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1. INTRODUCTION

The problem of (strong) stochastic realization can be
stated abstractly as follows (Willems and van Schuppen,
1980): Fix a probability space (Ω,F,P ), with two random
variables (measurable mappings) Y1 : Ω → Y1 and Y2 :
Ω → Y2, where (Yi,Yi), i = 1, 2, are given measurable
spaces. The objective is to construct a measurable space
(X,X) and a measurable mapping X : Ω → X, such that
Y1 and Y2 are conditionally independent given X. (We say
that X splits Y1 and Y2.) Here, Y1 and Y2 are interpreted
as external (or manifest) output variables associated with
a stochastic system, and X is an internal (or latent) state
variable that “explains” the correlations between Y1 and
Y2. One can specify various restrictions on X, such as
minimality [i.e., if X ′ : Ω → X′ is another random variable
that splits Y1 and Y2, then there exists a measurable map
f : X′ → X such that X = f(X ′)]. As detailed by Willems
and van Schuppen (1980), many of the salient features of
the stochastic realization problem already appear in this
stripped-down formulation.

Our interest here is in the dynamical setting, where Y1

and Y2 appear, respectively, as the (strict) past and the
future of a given stochastic process Y = (Y (t))t∈T, T ⊆ R.
That is, X = (X(t))t∈T is another process defined on the
same probability space, such that, for each t, X(t) splits
((X(s), Y (s))s∈(−∞,t)∩T and ((X(s), Y (s))s∈[t,+∞)∩T. In
this case, X is a (Markov) state process and Y is the
output process of a stochastic system, and we say that
the pair (X,Y ) is a state space realization of Y . Under
minimal regularity assumptions on Y and on (Ω,F,P ),
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there always exists a state space realization with X given
by the so-called prediction process of Y in the sense of
Knight (1975); cf. Taylor and Pavon (1988, 1989) for a
related construction. While the resulting state process has
many desirable properties (e.g., it is a strong Markov
process that takes values in a compact metric space, and
is minimal as described in the preceding paragraph), its
generality poses considerable obstacles when it comes to
applications.

Of particular interest in applications is the case when the
state takes values in a finite-dimensional vector space; this,
along with the Markov property of the state process, allows
for efficient computational implementations of various
schemes for estimation or control. Hence, an important
problem is to determine whether a given process admits
a finite-dimensional state space realization and, if so, how
one can go about constructing such a realization. When
Y = (Y (t))t∈R is a stationary Gaussian process taking
values in Rp, there is an elegant geometric approach to
the problem of stochastic realization that makes contact
with the realization theory of deterministic linear systems;
cf. the comprehensive text by Lindquist and Picci (2015).

By contrast, there are relatively few results on nonlinear
stochastic realization theory for non-Gaussian processes.
For example, Lindquist et al. (1982) use Wiener’s homo-
geneous chaos theory (Stroock, 1987) to construct state
space realizations for stationary processes that have a
Brownian motion innovation representation; generally, the
resulting state processes are infinite-dimensional. To the
best of our knowledge, the first steps toward a systematic
theory of finite-dimensional nonlinear stochastic realiza-
tion were taken by Hijab (1983a,b). In particular, by
representing the process Y as a smooth causal functional of
a Brownian motion (in a sense that will be made precise
below), Hijab brought Lie-algebraic techniques from the
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realization theory of nonlinear deterministic systems (for
example, Isidori (1995, Ch. 3)) for the stochastic setting.
(See also the use of Lie theory by Mitter (1979), Brockett
(1980), Hazewinkel and Marcus (1981), and Sussmann
(1981) in the context of finite-dimensional realizations of
continuous-time nonlinear filters.)

In this paper, we revisit Hijab’s approach and show that
it can be extended beyond his original setting of processes
driven by a Brownian motion to a much wider class of
processes driven by sufficiently regular continuous semi-
martingales. This expands the scope of his approach to the
case of processes that are themselves driven by outputs of
other systems, e.g., by diffusion processes governed by Itô
stochastic differential equations. Moreover, we show that
Hijab’s concept of smoothness of a process can be made
operationally precise using the machinery of functional Itô
calculus introduced by Dupire (2009) in the context of
mathematical finance and later developed by Cont and
Fournié (2010, 2013). In particular, functional Itô calculus
allows one to define nonanticipative (causal) derivatives 1

of causal functionals of stochastic processes, and, as this
paper will show, Hijab’s notion of smoothness amounts to
infinite differentiability in this sense.

2. CAUSAL STOCHASTIC SYSTEMS

Our starting point will be the following definition (Willems
and van Schuppen, 1980):

Definition 1. A stochastic system (in output form) con-
sists of a probability space (Ω,F,P ), a time index set
T ⊆ R, a measurable output space (Y,Y), and a stochastic
process Y : T× Ω → Y.

We will take T = [0, T ] with T > 0 fixed and (Y,Y) =
(R,B), where B is the Borel σ-algebra of the open subsets
of R. This describes a single-output system which we
consider for simplicity (can be extended to p > 1 outputs).
Now, we can think of a system as a physically realizable
operator mapping signals to signals. Then, let Ω be a space
of sufficiently regular trajectories defined on [0, T ]. For
reasons that will become clear in the sequel, we will take
Ω = D([0, T ],Rm), the Skorohod space of càdlàg (right-
continuous with left limits) paths w : [0, T ] → Rm. The
Skorohod space can be equipped with a metric d that
makes it a complete separable metric space (Billingsley,
1999), and we let F be the corresponding Borel σ-algebra.

The next notion we need is that of a causal (nonan-
ticipatory) system. Following Georgiou and Lindquist
(2013), by a system we understand a measurable map
F : D([0, T ],Rm) → D([0, T ],R) that takes m-dimensional
input trajectories w to one-dimensional output trajectories
Fw. Any such F determines a family of mappings F (t, ·) :
D([0, T ],Rm) → R, 0 ≤ t ≤ T , by F (t, w) := Fw(t). For
a causal map, F (t, ·) depends only on the restriction of w
to [0, t]. To make this precise, define for each t ∈ [0, T ] the
map Πt : D([0, T ],R•) → D([0, T ],R•) by

Πtw(s) :=

{
w(s), s < t
w(t), t ≤ s ≤ T

.

1 Dupire’s definition is closely related to the notion of causal
derivative due to Fliess (1983).

In other words, Πt maps a trajectory w(·) to the trajectory
w(· ∧ t) stopped at time t.

Definition 2. A measurable map F : D([0, T ],Rm) →
D([0, T ],R) is a causal system if Πt ◦ F ◦ Πt = Πt ◦ F
for all t ∈ [0, T ].

Next, let W be the canonical coordinate process on (Ω,F),
i.e., W (t, w) = w(t), and take P to be a probability
measure on (Ω,F) under which W is a continuous semi-
martingale (Protter, 2005) withW (0) = 0 and with a given
quadratic variation process

[W ](t) =

∫ t

0
Q(s) ds, 0 ≤ t ≤ T (1)

where Q is a càdlàg process taking values in the space
Rm×m

+ of m×m positive semidefinite matrices, such that

P {detQ(t) > 0 for all 0 ≤ t ≤ T} = 1. (2)

For example, if Q(t) = Im, the m × m identity matrix,
then P is the probability law of a standard m-dimensional
Brownian motion on [0, T ].

Remark 1. Due to the continuity assumption on the sam-
ple paths of W , the support of P is (a subset of) the
space C([0, T ],Rm) of continuous paths w : [0, T ] → Rm,
which is a proper subset of D([0, T ],Rm). Nevertheless, we
will need the entire Skorohod space in order to construct
perturbations of paths.

We now impose the following causal realizability condition
on the output process Y : There exists a causal system
F : D([0, T ],Rm) → D([0, T ],R), such that

Y (t) = F (t,W ), for all t ∈ [0, T ] (3)

—this is just a different way of saying that Y is a
progressively measurable process defined on the filtered
probability space (Ω,F, (Ft)t∈[0,T ],P ), where (Ft)t∈[0,T ] is
the natural filtration induced by W . In view of Remark 1,
the representation in Equation (3) is not unique because
W has continuous sample paths and we can modify F
arbitrarily outside the support of P without affecting the
output process Y . All we ask is that Y has a version that
admits such a representation. In fact, as we discuss next,
we will restrict our attention to a smaller class of processes
Y for which the map F in (3) is smooth in a certain sense.

3. FUNCTIONAL ITÔ CALCULUS

We will make use of the notions of differentiability of
a causal system F introduced by Dupire (2009) and
developed further by Cont and Fournié (2010; 2013). We
say that F has a time (or horizontal) derivative at (t, w)
if the limit

∂0F (t, w) := lim
h→0+

F (t+ h,Πtw)− F (t, w)

h
(4)

exists, and a space (or vertical) derivative at (t, w) in the
direction ei (the ith element of the standard basis in Rm)
if the limit

∂iF (t, w) := lim
h→0+

F (t, w + h1[t,T ]ei)− F (t, w)

h
(5)

exists. The derivatives ∂iF , i = 0, . . . ,m, are themselves
causal systems, and we can thus define higher-order deriva-
tives ∂i∂jF etc., provided they exist. It is important to
note that the ∂i’s do not commute in general. We will say
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F is a smooth causal system if it is continuous and has
continuous derivatives of all orders in the sense of Dupire.

The above definitions form the basis of functional Itô
calculus, which deals with causal functionals of sufficiently
regular stochastic processes. Consider, in particular, a
continuous semimartingale W satisfying the conditions (1)
and (2). The ‘classical’ version of Itô’s lemma says that,
for a C1,2 function f : [0, T ]×Rm → R, the following holds
P -a.s. for every t ∈ [0, T ]:

f(t,W (t))− f(0,W (0))

=

∫ t

0
∂0f(s,W (s)) ds+

m∑

i=1

∫ t

0
∂if(s,W (s)) dWi(s)

+
1

2

m∑

i,j=1

∫ t

0
∂i∂jf(s,W (s))Qji(s) ds,

where ∂0f(s, x) :=
∂f
∂s (s, x),

∂if(s, x) :=
∂f

∂xi
(s, x), i = 1, . . . ,m

etc., and it is an Itô stochastic integral. We can also rewrite
it in Stratonovich form:
f(t,W (t))− f(0,W (0))

=

∫ t

0
∂0f(s,W (s)) ds+

m∑

i=1

∫ t

0
∂if(s,W (s)) ◦ dWi(s).

(6)

The functional formulation extends this to causal func-
tionals of W :

Theorem 1. (Dupire, 2009; Cont and Fournié, 2010) Let
F be continuous causal system with continuous first- and
second-order derivatives ∂0F, . . . , ∂mF and ∂i∂jF , i, j =
1, . . . ,m. Let W be a continuous semimartingale satisfying
the conditions (1) and (2). Then, for any t ∈ [0, T ], the
following holds P -a.s.:

F (t,W )− F (0,W )

=

∫ t

0
∂0F (s,W ) ds+

m∑

i=1

∫ t

0
∂iF (s,W ) dWi(s)

+
1

2

m∑

i,j=1

∫ t

0
∂i∂jF (s,W )Qji(s) ds.

(7)

Remark 2. Since F and its derivatives are causal sys-
tems, the integrands in (7) can be equivalently written
as ∂iF (s,ΠsW ), ∂i∂jF (s,ΠsW ), etc.

Remark 3. Eq. (7) can be written in Stratonovich form as

F (t,W )− F (0,W )

=

∫ t

0
∂0F (s,W ) ds+

m∑

i=1

∫ t

0
∂iF (s,W ) ◦ dWi(s).

4. DUPIRE-DIFFERENTIABLE CAUSAL
STOCHASTIC SYSTEMS

We now turn our attention back to stochastic systems
introduced in Section 2 and to real-valued processes Y =
(Y (t))t∈[0,T ] satisfying condition (3) for some causal sys-
tem F . At this point, we impose the additional require-
ment that F is continuous and has continuous first- and
second-order Dupire derivatives ∂0F, . . . , ∂mF and ∂i∂jF
for 1 ≤ i, j ≤ m. Here, some care must be exercised in

light of the non-uniqueness issue mentioned at the end
of Section 2: While the process Y does not depend on
the behavior of F outside the support of P , the Dupire
derivatives of F do depend on it (indeed, the definition
of the vertical derivative involves càdlàg perturbations
of input trajectories). Fortunately, our nondegeneracy as-
sumption on the quadratic variation process of W allows
us to define the Dupire derivatives of Y intrinsically (Cont
and Fournié, 2013), as follows.

Let Y be a continuous progressively measurable process
on the filtered probability space (Ω,F, (Ft),P ); cf. the
discussion at the end of Section 2. We say that Y is Dupire-
differentiable if there exist progressively measurable pro-
cesses Z0, . . . , Zm on the same probability space, such that

∫ t

0
|Z0(s)| ds+

m∑

i,j=1

∫ t

0
Zi(s)Zj(s)Qij(s) ds < ∞

and

Y (t) = Y (0) +

∫ t

0
Z0(s) ds+

m∑

i=1

∫ t

0
Zi(s) ◦ dWi(s) (8)

for all t ∈ [0, T ] P -a.s. We need to show that if Y ≡ 0
P -a.s., then all the Zi ≡ 0 P -a.s. as well. By Itô’s lemma,

0 = |Y (T )|2 =
m∑

i,j=1

∫ T

0
Zi(t)Zj(t)Qij(t) dt.

Since Q(·) is a.s. positive definite, it follows that Zi = 0
for all i = 1, . . . ,m a.s., and therefore Z0 = 0 a.s. as well.
Hence, if Y is Dupire-differentiable, then the processes
Z0, . . . , Zm are a.s. uniquely determined. Moreover, if there
exists a causal map F satisfying the Dupire differentiabil-
ity conditions listed earlier and such that Y = F (W ), then
it follows from the functional Itô’s lemma (Theorem 1)
that Y is Dupire-differentiable and

P {Zi(t) = ∂iF (t,W ), i = 0, . . . ,m for all 0 ≤ t ≤ T} = 1.

In addition, the above argument shows that, if Y has an
alternative representation as F̃ (W ) with F̃ )= F , then the
Dupire derivatives of F and F̃ computed along the paths
of W are almost surely equal. Taking this into account,
we can introduce the linear mappings S0, . . . , Sm that
take any Dupire-differentiable process Y to the respective
processes Z0, . . . , Zm in (8).

Definition 3. We say that Y is continuously Dupire-
differentiable if S0Y, . . . , SmY are continuous. For k ≥
1, we say that Y is (k + 1)-times continuously Dupire-
differentiable if it is Dupire-differentiable and S0Y, . . . , SmY
are k-times continuously Dupire-differentiable. Finally, if
Y is k-times continuously Dupire-differentiable for all k ≥
0, then we say that it is Dupire-smooth.

We introduce the following notation and definitions for
later use: Let M denote the set of all finite tuples, or
words, i = (i1, . . . , ik) with ij ∈ {0, . . . ,m} for k ≥ 0
(k = 0 corresponds to the empty word +). For each
i = (i1, . . . , ik) ∈ M we define the iterated operators

Si := SikSik−1 . . . Si1 (9)

with S" := id, as well as the iterated Stratonovich integrals
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∫ t

0
◦ dWi

:=

∫

∆k[0,t]
◦ dWik(tk) ◦ · · · ◦ dWi2(t2) ◦ dWi1(t1) (10)

with dW0(t) := dt and
∫ t
0 ◦ dW! := 1, where the integra-

tion is over the k-dimensional simplex

∆k[0, t] :=
{
(t1, . . . , tk) ∈ [0, t]k : tk ≤ · · · ≤ t2 ≤ t1

}
.

Finally, we define the linear operator c that takes the
process Y to its initial value Y (0), which is a deterministic
constant since W (0) = 0.

4.1 Examples

Example 1. For the ‘memoryless’ system Y (t) = f(t,W (t))
with f of class C1,2, we simply recover the Itô–Stratonovich
formula (6): SiY (t) = ∂if(t,W (t)) for i = 0, . . . ,m.

Example 2. Consider the process Y obtained by passing
W through a linear filter:

Y (t) =
m∑

i=1

∫ t

0
hi(t− s) dWi(s), 0 ≤ t ≤ T

where the hi’s are smooth (analytic or C∞) functions
[0, T ] → R. Then, for k ≥ 0,

Sk
0Y (t) =

m∑

i=1

∫ t

0

∂khi

∂tk
(t− s) dWi(s)

and SiSk
0Y (t) = h(k)

i (0) for i = 1, . . . ,m corresponding
to the words (0, . . . , 0) and (0, . . . , 0, i), i ∈ {1, . . . ,m} of
lengths k and k + 1, respectively. All other SiY are equal
to zero.

Example 3. We consider a particular instance of a finite-
dimensional state space realization. Let the following be
given: a nonrandom point x0 ∈ Rn, m + 1 smooth vector
fields g0, . . . , gm : Rn → Rn, and a smooth function h :
Rn → R. We assume that the solution of the Stratonovich
integral equation

X(t) = x0 +

∫ t

0
g0(X(s)) ds+

m∑

i=1

∫ t

0
gi(X(s)) ◦ dWi(s)

exists for all t ∈ [0, T ], and take Y (t) = h(X(t)). Then
it follows from the Itô–Stratonovich formula that the
processes SiY (t) are given by the Lie derivatives of h along
the vector fields gi:

SiY (t) = Lgih(X(t)) :=
n∑

j=1

∂h

∂xj
(X(t))gi,j(X(t)).

Since g0, . . . , gm and h are smooth, the process Y is
Dupire-smooth, and the action of Si for i = (i1, . . . , ik) ∈
M corresponds to taking iterated Lie derivatives: SiY (t) =
Lgik

Lgik−1
. . . Lgi1

h(X(t)). The pair (X,Y ) is a state space
realization of Y .

4.2 Hijab’s formulation as a special case

In the work of Hijab (1983a,b), the driving process W is a
one-dimensional standard Brownian motion, and the pro-
cess Y is Itô-differentiable if there exist two progressively
measurable processes Z̃0, Z̃1, such that

Y (t) = Y (0) +

∫ t

0
Z̃0(s) ds+

∫ t

0
Z̃1(s) dW (s)

for all t ∈ [0, T ] a.s. , where the integral is Itô. These
processes are a.s. uniquely determined by Y , which can
be proved using the same argument as the one used
to prove the a.s. uniqueness of Z0, . . . , Zm. Hijab then
defines the linear operators A and B that send Y '→ Z̃0

and Y '→ Z̃1, respectively. While he does not give any
operational characterization of A,B, it follows readily from
the relation between the Itô and the Stratonovich integrals
that

A = S0 +
1

2
S2
1 , B = S1

(Hijab’s X0 and X1 operators correspond to our defini-
tions of S0, S1). Thus, we see that Hijab’s notion of Itô-
differentiability and our notion of Dupire-differentiability
coincide. In retrospect, it is easy to see why Hijab did
not relate his construction to any explicit definition of a
causal derivative: In order to properly define them, we need
to consider càdlàg perturbations of the sample paths of
W , which in turn requires the use of the Skorohod space
D([0, T ],R). By contrast, Hijab takes C([0, T ],R) as the
sample space.

5. REALIZATION THEORY FOR DUPIRE-SMOOTH
PROCESSES

Example 3 from the preceding section provides a blueprint
for a stochastic realization theory for Dupire-smooth pro-
cesses that closely parallels the realization theory for deter-
ministic systems based on Chen–Fliess functional expan-
sions (Isidori, 1995, Ch. 3). In this section, we outline this
approach, building on the ideas of Hijab; our treatment
here is primarily formal, and we leave the detailed analysis
of convergence, truncation errors, etc. for future work.

Remark 4. Chen–Fliess representations of stochastic pro-
cesses have been considered by Sussmann (1988) for
smooth functions of Itô diffusion processes, by Litterer and
Oberhauser (2014) for Dupire-differentiable functionals of
diffusion processes, and by Dupire and Tissot-Daguette
(2022) in the general setting of functional Itô calculus.
However, none of these works are concerned with the
questions of realization.

Let Y be a Dupire-smooth process. Then, using the
definitions of S!, S0, . . . , Sm and c, we can rewrite (8) in
the following way:

Y (t) = c(S!Y ) +
m∑

i1=0

∫ t

0
Si1Y (t1) ◦ dWi1(t1) (11)

(recall that dW0 = dt). Since Si1Y is continuously Dupire-
differentiable, we have

Si1Y (t1) = c(Si1Y ) +
m∑

i2=0

∫ t1

0
S(i1,i2)Y (t2) ◦ dWi2(t2),

(12)

where S(i1,i2) = Si2Si1 , cf. (9). Substituting (12) into (11)
gives

Y (t) = c(S!Y ) +
m∑

i1=0

c(Si1Y )

∫ t

0
◦ dWi1

+
m∑

i1,i2=0

∫ t

0

∫ t1

0
S(i1,i2)Y (t2) ◦ dWi2(t2) ◦ dWi1(t1).



330 Tanya Veeravalli  et al. / IFAC PapersOnLine 58-17 (2024) 326–331

Continuing inductively, we obtain the following formal
infinite series expansion of the Chen–Fliess type:

Y (t) =
∑

i∈M

c(SiY )

∫ t

0
◦ dWi, 0 ≤ t ≤ T. (13)

Observe that the coefficients c(SiY ) are deterministic
constants (iterated Dupire derivatives of Y at 0), and
all the randomness has been pushed into the iterated
Stratonovich integrals of W .

We can now state the stochastic realization problem in the
following way: Given a Dupire-smooth process Y , find an
integer n, a point x0 ∈ Rn, m + 1 smooth vector fields
g0, . . . , gm on Rn, and a smooth function h : Rn → R
defined on a neighborhood of x0, such that, for every
i = (i1, . . . , ik) ∈ M,

c(SiY ) = Lgik
Lgik−1

. . . Lgi1
h(x0). (14)

At this point, we can make use of the theory of formal
power series, exactly as in the setting of deterministic
realization theory (Fliess, 1981). Let Z = {z0, . . . , zm}
be a set of m + 1 noncommuting indeterminates. With
each word i = (i1, . . . , ik) ∈ M, we associate the formal
monomial zi := zi1 . . . zik ; the empty word % will be
associated with the constant term z" = 1. A formal power
series in Z with real coefficients is an expression of the
form R =

∑
i∈M R(i)zi, where R(i) take real values. The

set of all such formal power series, denoted by R〈〈Z〉〉, is
a noncommutative associative R-algebra, with αR + βS
and RS defined for R,S ∈ R〈〈Z〉〉 and α,β ∈ R by (αR +
βS)(i) := αR(i) + βS(i) and

RS(i) :=
∑

i′,i′′∈M
i=i′i′′

R(i′)S(i′′),

where i′i′′ denotes the concatenation of i′ = (i′1, . . . , i
′
k′)

and i′′ = (i′′1 , . . . , i
′′
k′′): i′i′′ = (i′1, . . . , i

′
k′ , i′′1 , . . . , i

′′
k′′). A

formal polynomial is an element P ∈ R〈〈Z〉〉, for which
P (i) = 0 for all but finitely many i ∈ M. The space of
all formal polynomials (also an algebra) will be denoted
by R〈Z〉. Moreover, it can be endowed with the structure
of a Lie algebra with the Lie bracket of two polynomials
P,Q ∈ R〈Z〉 given by [P,Q] := PQ−QP . We will denote
by L(Z) the smallest subspace of R〈Z〉 that contains the
monomials z0, . . . , zm and is closed under Lie bracketing
with z0, . . . , zm. The elements of L(Z) are called (formal)
Lie polynomials.

Now, following Hijab (1983a), we let VY denote the small-
est vector space of processes containing Y and closed under
all Si. There is a natural R-linear morphism µ : R〈Z〉 →
VY , defined by its action on monomials µ : zi )→ SiY ,
i ∈ M and extended to all of R〈Z〉 by linearity. Using this,
we can associate to Y a linear mapping FY : R〈Z〉 → R〈〈Z〉〉
defined by its action on monomials as FY (zi) :=

∑
i′∈M c◦

µ(zii′)zi′ and, again, extended to all of R〈Z〉 by linearity.

Definition 4. The Hankel rank of a Dupire-smooth process
Y is the rank of the mapping FY : ρH(Y ) := dimFY (R〈Z〉).
The Lie rank of Y is the rank of the restriction of FY to
Lie polynomials: ρL(Y ) := dimFY (L(Z)).

The inequality ρL(Y ) ≤ ρH(Y ) is immediate; moreover,
in full analogy with the deterministic case, it is possible
for the Lie rank ρL(Y ) to be finite and for the Hankel
rank ρH(Y ) to be infinite. Again, the key ideas were

already present in the work of Hijab in the special case
of processes driven by Brownian motion, although Hijab
only defined the Lie rank of a process. Once the process
Y is represented using the Chen–Fliess series (13), the
machinery of formal power series can be applied in a
unified manner. In particular, we have the following result,
essentially due to Hijab (1983a):

Theorem 2. Let Y admit a state space realization speci-
fied by (n, x0, g0, . . . , gm, h), i.e., Y (t) = h(X(t)) for all
t ∈ [0, T ], where (X(t))t∈[0,T ] is an n-dimensional contin-
uous semimartingale that solves the Stratonovich integral
equation

X(t) = x0 +

∫ t

0
g0(X(s)) ds+

m∑

i=1

∫ t

0
gi(X(s)) ◦ dWi(s)

for 0 ≤ t ≤ T . Then ρL(Y ) ≤ n.

An equivalent representation of the mapping FY associated
to a Dupire-smooth process Y is given by the (infinite)
Hankel matrix HY with entries indexed by words in M:

HY (i, i
′) := c ◦ µ(zii′) = c(Sii′Y ), i, i′ ∈ M.

The Hankel rank ρH(Y ) is then the rank of the Hankel
matrix. Thus, for the linear filtering situation considered in
Example 2, the only nonzero entries of the Hankel matrix

are given by HY (i, i
′) =

∑m
j=1 h

(k)
j (0) if i and i′ are both

strings of 0’s and their concatenation has length k ≥ 0, and

HY (i, i
′) = h(k)

i (0) if ii′ = (0, . . . , 0, i) consisting of k 0’s
followed by a single i ∈ {1, . . . ,m}. It then follows from the
classical realization theory of linear time-invariant systems
that ρH(Y ) = rankHY ≤ n if and only if there exist
matrices C ∈ R1×n, A ∈ Rn×n, B ∈ Rn×m, such that

h(t) =
(
h1(t), . . . , hm(t)

)
= CeAtB,

which gives rise to a linear state space realization

X(t) =

∫ t

0
AX(s) ds+

∫ t

0
B dW (s), Y (t) = CX(t).

We can now proceed to address the question of nonlinear
realization posed in the beginning of this section. Given a
Dupire-smooth process Y with finite Hankel rank ρH(Y ) =
n, we can follow the approach of Fliess (cf. Theorem 3.4.3
in Isidori (1995)) to construct a bilinear realization, i.e., a
tuple (n, x0, A0, . . . , Am, C) with x0 ∈ Rn, A0, . . . , Am ∈
Rn×n, and C ∈ R1×n, such that

c(SiY ) = CAik . . . Ai1x0, for all i = (i1, . . . , ik) ∈ M.

For a process Y with finite Lie rank ρL(Y ) = n, we would
need a convergence condition of the form

c(SiY ) ≤ Ck!rk, for all i = (i1, . . . , ik) ∈ M

for some constants C, r > 0. Then, just as in Reutenauer
(1986), we could establish the existence of a tuple
(n, x0, g0, . . . , gm, h), where g0, . . . , gm are analytic vector
fields and h is an analytic real-valued function on some
neighborhood of x0, such that (14) holds. However, in
order to deduce from the above results the correspond-
ing probabilistic constructions, i.e., either a bilinear state
space realization of the form

X(t) = x0 +
m∑

i=1

∫ t

0
AiX(s) ◦ dWi(s), Y (t) = CX(t)

when ρH(Y ) = n, or a nonlinear analytic one of the
type discussed in Example 3, we would need to address
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the questions of convergence of the Chen–Fliess series
(13), either in a suitable Lp sense, as in Sussmann (1988)
or Litterer and Oberhauser (2014), or pathwise in the
sense of Föllmer (1981), as in Dupire and Tissot-Daguette
(2022). These questions can be rather delicate (see, e.g.,
the discussion in Sussmann (1976) concerning noise-like
“generalized inputs” in the context of bilinear systems),
and we leave them for future work.

6. CONCLUSION

Building on the pioneering work of Hijab (1983a,b), we
have presented an approach to nonlinear stochastic re-
alization for a class of stochastic processes that can be
represented as the outputs of a causal system driven by a
continuous semimartingale. The key concept here is that
of causal derivative of a process, originating in the func-
tional Itô calculus of Dupire (2009). We have shown that,
formally, the questions of existence of finite-dimensional
state space realizations can be phrased in terms of the
stochastic analogues of the Lie and the Hankel rank from
the realization theory for deterministic systems following
the ideas of Fliess (1981). Some additional examples and
discussion had to be omitted due to space limitations, and
can be found in Veeravalli and Raginsky (2024). There are
several interesting directions for further research, such as
the issues of convergence and an extension to processes
driven by general càdlàg semimartingales (such as count-
ing processes).
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Portfolio Research Paper 2009-04.

Dupire, B. and Tissot-Daguette, V. (2022). Func-
tional expansions. arXiv.org preprint. URL
https://arxiv.org/abs/2212.13628.

Fliess, M. (1981). Fonctionnelles causales non linéaires et
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