozambique, Zimbabwe) and has a negative
80 impact on the national economy of a disease-endemic setting, also having the potential to spread
81 across boundaries (20). The circulation of FMDV in wildlife represents a significant burden on
82 wildlife management and conservation of endangered species (21,22). In livestock animals,
83 FMD primarily occurs in an acute form with fever, lameness, inappetence, and the formation
84 of vesicles in and around the mouth and on the feet. Clinical signs are often severe in pigs,
85 obvious in cattle and mild in sheep and goats (23). Clinical FMD in wildlife seems to be a rare
86 event, but it can occasionally be devastating to some species of antelope as has been
87 documented in South Africa in impala (*Aepyceros melampus*) (24) and in mountain gazelles
88 (*Gazella gazella*) in Israel (25).

89 Important subsets of infectious diseases that are neglected in wildlife include intracellular
90 bacterial pathogens. *Inter alia*, *Brucella* spp. and *C. burnetii* cause important veterinary and
91 zoonotic diseases worldwide. Brucellosis is a disease of great economic importance, especially
92 for the livestock industry, causing significant production losses and impediments to trade and
93 exportation (26). Brucellosis has been recorded in a wide range of African wildlife, but the
94 effect of the disease in sylvatic settings has been largely ignored and understudied. The
95 circulation of the pathogen in wildlife raises challenges for disease control and management.
96 For instance, France was bovine brucellosis free since 2005 but experienced bovine and human

97 cases due to *B. melitensis* in 2012 in French Alps. The investigation identified spillover from
98 wild Alpine ibex (*Capra ibex*) to domestic ruminants (27). Few serological tests have been
99 validated for use in wild animal species. The standard indirect enzyme-linked immunosorbent
100 assays (ELISAs) are designed to be specific to livestock species and thus limited for wildlife
101 testing. As none of the serological tests are 100% sensitive and specific (28), the criteria for
102 seropositive brucellosis diagnosis require two positive test results in series.
103 Q fever is an emerging disease caused by bacterium *C. burnetii* which has a high impact on
104 public health, animal health and economy. It is listed by WOAH as a multi-species disease of
105 concern for its high zoonotic potential, worldwide distribution, airborne spread, persistent
106 infection (potentially lifelong) and direct production losses for the dairy industry (abortions,
107 dead or weak offspring, infertility, metritis). *Coxiella burnetii* is severely under-reported and
108 under-appreciated throughout Africa (29,30), even though wildlife have been demonstrated to
109 play an important role in Europe and elsewhere (31–33).

110 Among the emergent threats, tick-borne pathogens (TBPs) have a great impact on animal and
111 human health throughout the African continent (29,34). The epidemiology of ticks and TBPs is
112 complex and multimodal such that environmental variables and contact among wildlife,
113 livestock, and humans participate in the transmission dynamics of TBPs. Therefore, wildlife
114 loss and climate changes may result in the increase of disease risk (35). *Anaplasmataceae* and
115 *Piroplasmida* are two major taxa of obligate intracellular pathogens transmitted by blood-
116 sucking arthropods (especially ticks). Members of the family *Anaplasmataceae* are frequently
117 reported in African wildlife, especially African buffalo (*Syncerus caffer*) and several antelope
118 species (36–39). The most important tick-borne diseases affecting livestock in Africa are
119 *Theileria parva* (East Coast fever, January disease and corridor disease), *Ehrlichia ruminantium*
120 (heartwater), *Anaplasma marginale* (gallsickness), *Theileria annulata* (tropical theileriosis),

121 *Babesia bovis* and *Babesia bigemina* (Asiatic and African redwater, respectively) (40).
122 Anaplasmosis, heartwater, theileriosis and babesiosis are known to cause 18% of reported cattle
123 mortalities in South Africa (41).

124 Kruger National Park (KNP) in South Africa is classified as an endemic zone for FMD and an
125 infected zone for brucellosis and corridor disease, where sporadic outbreaks are reported
126 (19,42). In contrast, Etosha National Park (ENP) is a protected, non-infected FMD zone with
127 no brucellosis detected in wildlife. According to the systematic review performed by Simpson
128 et al. (7), three prevalence studies have been conducted on *Brucella* spp. in Namibian wildlife,
129 all of them reporting negative results although with small sample sizes *i.e.* 0/23 white rhinoceros
130 (*Ceratotherium simum*) and 0/9 black rhinoceros (*Diceros bicornis*) from Waterberg National
131 Park (43), 0/27 impala from ENP (44) and 0/122 farmed springbok (*Antidorcas marsupialis*)
132 and gemsbok (*Oryx gazella*) (45). Only one publication investigated and reported the presence
133 of *C. burnetii* in KNP wildlife *i.e.* in vervet monkeys (*Chlorocebus pygerythrus*) (46) with no
134 investigations or reports on *C. burnetii* available from ENP, highlighting the lack of research
135 on these diseases in South African wildlife. The two parks differ in many aspects with the main
136 difference that might play a significant role in diseases is the presence of African buffalo in
137 KNP.

138 The objectives of this study were to (1) assess the presence/absence and estimate the prevalence
139 of infection or serological prevalence of selected pathogens in four free-ranging wild animal
140 species in KNP and ENP, (2) evaluate risk factors for infection, including animal species, sex,
141 and sampling park, and (3) assess significance of co-infections and/or co-exposure to multiple
142 pathogens.

143 MATERIALS AND METHODS

144 Study design

145 Whole blood and serum samples were collected during May 2018 to September 2019 from two
146 national Parks, KNP and ENP, and the host species targeted in this study included free roaming
147 greater kudu (n=72; 32 from KNP and 40 from ENP), plains zebra (n = 65; 39 from KNP and
148 26 from ENP), impala (n=21 from KNP) and blue wildebeest (n=30 from ENP) (Figure 1).

149 These samples were originally tested for the presence of antibodies against *Bacillus anthracis*
150 (causal agent of anthrax) (47). The sample size was small due to budget constraints as the
151 animals were chemically immobilized and collared to monitor their movement and exposure to
152 *B. anthracis* in KNP and ENP (48). In the framework of the present work, the same samples
153 were also screened using serology to detect FMDV, *Brucella* spp. and *C. burnetii* and DNA
154 from blood using molecular reverse line blot method (RLB) to detect *Anaplasma*, *Ehrlichia*,
155 *Theileria* and *Babesia* spp.

156 Each animal was selected randomly from different herds. When working with wildlife, it is
157 often infeasible to count each individual of the reference population so as to select a random
158 sample, so we cannot exclude a selection bias. All animals were adults or sub-adults as was
159 required for the collaring study. Each sample was assigned a unique identification number.
160 Supplementary data on sampling date and GPS location were recorded.

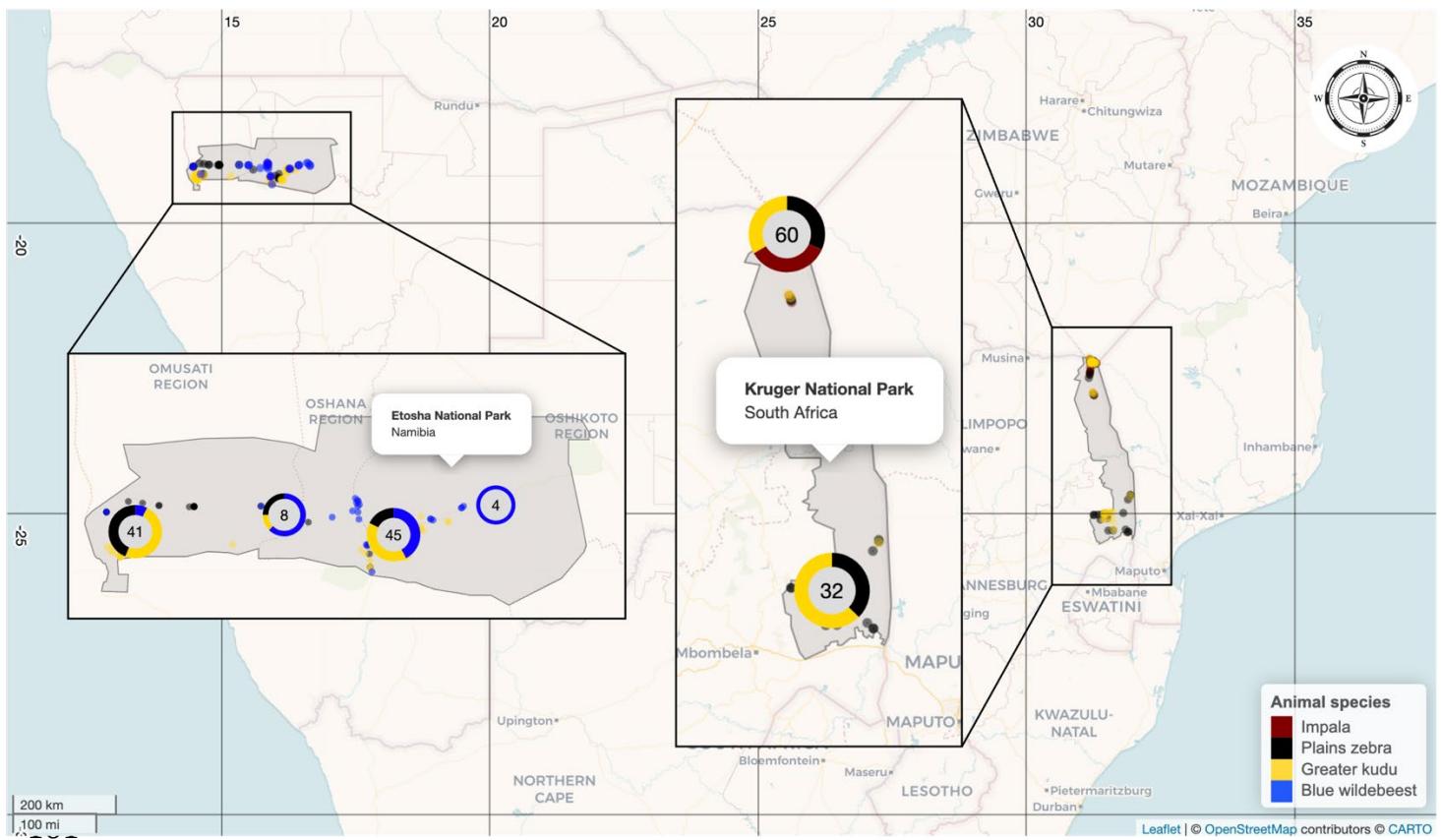


Figure 162 1: Spatial distribution of serum and EDTA blood samples collected in Kruger National Park (on the right) and Etosha National Park (on the left). Color legend stratifies samples per animal species, including impala (*Aepyceros melampus*), plains zebra (*Equus quagga*), greater kudu (*Tragelaphus strepsiceros*) and blue wildebeest (*Connochaetes taurinus*).

166 Study area

167 Kruger National Park (KNP) is situated in the Limpopo and Mpumalanga provinces of South
 168 Africa. It is regarded as one of the largest and most important National Parks in Africa, hosting
 169 a total of 148 wild mammal species, including the big five (*i.e.* lion, leopard, elephant, rhino
 170 and buffalo), in a 19,485 km² fenced conservation area situated in the FMD infected zone (49).
 171 Population estimates for the selected wildlife species in KNP include: 11,200-17,300 greater
 172 kudu, 132,300-176,400 impala, and 23,700-35,300 plains zebra (<https://www.sanparks.org>).
 173 Etosha National Park (ENP), also situated in the FMD protected zone (50), is an almost 23,000
 174 km² wildlife reserve located in northern Namibia. ENP is home to 114 mammal species but it

175 is not considered a big five reserve as African buffaloes are not present in the park (51). Aerial
176 estimates of selected wildlife include: 2,822-5,592 blue wildebeest, 11,338-17,126 plains zebra
177 (51) and 394-580 greater kudu (52).

178 **Laboratory protocols**

179 ***Blood-borne parasite detection***

180 Pure-Link DNA extraction kit (Invitrogen, Germany) was used to extract DNA from 200 µl of
181 each blood sample according to the manufacturer's instructions and eluted in 100 µl of elution
182 buffer. The RLB hybridization assay was performed as previously described (53–56) to detect
183 *Theileria*, *Babesia*, *Ehrlichia* and *Anaplasma* species. Negative and known positive controls
184 were included for each pathogen species. The probes included in the RLB membrane are listed
185 in Table S1.

186 ***Serological tests***

187 For serological screening, we employed commercially available ELISA kits produced by ID-
188 VET. The ID Screen FMD is a non-structural protein competitive ELISA (NSPCE) and was
189 used for the detection of antibodies against the 3ABC proteins of FMDV. Similarly, the ID
190 Screen Brucellosis Serum Indirect Multi-species ELISA was used to detect antibodies against
191 the lipopolysaccharide (LPS) of smooth *Brucella* spp., while the ID Screen Q Fever Indirect
192 Multi-species ELISA was used in the detection of antibodies against *C. burnetii* antigenic
193 phases I and II. All the serum samples were run in duplicates and the coefficient of variation
194 (%CV) was ensured to be less than 20% for all duplicates and less than 10% overall. FMDV
195 SAT serotyping of NSPCE positive sera were tested by Agricultural Research Council –
196 Onderstepoort Veterinary Institute (ARC-OVI), South Africa, and Central Veterinary

197 Laboratory in Namibia for all serotypes with a solid-phase cELISA (SPCE). SPCE is the official
198 screening test in South Africa and Namibia.

199 For *Brucella* spp., serum was first screened using Rose Bengal Test (RBT) obtained from
200 Onderstepoort Biological Products (OBP) as per manufacturer's instruction with the *Brucella*
201 positive serum from OBP. Sera were analyzed using ID-VET Multi-species iELISA as per the
202 manufacturer's instructions. Negative RBT sera were tested with iELISA in pools of 10 animals
203 grouped animal species. If positive reactions were obtained in the pools, the samples were re-
204 tested individually. Animals were confirmed seropositive only if positive to both RBT and
205 iELISA due to the well documented problem of extensive serological cross-reactions with other
206 bacteria (57).

207 Data analysis and reporting

208 Data were analyzed in R programming language (version 4.2.1) using the R studio IDE software
209 (RStudio Team, 2021). To account for our small sample sizes, confidence intervals and
210 hypothesis testing were estimated employing exact/non-parametric methods, and the results
211 were interpreted with great caution. The 95% confidence intervals (CI) were calculated to
212 measure variability and error of our estimated point prevalences by species. Because of small
213 sample sizes, we opted for the more conservative Clopper Pearson method (58) using the R
214 function “exactci” from the “PropCIs” package.

215 To determine which infections were most likely to co-occur in hosts, we used the Spearman's
216 correlation coefficient (r_s) using function “cor” (with method = “Spearman”) from package
217 “stats” in R. Coefficient (r_s) values from 0 to 0.25 or from 0 to -0.25 indicate absence of
218 correlation, whereas values from 0.25 to 0.50 or from -0.25 to -0.50 point to poor correlation
219 between variables; values ranging from 0.50 to 0.75 or -0.50 to -0.75 are regarded as moderate

220 to good correlation, and r values from 0.75 to 1 or from -0.75 to -1 indicate very good to
221 excellent correlation between variables (59). This correlation was considered significant if the
222 t Test for Spearman Rank Correlation indicated a p-value <0.05 under the null hypothesis of no
223 correlation (58). When performing multiple comparisons, the family-wise error rate increases
224 hence the probability of finding at least one false positive (Type I error) (60). To yield
225 conservative results, p-values were adjusted using the Bonferroni correction in which the p-
226 values are multiplied by the number of comparisons (61). This was achieved by applying
227 function “p.adjust” (method “bonferroni”) from package “stats”.

228 To assess correlation between prevalence and independent variables (*i.e.* animal species, sex
229 and sampling park), we employed the Chi-squared test. An alternative when the conditions for
230 a chi squared test are not met (*i.e.* no cells with expected values < 1, and no more than 20% of
231 cells with values < 5), is a Monte Carlo simulation (62) performed with the option
232 “simulate.p.value = TRUE” in the function “chisq.test”. We set the number of replicates in the
233 simulation of B = 2000. Again, p-values were adjusted using the Bonferroni correction and
234 statistical level was set at $\alpha = 0.05$.

235 RESULTS

236 A summary of the laboratory diagnostic results, including estimates and errors (95% confidence
237 intervals) of prevalences in each animal species and park are reported in Table 1.

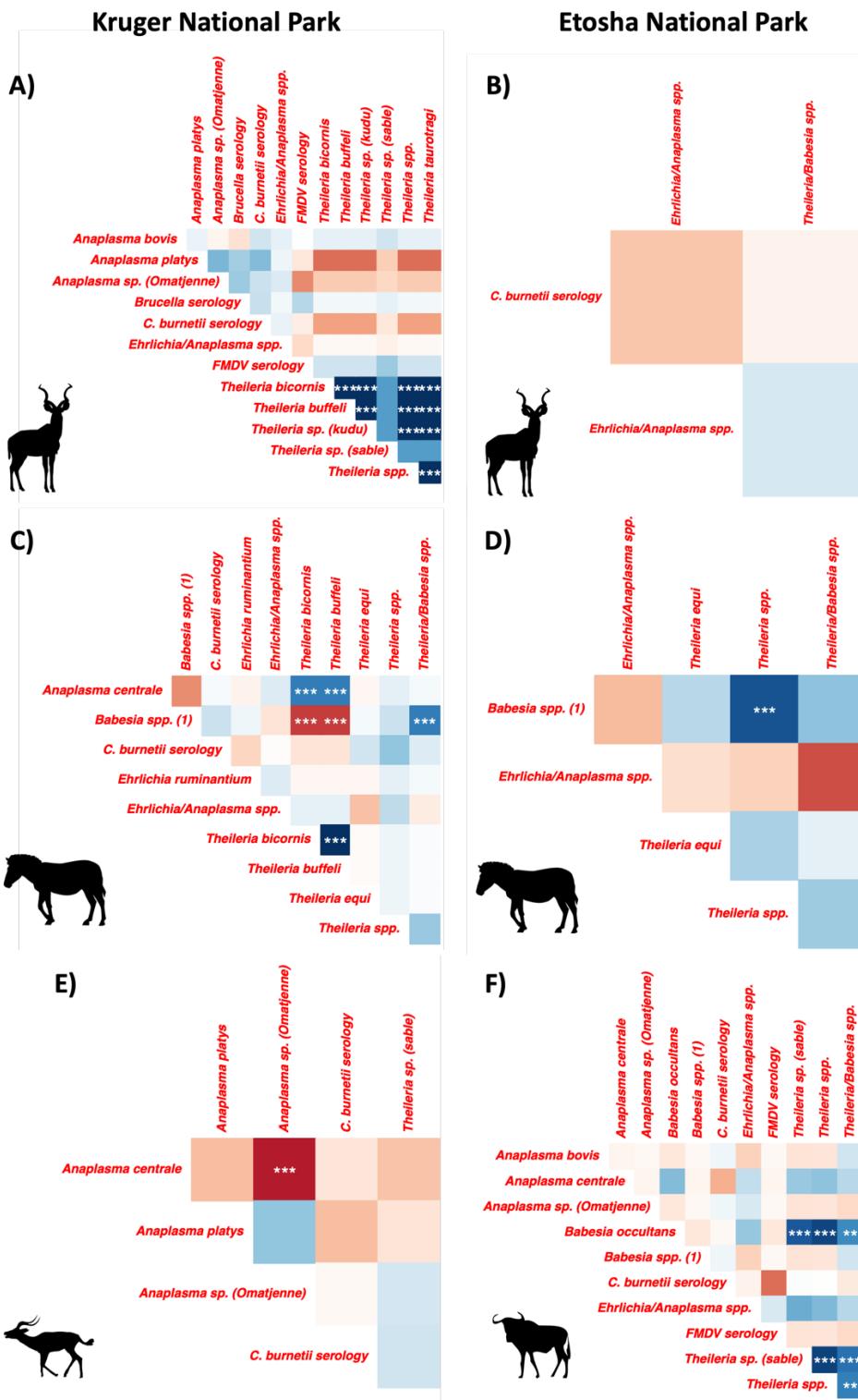
238 **Table 1:** Seroprevalence of Foot-and-Mouth Disease Virus (FMDV), *Brucella* spp., and *Coxiella burnetii*, and prevalence of infection of
 239 *Anaplasma*, *Ehrlichia*, *Theileria* and *Babesia* species in blue wildebeest (*Connochaetes taurinus*), kudu (*Tragelaphus strepsiceros*), impala
 240 (*Antidorcas marsupialis*) and zebra (*Equus quagga*) from Kruger National Park, South Africa, and Etosha National Park, Namibia. Pathogens that
 241 have not been detected in any of the wildlife species are not included here.

Pathogen species (Diagnostic)	Positive/Tested = Prevalence [95% confidence interval]						
	Blue wildebeest		Greater kudu		Impala	Plains zebra	
	Etosha National Park	Etosha National Park	Kruger National Park	Kruger National Park	Etosha National Park	Kruger National Park	
<i>Anaplasma/Ehrlichia</i> spp. (RLB)	18/30 = 60% [41-77%]	24/40 = 60% [43-75%]	27/28 = 96% [82-100%]	19/19 = 100% [82-100%]	4/17 = 24% [7-50%]	28/39 = 72% [55-85%]	
<i>Anaplasma bovis</i> (RLB)	1/30 = 3% [0-17%]	0/40 = 0% [0-9%]	6/28 = 21% [8-41%]	0/19 = 0% [0-18%]	0/17 = 0% [0-20%]	0/39 = 0% [0-9%]	
<i>Anaplasma centrale</i> (RLB)	2/30 = 7% [1-22%]	0/40 = 0% [0-9%]	0/28 = 0% [0-12%]	12/19 = 63% [38-84%]	0/17 = 0% [0-20%]	2/39 = 5% [1-17%]	
<i>Anaplasma platys</i> (RLB)	0/30 = 0% [0-12%]	0/40 = 0% [0-9%]	3/28 = 11% [2-28%]	1/19 = 5% [0-26%]	0/17 = 0% [0-20%]	0/39 = 0% [0-9%]	
<i>Anaplasma</i> sp. (Omatjenne) (RLB)	1/30 = 3% [0-17%]	0/40 = 0% [0-9%]	11/28 = 39% [22-59%]	5/19 = 26% [9-51%]	0/17 = 0% [0-20%]	0/39 = 0% [0-9%]	
<i>Ehrlichia ruminantium</i> (RLB)	0/30 = 0% [0-12%]	0/40 = 0% [0-9%]	0/28 = 0% [0-12%]	0/19 = 0% [0-18%]	0/17 = 0% [0-20%]	2/39 = 5% [1-17%]	

Pathogen species (Diagnostic)	Positive/Tested = Prevalence [95% confidence interval]					
	Blue wildebeest	Greater kudu		Impala	Plains zebra	
	Etosha National Park	Etosha National Park	Kruger National Park	Kruger National Park	Etosha National Park	Kruger National Park
<i>Theileria/Babesia</i> spp. (RLB)	15/30 = 50% [31-69%]	14/40 = 35% [21-52%]	28/28 = 100% [88-100%]	19/19 = 100% [82-100%]	14/17 = 82% [57-96%]	38/39 = 97% [87-100%]
<i>Babesia</i> spp. (1) (RLB)	1/30 = 3% [0-17%]	0/40 = 0% [0-9%]	0/28 = 0% [0-12%]	0/19 = 0% [0-18%]	8/17 = 47% [23-72%]	37/39 = 95% [83-99%]
<i>Babesia occultans</i> (RLB)	9/30 = 30% [15-49%]	0/40 = 0% [0-9%]	0/28 = 0% [0-12%]	0/19 = 0% [0-18%]	0/17 = 0% [0-20%]	0/39 = 0% [0-9%]
<i>Brucella</i> spp. (RBT and iELISA)	0/29 = 0% [0-12%]	0/40 = 0% [0-9%]	3/29 = 10% [2-27%]	0/21 = 0% [0-16%]	0/25 = 0% [0-14%]	0/35 = 0% [0-10%]
<i>Coxiella burnetii</i> (iELISA)	26/30 = 87% [69-96%]	16/40 = 40% [25-57%]	6/29 = 21% [8-40%]	14/21 = 67% [43-85%]	26/26 = 100% [87-100%]	18/39 = 46% [30-63%]
Foot-and-mouth disease virus (NSPCE)	1/29 = 3%* [0-18%]	0/40 = 0% [0-9%]	13/29 = 45%* [26-64%]	0/21 = 0% [0-16%]	Not tested	Not tested
<i>Theileria</i> spp. (RLB)	10/30 = 33% [17-53%]	0/40 = 0% [0-9%]	27/28 = 96% [82-100%]	19/19 = 100% [82-100%]	7/17 = 41% [18-67%]	33/39 = 85% [69-94%]
<i>Theileria bicornis</i> (RLB)	0/30 = 0% [0-12%]	0/40 = 0% [0-9%]	27/28 = 96% [82-100%]	19/19 = 100% [82-100%]	0/17 = 0% [0-20%]	1/39 = 3% [0-13%]
<i>Theileria buffeli</i> (RLB)	0/30 = 0% [0-12%]	0/40 = 0% [0-9%]	27/28 = 96% [82-100%]	19/19 = 100% [82-100%]	0/17 = 0% [0-20%]	1/39 = 3% [0-13%]

Pathogen species (Diagnostic)	Positive/Tested = Prevalence [95% confidence interval]					
	Blue wildebeest	Greater kudu		Impala	Plains zebra	
	Etosha National Park	Etosha National Park	Kruger National Park	Kruger National Park	Etosha National Park	Kruger National Park
<i>Theileria equi</i> (RLB)	0/30 = 0% [0-12%]	0/40 = 0% [0-9%]	0/28 = 0% [0-12%]	0/19 = 0% [0-18%]	1/17 = 6% [0-29%]	1/39 = 3% [0-13%]
<i>Theileria</i> sp. (kudu) (RLB)	0/30 = 0% [0-12%]	0/40 = 0% [0-9%]	27/28 = 96% [82-100%]	0/19 = 0% [0-18%]	0/17 = 0% [0-20%]	0/39 = 0% [0-9%]
<i>Theileria</i> sp. (sable) (RLB)	11/30 = 37% [20-56%]	0/40 = 0% [0-9%]	25/28 = 89% [72-98%]	5/19 = 26% [9-51%]	0/17 = 0% [0-20%]	0/39 = 0% [0-9%]
<i>Theileria taurotragi</i> (RLB)	0/30 = 0% [0-12%]	0/40 = 0% [0-9%]	27/28 = 96% [82-100%]	0/19 = 0% [0-18%]	0/17 = 0% [0-20%]	0/39 = 0% [0-9%]

242 RLB = Reverse Line Blot; RBT = Rose Bengal Test; iELISA = indirect ELISA; NSPCE = non-structural protein competitive ELISA. * A subset
 243 of samples positive for Foot-and-Mouth Disease Virus (FMDV) based on NSPCE were tested for confirmation based on structural protein
 244 competitive ELISA (SPCE). All of these were negative by SPCE, including the wildebeest in Etosha and 4 kudu from KNP.


245 The NSP-cELISA for FMDV detected antibody in the sera of 13 greater kudu samples (40.6%;
246 13/32) from KNP, 12 of which had high titres (*i.e.* $10 < \text{SN} < 30$; Supplementary Figure S1;
247 Table 1). These animals were sampled during October 2018, mostly in the northern area of
248 KNP. Only four of the 12 FMDV positive kudu samples were tested with SPCE ELISA due to
249 financial constraints, none of which could be serotyped and thus interpreted as negative by
250 SPCE. In ENP, only one blue wildebeest (3.3%; 1/30), sampled near Ozonjuitji m'Bbari
251 (Central ENP) in July 2018, tested weakly positive using the NSP-cELISA for FMDV, but
252 tested negative using SPCE.

253 For *Brucella* spp., the first serological screening with RBT indicated four clear positive sera
254 (three kudu and one zebra from KNP), and an additional five (two kudu and one zebra from
255 KNP, and two wildebeest from ENP) were regarded as suspect due to a faint positive reaction.
256 At the second testing with the commercial *Brucella* spp. iELISA seven animals tested positive
257 and one suspect. From KNP, 3/29 kudu (10%) tested positive using both serological techniques
258 and were thus considered as confirmed seropositive. Additionally, eight greater kudu (28%;
259 8/29), one impala (5%; 1/21) and three plains zebra (9%; 3/35) tested positive using either the
260 RBT or iELISA assay and were regarded as negative results. The brucellosis positive animals
261 originate from KNP and were sampled mostly in the northern part of KNP. No animals in ENP
262 were positive for *Brucella* spp.

263 A summary of *C. burnetii* serology is reported in Table 1. As a general trend, the prevalence of
264 antibodies against *C. burnetii* in all samples collected from ENP (71%) was much higher than
265 those collected from KNP (43%). We also report the presence of several strong reactions *i.e.*
266 high iELISA titers in most individuals (Supplementary Figure S1).

267 We investigated co-infection and co-exposure to the different pathogens (Figure Figure 2). We
268 highlight that in kudu from KNP, *T. buffeli*, *T. bicornis*, *Theileria* sp. (sable) and *Theileria* sp.

269 (kudu) occurred almost always together. In zebra from KNP, *T. bicornis* and *T. buffeli* occurred
270 always together and were positively correlated with *A. centrale* ($p < 0.001$; $r_s = 0.7$) but
271 negatively correlated to *Babesia* spp ($p < 0.001$; $r_s = -0.7$). On the other hand, in zebra from
272 ENP positivity to the *Theileria* spp. probe was positively correlated to the *Babesia* spp. (1)
273 probe ($p < 0.001$; $r_s = 0.87$). In impala from KNP, infection with *A. centrale* was negatively
274 correlated to infection with *Anaplasma* sp. (Omatjenne) ($p < 0.001$; $r_s = -0.78$). In wildebeest
275 from ENP, *B. occultans* infected animals were almost always co-infected with *Theileria* sp.
276 (sable). Interestingly, one kudu from KNP (ID: TS-E-10, female, adult, sampled in KNP) bore
277 most infections/exposures at the same time, as it was seropositive to FMDV, *Brucella* spp. and
278 *C. burnetii*, and co-infected with *A. platys*, *Anaplasma* sp. (Omatjenne), *T. bicornis*, *T. buffeli*,
279 *Theileria* sp. (kudu), *Theileria* sp. (sable) and *T. taurotragi*. According to the Pearson's Chi-
280 squared test (with Monte-Carlo replicates), the variables "Sampling Park" and "Animal
281 species" were the most associated with pathogen prevalence and seroprevalence (Table 2).

283 **Figure 2:** Correlation matrix representing correlation coefficients for concurrence of pathogen
 284 infection/exposure in kudu (*Tragelaphus strepsiceros*) (A-B), zebra (*Equus quagga*) (C-D),
 285 impala (*Antidorcas marsupialis*) (E) and wildebeest (*Connachaeetes taurinus*) (F) from Kruger
 286 National Park (left panel) and Etosha National Park (right panel). Blue squares indicate positive
 287 correlation, red squares indicate negative correlation. Color intensity indicates strength of

288 correlation. Asterisks indicate significant correlation: *** = p-value <0.001; ** = p-value < 0.01;
289 * = p-value < 0.05. P-values were adjusted with Bonferroni correction.

290 **Table 2:** Sample sizes, Bonferroni corrected p-values and χ^2 values of Pearson's Chi-squared
291 test with Monte Carlo simulation where prevalence has been used as outcome variable.
292 Significant *p*-values are displayed in bold.

Pathogen (sample size)	Bonferroni corrected p-values (χ^2 values)		
	Animal species	Sex	Sampling Park
<i>Anaplasma bovis</i> (173)	1 (7.2)	1 (1)	1 (3.8)
<i>Anaplasma centrale</i> (173)	< 0.001 (75.1)	1 (0.6)	0.152 (10.1)
<i>Anaplasma platys</i> (173)	1 (4.1)	1 (0)	1 (4.1)
<i>Anaplasma</i> sp. (Omatjenne) (173)	0.076 (16.5)	1 (0)	< 0.001 (14.9)
<i>Babesia occultans</i> (173)	< 0.001 (45.3)	1 (0.7)	0.38 (9.4)
<i>Babesia</i> spp. (1) (173)	< 0.001 (122.8)	1 (1.5)	< 0.001 (23.7)
<i>Ehrlichia ruminantium</i> (173)	1 (4.2)	1 (2.3)	1 (2)
<i>Ehrlichia/Anaplasma</i> spp. (173)	0.304 (14.6)	1 (0.4)	< 0.001 (22.4)
<i>Theileria bicornis</i> (173)	< 0.001 (85.8)	1 (0.1)	< 0.001 (65.3)
<i>Theileria buffeli</i> (173)	< 0.001 (85.8)	1 (0.1)	< 0.001 (65.3)
<i>Theileria equi</i> (173)	1 (4.2)	1 (0)	1 (0)
<i>Theileria</i> sp. (kudu) (173)	< 0.001 (49.4)	1 (0)	< 0.001 (32.4)
<i>Theileria</i> sp. (sable) (173)	< 0.001 (26.7)	1 (0)	0.076 (11.8)
<i>Theileria</i> spp. (173)	< 0.001 (33.8)	1 (1.5)	< 0.001 (91.6)
<i>Theileria taurotragi</i> (173)	< 0.001 (49.4)	1 (0)	< 0.001 (32.4)
<i>Theileria/Babesia</i> spp. (173)	< 0.001 (31.3)	1 (1.9)	< 0.001 (54.9)
<i>Brucella</i> spp. (179)	1 (4.9)	1 (0.3)	1 (3.4)
<i>Coxiella burnetii</i> (183)	< 0.001 (32.4)	1 (1.7)	0.076 (14.9)
Foot-and-Mouth Disease Virus (111)	1 (8.1)	1 (0.3)	< 0.001 (16.8)

293

294 **DISCUSSION**

295 This study established baseline data of infection with tick borne diseases as well as exposure to
296 FMD, coxiellosis and brucellosis in four wild animal species in two national parks. Laboratory
297 analysis revealed very high prevalence (70-100%) of *Theileria/Babesia* and
298 *Anaplasma/Ehrlichia* spp. infection in kudu, impala and zebra from KNP. Moreover, most or
299 even all of the zebra and wildebeest sampled in ENP were seropositive for Q fever. Indeed, the
300 seroprevalence of Q fever was found to be significantly higher in ENP while *Brucella* spp.,
301 *Anaplasma*, *Ehrlichia*, *Theileria* and *Babesia* species were significantly higher in KNP.

302 ***Anaplasma/Ehrlichia* and *Theileria/Babesia* prevalences are higher in
303 KNP compared to ENP**

304 As highlighted by the comparison of the 95% CI and the chi-square statistics, infection
305 prevalences of *Anaplasma/Ehrlichia* and *Theileria/Babesia* genera were significantly higher in
306 KNP compared to ENP in both kudu and zebra. This may be due to the relative diversity and
307 abundance of ticks inhabiting the parks. Indeed, the prevalence of tick infestation in ENP
308 wildlife is reportedly well below those reported in other parts of southern Africa (63–65). Tick
309 distribution and ultimately the survival of pathogens in ticks and animal hosts are, in turn,
310 affected by abiotic factors. Indeed, hot dry conditions and desiccating winds adversely affect
311 the population of questing ticks by imposing mortality on unfed ticks (66). Moisture-related
312 indices significantly affect the presence of ticks and TBDs, with wetter conditions almost
313 always beneficial (66). ENP is located in a semi-arid region of Namibia characterized by a large
314 salt pan, which may be dry for extended periods of the year, especially during the dry season
315 (67). On the other hand, KNP is situated in northeastern South Africa and has a more diverse
316 climate with a greater availability of water throughout the year compared to ENP. Overall, ENP
317 is considerably drier than KNP and therefore a less suitable region than KNP for tick

318 proliferation, infestation and transmission of TBDs. For instance, *Amblyomma hebraeum*,
319 *Amblyomma variegatum* (vectors of *Ehrlichia ruminantium*), *Rhipicephalus decoloratus*
320 (vector of *Babesia bigemina* and *Anaplasma marginale*), *Rhipicephalus appendiculatus* (vector
321 of *Theileria parva* and *Anaplasma bovis*) are present mainly or only in KNP, whereas
322 *Hyalomma rufipes* (vector of *Babesia occultans*), *Hyalomma truncatum* (vector of several
323 *Anaplasma/Ehrlichia* spp.) and *Rhipicephalus evertsi* (vector of *T. equi* and *B. caballi*) are found
324 in both parks (68–70).

325 High prevalence and co-infection of *Theileria* spp. in kudu and impala 326 from KNP

327 In the present study, we report extremely high prevalence of *T. buffeli* and *T. bicornis* in 27/28
328 kudu (96%; CI: 82-100%) and 19/19 impala (100%; CI: 82-100%) from KNP. In addition, in
329 KNP kudu, there was high prevalence (90-100%) and significantly associated co-infections of
330 pathogens from the genera *Theileria*, including *T. taurotragi*, *T. buffeli*, *Theileria* sp. (kudu)
331 and *Theileria* sp. (sable) (Table 1). *Theileria* spp. (sable) was also detected in 5/19 impala (26%;
332 CI: 9-51%) from KNP. None of the 40 kudu from ENP tested positive for any of the tested
333 *Theileria* species.

334 *Theileria taurotragi* and *T. buffeli* are “schizont non transforming” *Theileria* spp. and therefore
335 classified as benign parasites, with rare clinical signs that mainly occur due to piroplasm-
336 induced acute hemolytic anemia (71). Indeed, *T. taurotragi* caused bovine cerebral theileriosis
337 in young African shorthorn cattle (71) and theileriosis in eland (*Tragelaphus oryx*) (71).
338 *Theileria* sp. (sable) and *Theileria* sp. (kudu) (56) are regarded as pathogenic species in African
339 wild artiodactyls. Mortalities in roan antelope (*Hippotragus equinus*) due to *Theileria* sp.
340 (Sable) have been reported after translocation (56). Infection with *Theileria* sp. (sable)

341 negatively affects attempts to establish breeding herds and reintroduction efforts into the wild
342 due to calf mortalities (72). *Theileria bicornis* has not been found to cause mortality but has
343 been reported in free-ranging white and black rhinoceroses in South Africa and Kenya
344 (55,73,74), as well as from apparently healthy nyals (*Tragelaphus angasii*), (75), impalas,
345 eland (*Taurotragus oryx*) and sable antelope (*Hippotragus niger*) in South Africa (76). The very
346 high *T. bicornis* prevalences obtained in this study in kudu and impala from KNP (Table 1)
347 might raise concerns for the rhino populations as they are already suffering from poaching and
348 stress induced by unavoidable translocations (77,78).

349 Further studies may assist in determining the health effects of the above-mentioned *Theileria*
350 infections in wildlife species. Co-infections may alter virulence of pathogens and subsequent
351 disease outcomes in the hosts (79–81). As a general rule, co-infections may lead to worse health
352 outcomes for hosts and increase within host pathogen titers, altering transmission ecologies.
353 Nevertheless, the impact on animal fitness due to coinfections between pathogenic and benign
354 *Theileria* species appears to be intricate. For instance, apathogenic *T. mutans* and *T. velifera*
355 seem to protect cattle from the detrimental consequences of *T. parva* infection (82). This could
356 also be our case, with the benign *T. taurotragi*, *T. bicornis*, *T. buffeli* protecting wild antelopes
357 from the adverse effects of pathogenic *Theileria* sp. (sable) and *Theileria* sp. (kudu), but this
358 hypothesis needs further investigation. The occurrence and effects of co-infection of multiple
359 pathogen species within wildlife populations remains largely unknown. Indeed, understanding
360 dynamics of co-infection or co-exposure to different pathogens are useful in improving our
361 knowledge of pathogen epidemiology in wildlife and in the development of risk models for
362 diseases in various epidemiological contexts.

363 *Anaplasma centrale* in impala and zebra from KNP and wildebeest from
364 ENP

365 *Anaplasma centrale* and *A. marginale* are closely related species that cause bovine
366 anaplasmosis in cattle (83). *Anaplasma centrale* is known to be less pathogenic than *A.
367 marginale* in domestic animals as it induces a low degree of anaemia, with rare clinical
368 outbreaks (84) but it confers immunity against infection by *A. marginale*. Nonetheless, a clinical
369 case of bovine anaplasmosis caused by *A. centrale* was reported in Europe in 2008 (85).
370 *Anaplasma centrale* seems to be largely subclinical in wildlife (38) where it occurs with
371 moderate prevalences (10 to 30%), especially in African buffalo, impala, eland, waterbuck
372 (*Kobus ellipsiprymnus*), blue and black wildebeest (*Connachetes gnou*) (37–39,76,86). These
373 wild animal species may be able to maintain *A. centrale* much more efficiently than tick vectors.
374 In fact, although experimental transmission of *A. centrale* by ticks (e.g. *Rhipicephalus simus*,
375 *Dermacentor andersoni*) has been proven (87,88), secretion of this pathogen into tick saliva
376 occurs at a much lower rate than *A. marginale* and, hence, transmission is achieved only when
377 tick numbers are dramatically increased to compensate for the low pathogen load (88). In
378 addition, *A. centrale* prevalence in ticks is very low in all tick species considered (89), making
379 them an inefficient reservoir for *A. centrale*. In support of this hypothesis, we report infection
380 with *A. centrale* in 12 impalas (63%; 12/19) and two zebra (5%; 2/39) from KNP, and in two
381 wildebeest (7%; 2/30) from ENP. The occurrence of *A. centrale* in impala from KNP is not
382 surprising as the pathogen was already reported in the same species and in buffalo, black
383 wildebeest, common eland and waterbuck from South Africa (37–39,76,86), while the
384 occurrence of *A. centrale* in zebra from KNP and wildebeest from ENP is a new finding that
385 sheds light on the geographic and host range of the pathogen.

386 *Anaplasma platys* in kudu and impala from KNP

387 *Anaplasma platys* is the etiologic agent of thrombocytic anaplasmosis in dogs and is the only
388 recognized *Rickettsiales* species known to infect platelets (90). After the first description, *A.*
389 *platys* has been reported worldwide, including the Americas, Eurasia, Africa, and Australia,
390 mainly in tropical and subtropical areas (91–93). For a long time, *A. platys* was considered only
391 a canine pathogen, but a wider host tropism for *A. platys* has been demonstrated in recent
392 decades. Cases of *A. platys* infection have been reported in cats, goats, cattle, Bactrian camels
393 (*Camelus bactrianus*), red deer (*Cervus elaphus*), sika deer (*Cervus nippon*) and sable antelope
394 (94–101). Occurrences in atypical hosts have been attributed to *A. platys*-like bacteria
395 (102,103). However, *A. platys*-like species cannot be distinguished from *A. platys* based on 16S
396 rRNA as they are very closely related. These *A. platys*-like species in atypical hosts are
397 considered the probable cause of human infections (104), with clinical signs varying from
398 chronic and nonspecific, including headaches and muscle pains (105) to migraines and seizures
399 due to mixed *A. platys*, *Bartonella henselae*, and “*Candidatus Mycoplasma haematoparvum*”
400 infection (106).

401 *Rhipicephalus sanguineus* is considered the primary vector for *A. platys* (98,107,108) which
402 rarely infests impala and kudu. The agent has also been detected in *Haemaphysalis longicornis*
403 and *Ixodes persulcatus* in Korea, *Rhipicephalus turanicus* in Israel, and *Rhipicephalus* spp. in
404 China (98,109–111).

405 Here, we found three kudu (11%; 3/28) and one impala (5%; 1/19) positive to *A. platys* by
406 means of RLB hybridization. Given the limited information available on *A. platys* infections in
407 Africa, it is of particular interest to understand the sylvatic cycle of *A. platys* in kudu and impala
408 and which tick vector (if any) is involved in pathogen transmission.

409 *Babesia occultans* in wildebeest from ENP

410 *Babesia occultans* is considered less pathogenic than other *Babesia* species (112). Observable
411 clinical signs due to infection with *B. occultans* in cows include anorexia, weakness, fever (\leq
412 40 °C), anaemia, and pale mucous membranes. However, unlike *B. bigemina*, *B. bovis*, and *B.*
413 *divergens* infections, no jaundice, hemoglobinuria, gastrointestinal disorders, and nervous
414 symptoms have been found in cows infected with *B. occultans* (113,114).
415 In this study, we identified nine *B. occultans* positive wildebeest (30%; 9/30). Since its clinical
416 signs are nearly identical to those of piroplasm infections, it is important for local animal health
417 officers and veterinarians to acknowledge the presence of the pathogen and consider it in
418 diagnoses and treatment strategies.

419 *Ehrlichia ruminantium* in KNP zebra

420 Reports of *E. ruminantium* in African non-ruminant wildlife are rare and controversial. For
421 instance, *E. ruminantium*-like colonies were detected in brain endothelial cells of a Nigerian
422 African elephant (*Loxodonta africana*) that reportedly died of anthrax (115). This report
423 requires verification due to the unusual nature of the case and the possible presence of pathogens
424 similar to *E. ruminantium*. Black and white rhinoceroses from Zimbabwe tested serologically
425 positive to *E. ruminantium* using a MAP1 competitive ELISA (116). However, this technique
426 is known to cross-react with other *Anaplasmataceae* (117) and, therefore, no confirmation can
427 be drawn from these findings.

428 In our study, two plains zebra from KNP tested positive to *E. ruminantium* with RLB. The
429 occurrence of the pathogen in a wild equid could be most likely incidental, but it may still be
430 of epidemiological importance to understand the source of infection and transmission

431 dynamics, for which further molecular characterization of the pathogen may provide significant
432 insights.

433 [Seropositivity to FMDV in greater kudu in KNP](#)

434 A total of 13 greater kudu (41%; 13/32) from KNP sampled in October 2018, South Africa,
435 were found seropositive to FMD by means of NSPCE. While natural infection with FMD has
436 already been reported in greater kudu from Botswana by means of reverse-transcriptase PCR
437 (118,119), the present study represents the first report of FMD based on NSPCE in greater kudu
438 in South Africa using serology. This test has not been validated for wildlife. Risk factor analysis
439 (Table 2) indicates that greater kudu has significantly higher prevalence of FMD among the
440 affected animal species investigated. The location (sampling park) was a significant predictor
441 of infection. Antibodies against 3ABC complex of FMDV can be detected in a window of
442 between 1 week to 6 months after exposure to the pathogen (120). These observations point to
443 circulation of FMD in kudu population from the northern area of KNP that were exposed to the
444 pathogen anytime during April-October 2018. Interestingly, this event might have occurred in
445 proximity and just a few months before the January 2019 outbreak in Vhembe district,
446 Limpopo, South Africa in cattle. Greater kudu has been reported to shed the virus up to 160
447 days after experimental infection, more than any other African non-buffalo bovid (“antelope”),
448 and clinical signs have been reported from this species without mortality (118,119,121).
449 Nonetheless, the role of kudu in maintaining and spreading FMDV is still to be investigated
450 and clarified. This report underscores the importance of further investigation into the role of
451 kudu in the epidemiology of FMD in Kruger National Park and validation of FMD serological
452 tests for wildlife. The lack of seropositive kudu from ENP – where buffalo populations are
453 absent – may indicate that the source of infection for kudu in KNP was most likely the contact
454 with FMD-infected buffaloes. As highlighted by Thomson et al. (19) and Hargreaves et al.

455 (122), antelope species (like kudu and impala) infected through contact with buffalo herds
456 within the park, have the potential to jump over the fences and transmit the virus to the cattle
457 living in adjacent communal farms. SPCE is the official screening test in South Africa and
458 Namibia for livestock, which is not validated for wildlife. In this study, the SPCE for SAT-1, 2
459 and 3 was negative in KNP and all serotypes in ENP. However, to our knowledge this work
460 represents the first attempt of FMD SAT serotyping in African non-buffalo species by SPCE
461 (6); hence the sensitivity of the technique in these animals is not known as there has been no
462 report, to our knowledge of SPCE for SAT in kudu and wildebeest. SPCE is serotype specific
463 meaning that it targets the structural proteins whose aminoacidic variability is per definition the
464 highest among all viral proteins (119). Antigenic variation is considered more common in wild
465 animal populations, due to repeated exposure and immune selective pressure of a highly diverse
466 population of infected host species (120,121). The strains of the serotypes (SAT1-2-3) coated
467 to the plate of the SPCE may be significantly different than the ones circulating in KNP wildlife,
468 as the SPCE is validated for livestock animals. Hence the sensitivity of the SPCE might be
469 mildly to markedly lower than the NSPCE, which on the other hand targets a highly conserved
470 component of the FMDV capsid *i.e.* the 3ABC complex. Alternatively, positive reactions in
471 kudu by NSPCE might be considered as false positive results, although this is very unlikely due
472 to the high specificity of the test (>99%) which does not depend on a species-specific conjugate
473 (being a competitive ELISA), and also due to the high titres observed in 12 kudu from KNP
474 (38%; 12/32). Additional research and characterization (using VNT or other tests) are strongly
475 expected to shed light on this phenomenon and could be investigated in the future using
476 available samples.

477 [Seropositivity to FMDV in a blue wildebeest from Etosha National Park](#)

478 One blue wildebeest (CT05, male, adult; 3%; 1/30) from Etosha National Park, Namibia, was
479 found seropositive for FMD by means of NSPCE but seronegative using SPCE. This finding
480 has to be interpreted cautiously because: the positive sample had a S/N percentage close to the
481 ELISA cutoff (Figure S1); all the other animals (kudu and wildebeest) from the same park, area
482 and sampling period, tested negative by the assay; buffalo, considered the main maintenance
483 host for FMD in wildlife, are not present in ENP (67). FMD infection in blue wildebeest from
484 Tanzania, Botswana and Kenya has been reported by means of RT-PCR with serotypes O, A,
485 SAT-1 and SAT-2 (121,123). Blue wildebeest may also suffer the clinical disease, developing
486 oral and foot lesions associated with lameness, fever and inappetence (123). However, the
487 NSPCE results were not confirmed with SPCE and thus require further investigation using a
488 larger samples size and alternative techniques such as RT-PCR on oropharyngeal lymph nodes.

489 [Confirmed *Brucella* exposure in KNP kudu, questionable for plains
490 zebra, blue wildebeest and impala](#)

491 Three kudu (10%; 3/29) in KNP could be considered seropositive for *Brucella* spp. These
492 animals reacted to two serological tests and an additional five kudu were positive to only one
493 serological technique. Numerous studies conducted in southern Africa could not find any
494 serological response in greater kudu, although sample sizes were often small (<30) and used
495 serological tests validated for livestock (124–128). In this study, seropositivity means that kudu
496 were exposed to *Brucella* spp. and it remains unknown whether they are incidental hosts or part
497 of the maintenance host community for *Brucella* spp. in wildlife. Three plains zebra from KNP
498 (9%; 3/35) tested positive either with RBT (two animals) or iELISA (one animal) and were
499 regarded as suspect cases. This is an area for additional research as agglutination reaction to

500 *Brucella* spp. in zebra has been reported by a previous study (129). The domestic horse, which
501 is evolutionarily related to zebra, has been demonstrated to harbor different *Brucella* spp.
502 (*i.e.* *B. abortus* and *B. suis* under natural circumstances and *B. canis* after experimental
503 challenge), and may eventually experience clinical signs (fistulous withers, abortion and other
504 reproductive problems) (130). Moreover, a study from Nigeria conducted by Bertu et al. (131),
505 isolated *B. abortus* from asymptomatic horses living in a multispecies farm in Nigeria.
506 However, the risk of transmission of brucellosis from equids is still to be clarified as horses
507 have been indicated as dead-end host (132).

508 [Widespread exposure to *Coxiella burnetii* in KNP and ENP](#)

509 In this study, a remarkably high number of individuals (57%; 106/185) across all evaluated wild
510 animal species (44/65 zebra, 22/69 kudu, 14/21 impala, 26/30 wildebeest) tested positive to the
511 *C. burnetii* iELISA (Table 1). We also obtained many strong positive reactions (19%; 35/185)
512 in any species considered (33/65 zebra, 9/69 kudu, 9/21 impala, 18/30 blue wildebeest). Finally,
513 our seroprevalence estimates were significantly different than those reported by Gakuya et al.
514 (133), where similar wildlife species were investigated in Kenya using the same serological
515 technique (iELISA). These findings led us to assume that *C. burnetii* is ubiquitous in both KNP
516 and ENP and might have a predilection for southern Africa's ecosystems and/or soils. A
517 significantly higher seroprevalence was registered in animals from ENP. Coxiellosis
518 seroprevalence was especially higher in blue wildebeest, plains zebra and impala. However, the
519 multispecies *C. burnetii* iELISA has only been validated for use in domestic animals and not
520 wildlife and has not been validated for wildlife species as iELISA tests are designed to be host
521 specific. Use of inaccurate tests could overestimate the prevalence of disease. In multiple
522 species iELISA assays, IgG-binding proteins (such as protein A, protein G and protein A/G)
523 are suggested and used as conjugates (134–137) but it is not known how these react with every

524 wildlife host species. According to Kelly et al. (135) and Stobel et al. (137), impala, wildebeest,
525 greater kudu and zebra react weakly with protein A and strongly with protein A/G, while
526 binding affinity with protein G varies; for impala and wildebeest, reactivity is weak, whereas
527 for kudu it is moderate and for zebra is strong. The binding affinity with protein A/G is
528 particularly strong for kudu (135). The Q fever iELISA kit employed in this study used protein
529 A/G. Considering all the facts discussed above, additional investigation may determine if kudu
530 is less affected/exposed to *C. burnetii* than the other species.

531 Further testing on tissues of wild animals matched with investigation in feeding ticks, may
532 provide important details for the clarification of Q fever epidemiology in African wildlife. Also,
533 the expansion of *C. burnetii* investigations in predator animals may provide further information
534 on the sylvatic cycle of the pathogen.

535 Limitations of the study and suggestions

536 We could detect reactions to nonspecific probes for *Anaplasma/Ehrlichia* and
537 *Theileria/Babesia* in ENP, but not too many of the species-specific probes investigated. This
538 suggests that the strains present in ENP may not be detectable by the probes which were
539 designed for strains occurring in South Africa due to the presence of local SNPs that do not
540 allow binding with RLB probes. Sequencing data could characterize *Anaplasma/Ehrlichia* and
541 *Theileria/Babesia* species occurring in ENP wildlife and thus design probes that can hybridize
542 reliably also with these strains. It may also indicate the occurrence of new species not reported
543 in literature.

544 RLB probes cross-reactions are not infrequent and a subset of positive samples should be
545 sequenced to confirm specificity of the RLB probes. However, due to funding constraints, we
546 could not sequence nor characterize any positive RLB occurrences. As a future study, it would

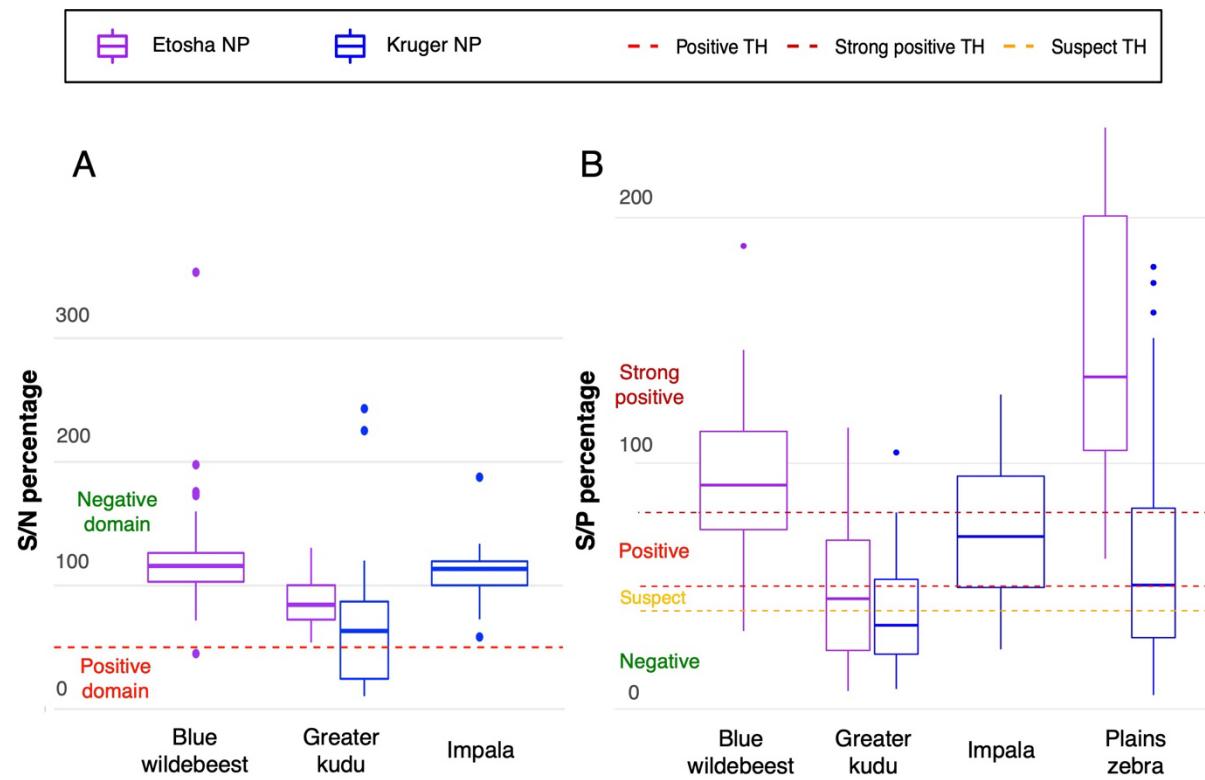
547 be particularly interesting to sequence and confirm the occurrence of *A. platys* in kudu and
548 impala and *E. ruminantium* in zebra from KNP, given their relevance for human and animal
549 health.

550 For serology, there is lack of known positive reference material from wild animals. Multispecies
551 ELISA make use of conjugates that react with multispecies with cutoffs that are not animal
552 species-specific. It is ideal to develop and validate ELISA assays specifically tailored for
553 detecting FMDV, brucellosis, and coxiellosis across a range of wildlife species.

554 Our prevalence estimates have wide confidence intervals due to small sample sizes and need to
555 be interpreted cautiously. Interpretations and interventions are conducted by considering both
556 the point estimate/prevalence as well as the entire confidence interval, that is where the true
557 population lies with 95% confidence.

558 Samples used in this study were part of another project that aimed to unravel differences in
559 exposure to anthrax in endemic and non-endemic locations. Although randomization was
560 introduced as much as possible when selecting sampling units, a moderate-high selection bias
561 has to be considered as it is not possible to extract a proper random sample from wildlife.
562 Moreover, due to prior use in other research, the total number of available samples was reduced
563 leading to a slight discrepancy in the number of animals tested for certain pathogens. For
564 instance, out of the total 32 kudu samples collected from KNP, we had only 28 sera and 29
565 DNA samples available for testing. This depletion meant that for four of the 32 kudu, we had
566 only one of the two sample types available (either DNA or sera, but not both).

567 CONCLUSION


568 With the present study, we report infections and exposure to several pathogens in wild animal
569 species. We provided evidence-based information that increased the knowledge of

570 pathogen/disease epidemiology in natural settings. This work constitutes a baseline of data
571 useful for implementation and improvement of surveillance and monitoring tools, which are
572 highly valuable for public and animal health stakeholders (*i.a.* farmers, communities,
573 governments), and lay the foundations for considerable research advancement.

574 **SUPPORTING MATERIAL**

575 Table S1: Oligonucleotide probes fixed on the RLB membrane for the detection of *Anaplasma*,
576 *Ehrlichia*, *Theileria* and *Babesia* spp. DNA.; References (53–56, 138–151) are here cited.

578

579 Figure S1: Boxplots of A) ELISA S/N percentages for foot and mouth disease virus (FMDV)
 580 and B) ELISA S/P percentages for *Coxiella burnetii*. TH = Threshold. Boxplot for *Brucella*
 581 spp. iELISA S/P percentages are not shown since some of the samples were tested in pools.

582 **ETHICS STATEMENT**

583 The project received research and animal ethics permits under reference number REC047-22
 584 and section 20 approval under the Animal Disease Act 35 of 1984 that allows serological testing
 585 at Hans Hoheisen Wildlife Centre laboratory in South Africa. The standard operating
 586 procedures of the laboratory were followed with all the safety precautions as stipulated.

587 **FUNDING**

588 This research was funded by AgriSETA, Institute of Tropical Medicine (ITM), Belgium, grant
589 number FA4 and National Science Foundation (NSF) Grant DEB-1816161/DEB-2106221
590 through the NSF-NIH-USDA Ecology and Evolution of Infectious Diseases program.

591 **AUTHORS CONTRIBUTION (CRediT taxonomy)**

592 Conceptualization: van Heerden H., Cossu C. A. and Ochai S.; methodology: van Heerden H.,
593 Cossu C. A. and Ochai S.; investigation: van Heerden H., Cossu C. A., Ochai S., de Klerk L.-
594 M., Troskie M., van Schalkwyk L. O., Hartmann, A.; software: Cossu C. A. and Ochai S.;
595 validation: van Heerden H., Turner W., Kamath P., Godfroid, J., Cassini R., Bhoora R.; formal
596 analysis: Cossu C. A. and Ochai S.; resources: van Heerden H., Turner W., Kamath P.; data
597 curation: Cossu C. A. and Ochai S.; writing—original draft preparation: Cossu C. A.; writing—
598 review and editing: Ochai S., Turner W., Kamath P., Cassini R., Bhoora R., Godfroid J., de
599 Klerk L.-M., Troskie M., van Schalkwyk L. O., van Heerden H. ; visualization: Cossu C. A.;
600 supervision: van Heerden H.; project administration: van Heerden H.; funding acquisition: van
601 Heerden H.

602 All authors have read and agreed to the published version of the manuscript.

603 **DATA AVAILABILITY STATEMENT**

604 Raw data are publicly available on Mendeley
605 Data: <https://data.mendeley.com/preview/ssf29pytwf?a=47d91a5e-2b3b-4764-8308-a3583af567bc>. Questions about the data may be directed to the corresponding author.

607 **ACKNOWLEDGMENTS**

608 The authors acknowledge the Skukuza State Veterinary Services, SANParks and the University
609 of Pretoria for sample collection in KNP, and the Ministry of Environment, Forestry and
610 Tourism and the Etosha Ecological Institute for sample collection in ENP. Any use of trade,
611 firm, or product names is for descriptive purposes only and does not imply endorsement by the
612 U.S. Government.

613 **CONFLICT OF INTERESTS**

614 The authors declare that they have no known competing financial interests or personal
615 relationships that could have appeared to influence the work reported in this paper.

616 **REFERENCES**

- 617 1. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, , Daszak P. Global trends in
618 emerging infectious diseases. *Nature*. 2008 Feb;451:990–3. Available from:
619 <https://www.nature.com/articles/nature06536>
- 620 2. Rhyan JC, Spraker TR. Emergence of diseases from wildlife reservoirs. *Veterinary Pathology*. 2010
621 Jan;47:34–9. Available from: <http://journals.sagepub.com/doi/10.1177/0300985809354466>
- 622 3. Cossu CA, Cassini R, Bhoora RV, Menandro ML, Oosthuizen MC, Collins NE, Wentzel J, Quan M,
623 Fagir DM, van Heerden H. Occurrence and molecular prevalence of *Anaplasmataceae*, *Rickettsiaceae* and
624 *Coxiellaceae* in African wildlife: A systematic review and meta-analysis. *Preventive Veterinary Medicine*. 2024.
625 Available from: <https://doi.org/10.1016/j.prevetmed.2024.106257>
- 626 4. Cossu CA, Bhoora RV, Cassini R, Heerden H van. The significance of viral, bacterial and protozoan
627 infections in zebra: A systematic review and meta-analysis of prevalence. *Hystrix, the Italian Journal of
628 Mammalogy*. 2022; Available from: <https://doi.org/10.4404/hystrix-00501-2021>
- 629 5. González-Barrio D, Ruiz-Fons F. *Coxiella burnetii* in wild mammals: A systematic review.
630 *Transboundary and Emerging Diseases*. 2019 Mar;66:662–71. Available from:
631 <https://onlinelibrary.wiley.com/doi/10.1111/tbed.13085>
- 632 6. Rahman A, Dhama K, Ali Q, Raza MA, Chaudhry U, Shabbir MZ. Foot and mouth disease in a wide
633 range of wild hosts: A potential constraint in disease control efforts worldwide particularly in disease-endemic
634 settings. Vol. 210, *Acta Tropica*. Elsevier; 2020. p. 105567. Available from:
635 <https://doi.org/10.1016/j.actatropica.2020.105567>
- 636 7. Simpson G, Thompson PN, Saegerman C, Marcotty T, Letesson JJ, de Bolle X, Godfroid J. Brucellosis
637 in wildlife in africa: A systematic review and meta-analysis. *Scientific Reports*. 2021;11:1–16. Available from:
638 <https://doi.org/10.1038/s41598-021-85441-w>
- 639 8. Thomas J, Balseiro A, Gortázar C, Risalde MA. Diagnosis of tuberculosis in wildlife: A systematic
640 review. *Veterinary Research*. 2021;52:1–23. Available from: <https://doi.org/10.1186/s13567-020-00881-y>
- 641 9. Vieira AS, Pinto PS, Lilenbaum W. **A systematic review of leptospirosis on wild animals in latin america.**
642 *Tropical Animal Health and Production*. 2018;50:229–38.

643 10. Bengis RG, Kock RA, Fischer J. **Infectious animal diseases: The wildlife/livestock interface**. OIE Revue
644 Scientifique et Technique. 2002;21:53–65.

645 11. Madzingira O, Fasina FO, Kalinda C, Heerden HV. Seroprevalence of brucellosis among clinically
646 suspected human cases presenting at health facilities in Namibia from 2012 to 2017. Biomedical and environmental
647 sciences;34:232–5. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/33766220>

648 12. Michel AL, Bengis RG, Keet DF, Hofmeyr M, Klerk LM, Cross PC, Jolles AE, Cooper D, Whyte IJ,
649 Buss P, Godfroid J. **Wildlife tuberculosis in South African conservation areas: Implications and challenges**.
650 Veterinary Microbiology. 2006 Feb;112:91–100.

651 13. Ntivuguruzwa JB, Kolo FB, Gashururu RS, Umurerwa L, Byaruhanga C, Heerden H van. **Seroprevalence
652 and associated risk factors of bovine brucellosis at the wildlife-livestock-human interface in Rwanda**.
653 Microorganisms. 2020;8:1–15.

654 14. Shirima GM, Kunda JS. **Prevalence of brucellosis in the human, livestock and wildlife interface areas of
655 Serengeti national park, Tanzania**. Onderstepoort Journal of Veterinary Research. 2016 Jun;83.

656 15. Tschopp R, Aseffa A, Schelling E, Berg S, Hailu E, Gadisa E, Habtamu M, Argaw K, Zinsstag J. **Bovine
657 tuberculosis at the wildlife-livestock-human interface in Hamer Woreda, south Omo, southern Ethiopia**. PLoS
658 ONE. 2010;5.

659 16. Cleaveland S, Laurenson MK, Mlengeya T. Impacts of wildlife infections on human and livestock health
660 with special reference to Tanzania: Implications for protected area management. Conservation and Development
661 Interventions at the Wildlife/Livestock Interface: Implications for Wildlife, Livestock, and Human Health.
662 2005;147–51. Available from: <http://www.jwildlifedis.org/doi/pdf/10.7589/0090-3558-43.2.319>

663 17. Dehove A, Commault J, Petitclerc M, Teissier M, Macé J. **Economic analysis and costing of animal
664 health: A literature review of methods and importance**. Revue scientifique et technique (International Office of
665 Epizootics). 2012;31:605–17.

666 18. Grogan LF, Berger L, Rose K, Grillo V, Cashins SD, Skerratt LF. Surveillance for emerging biodiversity
667 diseases of wildlife. Rall GF, editor. PLoS Pathogens. 2014 May;10:e1004015. Available from:
668 <https://dx.plos.org/10.1371/journal.ppat.1004015>

669 19. Thomson GR, Vosloo W, Bastos ADS. **Foot and mouth disease in wildlife**. Virus Research. 2003;91:145–
670 61.

671 20. Knight-Jones TJD, Rushton J. The economic impacts of foot and mouth disease - what are they, how big
672 are they and where do they occur? Preventive Veterinary Medicine . 2013;112:161–73. Available from:
673 <http://dx.doi.org/10.1016/j.prevetmed.2013.07.013>

674 21. Jori F, Etter E. Transmission of foot and mouth disease at the wildlife/livestock interface of the Kruger
675 National Park, South Africa: Can the risk be mitigated? Preventive Veterinary Medicine. 2016 Apr;126:19–29.
676 Available from: <https://www.sciencedirect.com/science/article/pii/S0167587716300332>

677 22. Vosloo W, Bastos ADS, Sahle M, Sangare O, Dwarka RM. Virus topotypes and the role of wildlife in
678 foot and mouth disease in africa. 2005;

679 23. Alexandersen S, Mowat N. **Foot-and-mouth disease: Host range and pathogenesis**. Springer. 2005;

680 24. Keet DF, Htmter P, Bengis RG, Bastos A, Thomson GR. The 1992 foot-and-mouth disease epizootic in
681 the Kruger National Park. Vol. 67, Journal of the South African Veterinary Association. Kruger National; 1996.
682 p. 83–7. Available from: https://journals.co.za/doi/pdf/10.10520/AJA00382809_1640#:~:text=The%201992%20outbreak%2C%20judging%20by,central%20area%20of%20the%20KNP.

685 25. Shimshony A. Foot and mouth disease in the mountain gazelle in Israel. Revue Scientifique et Technique
686 de l’OIE. 1988 Dec;7:917–23. Available from: <https://doc.oie.int/dyn/portal/index.xhtml?page=alo&aloId=25708>

687 26. Animal Health WO for. Terrestrial manual. Chapter 3.1.4. "brucellosis". 2022;1–48.

688 27. Mick V, Carrou GL, Corde Y, Game Y, Jay M, Garin-Bastuji B. **Brucella melitensis in france: Persistence
689 in wildlife and probable spillover from alpine ibex to domestic animals**. PLoS ONE. 2014 Apr;9.

690 28. Ducrotoy MJ, Muñoz PM, Conde-Álvarez R, Blasco JM, Moriyón I. **A systematic review of current**
691 **immunological tests for the diagnosis of cattle brucellosis.** Vol. 151, Preventive Veterinary Medicine. Elsevier
692 B.V.; 2018. p. 57–72.

693 29. Asante J, Noreddin A, Zowalaty MEE. Systematic review of important bacterial zoonoses in Africa in
694 the last decade in light of the 'one health' concept. *Pathogens.* 2019;8:16.

695 30. Vanderburg S, Rubach MP, Halliday JEB, Cleaveland S, Reddy EA, Crump JA. **Epidemiology of**
696 ***Coxiella burnetii* infection in Africa: A OneHealth systematic review.** *PLoS Neglected Tropical Diseases.* 2014;8.

697 31. Knap N, Žele D, Biškup UG, Avšič-Županc T, Venguš G. **The prevalence of *Coxiella burnetii* in ticks**
698 **and animals in Slovenia.** *BMC Veterinary Research.* 2019;15:4–9.

699 32. de Bruin A, de Groot A, de Heer L, Bok J, Wielinga PR, Hamans M, van Rotterdam BJ, Janse I. **Detection**
700 **of *Coxiella burnetii* in complex matrices by using multiplex quantitative PCR during a major q fever outbreak in**
701 **the Netherlands.** *Applied and Environmental Microbiology.* 2011;77:6516–23.

702 33. González-Barrio D, Maio E, Vieira-Pinto M, Ruiz-Fons F. European rabbits as reservoir for *Coxiella*
703 *burnetii.* 2015;21. Available from: <http://dx.doi.org/10.3201/eid2106.141537>

704 34. Jongejan F, Uilenberg G. **The global importance of ticks.** *Parasitology.* 2004;129.

705 35. Olivieri E, Kariuki E, Floriano AM, Castelli M, Tafesse YM, Magoga G, Kumsa B, Montagna M, Sassera
706 D. Multi-country investigation of the diversity and associated microorganisms isolated from tick species from
707 domestic animals, wildlife and vegetation in selected African countries. *Experimental and Applied Acarology.*
708 2021 Mar;83:427–48. Available from: <http://link.springer.com>

709 36. Brothers PS, Collins NE, Oosthuizen MC, Bhoora R, Troskie M, Penzhorn BL. **Occurrence of blood-**
710 **borne tick-transmitted parasites in common tsessebe (*Damaliscus lunatus*) antelope in northern cape province,**
711 **South Africa.** *Veterinary Parasitology.* 2011 Dec;183:160–5.

712 37. Eygelaar D, Jori F, Mokopasetso M, Sibeko KP, Collins NE, Vorster I, Troskie M, Oosthuizen MC. Tick-
713 borne haemoparasites in African buffalo (*Syncerus caffer*) from two wildlife areas in northern Botswana. *Parasites*
714 and Vectors. 2015 Jan;8:26. Available from: <http://www.parasitesandvectors.com/>

715 38. Henrichs B, Oosthuizen MC, Troskie M, Gorsich E, Gondhalekar C, Beechler BR, Ezenwa VO, Jolles
716 AE. **Within guild co-infections influence parasite community membership: A longitudinal study in African**
717 **buffalo.** *Journal of Animal Ecology.* 2016 Jul;85:1025–34.

718 39. Khumalo ZT, Catanese HN, Liesching N, Hove P, Collins NE, Chaisi ME, Gebremedhin AH, Oosthuizen
719 MC, Brayton KA. Characterization of *Anaplasma marginale* subsp. Centrale strains by use of *msp1aS* genotyping
720 reveals a wildlife reservoir. Fenwick BW, editor. *Journal of Clinical Microbiology.* 2016 Oct;54:2503–12.
721 Available from: <https://journals.asm.org/doi/10.1128/JCM.01029-16>

722 40. Perry BD, Young AS. The past and future roles of epidemiology and economics in the control of tick-
723 borne diseases of livestock in Africa: The case of theileriosis. *Preventive Veterinary Medicine.* 1995 Dec;25:107–
724 20. Available from: <https://linkinghub.elsevier.com/retrieve/pii/0167587795005463>

725 41. Waal DTD. **Anaplasmosis control and diagnosis in South Africa.** *Annals of the New York Academy*
726 *of Sciences.* 2000;916:474–83.

727 42. Vosloo W, Thompson PN, Botha B, Bengis RG, Thomson GR. **Longitudinal study to investigate the role**
728 **of impala (*Aepyceros melampus*) in foot-and-mouth disease maintenance in the Kruger National Park, South**
729 **Africa.** *Transboundary and Emerging Diseases.* 2009;56:18–30.

730 43. Fischer-Tenhagen C, Hamblin C, Quandt S, Frölich K, Frölich K. Serosurvey for selected infectious
731 disease agents in free-ranging black and white rhinoceros in Africa. *Journal of Wildlife Diseases.* 2000;36:316–
732 23. Available from: <http://meridian.allenpress.com/doi/pdf/10.7589/0090-3558-36.2.316>

733 44. Karesh WB, Rothstein A, Green W, Reuter HO, Braselton WE, Torres A, Cook RA. **Health evaluation**
734 **of black-faced impala (*Aepyceros melampus petersi*) using blood chemistry and serology.** *Journal of Zoo and*
735 *Wildlife Medicine.* 1997;28:361–7.

736 45. Magwedere K, Bishi A, Tjipura-Zaire G, Eberle G, Hemberger Y, Hoffman LC, Dziva F. **Brucellae**
737 **through the food chain: The role of sheep, goats and springbok (*Antidorcas marsupialis*) as sources of human**
738 **infections in Namibia.** *Journal of the South African Veterinary Association.* 2011;82:205–12.

739 46. Kaschula VR, Dellen AFV, Vos V de. Some infectious diseases of wild vervet monkeys (*Cercopithecus*
740 *aethiops pygerythrus*) in South Africa. Journal of the South African Veterinary Association. 1978;49:223–7.

741 47. Ochai SO, Crafford JE, Hassim A, Byaruhangwa C, Huang YH, Hartmann A, Dekker EH, van Schalkwyk
742 OL, Kamath PL, Turner WC, van Heerden H. **Immunological evidence of variation in exposure and immune**
743 **response to *Bacillus anthracis* in herbivores of Kruger and Etosha national parks.** Frontiers in Immunology. 2022
744 Feb;13.

745 48. Huang YH, Owen-Smith N, Henley MD, Kilian JW, Kamath PL, Ochai SO, van Heerden H, Mfune JKE,
746 Getz WM, Turner WC. **Variation in herbivore space use: Comparing two savanna ecosystems with different**
747 **anthrax outbreak patterns in southern Africa.** Movement Ecology. 2023 Dec;11.

748 49. Forestry, Agriculture FD of. Veterinary procedural notice for foot and mouth disease control in South
749 Africa. 2014. Available from: <https://www.elsenburg.com/wp-content/uploads/2022/02/VPN-FMD-2014.pdf>

750 50. Banda F, Shilongo A, Hikufe EH, Khaiseb S, Kabajani J, Shikongo B, Set P, Kapapero JK, Shoombe
751 KK, Zaire G, Kabilika S, Quan M, Fana EM, Mokopasetso M, Hyera JMK, Wadsworth J, Knowles NJ, Nardo
752 AD, King DP. **The first detection of a serotype O foot-and-mouth disease virus in Namibia.** Transboundary and
753 Emerging Diseases. 2022;69:e3261–7.

754 51. Kilian JW. Aerial survey of Etosha national park. Internal report to the ministry of environment and
755 tourism. 2015;

756 52. Lindeque M, Lindeque PM. Aerial sample counts of large game in northern Namibia. 1997;1997.
757 Available from: https://hdl.handle.net/10520/AJA10115498_435

758 53. Bekker CPJ, Vos SD, Taoufik A, Sparagano OAE, Jongejan F. **Simultaneous detection of *Anaplasma* and**
759 ***Ehrlichia* species in ruminants and detection of *Ehrlichia ruminantium* in *Amblyomma variegatum* ticks by reverse**
760 **line blot hybridization.** Veterinary Microbiology. 2002 Oct;89:223–38.

761 54. Gubbels JM, de Vos AP, van der Weide M, Viseras J, Schouls LM, de Vries E, Jongejan F. Simultaneous
762 detection of bovine *Theileria* and *Babesia* species by reverse line blot hybridization. Vol. 37, Journal of Clinical
763 Microbiology. 1999. p. 1782–9. Available from: <https://journals.asm.org/journal/jcm>

764 55. Nijhof AM, Penzhorn BL, Lynen G, Mollel JO, Morkel P, Bekker CP, Jongejan F. ***Babesia bicornis* sp.**
765 **Nov. and *Theileria bicornis* sp. Nov.: Tick-borne parasites associated with mortality in the black rhinoceros**
766 **(*Diceros bicornis*).** Journal of Clinical Microbiology. 2003 May;41:2249–54.

767 56. Nijhof AM, Pillay V, Steyl J, Prozesky L, Stoltz WH, Lawrence JA, Penzhorn BL, Jongejan F. **Molecular**
768 **characterization of *Theileria* species associated with mortality in four species of African antelopes.** Journal of
769 Clinical Microbiology. 2005 Dec;43:5907–11.

770 57. Bányász B, Antal J, Dénes B. **False positives in brucellosis serology: Wrong bait and wrong pond?** Vol.
771 8, Tropical Medicine and Infectious Disease. Multidisciplinary Digital Publishing Institute (MDPI); 2023.

772 58. Rosner B. **Fundamentals of biostatistics.** Cengage learning. 2016.

773 59. Udovičić M, Baždarić K, Bilić-Zulle L, Petrovečki M. **What we need to know when calculating the**
774 **coefficient of correlation?** Biochimia Medica. 2007;17:10–5.

775 60. Nicholson KJ, Sherman M, Divi SN, Bowles DR, Vaccaro AR. The role of family-wise error rate in
776 determining statistical significance. Clinical Spine Surgery: A Spine Publication. 2022 Jun;35:222–3. Available
777 from: <https://journals.lww.com/10.1097/BSD.0000000000001287>

778 61. Bland JM, Altman DG. Multiple significance tests: The bonferroni method. BMJ. 1995 Jan;310:170–0.
779 Available from: <https://www.bmjjournals.org/lookup/doi/10.1136/bmj.310.6973.170>

780 62. Bradley DR, Cutcomb S. **Monte carlo simulations and the chi-square test of independence.** Behavior
781 Research Methods & Instrumentation. 1977;9:193–201.

782 63. Horak IG, Anthonissen M, Krecek RC, Boomker J. Arthropod parasites of springbok, gemsbok, kudus,
783 giraffes and burchell's and hartmann's zebras in the Etosha and Hardap nature reserves, Namibia. Onderstepoort
784 Journal of Veterinary Research. 1992;59:253–7. Available from: <http://hdl.handle.net/2263/32550>

785 64. Horak IG, Braack LEO, Fourie LJ, Walker JB. Parasites of domestic and wild animals in South Africa.
786 XXXVIII. Ixodid ticks collected from 23 wild carnivore species. Onderstepoort Journal of Veterinary Research.
787 2000;67:239–50. Available from: <http://hdl.handle.net/2263/19906>

788 65. Turner WC, Küsters M, Versfeld W, Horak IG. **Ixodid tick diversity on wild mammals, birds and reptiles**
789 **in and around Etosha national park, Namibia.** African Journal of Ecology. 2017;55:714–21.

790 66. Randolph SE. **Epidemiological consequences of the ecological physiology of ticks.** Vol. 37, Advances in
791 Insect Physiology. Academic Press Inc.; 2009. p. 297–339.

792 67. Turner WC, Périquet S, Goelst CE, Vera KB, Cameron EZ, Alexander KA. **Africa's drylands in a**
793 **changing world: Challenges for wildlife conservation under climate and land-use changes in the greater Etosha**
794 **landscape.** Global Ecology and Conservation. 2022 Oct;38.

795 68. Walker AR, Bouattour A, Camicas JL, Estrada-peña A, Horak IG, Latif AA, Pegram RG, Preston, PM.
796 Ticks of domestic animals in Africa: A guide to identification of species. The University of Edinburgh. 2003.
797 Available from:
798 http://www.researchgate.net/publication/259641898_Ticks_of_domestic_animals_in_Africa_a_guide_to_identification_of_species/file/5046352d0429878d7f.pdf

800 69. Ledwaba MB, Nozipho K, Tembe D, Onyiche TGE, Chaisi ME. **Distribution and prevalence of ticks and**
801 **tick-borne pathogens of wild animals in South Africa: A systematic review.** Vol. 2, Current Research in
802 Parasitology and Vector-Borne Diseases. Elsevier B.V.; 2022.

803 70. Tawana M, Onyiche TGE, Ramatla T, Mtshali S, Thekisoe O. **Epidemiology of ticks and tick-borne**
804 **pathogens in domestic ruminants across southern African development community (SADC) region from 1980 until**
805 **2021: A systematic review and meta-analysis.** Pathogens. 2022 Aug;11.

806 71. Lawrence J, Byaruhanga C, Oosthuizen M, Mans B. Non-pathogenic *Theileria* spp. In cattle. In: Infectious diseases of livestock. 2017. Available from: <https://www.anipedia.org/resources/non-pathogenic-theileria-species-in-cattle/1285>

807 72. Steyl JCA. Theileriosis in roan antelope (*hippotragus equinus*): Identification of vectors and experimental
808 transmission using a tick-derived stabilate. 2012; Available from: <https://repository.up.ac.za/bitstream/handle/2263/29707/dissertation.pdf;sequence=1>

809 73. Govender D, Oosthuisen C, Penzhorn BL. Piroplasm parasites of white rhinoceroses (*Ceratotherium*
810 *simum*) in the Kruger National Park, and their relation to anaemia. Vol. 82, *Tydskr.S.Afr.vet.Ver.* 2011. p. 36–40.
811 Available from: http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S1019-91282011000100009

812 74. Otiende MY, Kivata MW, Makumi JN, Mutinda MN, Okun D, Kariuki L, Obanda V, Gakuya F, Mijele
813 D, Soriguer RC, Alasaad S. **Epidemiology of *Theileria bicornis* among black and white rhinoceros metapopulation**
814 **in Kenya.** BMC Veterinary Research. 2015 Jan;11.

815 75. Pfitzer S, Oosthuizen MC, Bosman A-M, Vorster I, Penzhorn BL. Tick-borne blood parasites in nyala
816 (*tragelaphus angasii*, gray 1849) from KwaZulu-natal, South Africa. Veterinary Parasitology. 2011 Mar;176:126–
817 31. Available from: <https://linkinghub.elsevier.com/retrieve/pii/S0304401710006291>

818 76. Berggoetz M, Schmid M, Ston D, Wyss V, Chevillon C, Pretorius AM, Gern L. **Protozoan and bacterial**
819 **pathogens in tick salivary glands in wild and domestic animal environments in South Africa.** Ticks and Tick-borne
820 Diseases. 2014 Mar;5:176–85.

821 77. Annecke W, Masubelele M. **A review of the impact of militarisation: The case of rhino poaching in kruger**
822 **national park, South Africa.** Conservation and Society. 2016 Jul;14:195–204.

823 78. Yang L, Wang W, Huang S, Wang Y, Wronski T, Deng H, Lu J. **Individual stress responses of white**
824 **rhinoceros (*Ceratotherium simum*) to transport: Implication for a differential management.** Global Ecology and
825 Conservation. 2019 Jan;17.

826 79. Alizon S, Baalen MV. **Multiple infections, immune dynamics, and the evolution of virulence.** American
827 Naturalist. 2008;172.

828 80. Clay PA, Rudolf VHW. **How parasite interaction strategies alter virulence evolution in multi-parasite**
829 **communities.** Evolution. 2019;73:2189–203.

830 81. Seabloom EW, Borer ET, Gross K, Kendig AE, Lacroix C, Mitchell CE, Mordecai EA, Power AG. **The**
831 **community ecology of pathogens: Coinfection, coexistence and community composition.** Ecology Letters. 2015;18:401–15.

832 82. Woolhouse ME, Thumbi SM, Jennings A, Chase-Topping M, Callaby R, Kiara H, Oosthuizen MC,
833 Mbole-Kariuki MN, Conradie I, Handel IG, Poole EJ, Njiiri E, Collins NE, Murray G, Tapio M, Auguet OT, Weir

838 W, Morrison WI, Kruuk LE, Bronsvoort BM, Hanotte O, Coetzer K, Toye PG. **Co-infections determine patterns**
839 **of mortality in a population exposed to parasite infection.** Science Advances. 2015;1.

840 83. Inokuma H, Terada Y, Kamio T, Raoult D, Brouqui P. **Analysis of the 16S rRNA gene sequence of**
841 **anaplasma centrale and its phylogenetic relatedness to other ehrlichiae.** Clinical and Diagnostic Laboratory
842 Immunology. 2001;8:241–4.

843 84. Animal Health WO for. Terrestrial manual. Chapter 3.5.1. "Crimean–Congo Haemorrhagic Fever". OIE,
844 Paris; 2018. Available from: https://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/3.05.03_DOURINE.pdf

845 85. Carelli G, Decaro N, Lorusso E, Paradies P, Elia G, Martella V, Buonavoglia C, Ceci L. **First report of**
846 **bovine anaplasmosis caused by anaplasma centrale in europe.** In: Annals of the New York Academy of Sciences.
847 Blackwell Publishing Inc.; 2008. p. 107–10.

848 86. Sisson D, Hufschmid J, Jolles A, Beechler B, Jabbar A. **Molecular characterisation of anaplasma species**
849 **from african buffalo (*syncerus caffer*) in kruger national park, South Africa.** Ticks and Tick-borne Diseases.
850 2017;8:400–6.

851 87. Potgieter FT-, Rensburg LV. **Tick transmission of anaplasma centrale.** Onderstepoort Journal of
852 Veterinary Research. 1987;54:5–7. Available from: <http://hdl.handle.net/2263/42621>

853 88. Ueti MW, Knowles DP, Davitt CM, Scoles GA, Baszler TV, Palmer GH. **Quantitative differences in**
854 **salivary pathogen load during tick transmission underlie strain-specific variation in transmission efficiency of**
855 ***Anaplasma marginale*.** Infection and Immunity. 2009 Jan;77:70–5.

856 89. Cossu CA, Collins NE, Oosthuizen MC, Menandro ML, Bhoora RV, Vorster I, Cassini R, Stoltz H,
857 Quan M, van Heerden H. **Distribution and prevalence of *Anaplasmataceae*, *Rickettsiaceae* and *Coxiellaceae* in**
858 **african ticks: A systematic review and meta-analysis.** Vol. 11, Microorganisms. MDPI; 2023.

859 90. Dumler JS, Barbet AF, Bekker CP, Dasch GA, Palmer GH, Ray SC, Rikihisa Y, Rurangirwa FR. **Reorganization of genera in the families *Rickettsiaceae* and *Anaplasmataceae* in the order rickettsiales: Unification**
860 **of some species of ehrlichia with anaplasma, cowdria with ehrlichia and ehrlichia with neorickettsia, descriptions**
861 **of six new species combi.** International Journal of Systematic and Evolutionary Microbiology. 2001;51:2145–65.

862 91. Atif FA. Alpha proteobacteria of genus *Anaplasma* (rickettsiales: *Anaplasmataceae*): Epidemiology and
863 characteristics of *Anaplasma* species related to veterinary and public health importance. Parasitology. 2016
864 May;143:659–85. Available from: https://www.cambridge.org/core/product/identifier/S0031182016000238/type/journal_article

865 92. Barker EN, Langton DA, Helps CR, Brown G, Malik R, Shaw SE, Tasker S. **Haemoparasites of free-**
866 **roaming dogs associated with several remote aboriginal communities in Australia.** BMC Veterinary Research.
867 2012 May;8.

868 93. Said MB, Belkahia H, Messadi L. **Anaplasma spp. In north africa: A review on molecular epidemiology,**
869 **associated risk factors and genetic characteristics.** Ticks and Tick-borne Diseases. 2018 Mar;9:543–55. Available
870 from: <https://linkinghub.elsevier.com/retrieve/pii/S1877959X17305150>

871 94. Bastos ADS, Mohammed OB, Bennett NC, Petevinos C, Alagaili AN. **Molecular detection of novel**
872 **anaplasmataceae closely related to anaplasma platys and ehrlichia canis in the dromedary camel (*camelus***
873 ***dromedarius*).** Veterinary Microbiology. 2015 Sep;179:310–4.

874 95. Chien NTH, Nguyen TL, Bui KL, Nguyen TV, Le TH. ***Anaplasma marginale* and a. *Platys* characterized**
875 **from dairy and indigenous cattle and dogs in northern vietnam.** Korean Journal of Parasitology. 2019 Feb;57:43–
876 8.

877 96. Chochlakis D, Ioannou I, Sharif L, Kokkini S, Hristophi N, Dimitriou T, Tselenitis Y, Psaroulaki A. **Prevalence of *Anaplasma* sp. In goats and sheep in Cyprus.** Vector-Borne and Zoonotic Diseases. 2009 Oct;9:457–
878 63.

879 97. Dahmani M, Loudahi A, Mediannikov O, Fenollar F, Raoult D, Davoust B. **Molecular detection of**
880 ***Anaplasma platys* and *Ehrlichia canis* in dogs from Kabylie, Algeria.** Ticks and Tick-borne Diseases. 2015
881 Mar;6:198–203.

882 98. Li Y, Yang J, Chen Z, Qin G, Li Y, Li Q, Liu J, Liu Z, Guan G, Yin H, Luo J, Zhang L. ***Anaplasma***
883 **infection of bactrian camels (*Camelus bactrianus*) and ticks in xinjiang, china.** Parasites and Vectors. 2015 Jun;8.

888 99. Li Y, Chen Z, Liu Z, Liu J, Yang J, Li Q, Li Y, Luo J, Yin H. **Molecular survey of anaplasma and ehrlichia**
889 **of red deer and sika deer in Gansu, China in 2013.** Transboundary and Emerging Diseases. 2016 Dec;63:e228–36.

890 100. Lima ML, Soares PT, Ramos CA, Araújo FR, Ramos RA, Souza II, Faustino MA, Alves LC. Molecular
891 detection of *Anaplasma platys* in a naturally-infected cat in Brazil. Brazilian Journal of Microbiology. 2010
892 Jun;41:381–5. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1517-83822010000200019&lng=en&nrm=iso&tlng=en

893 101. Mwale R, Mulavu M, Khumalo CS, Mukubesa A, Nalubamba K, Mubemba B, Changula K, Simulundu
894 E, Chitanga S, Namangala B, Mataa L, Zulu VC, Munyeme M, Muleya W. Molecular detection and
895 characterization of *Anaplasma* spp. in cattle and Sable antelope from Lusaka and north-western provinces of
896 Zambia. Veterinary Parasitology: Regional Studies and Reports. 2023;39:100847. Available from:
897 <https://www.sciencedirect.com/science/article/pii/S2405939023000175>

898 102. Zobba R, Anfossi AG, Pinna Parpaglia ML, Dore GM, Chessa B, Spezzigu A, Rocca S, Visco S, Pittau
899 M, Alberti A. **Molecular investigation and phylogeny of *Anaplasma* spp. in mediterranean ruminants reveal the**
900 **presence of neutrophil-tropic strains closely related to *A. platys*.** Applied and Environmental Microbiology. 2014
901 Jan;80:271–80.

902 103. Zobba R, Anfossi AG, Visco S, Sotgiu F, Dedola C, Pinna Parpaglia ML, Battilani M, Pittau M, Alberti
903 A. **Cell tropism and molecular epidemiology of *Anaplasma platys*-like strains in cats.** Ticks and Tick-borne
904 Diseases. 2015 Apr;6:272–80.

905 104. Rar V, Tkachev S, Tikunova N. **Genetic diversity of *Anaplasma* bacteria: Twenty years later.** Vol. 91,
906 Infection, Genetics and Evolution. Elsevier B.V.; 2021.

907 105. Arraga-Alvarado CM, Quroollo BA, Parra OC, Berrueta MA, Hegarty BC, Breitschwerdt EB. **Case report:**
908 **Molecular evidence of *Anaplasma platys* infection in two women from Venezuela.** American Journal of Tropical
909 Medicine and Hygiene. 2014 Dec;91:1161–5.

910 106. Maggi RG, Mascarelli PE, Havenga LN, Naidoo V, Breitschwerdt EB. **Co-infection with *Anaplasma***
911 ***platys*, *Bartonella henselae* and *candidatus mycoplasma haematoparvum* in a veterinarian.** Parasites and Vectors.
912 2013;6.

913 107. Harvey JW, Simpson CF, Gaskin JM. Cyclic thrombocytopenia induced by a *Rickettsia*-like agent in
914 dogs. Journal of Infectious Diseases. 1978 Feb;137:182–8. Available from: <https://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/137.2.182>

915 108. Sainz Á, Roura X, Miró G, Estrada-Peña A, Kohn B, Harrus S, Solano-Gallego L. **Guideline for**
916 **veterinary practitioners on canine ehrlichiosis and anaplasmosis in Europe.** Vol. 8, Parasites and Vectors. BioMed
917 Central Ltd.; 2015.

918 109. Guo H, Adjou Moumouni PF, Thekisoe O, Gao Y, Liu M, Li J, Galon EM, Efstratiou A, Wang G,
919 Jirapattharasate C, Ringo AE, Mtshali K, Inoue N, Suzuki H, Xuan X. Genetic characterization of tick-borne
920 pathogens in ticks infesting cattle and sheep from three South African provinces. Ticks and Tick-borne Diseases.
921 2019 Jun;10:875–82. Available from: http://www.elsevier.com/wps/find/journaldescription.cws_home/721452/description#description

922 110. Harrus S, Perlman-Avrahami A, Mumcuoglu KY, Morick D, Eyal O, Baneth G. **Molecular detection of**
923 ***Ehrlichia canis*, *Anaplasma bovis*, *Anaplasma platys*, *candidatus Midichloria mitochondrii* and *Babesia canis***
924 ***vogeli* in ticks from Israel.** Clinical Microbiology and Infection. 2011;17:459–63.

925 111. Kim CM, Yi YH, Yu DH, Lee MJ, Cho MR, Desai AR, Shringi S, Klein TA, Kim HC, Song JW, Baek
926 LJ, Chong ST, O'guinn ML, Lee JS, Lee IY, Park JH, Foley J, Chae JS. **Tick-borne rickettsial pathogens in ticks**
927 **and small mammals in Korea.** Applied and Environmental Microbiology. 2006 Sep;72:5766–76.

928 112. Decaro N, Larocca V, Parisi A, Losurdo M, Lia RP, Greco MF, Miccolis A, Ventrella G, Otranto D,
929 Buonavoglia C. **Clinical bovine piroplasmosis caused by *Babesia occultans* in Italy.** Journal of Clinical
930 Microbiology. 2013;51:2432–4.

931 113. Aktas M, Ozubek S. **Molecular and parasitological survey of bovine piroplasms in the black sea region,**
932 **including the first report of babesiosis associated with *Babesia divergens* in Turkey.** Journal of Medical
933 Entomology. 2015 Nov;52:1344–50.

934 114. Bock R, Jackson L, de Vos A, Jorgensen W. Babesiosis of cattle. Parasitology. 2004;129:S247–69.
935 <https://doi.org/10.1017/S0031182004005190>

939 115. Okewole PA, Oyetunde IL, Irokanulo EA, Chima JC, Nwankpa N, Laleye Y, Bot C. **Anthrax and**
940 **cowdriosis in an African elephant (*Loxodonta africana*)**. Veterinary Record. 1993 Aug;133:168–8.

941 116. Kock ND, Jongejan F, Kock MD, Kock RA, Morkel P. Serological evidence for *Cowdria ruminantium*
942 infection in free-ranging black (*Diceros bicornis*) and white (*Ceratotherium simum*) rhinoceroses in Zimbabwe.
943 Journal of Zoo and Wildlife Medicine. 1992;23. Available from: <https://www.jstor.org/stable/20460292>

944 117. Martinez D, Coisne S, Sheikboudou C, Jongejan F. Detection of antibodies to *Cowdria ruminantium* in
945 the serum of domestic ruminants by indirect ELISA. Revue d'élevage et de médecine vétérinaire des pays
946 tropicaux. 1993 Jan;46:115–20. Available from: <https://revues.cirad.fr/index.php/REMV/article/view/9346>

947 118. Condy JB, Vickers DB. Isolation of *Brucella abortus* from a waterbuck (*Kobus ellipsiprymnus*).
948 Veterinary Record. 1969;

949 119. Letshwenyo M, Mapitse N, Hyera JMK. **Foot-and-mouth disease in a kudu (*Tragelaphus strepsiceros*) in**
950 **Botswana**. Veterinary Record. 2006 Aug;159:252–3.

951 120. Chen SP, Ellis TM, Lee MC, Cheng IC, Yang PC, Lin YL, Jong MH, Robertson ID, Edwards JR. **Comparison of sensitivity and specificity in three commercial foot-and-mouth disease virus non-structural protein**
952 **ELISA kits with swine sera in Taiwan**. Veterinary Microbiology. 2007 Jan;119:164–72.

953 121. Hedger RS, Condy JB, Golding SM. **Infection of some species of african wild life with foot-and-mouth**
954 **disease virus**. Journal of Comparative Pathology. 1972;82:455–61.

955 122. Hargreaves SK, Foggin CM, Anderson EC, Bastos AD, Thomson GR, Ferris NP, Knowles NJ. An
956 investigation into the source and spread of foot and mouth disease virus from a wildlife conservancy in Zimbabwe.
957 Revue Scientifique et Technique de l'OIE. 2004 Dec;23:783–90. Available from:
958 <https://doc.oie.int/dyn/portal/index.xhtml?page=alo&aloId=30378>

959 123. Swai ES, Mrosso A, Masambu JIG. Occurrence of foot and mouth disease serotypes in Tanzania: A
960 retrospective study of tongue epithelial tissue samples. Tanzania Veterinary Journal. 2009.

961 124. Alexander KA, Blackburn JK, Vandewalle ME, Pesapane R, Baipoledi EK, Elzer PH. Buffalo, bush meat,
962 and the zoonotic threat of brucellosis in Botswana. PLoS ONE. 2012;7. Available from: www.plosone.org

963 125. Vos VD, Niekerk WJV. Brucellosis in the Kruger national park. Journal of the South African Veterinary
964 Association. 1969;40:331–4.

965 126. Gomo C, Garine-Wichatitsky M de, Caron A, Pfukenyi DM. **Survey of brucellosis at the wildlife-**
966 **livestock interface on the zimbabwean side of the great limpopo transfrontier conservation area**. Tropical Animal
967 Health and Production. 2012;44:77–85.

968 127. Madsen M, Anderson EC. Serologic survey of zimbabwean wildlife for brucellosis. Journal of Zoo and
969 Wildlife Medicine. 1995;26:240–5. Available from: <http://www.jstor.org/stable/20095468>

970 128. Ndengu M, Matope G, de Garine-Wichatitsky M, Tivapasi M, Scacchia M, Bonfini B, Pfukenyi DM. **Seroprevalence of brucellosis in cattle and selected wildlife species at selected livestock/wildlife interface areas**
971 **of the Gonarezhou national park, Zimbabwe**. Preventive Veterinary Medicine. 2017 Oct;146:158–65.

972 129. Condy JB, Vickers DB. **Brucellosis in rhodesian wildlife**. Journal of the South African Veterinary
973 Association. 1972;43:175–9.

974 130. Karthik K, Prabakar G, Bharathi R, Khurana SK, Dhama K. **Equine brucellosis: Review on epidemiology,**
975 **pathogenesis, clinical signs, prevention and control**. Journal of Experimental Biology and Agricultural Sciences.
976 2016;4:S151–60.

977 131. Bertu WJ, Ocholi RA, Gusi AM, Abdullahi S, Zwandor NJ, Durbi IAA, Opara J, Okewole PA. *Brucella*
978 *abortus* infection in a multispecies livestock farm in Nigeria. International Journal of Biotechnology and Food
979 Science. 2015;3:36–40.

980 132. Hussain A, Jamil T, Tareen AM, Melzer F, Hussain MH, Khan I, Saqib M, Zohaib A, Hussain R, Ahmad
981 W, Iqbal M, Neubauer H. **Serological and molecular investigation of brucellosis in breeding equids in pakistani**
982 **punjab**. Pathogens. 2020 Sep;9:1–8.

983 133. Gakuya F, Akoko J, Wambua L, Nyamota R, Ronoh B, Lekolool I, Mwatondo A, Muturi M, Ouma C,
984 Nthiwa D, Middlebrook E, Fair J, Gachohi J, Njenga K, Bett B. Evidence of co-exposure with *Brucella* spp,

987 *Coxiella burnetii*, and rift valley fever virus among various species of wildlife in Kenya. PLoS Neglected Tropical
988 Diseases. 2022;16:1–14. Available from: <http://dx.doi.org/10.1371/journal.pntd.0010596>

989 134. Inoshima Y, Shimizu S, Minamoto N, Hirai K, Sentsui H. Use of protein AG in an enzyme-linked
990 immunosorbent assay for screening for antibodies against Parapoxvirus in wild animals in Japan. Clinical
991 Diagnostic Laboratory Immunology. 1999 May;6:388–91. Available from:
992 <https://journals.asm.org/doi/10.1128/CDLI.6.3.388-391.1999>

993 135. Kelly PJ, Matthewman LA, Mason PR, Raoult D. Q fever in Zimbabwe: A review of the disease and the
994 results of a serosurvey of humans, cattle, goats and dogs. South African Medical Journal. 1993; Available from:
995 <https://www.ajol.info/index.php/samj/article/view/157795>

996 136. Nymo IH, Godfroid J, Åsbakk K, Larsen AK, das Neves CG, Rødven R, Tryland M. **A protein a/g indirect**
997 **enzyme-linked immunosorbent assay for the detection of anti-*Brucella* antibodies in arctic wildlife.** Journal of
998 Veterinary Diagnostic Investigation. 2013 May;25:369–75.

999 137. Stöbel K, Schönberg A, Staak C. **A new non-species dependent ELISA for detection of antibodies to**
1000 **borrelia burgdorferi s. L. In zoo animals.** International Journal of Medical Microbiology. 2002;291:88–99.

1001 138. Georges K, Loria GR, Riili S, Greco A, Caracappa S, Jongejan F, Sparagano O. Detection of
1002 haemoparasites in cattle by reverse line blot hybridisation with a note on the distribution of ticks in Sicily.
1003 Veterinary Parasitology. 2001 Aug;99:273–86. Available from:
1004 <https://linkinghub.elsevier.com/retrieve/pii/S0304401701004885>

1005 139. Schouls LM, Pol IVD, Rijpkema SGT, Schot CS. **Detection and identification of *Ehrlichia*, *Borrelia***
1006 ***burgdorferi* sensu lato, and *Bartonella* species in dutch *Ixodes ricinus* ticks.** Journal of Clinical Microbiology.
1007 1999;37:2215–22.

1008 140. Sirigireddy KR, Ganta RR. **Multiplex detection of *Ehrlichia* and *Anaplasma* species pathogens in**
1009 **peripheral blood by real-time reverse transcriptase-polymerase chain reaction.** Journal of Molecular Diagnostics.
1010 2005;7:308–16.

1011 141. Zimmermann DE, Penzhorn BL, Vorster I, Troskie M, Oosthuizen MC. *Babesia bicornis*, *Theileria*
1012 *bicornis* and *Theileria equi* in metapopulations of two black rhinoceros (*Diceros bicornis*) subspecies in South
1013 Africa and their potential impact on conservation. Ticks and Tick-borne Diseases. 2021;12:101635. Available
1014 from: <https://doi.org/10.1016/j.ttbdis.2020.101635>

1015 142. Stoltz H, Byaruhanga C, Troskie M, Makgabo M, Oosthuizen MC, Collins NE, Neves L. **Improved**
1016 **detection of *Babesia bigemina* from various geographical areas in Africa using quantitative PCR and reverse line**
1017 **blot hybridisation.** Ticks and Tick-borne Diseases. 2020 Jul;11.

1018 143. Butler CM, Nijhof AM, van der Kolk JH, de Haseth OB, Taoufik A, Jongejan F, Houwers DJ. **Repeated**
1019 **high dose imidocarb dipropionate treatment did not eliminate *Babesia caballi* from naturally infected horses as**
1020 **determined by PCR-reverse line blot hybridization.** Veterinary Parasitology. 2008 Feb;151:320–2.

1021 144. Matjila PT, Penzhorn BL, Bekker CPJ, Nijhof AM, Jongejan F. **Confirmation of occurrence of *Babesia***
1022 ***canis vogeli* in domestic dogs in South Africa.** Veterinary Parasitology. 2004 Jun;122:119–25.

1023 145. Matjila PT, Leisewitz AL, Jongejan F, Bertschinger HJ, Penzhorn BL. **Molecular detection of *Babesia***
1024 ***rossi* and *Hepatozoon* sp. in African wild dogs (*Lycaon pictus*) in South Africa.** Veterinary Parasitology. 2008
1025 Oct;157:123–7.

1026 146. Bosman AM, Venter EH, Penzhorn BL. **Occurrence of *Babesia felis* and *Babesia leo* in various wild felid**
1027 **species and domestic cats in southern Africa, based on reverse line blot analysis.** Veterinary Parasitology. 2007
1028 Mar;144:33–8.

1029 147. He L, Feng HH, Zhang WJ, Zhang QL, Fang R, Wang LX, Tu P, Zhou YQ, Zhao JL, Oosthuizen MC
1030 **Occurrence of *Theileria* and *Babesia* species in water buffalo (*Bubalus bubalis*, linnaeus, 1758) in the Hubei**
1031 **province, south China.** Veterinary Parasitology. 2012 May;186:490–6.

1032 148. Oosthuizen MC, Zweygarth E, Collins NE, Troskie M, Penzhorn BL. **Identification of a novel *Babesia***
1033 **sp. from a sable antelope (*Hippotragus niger harris*, 1838).** Journal of Clinical Microbiology. 2008 Jul;46:2247–
1034 51.

1035 149. Nagore D, García-Sanmartín J, García-Pérez AL, Juste RA, Hurtado A. **Detection and identification of**
1036 **equine *Theileria* and *Babesia* species by reverse line blotting: Epidemiological survey and phylogenetic analysis.**
1037 Veterinary Parasitology. 2004 Aug;123:41–54.

1038 150. Schnittger L, Yin H, Qi B, Gubbels MJ, Beyer D, Niemann S, Jongejan F, Ahmed JS. **Simultaneous**
1039 **detection and differentiation of *Theileria* and *Babesia* parasites infecting small ruminants by reverse line blotting.**
1040 Parasitology Research. 2004 Feb;92:189–96.

1041 151. Oura CAL, Bishop RP, Wampande EM, Lubega GW, Tait A. **Application of a reverse line blot assay to**
1042 **the study of haemoparasites in cattle in Uganda.** International Journal for Parasitology. 2004 Apr;34:603–13.