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Minimum Excess Risk in Bayesian Learning
Aolin Xu and Maxim Raginsky , Senior Member, IEEE

Abstract— We analyze the best achievable performance of
Bayesian learning under generative models by defining and
upper-bounding the minimum excess risk (MER): the gap
between the minimum expected loss attainable by learning from
data and the minimum expected loss that could be achieved if the
model realization were known. The definition of MER provides
a principled way to define different notions of uncertainties
in Bayesian learning, including the aleatoric uncertainty and
the minimum epistemic uncertainty. Two methods for deriving
upper bounds for the MER are presented. The first method,
generally suitable for Bayesian learning with a parametric gen-
erative model, upper-bounds the MER by the conditional mutual
information between the model parameters and the quantity
being predicted given the observed data. It allows us to quantify
the rate at which the MER decays to zero as more data becomes
available. Under realizable models, this method also relates the
MER to the richness of the generative function class, notably
the VC dimension in binary classification. The second method,
particularly suitable for Bayesian learning with a parametric
predictive model, relates the MER to the minimum estimation
error of the model parameters from data via various continuity
arguments. We also extend the definition and analysis of MER
to the setting with multiple model families and the setting with
nonparametric models. Along the discussions we draw some
comparisons between the MER in Bayesian learning and the
excess risk in frequentist learning.

Index Terms— Bayesian learning, generative models, Bayes
risk, excess risk, uncertainty, data processing inequality.

I. INTRODUCTION

BAYESIAN learning under generative models has been
gaining considerable attention in recent years as an

alternative to the frequentist learning. In the Bayesian setting,
the observed data Zn = ((X1, Y1), . . . , (Xn, Yn)) is modeled
as conditionally i.i.d. samples generated from a probabilistic
model given the model realization PZ|W , while the model is
treated either as a random element of some parametric model
family drawn according to a prior distribution of the model
parameters W , or as a nonparametric random process [1].
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The task of Bayesian learning is to predict a quantity of
interest Y based on the observed data (X, Zn), while the
quality of the predictor ψ can be assessed by the expected
loss with respect to some loss function E["(Y,ψ(X, Zn))].
Computationally, Bayesian learning often relies on posterior
sampling or approximation techniques [2]–[4] and hence has
much higher complexity than its frequentist counterpart; nev-
ertheless, the Bayesian viewpoint has many attractive features,
e.g., reducing overfitting [5], quantifying uncertainty in mak-
ing predictions [6]–[8], enabling model compression [9], etc.
In contrast with the growing attention to the computational
side of Bayesian learning, its performance analysis is relatively
scarce compared to the volume of literature on the theoretical
analysis of frequentist learning. In this paper, we set aside
the computational issues in Bayesian learning and focus on
analyzing its best achievable performance under the generative
model with respect to general loss functions.

A. Overview of the Presentation

In Section II, we define the minimum excess risk (MER)
in Bayesian learning as the gap between the Bayes risk
R!(Y |X, Zn), defined as the minimum expected loss attain-
able by learning from the data, and its fundamental limit
R!(Y |X, W ), defined as the minimum expected loss that
would be achieved if the model parameters were known.
The MER is an algorithm-independent quantity that captures
the uncertainty arising from the lack of knowledge of the
underlying model parameters, commonly known as epistemic
uncertainty. Its value and rate of convergence to zero reflect
the difficulty of the learning problem. The decomposition
of the Bayes risk into its fundamental limit and MER also
provides rigorous definitions of the aleatoric uncertainty and
the minimum epistemic uncertainty in Bayesian learning, the
quantification of which has become an important research
topic in recent years [10]–[13]. To the authors’ knowledge,
the general definition of MER is new, and has not been
systematically studied before.

We then present two approaches to deriving upper bounds
on the MER. First, we show in Section III that, under a
generic parametric generative model and for a wide range
of loss functions, the MER can be upper-bounded in terms
of the conditional mutual information between the model
parameters and the quantity being predicted given the observed
data, I(W ; Y |X, Zn). This leads to asymptotic upper bounds
on the MER that scale as O(d/n) or O(

√
d/n) depend-

ing on the loss function, where d is the dimension of the
parameter space and n is the data size. It also reveals an
MER-information relationship in Bayesian learning, echo-
ing the generalization-information relationship in frequentist
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learning [14]. Under realizable models, it is shown that for any
bounded loss function, the MER for binary classification scales
as O(d/n), where d is the VC dimension of the generative
function class. Next, we show in Section IV how MER
can be upper-bounded via various continuity or smoothness
arguments. One method under this approach relies on the
smoothness of the decision rule in the model parameters, while
the other relies on the smoothness of the minimum expected
loss as a function of the predictive model. The resulting upper
bounds show the dependence of the MER on the minimum
achievable estimation error of the model parameters from the
data, e.g., on the minimum mean square error of the estimated
model parameters R2(W |X, Zn). This explicitly shows how
the difficulty of model parameter estimation translates into the
difficulty of prediction due to the model uncertainty. Order-
optimal MER upper bounds for linear regression are obtained
from this approach.

The analysis of the MER in the single model family setting
can be extended to the setting with multiple model families.
The definition of MER can also be extended to the setting with
nonparametric generative models, such as Gaussian processes,
and the analysis based on conditional mutual information car-
ries over to this setting. These extensions are briefly discussed
in Section V. We close by summarizing the results and making
some comparisons between the MER in Bayesian learning and
the excess risk in frequentist learning in Section VI.

B. Relation to Existing Works

1) Accumulated Excess Risk for Log Loss: The closest
connection between this work and prior literature is the MER
for the logarithmic (log) loss defined in this paper and the
accumulated excess risks for the log loss defined in Bayesian
universal source coding [15], Bayesian sequential predic-
tion [16], Bayesian density estimation [17], and Bayesian
supervised learning [18], all of which turn out to be the mutual
information between the model parameters and the observed
data, and are achieved by the posterior predictive distribution
as a soft predictor. The only work where more general loss
functions is considered is the study of sequential prediction
in [16], where an upper bound on the accumulated excess risk
for bounded loss functions is derived. Our definition of MER
goes beyond the log loss to general loss functions, which can
be unbounded, and the MER in general is achieved not nec-
essarily by the posterior predictive distribution, but by some
hard predictor according to the loss function. In Section III
we show that the MER for the log loss is nevertheless an
important quantity, as it can be used to upper-bound the MER
for many other loss functions. Most of the above works, with
the exception of [18], considered only unsupervised learning,
while our results hold for both supervised and unsupervised
learning. In addition, the MER defined in this work is the
instantaneous excess risk, instead of the accumulated risk
studied in above works, thus is amenable to more refined
analyses. Another closely related work that considered both
supervised learning and instantaneous risk is [19], where the
Bayes risk of binary classification with the zero-one loss is
derived by relating it to the accumulated log loss, and is further

related to the VC dimension of the generative function class.
As only realizable models are considered in [19], the Bayes
risk there is equal to the MER. In Section III-E, we also study
the MER under realizable models, but our results go beyond
binary classification and the zero-one loss.

2) Convergence of Posterior Distribution: A classical fre-
quentist analysis of Bayesian inference is the convergence
of the posterior parameter distribution to the true model
parameters, assuming the data is sampled from some fixed
model with the true parameters [20]–[22]. This analysis has
recently been extended to deep neural network models [23].
The convergence of the posterior predictive distribution has
also been studied under the same assumption [24]. The main
difference between these works and ours is the assumption
on the data distribution. In our work, the underlying data
distribution considered in the performance analysis stays the
same as the generative model based on which the optimal
predictor, or the learning algorithm, is derived. In other words,
the model parameters are assumed to be randomly drawn
from the prior, and the data samples are drawn from the
model given the model parameters. In addition, rather than
the convergence of the posterior of the model parameters,
we are interested in the accuracy of the predicted quantity of
interest. In Section IV we reveal how this accuracy explicitly
depends on the accuracy of the model parameter estimation,
by studying the expected deviation of the posterior predictive
distribution from the random true model.

3) PAC-Bayes: Another loosely related line of work in
statistical learning is the PAC-Bayes framework in the fre-
quentist setting [25]–[27] and its extension as the Bayes
mixture model [28]. The main difference between the Bayesian
setting considered here and the PAC-Bayes framework is
again the underlying data distribution. For the former, the
data distribution is restricted to a parametric or nonparametric
family of generative models with the data samples being
conditionally i.i.d. given the model realization, and there is
virtually no restriction on candidate predictors. For the latter,
the data samples are drawn unconditionally i.i.d. according
to a completely unknown distribution, and the hypothetical
Bayes-like update takes place in a hypothesis space consisting
of admissible predictors only. The excess risk studied in this
paper is thus not directly related to the generalization error
or excess risk in the PAC-Bayes method. Nevertheless, the
MER-information relationship in Theorem 6 is an interest-
ing analogue of the generalization-information relationship
in the frequentist setting [14, Theorem 1] that leads to an
information-theoretic derivation of the PAC-Bayes algorithm.

C. A Note on Notation

Throughout the paper, random variables are denoted by
uppercase letters and their realizations are in the corresponding
lowercase letters. To keep the notation uncluttered, we may use
KU|v, PU|v , E[U |v] and var[U |v] respectively to denote the
probability transition kernel KU|V =v, the conditional distri-
bution PU|V =v, the conditional expectation E[U |V = v] and
the conditional variance var[U |V = v]. When the conditioning
variables are written in uppercase letters, these quantities are
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random, and expectations can be taken with respect to the
conditioning variables. Throughout the paper, D(·, ·) denotes a
generic statistical distance, while the KL divergence is denoted
by DKL(·‖·). All probability spaces considered in this paper
are Borel spaces, and all functions are measurable functions.
We use natural logarithms throughout the paper.

II. MODEL AND DEFINITIONS

A. Bayesian Learning Under Generative Model

The basic task in supervised learning is to construct an
accurate predictor of Y , a quantify of interest, given an
observation X , where the knowledge of the joint distribution
of X and Y is vague but can be inferred from a historical
dataset ((X1, Y1), . . . , (Xn, Yn)). In the model-based learning
framework, a.k.a. learning under a generative model, the joint
distribution of X and Y is assumed to be an element of
a known model family. The model family can be either
parametric or nonparametric. We focus on the parametric case
in this work, and defer a brief discussion on the nonparametric
case to Section V-B. In the case of parametric modeling,
the model family is a collection of parametrized distributions
M = {PX,Y |w, w ∈ W}, where w represents the vector
of unknown model parameters belonging to some space W.
Under the Bayesian formulation, the vector of model para-
meters W is itself treated as a random quantity with a prior
distribution PW , while the data samples are conditionally i.i.d.
given W . Formally, the model parameters W , the data samples
Zn := (Z1, . . . , Zn) with Zi := (Xi, Yi), i = 1, . . . , n, and
the pair Z = (X, Y ) consisting of the fresh observation X and
the quantity Y to be predicted are assumed to be generated
according to the joint distribution

PW,Zn,Z = PW

( n∏

i=1

PZi|W

)
PZ|W , (1)

where PZi|W = PZ|W for each i. As an example of the above
model, the predictive modeling framework, a.k.a. probabilistic
discriminative model [1], further assumes that PZ|W factors
as PZ|W = PX|W KY |X,W , with some probability transi-
tion kernel KY |X,W directly describing the true predictive
distribution of the quantity of interest given the observation
and model parameters. It is often further assumed that X is
independent of W under the predictive modeling framework.
Note that the above models and the following definitions
encompass the unsupervised learning problem as well, where
one just ignores the observations (Xn, X) so that Zi = Yi and
Z = Y .

Under the generative model (1), the Bayesian learning
problem can be phrased as a Bayes decision problem of
predicting Y based on X and the labeled observations Zn.
Given an action space A and a loss function " : Y × A → R,
a decision rule ψ : X× Zn → A that maps observations to an
action is sought to make the expected loss E["(Y,ψ(X, Zn))]
small. A decision rule that minimizes the expected loss among
all decision rules is called a Bayes decision rule. The corre-
sponding minimum expected loss is defined as the Bayes risk
in Bayesian learning:

Definition 1: In Bayesian learning, the Bayes risk with
respect to a loss function " is defined as

R!(Y |X, Zn) := inf
ψ:X×Zn→A

E["(Y,ψ(X, Zn))], (2)

where the infimum is taken over all decision rules such that
the above expectation is defined.

B. A Data Processing Inequality for Bayes Risk

To better understand the definition of R!(Y |X, Zn), we give
a brief review of the general definition of the Bayes risk and
prove a useful property of it. Given a random element Y of
Y, the quantity

R!(Y ) := inf
a∈A

E["(Y, a)] (3)

is known as the Bayes envelope [16] or the generalized
entropy [29] of Y . Given a random element V of some space V
jointly distributed with Y , the general definition of the Bayes
risk

R!(Y |V ) := inf
ψ:V→A

E["(Y,ψ(V ))] (4)

is the minimum expected loss of predicting Y based on V .
It can be expressed as the expectation of the conditional Bayes
envelope R!(Y |V = v) := infa∈A E["(Y, a)|V = v] with
respect to V , as R!(Y |V ) =

∫
V PV (dv)R!(Y |V = v). The

Bayes risk R!(Y |V ) can thus be viewed as a generalized
conditional entropy of Y given V [30], [31]. The following
lemma states that the Bayes risk satisfies a data processing
inequality.

Lemma 1: Suppose the random variables U , V and Y form
a Markov chain U − V − Y ; in other words, Y and U are
conditionally independent given V . Then, for any loss function
", the Bayes risk of predicting Y from U is at least as large
as the Bayes risk of predicting Y from V , i.e.,

R!(Y |U) ≥ R!(Y |V ). (5)

Proof: Let ψ be a Bayes decision rule for predicting
Y from U . Upon observing V , a random variable U ′ can
be sampled from PU|V , conditionally independent of (U, Y )
given V . Then ψ(U ′) serves as a randomized prediction of
Y from V . As all probability spaces under consideration are
Borel spaces, the sampling of U ′ conditional on V can be
realized by a function f : V × [0, 1] → U of V and an
independent random variable T uniformly distributed on [0, 1],
such that Pf(V,T )|V = PU|V [32, Lemma 3.22]. We have

R!(Y |V ) ≤ inf
t∈[0,1]

E["(Y,ψ(f(V, t)))] (6)

≤ E["(Y,ψ(f(V, T )))] (7)

= E["(Y,ψ(U ′))] (8)

= E["(Y,ψ(U))] (9)

= R!(Y |U) (10)

where (6) is due to the definition of R!(Y |V ) and the fact
that ψ(f(·, t)) is a map from V to Y for each t ∈ [0, 1]; (7)
follows from the independence between T and (V, Y ); (9)
follows from the fact that PU ′|V = PU|V,Y due to the Markov
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chain U − V − Y , hence PU ′,V,Y = PU,V,Y ; and (10) follows
from the definition of ψ.

In view of the definition of µ-entropy in (14) and (15)
in Section III-A, the classic data processing inequality for
mutual information stating that I(U ; Y ) ≤ I(V ; Y ) in a
Markov chain U −V −Y [33] can be derived from Lemma 1
applied to the log loss. The data processing inequality for
MMSE proved in [34] can also be derived from Lemma 1
applied to the quadratic loss. More importantly, Lemma 1
extends the value of information principle in Bayes decision
making [30], which states that R!(Y ) ≥ R!(Y |V ), as it
can be viewed as a special case of Lemma 1 when U is
independent of (V, Y ). Lemma 1 also extends the principle of
total evidence [35], a.k.a. the value of knowledge theorem [36],
which states that R!(Y |V1) ≥ R!(Y |V1, V2) for arbitrary
random variables V1 and V2 jointly distributed with Y . While
the original argument in [35] overlooked the randomness of
V1, this principle can be rigorously justified by Lemma 1 as
V1 − (V1, V2) − Y always form a Markov chain. It is also
apparent from Lemma 1 or its proof that randomizing the
decision rule does not help to decrease the expected loss in
Bayes decision making, as (T, V )−V − Y form a Markov
chain for any independent random variable T to be used in
the randomized decision rule.

C. Definition of Minimum Excess Risk

An immediate consequence of Lemma 1 in Bayesian learn-
ing is that the Bayes risk R!(Y |X, Zn) decreases as the data
size n increases, as (X, Zn)− (X, Zn+1)−Y form a Markov
chain. A special case of this result for linear regression with
quadratic loss appears in [37]. While R!(Y |X, Zn) decreases
in n, it will not necessarily vanish as n → ∞. We define the
fundamental limit of the Bayes risk as the minimum expected
loss when the model parameters W are known, which is
attained by some “omniscient” decision rule Ψ : X × W → A
that can directly access the model parameters.

Definition 2: In Bayesian learning, the fundamental limit of
the Bayes risk with respect to a loss function " is defined as

R!(Y |X, W ) = inf
Ψ:X×W→A

E["(Y, Ψ(X, W ))]. (11)

For any feasible decision rule ψ : X × Zn → A, we can
define its excess risk as the gap between its expected loss
E["(Y,ψ(X, Zn))] and R!(Y |X, W ). In this work, our interest
is in the gap between the Bayes risk R!(Y |X, Zn) and
its fundamental limit R!(Y |X, W ), which is the minimum
achievable excess risk among all feasible decision rules:

Definition 3: The minimum excess risk (MER) with respect
to a loss function " is defined as

MER! := R!(Y |X, Zn) − R!(Y |X, W ). (12)

The MER defined above is an algorithm-independent quan-
tity. It quantifies the regret of the best decision rule that has
access to data, but not to model parameters, relative to the
best “omniscient” decision rule. It thus reflects the difficulty
of the learning problem, which comes from the lack of
knownedge of W . This is better illustrated by decomposing the

Bayes risk as

R!(Y |X, Zn) = R!(Y |X, W ) + MER!. (13)

If we view the Bayes risk as a measure of the minimum predic-
tion uncertainty, this decomposition allows us to give formal
definitions of the “aleatoric” uncertainty and the minimum
“epistemic” uncertainty [10]. The first term, the fundamental
limit of the Bayes risk, can be viewed as the aleatoric part of
the minimum prediction uncertainty, which exists even when
the model parameters are known. The second term, the MER,
can be viewed as the epistemic part of the minimum prediction
uncertainty, which is due to the lack of knowledge of W .
In [11], a decomposition of uncertainty is proposed for the log
loss and the quadratic loss, where the epistemic uncertainty is
defined as R!(Y |X) − R!(Y |X, W ) when expressed by our
notation; however, this definition does not take the observed
data into consideration, thus does not reflect the intuitive
expectation that the epistemic uncertainty should decrease as
the data size increases [12]. On the contrary, the advantage
of defining the minimum epistemic uncertainty as the MER is
that the uncertainty becomes smaller as more data is observed,
as asserted by the following result.

Theorem 1: For any loss function, MER! decreases in the
data size n, and MER! ≥ 0 for all n.

Proof: The claim that MER! decreases in n is due to the
previously justified fact that R!(Y |X, Zn) decreases in n as
a consequence of Lemma 1. The claim that MER! ≥ 0 is due
to the Markov chain (X, Zn)−(X, W )−Y and Lemma 1.

Intuitively, we expect that MER! ↓ 0 as n → ∞.
However, except for the log loss, there are few results in
the literature regarding this convergence in the general case,
or regarding how the MER depends on the estimation error of
the model parameters. In the following two sections, we use
different methods to derive upper bounds on MER for general
loss functions. We show that, in many cases, the MER can
be upper-bounded either in terms of the conditional mutual
information I(W ; Y |X, Zn), or in terms of the minimum
achievable estimation error of W from (X, Zn). These results
reflect how the MER depends on the joint distribution in (1),
in particular on PZ|W and PW , as well as on the loss function
and the data size.

III. UPPER BOUNDS VIA CONDITIONAL

MUTUAL INFORMATION

The first method for upper-bounding the MER is to relate
it to I(W ; Y |X, Zn), which can be further bounded by
1
nI(W ; Y n|Xn) or 1

nI(W ; Zn). In many cases, it can be
shown that I(W ; Zn) is sublinear in n [38]–[40], which
implies that the MER converges to zero as n → ∞.

A. Logarithmic Loss

We first consider the setting where one makes “soft” pre-
dictions, such that the action space is the collection of all
probability densities q with respect to a common σ-finite
positive measure µ on Y. The log loss "(y, q) := − log q(y)
penalizes those densities that assign small probabilities to the
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outcome y. Based on the definitions in (3) and (4), it can be
shown that

Rlog(Y ) = Hµ(Y ) := −
∫

Y
pY (y) log pY (y)µ(dy) (14)

and

Rlog(Y |V ) = Hµ(Y |V ) :=

−
∫

V
PV (dv)

∫

Y
pY |v(y) log pY |v(y)µ(dy), (15)

which can be viewed as the µ-entropy of Y and the conditional
µ-entropy of Y given V , and the optimal actions are the
unconditional density pY and the conditional density pY |v
with respect to µ, respectively. For instance, if Y is discrete
and µ is the counting measure, then Rlog(Y ) = H(Y ) and
Rlog(Y |V ) = H(Y |V ) are the Shannon and the conditional
Shannon entropy; while if Y = Rp and µ is the Lebesgue
measure, then Rlog(Y ) = h(Y ) and Rlog(Y |V ) = h(Y |V )
are the differential and the conditional differential entropy.
(See [33] for further background on information theory.) With
these definitions, the MER for the log loss is the difference
between two µ-entropy terms:

MERlog = Hµ(Y |X, Zn) − Hµ(Y |X, W ). (16)

A key observation is that MERlog can be expressed in terms
of the conditional mutual information:

Lemma 2: For the log loss,

MERlog = I(W ; Y |X, Zn). (17)

Proof: The claim follows from the fact that
I(W ; Y |X, Zn) = Hµ(Y |X, Zn) − Hµ(Y |X, W, Zn)
and that Hµ(Y |X, W, Zn) = Hµ(Y |X, W ). The second fact
is due to the Markov chain (X, W, Zn)−(X, W )−Y encoded
in (1) and the definition of the conditional µ-entropy.

Equation (17) states that MERlog is the average reduction
of the uncertainty about Y that comes from the knowledge
of W , given that (X, Zn) is already known. With this repre-
sentation, using the conditional independence structure in (1)
and the data processing inequality in Lemma 1 applied to the
µ-entropy, we have:

Theorem 2: The MER with respect to the log loss can be
upper-bounded as

I(W ; Y |X, Zn) ≤ 1
n

I(W ; Y n|Xn). (18)

Proof: For i = 1, . . . , n − 1, we have

I(W ; Yi|Xn, Y i−1)
= Hµ(Yi|Xn, Y i−1) − Hµ(Yi|W, Xn, Y i−1) (19)

= Hµ(Yi+1|Xn, Y i−1) − Hµ(Yi+1|W, Xn, Y i−1) (20)

≥ Hµ(Yi+1|Xn, Y i) − Hµ(Yi+1|W, Xn, Y i) (21)

= I(W ; Yi+1|Xn, Y i) (22)

where (19) is due to the definitions of the
conditional mutual information and the conditional
µ-entropy in (15); (20) follows from the fact that

(W, Xn, Y i−1, Yi)
d.= (W, Xn, Y i−1, Yi+1)1; and (21) follows

from the fact that Hµ(Yi+1|Xn, Y i−1) ≥ Hµ(Yi+1|Xn, Y i)
due to Lemma 1, and the fact that Hµ(Yi+1|W, Xn, Y i−1) =
Hµ(Yi+1|W, Xn, Y i) = Hµ(Yi+1|W, Xi+1) as Yi+1 is
conditionally independent of everything else given (W, Xi+1).

Then, from the chain rule of mutual information,

I(W ; Y n|Xn)

=
n∑

i=1

I(W ; Yi|Xn, Y i−1) (23)

≥ nI(W ; Yn|Xn, Y n−1) (24)

= nI(W ; Y |X, Zn−1) (25)

= n
(
Hµ(Y |X, Zn−1) − Hµ(Y |W, X, Zn−1)

)
(26)

≥ n
(
Hµ(Y |X, Zn) − Hµ(Y |W, X, Zn)

)
(27)

= nI(W ; Y |X, Zn) (28)

where (24) is obtained by repeated application of (22); (25) is
due to the fact that (W, Zn−1, Zn) d.= (W, Zn−1, Z); and (27)
follows from Lemma 1 and the fact that Y is conditionally
independent of everything else given (W, X). The claim
follows from (28).

Theorem 2 can be weakened to the following corollary by
the fact that I(W ; Y n|Xn) = I(W ; Zn) − I(W ; Xn). There
is no slack when X is independent of W .

Corollary 1: The MER with respect to the log loss can be
upper-bounded as

I(W ; Y |X, Zn) ≤ 1
n

I(W ; Zn). (29)

Upon maximizing over PW on both side of (29), Corollary 1
is reminiscent of the redundancy-capacity theorem in univer-
sal source coding in the Bayesian setting [15], [16], where
the quantity of interest is the minimum overall redundancy
minQ EPW,Zn [− log Q(Zn) + log PZn|W (Zn|W )], which can
be shown to be I(W ; Zn). Therefore, from the source coding
point of view, MERlog in (17) may be interpreted as the min-
imum instantaneous redundancy of encoding a fresh sample
when n data samples are observed, which is shown to be
smaller than the normalized minimum overall redundancy by
Corollary 1. More generally, the mutual information I(W ; Zn)
is also known to be the minimum accumulated excess risk for
the log loss in Bayesian sequential prediction [16], Bayesian
density estimation [17], and Bayesian supervised learning [18].
The non-asymptotic relationships between the instantaneous
MERlog and the accumulated excess risks shown in Theorem 2
and Corollary 1 hold for general model PZ|W and prior PW ,
and allow us to quantify the rate of convergence of MERlog

by upper-bounding I(W ; Y n|Xn) or I(W ; Zn).
From the results of [38]–[40], if W is a d-dimensional

compact subset of Rd and the model PZ|w is sufficiently
smooth in w (see Appendix A.1 for rigorous statements of

1For random variables U and V , U
d.
= V means that U and V have the

same distribution.
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these conditions), then

I(W ; Zn) =
d

2
log

n

2πe
+ h(W ) +

1
2
E

[
log detJZ|W

]
+

o(1) as n → ∞, (30)

where h(W ) is the differential entropy of W , and, as a func-
tional of PZ|w, JZ|w is the Fisher information matrix about w
contained in Z with respect to PZ|w, and the expectation is
taken with respect to PW . Due to the logarithmic dependence
on n in (30) and the chain rule of mutual information, it can
be shown that the instantaneous mutual information under the
same conditions satisfies I(W ; Z|Zn) = O(d/n) as n → ∞.
This gives us a refined asymptotic upper bound on MERlog

whenever (30) holds than directly applying (30) to Corollary 1:
Theorem 3: Under the regularity conditions listed in

Section A under which (30) holds, we have

I(W ; Y |X, Zn) = O
( d

2n

)
as n → ∞. (31)

Proof: The proof relies on [41, Lemma 6] which is stated
as Lemma A3 in Appendix A.3. Suppose (a1, a2, . . .) and
(b1, b2, . . .) are two sequences of real numbers such that an =∑n

i=1 bi for all n. Lemma A3 states that, if limn→∞ an/logn
and limn→∞ nbn exist, then they are equal. With this result
and the chain rule of mutual information, we know that
whenever (30) holds,

lim
n→∞

(n + 1)I(W ; Z|Zn) = lim
n→∞

I(W ; Zn)
log n

=
d

2
. (32)

The claim follows from the fact that I(W ; Y |X, Zn) ≤
I(W ; Z|Zn).

As we show next, the representation of MERlog via the
conditional mutual information in (17) and the resulting upper
bounds derived in this subsection can be used to obtain upper
bounds on the MER for other loss functions as well.

B. Quadratic Loss

While the log loss is naturally used for assessing “soft”
predictions, it is also a common practice to make “hard”
predictions, e.g., the actions can be elements in Y. When
Y = A = R, a commonly used loss function is the quadratic
loss "(y, a) = (y−a)2. For any V that statistically depends on
Y , the conditional Bayes envelope with respect to the quadratic
loss is R2(Y |V = v) = var[Y |v], the optimal action is the
conditional mean E[Y |v], and the corresponding Bayes risk

R2(Y |V ) = E[var[Y |V ]] (33)

is the minimum mean square error (MMSE) of estimating Y
from V . In this case, the MER in Bayesian learning turns out
to be

MER2 = E
[
var[Y |X, Zn]

]
− E

[
var[Y |X, W ]

]
. (34)

More generally, when Y = A = Rp and "(y, a) = ‖y −
a‖2 with ‖ · ‖ denoting the l2 norm, the MER in this case is

MER2 = E
[
‖Y − E[Y |X, Zn]‖2

]
−

E
[
‖Y − E[Y |X, W ]‖2

]
(35)

= E
[
‖E[Y |X, Zn] − E[Y |X, W ]‖2

]
, (36)

where the second equality follows from the fact that
E[Y |X, W ] = E[Y |X, W, Zn] and the orthogonality principle
in MMSE estimation [42].

Under the assumption that ‖Y ‖ ≤ b, using a result that
connects MMSE difference to conditional mutual information
[34, Theorem 10], we can upper-bound MER2 in terms of
I(W ; Y |X, Zn):

Theorem 4: If Y = {y ∈ Rp : ‖y‖ ≤ b} for some b > 0,
then for the quadratic loss,

MER2 ≤ 2b2I(W ; Y |X, Zn). (37)

Proof: [34, Theorem 10] states that if ‖Y ‖ ≤ b, then for
any (U, V ) jointly distributed with Y ,

R2(Y |U) − R2(Y |U, V ) ≤ 2 b2I(V ; Y |U). (38)

Using this result and the fact that R2(Y |X, W ) =
R2(Y |X, W, Zn), we obtain (37).

With Theorem 4, all the upper bounds on MERlog derived
in Section III-A can be used to further upper-bound MER2.
In particular, whenever (30) holds, we have MER2 =
O(b2d/n) as n → ∞.

C. Zero-One Loss

Another loss function we consider for hard predictions is
the zero-one loss "(y, a) = 1{y *= a} with Y = A. For any V
that statistically depends on Y , the conditional Bayes envelope
with respect to the zero-one loss is R01(Y |V = v) = 1 −
maxy∈Y PY |v(y), the optimal action is the conditional mode
argmaxy∈Y PY |v(y), and the corresponding Bayes risk is

R01(Y |V ) = 1 − E[maxy∈Y PY |V (y)], (39)

with expectation taken with respect to V . The MER for the
zero-one loss is

MER01 =E[maxy∈Y PY |X,W (y)]−
E[maxy∈Y PY |X,Zn(y)], (40)

where the expectations are taken with respect to the condition-
ing variables. In this case, as the loss function takes values in
[0, 1], Theorem 6 stated in the next subsection gives an upper
bound for MER01 in terms of I(W ; Y |X, Zn):

Corollary 2: For the zero-one loss,

MER01 ≤
√

1
2
I(W ; Y |X, Zn). (41)

From Theorem 3, we know that whenever (30) holds,
MER01 = O(

√
d/n) as n → ∞.

For the special case of binary classification, where Y =
{0, 1}, the Bayes risk R01(Y |X, Zn) is studied in [19] and
is upper-bounded in terms of H(Y n|Xn). When the model is
realizable, that is, when Y = g(X, W ) with some generative
function g : X × W → {0, 1}, it is also observed in [19] that
H(Y n|Xn) can be further upper-bounded in terms of the VC
dimension of the generative function class G = {g(·, w) : X →
{0, 1}, w ∈ W}, defined as

V (G) := sup
{
n ∈ N : sup

xn∈Xn

∣∣{(g(x1, w), . . . , g(xn, w)),

w ∈ W
}∣∣ = 2n

}
. (42)
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The Sauer-Shelah lemma [43], [44] states that, if V (G) = d,
then for all xn ∈ Xn,

∣∣{(g(x1, w), . . . , g(xn, w)), w ∈ W
}∣∣ ≤

d∑

k=1

(
n

k

)
≤ end.

(43)

As MER01 ≤ R01(Y |X, Zn), the results in [19] lead to the
following MER upper bounds.

Theorem 5: If Y = {0, 1}, then

MER01 ≤ 1
2 log 2

H(Y |X, Zn) ≤ 1
2n log 2

H(Y n|Xn). (44)

Moreover, if Y = g(X, W ) with some function g : X×W →
Y, and the function class G = {g(·, w) : X → Y, w ∈ W} has
VC dimension d, then

MER01 ≤ O
( d

2n log 2

)
as n → ∞. (45)

These upper bounds also hold for 1
2 log 2MERlog in the same

settings.
Proof: The proof of (44) is essentially drawn from [19].

Using our notation,

MER01 ≤ R01(Y |X, Zn) (46)

= E
[

min
y∈{0,1}

P[Y = y|X, Zn]
]

(47)

≤ E
[ 1
2 log 2

h2

(
P[Y = 1|X, Zn]

)]
(48)

=
1

2 log 2
H(Y |X, Zn) (49)

≤ 1
2n log 2

H(Y n|Xn), (50)

where (46) follows from the fact that R01(Y |X, W ) ≥ 0; (47)
follows from (39) and the assumption that Y = {0, 1}; (48)
follows from the fact that min{p, 1 − p} ≤ 1

2 log 2h2(p) for
p ∈ [0, 1], where h2(·) is the binary entropy function; and (50)
can be proved by the chain rule of Shannon entropy and the
fact that H(Yi|Xn, Y i−1) decreases as i increases, similar to
the proof of Theorem 2.

The proof of (45) relies on the observation made in [19]
that H(Y n|Xn) ≤ d log n + 1 under a realizable model
whenever the VC dimension of G is d, which is due to the
Sauer-Shelah lemma (43). Additionally, from H(Y n|Xn) =∑n

i=1 H(Yi|Xn, Y i−1) and Lemma A3, we have

lim
n→∞

(n + 1)H(Y |X, Zn) = lim
n→∞

H(Y n|Xn)
log n

≤ d (51)

whenever these limits exist, which proves (45).
The upper bounds also hold for 1

2 log 2MERlog because
MERlog ≤ H(Y |X, Zn), as H(Y |X, W ) ≥ 0 when Y is
discrete.

In Section III-E, we discuss the MER under realizable
models in more general settings, where the results go beyond
binary classification and zero-one loss.

D. General Loss Functions

Now we derive a general upper bound for the MER with
respect to a wide range of loss functions. For an arbitrary loss
function " : Y × A → R, let Ψ∗ : X × W → Y be the optimal
omniscient decision rule such that E["(Y, Ψ∗(X, W ))] =
R!(Y |X, W ). Given (X, Zn), let W ′ be a sample from the
posterior distribution PW |X,Zn conditionally independent of
everything else given (X, Zn). Then the MER can be upper-
bounded by

MER! ≤ E["(Y, Ψ∗(X, W ′))] − E["(Y, Ψ∗(X, W ))]. (52)

Here, Ψ∗(X, W ′) is a plug-in decision rule, where we first
estimate W by W ′ from (X, Zn), and then plug W ′ in Ψ∗

to predict Y given X . The right side of (52) is the excess
risk of this plug-in decision rule. Under regularity conditions
on the moment generating function of "(Y, Ψ∗(X, W ′)) under
the conditional distribution PY,W ′|X,Zn , we have the following
upper bound on MER! in terms of I(Ψ∗(X, W ); Y |X, Zn).

Theorem 6: Assume there is a function ϕ(λ) defined on
[0, b) for some b ∈ (0,∞], such that

logEx,zn

[
exp

{
− λ

(
"(Y, Ψ∗(x, W ′))−

Ex,zn

[
"(Y, Ψ∗(x, W ′))

])}]
≤ ϕ(λ) (53)

for all 0 ≤ λ < b and all (x, zn), where Ex,zn [·] denotes
the conditional expectation with respect to (Y, W ′) given
(X, Zn) = (x, zn). Then

MER! ≤ ϕ∗−1 (I(Ψ∗(X, W ); Y |X, Zn)) , (54)

where ϕ∗(γ) := sup0≤λ<b{λγ − ϕ(λ)}, γ ∈ R, is the
Legendre dual of ϕ, and ϕ∗−1(u) := sup{γ ∈ R : ϕ∗(γ) ≤
u}, u ∈ R, is the generalized inverse of ϕ∗. In addition, if ϕ(λ)
is strictly convex over (0, b) and ϕ(0) = ϕ′(0) = 0, then
limx↓0 ϕ∗−1(x) = 0.

Proof: We have the following chain of inequalities:

MER!
≤ E["(Y, Ψ∗(X, W ′))] − E["(Y, Ψ∗(X, W ))] (55)

= E
[
E["(Y, Ψ∗(X, W ′)) − "(Y, Ψ∗(X, W ))|X, Zn]

]

≤ E
[
ϕ∗−1

(
DKL(PY,Ψ∗(X,W )|X,Zn‖

PY,Ψ∗(X,W ′)|X,Zn)
)]

(56)

= ϕ∗−1
(
E

[
DKL(PY,Ψ∗(X,W )|X,Zn‖

PY,Ψ∗(X,W ′)|X,Zn)
])

(57)

= ϕ∗−1
(
I(Ψ∗(X, W ); Y |X, Zn)

)
(58)

where (56) follows from the assumption (53) in the statement
of the theorem and Lemma A2 stated in Appendix A.2 applied
to P = PY,Ψ∗(x,W )|x,zn and Q = PY,Ψ∗(x,W ′)|x,zn , and the
expectation is taken with respect to (X, Zn); (57) follows from
the concavity of ϕ∗−1, which is due to the convexity of ϕ∗,
and Jensen’s inequality; (58) follows from the fact that W ′ is
conditionally i.i.d. of W and conditionally independent of Y
given (X, Zn). The last claim of the theorem comes from the
fact that under the assumptions on ϕ, its Legendre dual ϕ∗ is
increasing on [0,∞) and continuous at 0 and so is the inverse
ϕ∗−1.
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An example for the condition in (53) to hold is when the
random variable "(Y, Ψ∗(x, W ′)) is σ2-subgaussian2 condi-
tionally on (X, Zn) = (x, zn). In this case, (53) holds with
b = ∞ and ϕ(λ) = σ2λ2/2, and we have the following
corollary.

Corollary 3: If "(Y, Ψ∗(x, W ′)) is σ2-subgaussian condi-
tionally on (X, Zn) = (x, zn) for all (x, zn), then

MER! ≤
√

2σ2I(Ψ∗(X, W ); Y |X, Zn). (59)

Using the fact that if "(·, ·) ∈ [a, b] then " is (b − a)2/4-
subgaussian under any distribution of the arguments, Corol-
lary 3 can provide upper bound for the MER under any
bounded loss functions. More generally, Theorem 6 can be
applied in the situation where the loss function is unbounded
and non-subgaussian. In Appendix B, we present such a case
where an MER upper bound for the quadratic loss in linear
regression is derived based on Theorem 6.

From the data processing inequality of mutual information,

I(Ψ∗(X, W ); Y |X, Zn) ≤ I(W ; Y |X, Zn). (60)

Since ϕ∗−1 defined in Theorem 6 is an increasing function on
[0,∞), the upper bounds in (54) and (59) can be weakened
by replacing I(Ψ∗(X, W ); Y |X, Zn) with I(W ; Y |X, Zn) or
any of its upper bounds derived in Section III-A. In particular,
when (30) and Theorem 3 hold in addition with the assumption
in Theorem 6, we have MER! = O(ϕ∗−1(d/2n)) as n → ∞.

Theorem 6 also provides a connection between the MER
and the mutual information between the observed data and
the learned model parameters. If X is independent of W ,
then PW |X,Zn = PW |Zn , and (W ′, Zn) have the same joint
distribution as (W, Zn). In this case, when the condition
in Corollary 3 is satisfied, upper-bounding I(W ; Y |X, Zn)
in (59) by 1

nI(W ; Zn) according to Corollary 1 leads to the
following result.

Corollary 4: If X is independent of W in addition to the
condition in Corollary 3, then

MER! ≤
√

2σ2

n
I(Zn; W ′), (61)

where I(Zn; W ′) is the mutual information between the data
and the learned model parameters sampled from the posterior
distribution PW |Zn .

Corollary 4 is an analogue of the generalization-information
relationship in the frequentist learning [14, Theorem 1], where
it is shown that the generalization error in frequentist learn-
ing can be upper-bounded in terms of the mutual informa-
tion between the observed data and the learned hypothe-
sis. From (54), we also know that when the more general
condition in Theorem 6 is satisfied, we have MER! ≤
ϕ∗−1( 1

nI(Zn; W ′)), which is analogous to upper bounds on
the generalization error in [45], [46].

E. Realizable Models and Connection to VC Dimension

In Section III-C we have presented the MER for the
zero-one loss under the realizable model of binary classi-
fication. Here, we present a few results on the MER for

2A random variable U is σ2-subgaussian if E[eλ(U−EU)] ≤ eλ2σ2/2 for
all λ ∈ R.

general loss functions under general realizable models. These
results provide tighter asymptotic MER bounds under real-
izable models than directly using the results obtained in the
previous subsection. Following the observations made in [19],
these results also show how the key quantities in classical
frequentist learning theory, notably the Vapnik-Chervonenkis
(VC) dimension, can be naturally brought into the MER analy-
sis in Bayesian learning through the information-theoretic
framework proposed in this work.

A realizable model is a model where the quantity of interest
Y is determined by the observation X and the model parame-
ters W through a generative function g : X × W → Y. Under
a realizable model, g(X, W ′) can serve as a plug-in decision
rule, where W ′ is a sample from the posterior distribution
PW |X,Zn , conditionally independent of everything else given
(X, Zn). It is observed in a follow-up work [47] (which has
appeared after the initial version of this paper was posted)
that the generalization error bounds developed in [48] for
the realizable setting of frequentist learning can be adapted
to MER bounds for realizable models in Bayesian learning.
In particular, [47, Lemma 3] shows that for a loss function " ∈
[0, b], if R!(Y |X, W ) = 0, then MER! ≤ 3bI(W ; Y |X, Zn).
Following this approach, the next result provides an upper
bound for the MER under realizable models, with a better
prefactor and a tighter conditional mutual information term.

Theorem 7: For a loss function " ∈ [0, b], if there exists a
function g : X× W → Y such that "(Y, g(X, W )) = 0 almost
surely with respect to the joint distribution PW,X,Y , then

MER! ≤
b

log 2
I(g(X, W ); Y |X, Zn). (62)

Proof: We have the following chain of inequalities:

MER! ≤ E["(Y, g(X, W ′))] (63)

= E
[
E["(Y, g(X, W ′))|X, Zn]

]
(64)

≤
∫

b

log 2
I(g(x, W ); Y |X = x, Zn = zn)

PX,Zn(dx, dzn) (65)

=
b

log 2
I(g(X, W ); Y |X, Zn), (66)

where (63) follows from the assumption that "(Y, g(X, W )) =
0, the minimum loss, which implies that R!(Y |X, W ) =
0; (65) follows by applying Lemma 3 stated below to the joint
distribution Pg(x,W ),Y |x,zn for all (x, zn) under PX,Zn .

The following lemma used in the proof of Theorem 7 is
adapted from [48, Theorem 5.7], where it is developed for
bounding the generalization error in the realizable setting of
frequentist learning.

Lemma 3: Let V and Y be jointly distributed random
variables on V × Y. Let V ′ be an independent copy of V ,
that is, PV ′ = PV and V ′ is independent of (V, Y ). For a
function " : Y ×V → [0, b], if "(Y, V ) = 0 almost surely with
respect to PV,Y , then

E["(Y, V ′)] ≤ b

log 2
I(V ; Y ). (67)

Proof: We follow the symmetrization idea used in the
proof of [48, Theorem 5.7]. Let Ṽ = (V0, V1) with V0 and
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V1 being i.i.d. samples from PV . Let S and S′ be i.i.d. uniform
Bernoulli random variables independent of Ṽ , with S = 1−S,
and S′ = 1−S′. With these random variables at hand, we can
construct V = ṼS , V ′ = ṼS , and Y to be jointly distributed
with V and conditionally independent of everything else given
V . Then, following the technique used in the proof of [48,
Theorem 5.7], for any u > 0 and t > 0,

E["(Y, V ′)]
=E["(Y, V ′)] − E[u"(Y, V )] (68)

=E["(Y, ṼS)] − E[u"(Y, ṼS)] (69)

=E
[
E["(Y, ṼS)−u"(Y, ṼS)|Ṽ ]

]
(70)

≤1
t

(
I(S; Y |Ṽ )+

E
[
logE

[
exp

{
t
(
"(Y, ṼS′)−u"(Y, ṼS′)

)}∣∣Ṽ
]])

(71)

=
1
t

(
I(S; Y |Ṽ ) + E

[
logE

[
E

[
exp

{
t
(
"(Y, ṼS′)

−u"(Y, ṼS′)
)}

|Y, S, Ṽ
]∣∣Ṽ

]])
(72)

=
1
t

(
I(S; Y |Ṽ )+

E
[
logE

[
1
2et!(Y,ṼS) + 1

2e−ut!(Y,ṼS)
∣∣Ṽ

]])
(73)

where (68) is due to the assumption that "(Y, V ) = 0 almost
surely; (71) is due to the Donsker-Varadhan theorem, which
implies that

DKL(PS,Y |Ṽ ‖PS′,Y |Ṽ ) ≥ E
[
t
(
"(Y, ṼS)−u"(Y, ṼS)

)∣∣Ṽ
]

− logE
[
exp

{
t
(
"(Y, ṼS′)−u"(Y, ṼS′)

)}∣∣Ṽ
]
;

and (73) follows from the fact that S′ is equally likely to be S
or S conditional on S, writing out the inner-most expectation
in this way, and by setting "(Y, ṼS) to 0.

Setting t = log 2
b and sending u → ∞, we see that the inner

expectation in (73) is upper-bounded by 1, which leads to

E["(Y, V ′)] ≤ b

log 2
I(S; Y |Ṽ ). (74)

The claim follows from the observation made in [49] that
I(S; Y |Ṽ ) ≤ I(Ṽ , S; Y ) = I(V ; Y ), where the equality
holds because Y is conditionally independent of (Ṽ , S) given
V = ṼS .

Theorem 7 can be weakened by the data processing inequal-
ity of mutual information,

I(g(X, W ); Y |X, Zn) ≤ I(W ; Y |X, Zn), (75)

which can be further bounded by 1
nI(W ; Y n|Xn) or

1
nI(W ; Zn) due to Theorem 2 or Corollary 1. When Y is dis-
crete, I(W ; Y n|Xn) can be further bounded by H(Y n|Xn).
It implies that under a realizable model with discrete Y, not
necessarily binary, the MER with respect to a bounded loss
function can be upper-bounded nonasymptotically on the order
of 1

nH(Y n|Xn).
With a realizable model, a natural question to ask is how the

MER depends on the richness of the generative function class
G = {g(·, w) : X → Y, w ∈ W}. When Y = {0, 1}, one
featuring combinatorial quantity that measures the richness

of G is its VC dimension, defined in (42). The connection
between H(Y n|Xn) and V (G) is observed in [19], in the
setting of binary classification with the zero-one loss. We make
use of it here to obtain a corollary of Theorem 7, which
extends the results in Theorem 5 as it applies to more general
loss functions.

Corollary 5: Under a realizable model with Y = {0, 1},
if the function class G = {g(·, w) : X → Y, w ∈ W} has VC
dimension d, then for any loss function " ∈ [0, b],

MER! ≤ O
( b

log 2
· d

n

)
as n → ∞. (76)

Proof: By (75) and Theorem 2, and the assumptions that
the model is realizable and Y is discrete, the upper bound in
Theorem 7 can be weakened to

MER! ≤
b

log 2
H(Y |X, Zn) (77)

≤ b

n log 2
H(Y n|Xn). (78)

The Sauer-Shelah lemma as stated in (43) implies that
H(Y n|Xn) ≤ d log n + 1. In addition, from the chain rule
of Shannon entropy and Lemma A3, we have

lim
n→∞

(n + 1)H(Y |X, Zn) = lim
n→∞

H(Y n|Xn)
log n

≤ d,

similar to the proof of (45) in Theorem 5. This proves the
claim in view of (78).

The VC dimension plays a key role in the frequentist
learning theory, in bounding the excess risk in terms of the
richness of the hypothesis class, which amounts to the set
of decision rules. In Bayesian learning, while there is no
restriction on the decision rules, Corollary 5 shows that the
VC dimension of the generative function class plays a similar
role in upper-bounding the MER.

IV. UPPER BOUNDS VIA FUNCTIONAL AND

DISTRIBUTIONAL CONTINUITIES

In the previous section, the upper bounds are derived
by relating the MER to I(W ; Y |X, Zn). In this section,
we explore alternative methods for bounding the MER, either
in terms of the smoothness of the optimal omniscient decision
rule in model parameters, or in terms of the smoothness of
the minimum expected loss in the predictive model. These
smoothness, or continuity properties enable us to bound the
MER via the accuracy of estimated parameters from the data.
The following lemma is instrumental for this approach.

Lemma 4 ( [50], [51]): Let (U, ρ) be a metric space. If U
and U ′ are two random elements of U that are conditionally
i.i.d. given another random element V of some space V, i.e.,
PU,U ′|V =v = PU|V =vPU ′|V =v and PU|V =v = PU ′|V =v for all
v ∈ V, then E[ρ(U ′, U)] ≤ 2Rρ(U |V ). Moreover, if U = Rd,
then E[‖U ′ − U‖2] = 2R2(U |V ).

As an aside, Lemma 4 provides us with a means for
evaluating the performance of making randomized predic-
tion by sampling from the posterior predictive distribution
PY |X,Zn , via upper-bounding the corresponding MER. Let
Y ′ be sampled from PY |X,Zn , which can be realized by first
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sampling W ′ from PW |X,Zn then Y ′ from PY |X,W ′ . Then,
for any metric " on Y, we have

E["(Y, Y ′)] ≤ 2R!(Y |X, W ) + 2MER!. (79)

A. Via Continuity of Optimal Omniscient Decision Rule

1) General Upper Bound: We start from (52) which states
that MER! ≤ E["(Y, Ψ∗(X, W ′))] − E["(Y, Ψ∗(X, W ))],
where Ψ∗ is the optimal omniscient decision that achieves
R!(Y |X, W ) when W is known, and W ′ is a sample from
the posterior distribution PW |X,Zn conditionally indepen-
dent of everything else given (X, Zn). The MER can be
upper-bounded in terms of the smoothness of the function
"(y, Ψ∗(x, w)) in w and the accuracy of approximating W
by W ′.

Theorem 8: If W = Rd and W is independent of X , then

MER! ≤E
[
sup
y∈Y

sup
w∈W

‖∇w"(y, Ψ∗(X, w))‖
]
·

√
2R2(W |Zn), (80)

where Ψ∗ is the optimal omniscient decision rule for the loss
function ".

Proof: We have

MER!
≤ E["(Y, Ψ∗(X, W ′)) − "(Y, Ψ∗(X, W ))]

≤ E
[

sup
w∈W

‖∇w"(Y, Ψ∗(X, w))‖ · ‖W ′ − W‖
]

≤ E
[
sup
y∈Y

sup
w∈W

‖∇w"(y, Ψ∗(X, w))‖
]
E[‖W ′ − W‖]

≤ E
[
sup
y∈Y

sup
w∈W

‖∇w"(y, Ψ∗(X, w))‖
]√

2R2(W |Zn),

where we used (52), Lemma A5, the assumption that X
and W are independent, and the fact that E[‖W ′ − W‖] ≤√

E[‖W ′ − W‖2] =
√

2R2(W |Zn) due to Lemma 4.
a) Example: constant Ψ∗: An extreme case where The-

orem 8 can be useful is when Ψ∗ : X × W → Y does not
dependent on W under certain loss functions, in which case
Theorem 8 guarantees that the MER is zero. For example,
if Yi = g(Xi, W )Vi and Y = g(X, W )V , with some g :
X × W → R and (V n, V ) being i.i.d. zero-mean random
variables independent of (W, Xn, X), then for the quadratic
loss,

Ψ∗(X, W ) = E[g(X, W )V |X, W ] (81)

= g(X, W )E[V ] (82)

≡ 0, (83)

hence MER2 = 0 by Theorem 8. It implies that for this
example

R2(Y |X, Zn) = R2(Y |X, W ) (84)

= E
[
g(X, W )2V 2

]
(85)

= E
[
g(X, W )2

]
var[V ], (86)

which shows that a small MER does not necessarily mean a
small Bayes risk R!(Y |X, Zn).

b) Example: logistic regression: Another example where
Theorem 8 can be applied to is bounding the MER for logistic
regression with the log loss. Bayesian logistic regression is
an instance under the predictive modeling framework, where
Y = {0, 1}, W ∈ Rd is assumed to be independent of X , and
the predictive model is specified by KY |x,w(1) = σ(w*φ(x)),
with σ(a) := 1/(1 + e−a), a ∈ R, being the logistic sigmoid
function, and φ(x) ∈ Rd being the feature vector of the obser-
vation. For the log loss, the optimal omniscient decision rule
Ψ∗(x, w) is the Bernoulli distribution with bias σ(w*φ(x)),
the same as KY |x,w. Since | d

da log σ(a)| = |1−σ(a)| ≤ 1 and
| d
da log(1− σ(a))| = |− σ(a)| ≤ 1, from Theorem 8 we have

MERlog ≤ E[‖φ(X)‖]
√

2R2(W |Zn). (87)

This result explicitly shows that the MER in logistic regression
depends on how well we can estimate the model parameters
from data, as it is dominated by R2(W |Zn), the MMSE
of estimating W from Zn. For logistic regression, a closed-
form expression for this MMSE may not exist. Nevertheless,
any upper bound on it that is nonasymptotic in d and n
will translate to a nonasymptotic upper bound on the MER.
In Section IV-C.3 we continue the discussion of this example
with different upper-bounding methods, where the dependence
on R2(W |Zn) can be improved when it is small.

2) Realizable Models With Additive Noise: The smoothness
of Ψ∗(x, w) in w can lead to potentially tighter MER bounds
under realizable models, possibly with additive noise. Consider
the generative model of the form Yi = g(Xi, W ) + Vi and
Y = g(X, W )+V , where the generative function g : X×W →
R is some parametric nonlinearity in general, which could
be approximated by a neural network, the parameter vector
W ∈ Rd is independent of (Xn, X), and the additive noise
(V n, V ) are i.i.d. real-valued random variables independent
of (W, Xn, X). This model encompasses both linear and non-
linear Bayesian regression problems. We have the following
MER bounds for the quadratic loss under this model.

Theorem 9: Under the model considered above, for the
quadratic loss,

MER2 ≤ 2R2(g(X, W )|X, Zn) (88)

≤ 2E
[

sup
w∈W

‖∇wg(X, w)‖2
]
R2(W |Zn). (89)

Proof: Under the model considered above, for the
quadratic loss,

Ψ∗(X, W ) = E[g(X, W ) + V |X, W ] (90)

= g(X, W ) + E[V ]. (91)

We have

MER2

≤ E
[
(Y − g(X, W ′) − E[V ])2

]
−

E
[
(Y − g(X, W ) − E[V ])2

]
(92)

= E
[
(g(X, W ′) − g(X, W ))2

]
+ var[V ]

− var[V ] (93)

= 2R2(g(X, W )|X, Zn) (94)

≤ E
[

sup
w∈W

‖∇wg(X, w)‖2 · ‖W ′ − W‖2
]

(95)
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= 2E
[

sup
w∈W

‖∇wg(X, w)‖2
]
R2(W |Zn), (96)

where (92) follows from (52); (93) follows from the inde-
pendence between (X, W ) and V ; (94) follows from the fact
that g(X, W ′) and g(X, W ) are conditionally independent
given (X, Zn), and Lemma 4; (95) follows from (93) and
Lemma A5; and (96) follows from the independence between
X and W , and Lemma 4.

a) Example: linear regression: Theorem 9 can be applied
to bounding the MER of the linear regression problem with
the quadratic loss. Bayesian linear regression is an instance of
the noisy realizable model considered above, where g(x, w) =
w*φ(x), φ(x) ∈ Rd is the feature vector of the observation
x, and (V n, V ) are i.i.d. samples from N (0,σ2). With the
Gaussian prior of model parameters PW = N (0,σ2

W Id),
the MMSE for estimating W from Zn has a closed-form
expression

R2(W |Zn) = E[tr(CW |Zn)], (97)

where

CW |Zn =
( 1
σ2

W

Id +
1
σ2

ΦΦ*
)−1

(98)

is the conditional covariance matrix of W given Zn, which
only depends on Xn through the d × n feature matrix
Φ = [φ(X1), . . . ,φ(Xn)]. Under this model, we also have
∇wg(x, w) = φ(x), hence Theorem 9 implies that

MER2 ≤ 2E[‖φ(X)‖2]E[tr(CW |Zn)]. (99)

Under the above model with Gaussian prior, it can be shown
that the posterior predictive distribution PY |x,zn is Gaussian
with variance σ2+φ(x)*CW |znφ(x). From this we can obtain
exact expressions for the MER and alternative upper bounds:

MERlog =
1
2
E

[
log

(
1 +

1
σ2
φ(X)*CW |Znφ(X)

)]

≤ E[‖φ(X)‖2]
2σ2

E[tr(CW |Zn)], (100)

and

MER2 = E
[
φ(X)*CW |Znφ(X)

]

≤ E[‖φ(X)‖2]E[tr(CW |Zn)]. (101)

The upper bounds in (100) and (101) are justified by noting
that

φ(X)*CW |Znφ(X) = ‖C1/2
W |Znφ(X)‖2 (102)

≤ σ2
1

(
C1/2

W |Zn

)
‖φ(X)‖2 (103)

≤ tr(CW |Zn)‖φ(X)‖2, (104)

where σ1(·) is the largest singular value of the underlying
matrix. A special choice of the d feature functions composing
the feature vector is such that they are orthonormal with
respect to PX , namely

∫
X φi(x)φj(x)PX(dx) = 1{i = j} for

i, j ∈ {1, . . . , d}. In this case, ΦΦ* ≈ nE[φ(X)φ(X)*] =
nId, hence E[tr(CW |Zn)] ∼ O(d/n), implying that MER2

scale with d and n as O(d/n) according to (101). It further
implies that the upper bound (99) given by Theorem 9 is
order-optimal for vanishing MER. We continue the discussion
of this example in Section IV-C.3.

B. Deviation of Posterior Predictive Distribution From True
Predictive Model

As described in Section II-A, under the predictive modeling
framework, the generative model is specified as PZ|W =
PX|W KY |X,W , with a parametrized probability transition ker-
nel KY |X,W describing the true predictive model of Y given
X . An alternative method for upper-bounding the MER under
this framework is by examining the deviation of the posterior
predictive distribution PY |X,Zn from the true predictive model
KY |X,W in terms of a suitable convex statistical distance
between them. Here, by a convex statistical distance we mean
any statistical distance (P, Q) /→ D(P, Q) that is convex in
the first argument when the second one is held fixed, or convex
in the second argument while the first one is held fixed. For
example, any f -divergence, including the commonly used total
variation distance, KL divergence and χ2-divergence, is jointly
convex in both arguments [52]. As another example, consider
the pth power of p-Wasserstein distance between two Borel
probability measures P and Q on Rm with finite second
moments [53]:

Wp
p (P, Q) := inf

π∈Π(P,Q)
E(X,Y )∼π[‖X − Y ‖p], (105)

where Π(P, Q) denotes the collection of all couplings of P and
Q, i.e., Borel probability measures on Rm×Rm with marginals
P and Q. As shown in Lemma A4 in Appendix A.4, (P, Q) /→
Wp

p (P, Q) is also jointly convex. The following lemma is key
for relating the deviation of PY |X,Zn from KY |X,W to the
estimation error of model parameters.

Lemma 5: Let W ′ be a sample from the posterior distribu-
tion PW |X,Zn , such that W and W ′ are conditionally i.i.d.
given (X, Zn). Then for any (w, x, zn) and any statistical
distance D that is convex in the first argument,

D(PY |x,zn , KY |x,w) ≤ E[D(KY |x,W ′ , KY |x,w)|x, zn], (106)

and consequently,

E[D(PY |X,Zn , KY |X,W )]≤E[D(KY |X,W ′ , KY |X,W )] (107)

where the expectations are taken with respect to the joint
distribution of (W, X, Zn, W ′). Similarly, for any (w, x, zn)
and any statistical distance D that is convex in the second
argument,

D(KY |x,w, PY |x,zn) ≤ E[D(KY |x,w, KY |x,W ′)|x, zn], (108)

and consequently,

E[D(KY |X,W , PY |X,Zn)] ≤ E[D(KY |X,W , KY |X,W ′)].
(109)

Proof: From the joint distribution in (1), it follows that
for any (w, zn, z),

PY |x,zn(y) =
∫

W
KY |x,w′(y)PW |x,zn(dw′) (110)

If the statistical distance considered here is convex in the first
argument, we have

D(PY |x,zn , KY |x,w) ≤∫

W
D(KY |x,w′ , KY |x,w)PW |x,zn(dw′), (111)
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which proves (106). Taking expectations over the conditioning
terms, we obtain (107). The proof of (108) and (109) follows
the same argument when D is convex in the second argument.

Whenever the convex statistical distance
D(KY |x,w′, KY |x,w) can be upper-bounded via ‖w′ − w‖
or ‖w′ − w‖2, Lemma 4 can be used to further upper-
bound E[D(KY |X,W ′ , KY |X,W )] in terms of the minimum
achievable estimation error of W . In the following two
subsections, we use two different methods together with
Lemma 5 and Lemma 4 to convert upper bounds on the
deviation of PY |X,Zn from KY |X,W into upper bounds on
the MER for various loss functions.

C. From Deviation of Posterior Predictive Distribution to
MER Bound

1) Via Conditional Mutual Information Upper Bound: For
the log loss, we can directly upper-bound I(W ; Y |X, Zn) in
terms of the KL divergence between KY |X,W and PY |X,Zn ,
and arrive at the following result with Lemma 5.

Theorem 10: When PZ|W = PX|W KY |X,W , let W ′ be a
sample from the posterior distribution PW |X,Zn , conditionally
independent of everything else given (X, Zn). Then,

MERlog ≤ E[DKL(KY |X,W ‖KY |X,W ′)] (112)

where the expectation is taken with respect to the joint
distribution of (W, W ′, X).

Proof: From (17), we have

MERlog = I(W ; Y |X, Zn) (113)

= E[DKL(PY |X,Zn,W ‖PY |X,Zn)] (114)

= E[DKL(PY |X,W ‖PY |X,Zn)] (115)

≤ E[DKL(KY |X,W ‖KY |X,W ′)], (116)

where (115) follows from the fact that Y is conditionally
independent of Zn given (X, W ); and (116) is from Lemma 5
and the fact that DKL(P‖Q) is convex in Q for a fixed P .

In Section IV-C.3 we continue with the example of logistic
regression, where Theorem 10 can be used with Lemma 4 to
bound the MER in terms of the MMSE of estimating W from
data.

2) Via Continuity of Generalized Entropy: The second
method for relating the MER to the deviation of posterior
predictive distribution is directly comparing R!(Y |X, Zn)
against R!(Y |X, W ), via the distributional continuity of the
generalized entropy. We examine classification and regression
problems separately.

a) Classification: For classification problems where Y is
finite, we consider both the soft classification with the log loss
and the hard classification with the zero-one loss. The MER
upper bounds rely on the continuity properties of the Shannon
entropy and the maximal probability, respectively, as stated in
the following lemma, with proofs provided in Appendix A.6.
For more general discussions on the continuity of generalized
entropy, the reader may refer to [54], [55].

Lemma 6: Let P and Q be distributions on a finite set Y
such that miny∈Y Q(y) > 0. Then

H(P ) − H(Q) ≤
(
− log min

y∈Y
Q(y)

)
dTV(P, Q), (117)

max
y∈Y

Q(y) − max
y∈Y

P (y) ≤ dTV(P, Q), (118)

where dTV(P, Q) := 1
2

∑
y∈Y |P (y) − Q(y)| is the total

variation distance between P and Q.
Compared with the well-known Shannon entropy dif-

ference bound in terms of the total variation distance
|H(P ) − H(Q)| ≤ 2 dTV(P, Q) log(|Y|/2dTV(P, Q)) when
dTV(P, Q) ≤ 1/4 [33, Theorem 17.3.3], the bound given
in (117) is not as tight in |Y|, but is tighter in dTV(P, Q),
which leads to sharper MER bounds when the data size is
large. Armed with Lemma 6 and Lemma 5, we have the
following MER bounds for classification problems.

Theorem 11: If Y is finite, then for the log loss,

MERlog ≤ sup
x∈X, w∈W

(− log κ(x, w))·

E[dTV(KY |X,W ′ , KY |X,W )], (119)

where κ(x, w) := miny∈Y KY |x,w(y), W ′ is a sample from
PW |X,Zn , conditionally independent of everything else given
(X, Zn), and the expectation is with respect to PW,W ′,X .
In addition, for the zero-one loss,

MER01 ≤ E[dTV(KY |X,W ′ , KY |X,W )]. (120)

Proof: When Y is finite, for the log loss,

MERlog

= H(Y |X, Zn) − H(Y |X, W ) (121)

=
∫ (

H(Y |x, zn) − H(Y |x, w)
)
P (dw, dx, dzn)

≤
∫ (

− log min
y∈Y

KY |x,w(y)
)
dTV(PY |x,zn , PY |x,w)

P (dw, dx, dzn) (122)

≤ sup
w∈W,x∈X

(
− log miny∈Y KY |x,w(y)

)

E
[
dTV(PY |X,Zn , PY |X,W )

]
(123)

≤ sup
w∈W,x∈X

(
− log miny∈Y KY |x,w(y)

)

E
[
dTV(PY |X,W ′ , PY |X,W )

]
(124)

where (122) follows from Lemma 6; and (124) follows from
Lemma 5.

For the zero-one loss,

MER01

= E[maxy∈Y KY |X,W (y)] − E[maxy∈Y PY |X,Zn(y)]

=
∫ (

maxy∈Y KY |x,w(y) − maxy∈Y PY |x,zn(y)
)

P (dw, dx, dzn) (125)

≤
∫

dTV(KY |x,w, PY |x,zn)P (dw, dx, dzn) (126)

≤ E[dTV(KY |X,W , KY |X,W ′)] (127)

where (126) follows from Lemma 6, and (127) follows from
Lemma 5.
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b) Regression: Next, we consider regression problems
with Y ⊂ Rp under the assumption that both the marginal and
various conditional distributions of Y are absolutely continu-
ous with respect to the Lebesgue measure. We consider both
the soft prediction with the log loss, and the hard prediction
with the quadratic loss. For the soft setting, MERlog can be
upper-bounded using the continuity of differential entropy with
respect to the Wasserstein distance, as stated in the following
lemma.

Lemma 7 ( [56]): Let U be a random vector in Rp with
finite E[‖U‖2], and V be a Gaussian random vector in Rp

with covariance matrix σ2Ip. Then

h(U) − h(V ) ≤ 1
2σ2

(
3
√

E[‖U‖2] + 11
√

E[‖V ‖2]
)
·

W2(PU , PV ) (128)

where W2(PU , PV ) is the 2-Wasserstein distance between PU

and PV .
With Lemma 7 and Lemma 5, we have the following bound

for regression with the log loss.
Theorem 12: If Y = Rp, and KY |x,w is Gaussian with

covariance matrix σ2Ip for all (x, w), then for the log loss,

MERlog ≤ 7
σ2

√
E

[
‖Y ‖2

]
E[W2

2 (KY |X,W ′ , KY |X,W )],

(129)

where W and W ′ are conditionally i.i.d. given (X, Zn), and
the expectation is with respect to PX,W,W ′ .

Proof: For the log loss,

MERlog

= h(Y |X, Zn) − h(Y |X, W ) (130)

=
∫ (

h(Y |x, zn) − h(Y |x, w)
)
P (dw, dx, dzn)

≤
∫ ( 3

2σ2

√
E

[
‖Y ‖2|x, zn

]
+

11
2σ2

√
E

[
‖Y ‖2|x, w

])

W2(PY |x,zn , KY |x,w)P (dw, dx, dzn) (131)

≤
( ∫ ( 3

2σ2

√
E

[
‖Y ‖2|x, zn

]
+

11
2σ2

√
E

[
‖Y ‖2|x, w

])2
P (dw, dx, dzn)

)1/2

(∫
W2

2 (PY |x,zn , KY |x,w)P (dw, dx, dzn)
)1/2

(132)

≤ 7
σ2

(
E

[
‖Y ‖2

])1/2

(∫
W2

2 (PY |x,zn , KY |x,w)P (dw, dx, dzn)
)1/2

(133)

≤ 7
σ2

√
E

[
‖Y ‖2

]
E[W2

2 (KY |X,W ′ , KY |X,W )]
)
. (134)

where (131) follows from Lemma 7; (132) follows from
Cauchy-Schwarz inequality; (133) follows from the triangle
inequality of the L2 norm, which states that

√
E[(U + V )2] ≤√

E[U2] +
√

E[V 2]; and (134) follows from Lemma 5 and
Lemma A4.

For the hard setting, in scalar regression problems with Y =
A = R and the quadratic loss, the MER as given by (34) is

the expected difference between two variances. The following
results relate the variance difference between two probability
distributions to their 2-Wasserstein distance and KL divergence
respectively.

Lemma 8 ( [57], proof given in Appendix A.7): Let U
and V be random variables over a set U ⊂ R with finite
E[U2] and E[V 2]. Then,

|var[U ] − var[V ]| ≤
2
(√

E[U2] +
√

E[V 2]
)
W2(PU , PV ). (135)

When V is Gaussian with variance σ2, Lemma 8 with
Talagrand’s inequality [58] states that

|var[U ] − var[V ]| ≤
2
(√

E[U2] +
√

E[V 2]
)√

2σ2DKL(PU‖PV ); (136)

under the same condition, we also have a potentially tighter
bound [55]:

|var[U ] − var[V ]| ≤
2σ2

(√
DKL(PU‖PV ) + DKL(PU‖PV )

)
. (137)

With Lemma 8, we can derive the following upper bounds for
MER2.

Theorem 13: For regression problems with Y = R,
if E[Y 2|x, w] is finite for all (x, w), then for the quadratic
loss,

MER2 ≤ 4
√

E[Y 2]E[W2
2 (KY |X,W ′ , KY |X,W )], (138)

where W ′ is a sample from PW |X,Zn , conditionally indepen-
dent of everything given (X, Zn).

Proof: Similar to the proof of Theorem 12, for the
quadratic loss, we have

MER2

=
∫ (

var[Y |x, zn] − var[Y |x, w]
)
P (dw, dx, dzn)

≤ 2
∫ (√

E[Y 2|x, zn] +
√

E[Y 2|x, w]
)

W2(PY |x,zn , KY |x,w)P (dw, dx, dzn) (139)

≤ 2
( ∫ (√

E[Y 2|x, zn] +
√

E[Y 2|x, w]
)2

P (dw, dx, dzn)
)1/2

( ∫
W2

2 (PY |x,zn , KY |x,w)P (dw, dx, dzn)
)1/2

(140)

≤ 4
√

E[Y 2]E[W2
2 (PY |X,Zn , KY |X,W )] (141)

≤ 4
√

E[Y 2]E[W2
2 (PY |X,W ′ , KY |X,W )]. (142)

where (139) follows from Lemma 8; (140) follows from
Cauchy-Schwarz inequality; (141) follows from the triangle
inequality of the L2 norm; and (142) follows from Lemma 5
and Lemma A4.

In Section IV-C.3 we make use of Theorem 11, 12 and 13
with Lemma 4 to bound the MER in concrete learning
problems in terms of the MMSE of estimating W from data.
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3) Examples:
a) Logistic regression (continued): We continue with the

example of logistic regression discussed in Section IV-A.1,
where Y = {0, 1}, W ⊂ Rd, KY |x,w(1) = σ(w*φ(x)) with
σ(a) := 1/(1 + e−a), and X is assumed to be independent of
W . As ‖∇wσ(w*φ(x))‖ ≤ ‖φ(x)‖/4, from Lemma A5 we
know that σ(w*φ(x)) is ‖φ(x)‖/4-Lipschitz in w, hence

dTV(KY |x,w′ , KY |x,w) =
∣∣σ(w′*φ(x)) − σ(w*φ(x))

∣∣

≤ 1
4
‖φ(x)‖‖w′ − w‖. (143)

Then, from Theorem 10, Theorem 11 and Lemma 4, the
following bounds hold for the log loss and the zero-one loss.

Corollary 6: In binary logistic regression, for the log loss,

MERlog ≤ log
(
1 +

1
2
s2
φe

sφsWR2(W |Zn)
)

(144)

where sφ := supx∈X ‖φ(x)‖ and sW := supw∈W ‖w‖; while
for the zero-one loss,

MER01 ≤ 1
4
E[‖φ(X)‖]

√
2R2(W |Zn). (145)

Proof: For the log loss, from Theorem 10,

MERlog

≤ E
[
DKL(KY |X,W ‖KY |X,W ′)

]
(146)

≤ E
[
log

(
1 +

2d2
TV(KY |X,W , KY |X,W ′)

σ(W ′*φ(X)) ∧ (1 − σ(W ′*φ(X)))

)]

(147)

≤ E
[
log

(
1 + 4e|W

′#φ(X)|d2
TV(KY |X,W , KY |X,W ′)

)]

(148)

≤ E
[
log

(
1 +

1
4
esφsWs2

φ‖W − W ′‖2
)]

(149)

≤ log
(
1 +

1
2
esφsWs2

φR2(W |Zn))
)

(150)

≤ 1
2
s2
φe

sφsWR2(W |Zn) (151)

where we used a reverse Pinsker’s inequality as stated in [59,
Theorem 28], the fact that σ(w*φ(x)) ∧ (1− σ(w*φ(x))) ≥
exp{−|w*φ(x)|}/2, dTV(KY |x,w′ , KY |x,w) ≤ ‖φ(x)‖‖w′ −
w‖/4 from (143), Jensen’s inequality, and Lemma 4.

For the zero-one loss, from Theorem 11,

MER01 ≤ E[dTV(KY |X,W ′ , KY |X,W )] (152)

≤ 1
4
E

[
‖φ(X)‖‖W ′ − W‖

]
(153)

≤ 1
4
E[‖φ(X)‖]

√
E

[
‖W ′ − W‖2

]
(154)

=
1
4
E[‖φ(X)‖]

√
2R2(W |Zn) (155)

where we used (143) and Lemma 4.
The upper bound in (144) shows that the rate of convergence

of MERlog in n for logistic regression is the same as that for
R2(W |Zn), as log(1 + u) ≤ u for u > 0. This improves the
upper bound given in (87) when R2(W |Zn) is small, e.g.,
when n is large.

b) Nonlinear and linear regression (continued): We also
continue with the discussion on the nonlinear and linear regres-
sion problems in Section IV-A.2, where Y = g(X, W ) + V ,
W = Rd, X and W are independent, and V ∼ N (0,σ2) is
independent of (X, W ). Under this model,

W2
2 (KY |x,w′, KY |x,w) = 2σ2DKL(KY |x,w′‖KY |x,w)

= (g(x, w) − g(x, w′))2. (156)

From Theorem 10, Theorem 13 and Lemma 4, we obtain the
following upper bounds for nonlinear regression.

Corollary 7: For the above nonlinear regression problem,
let sg := E

[
supw∈W ‖∇wg(X, w)‖2

]
. Then for the log loss,

MERlog ≤ 1
σ2

R2(g(X, W )|X, Zn) ≤ sg

σ2
R2(W |Zn), (157)

while for the quadratic loss,

MER2 ≤ 4
√

2(E[g(X, W )2] + σ2)R2(g(X, W )|X, Zn)

≤ 4
√

2(E[g(X, W )2] + σ2)sgR2(W |Zn). (158)

Proof: For the log loss,

MERlog

≤ E[DKL(KY |X,W ‖KY |X,W ′)] (159)

=
1

2σ2
E

[(
g(X, W ) − g(X, W ′)

)2]
(160)

=
1
σ2

R2(g(X, W )|X, Zn) (161)

≤ 1
2σ2

E
[
(supw∈W ‖∇wg(X, w)‖)2‖W − W ′‖2

]
(162)

=
1
σ2

E
[
supw∈W ‖∇wg(X, w)‖2

]
R2(W |Zn). (163)

where (159) follows from Theorem 10; (160) is
from (156); (161) is due to Lemma 4 for the quadratic
loss; (162) is due to (160) and Lemma A5; and (163) follows
from Lemma 4.

For the quadratic loss, from Theorem 13, (156) and
Lemma 4, and a similar reasoning as above,

MER2

≤ 4
√

E[Y 2]E[
(
g(X, W ) − g(X, W ′)

)2] (164)

= 4
√

2E[Y 2]R2(g(X, W )|X, Zn) (165)

≤ 4
√

2E[Y 2]E
[
supw∈W ‖∇wg(X, w)‖2

]
R2(W |Zn)

(166)

= 4
√

2
(
E[g(W, X)2] + σ2

)
sgR2(W |Zn), (167)

which proves the second upper bound.
For the special case of linear regression with Gaussian

prior PW = N (0,σ2
W Id), we have g(x, w) = w*φ(x),

sg = E[‖φ(X)‖2], and R2(W |Zn) = E[tr(CW |Zn)] with
CW |Zn given in (98); Corollary 7 in this case gives

MERlog ≤ 1
σ2

E[‖φ(X)‖2]E[tr(CW |Zn)], (168)
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and

MER2 ≤ 4
(
2
(
σ2

WE[‖φ(X)‖2] + σ2
)

E[‖φ(X)‖2]E[tr(CW |Xn,Y n)]
)1/2

. (169)

From the exact expressions of MER given in (100)
and (101), we see that the upper bound for MERlog in (168)
is order-optimal for vanishing MER; while the upper bound
for MER2 in (169) is not, unlike the upper bound (99) for
MER2 given by Theorem 9. In Appendix B, we derive an
alternative upper bound for MER2 based on Theorem 6 in
Section III-D, however it is not order-optimal either. Nev-
ertheless, the upper bound in (169) can be tighter than the
order-optimal upper bound in (99) when R2(W |Zn) is large,
e.g., when n is small.

We also see from Theorem 9 and Corollary 7 that the
MER upper bounds for the general nonlinear regression
problem depend on n only through R2(g(X, W )|X, Zn)
or R2(W |Zn). Although closed-form expressions of these
quantities are generally intractable, the upper bounds explic-
itly show how the epistemic part of the overall prediction
uncertainty depends on the model uncertainty, which can be
quantified by the corresponding MMSE. Moreover, the upper
bounds obtained in terms of R2(g(X, W )|X, Zn) can be much
tighter than those in terms of R2(W |Zn), especially when
multiple values of W map to the same function g(·, W ), e.g.,
when g : X×W → Y can be represented by over-parametrized
neural networks [60].

V. EXTENSIONS

A. Multiple Model Families

Instead of being described by a single model family, in many
cases the joint distribution of X and Y can be better repre-
sented by a finite class of model families M = {Mm, m ∈ M}
all together, where each family Mm = {PX,Y |w,m, w ∈ Wm}
is a collection of parametrized joint distributions of (X, Y ).
The class of model families M is also known as the model
class, and the index m of each family is also known as the
model index [61]. In the Bayesian formulation, the model
index M is treated as a random element of M with prior PM ;
given a model index m, the model parameters are represented
as a random vector in Wm with prior PW |m. As before,
denoting Zi := (Xi, Yi), i = 1, . . . , n, as the observed
data and Z := (X, Y ) as a fresh pair, the quantities under
consideration are assumed to be generated from the joint
distribution

PM,W,Zn,Z = PMPW |M

( n∏

i=1

PZi|W,M

)
PZ|W,M (170)

where PZi|W,M = PZ|W,M for i = 1, . . . , n. In the same spirit
in the single model family setting, we can define the MER in
the above multi-model family setting as follows.

Definition 4: In the multi-model family setting, the funda-
mental limit of the Bayes risk with respect to the loss function
" is defined as

R!(Y |X, W, M)= inf
Ψ:X×W×M→A

E["(Y, Ψ(X, W, M))]. (171)

Definition 5: In the multi-model family setting, the mini-
mum excess risk with respect to the loss function " is defined
as

MER! = R!(Y |X, Zn) − R!(Y |X, W, M). (172)

Similar to Lemma 2 and Theorem 10 in the single model
family setting, for the log loss, the MER in the multi-model
family setting can be related to the conditional mutual infor-
mation I(M, W ; Y |X, Zn) and its upper bounds.

Theorem 14: In the multi-model family setting, with the log
loss,

MERlog = I(M, W ; Y |X, Zn), (173)

which can be upper-bounded by 1
nI(M, W ; Y n|Xn). Further,

if PX,Y |w,m = PX|w,mKY |X,w,m for all (m, w) ∈ M × Wm,
then

MERlog ≤ E[DKL(KY |X,W,M‖KY |X,W ′,M ′)], (174)

where (M ′, W ′) is a sample from the posterior distribution
PM,W |X,Zn such that (M, W ) and (M ′, W ′) are conditionally
i.i.d. given (X, Zn).

In addition, we can still bound the MER in terms of the
deviation of the posterior predictive distribution from the true
predictive model, similar to the results in Section IV-C. As in
the predictive modeling framework, suppose that for each
model family Mm ∈ M, PX,Y |w,m = PX|w,mKY |X,w,m for
all w ∈ Wm. Then for any statistical distance D, a diameter-
like quantity of the model class M with respect to D can be
defined as

diam(M, D) = max
m ,=m′∈M

sup
w∈Wm,w′∈Wm′

sup
x∈X

D(KY |x,w′,m′ , KY |x,w,m). (175)

With the above definition we have the following general
upper bound on the deviation of the posterior predictive
distribution from the true predictive model. The proof is given
in Appendix C.

Theorem 15: In the multi-model setting, for any statistical
distance D that is convex in the first argument,

E[D(PY |X,Zn ,KY |X,W,M )] ≤
E[D(KY |X,W ′,M ′ , KY |X,W,M )], (176)

where (M ′, W ′) is a sample from the posterior distribution
PM,W |X,Zn such that (M, W ) and (M ′, W ′) are conditionally
i.i.d. given (X, Zn). The right side of (176) can be further
upper-bounded by

E[D(KY |X,W ′,M , KY |X,W,M )]+
2diam(M, D)R01(M |X, Zn), (177)

where W ′ is a sample from the posterior distribution
PW |X,Zn,M such that W ′ and W are conditionally i.i.d. given
(X, Zn, M). If D is convex in the second argument, we obtain
another set of upper bounds by exchanging the order of the
arguments of D in the results above.

Theorem 15 shows that under the multi-model family set-
ting, the expected deviation consists of two parts: the first part
can be related to the estimation error of the model parameters
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when the model index is correctly identified, which depends on
the complexity of each model family; the second part is related
to the penalty when the model index is wrongly identified,
which depends on the overall complexity of the model class
and the error probability of model index estimation.

As an example, for linear regression with multiple model
families, the predictive model in the mth family can be
described as KY |x,w,m = N (w*φ(x, m),σ2), where w ∈
Wm ⊂ Rdm is the model parameter vector and φ(x, m) ∈ Rdm

is the feature vector of the observation x. We also assume that
X is independent of (M, W ). In this case,

DKL(KY |x,w′,m′‖KY |x,w,m)

=
1

2σ2

(
w′*φ(x, m′) − w*φ(x, m)

)2
, (178)

and

diam(M,DKL) =
1

2σ2
max

m ,=m′∈M
sup

w∈Wm,w′∈Wm′

sup
x∈X

(
w′*φ(x, m′) − w*φ(x, m)

)2
. (179)

From Theorem 14, the chain rule of mutual information,
Theorem 15, and the previous results on linear regression in
the single model family, we have the following upper bounds
for MERlog for linear regression with multiple models:

MERlog ≤ 1
2σ2

E[‖φM (X)‖2]R2(W |Zn, M)+

H(M |Zn) (180)

and

MERlog ≤ 1
σ2

E[‖φM (X)‖2]R2(W |Zn, M)+

2diam(M, DKL)R01(M |Zn) (181)

where

R2(W |Zn, M) =
∑

m∈M

PM (m)E[tr(CW |Zn,m)] (182)

with CW |Zn,m = (σ−2
W,mIdm + σ−2ΦmΦ*

m)−1 and Φm =
[φ(X1, m), . . . ,φ(Xn, m)] being the dm × n feature matrix
for the mth model family. We see that the MER consists
of a part that depends on the minimum achievable model
parameter estimation error given each model index, and a part
that depends on the uncertainty of model index estimation and
the “diameter” of the model class.

B. MER in Nonparametric Models

The definition of MER can also be extended to Bayesian
learning under a nonparametric predictive model that can be
specified in terms of a random process. Formally, consider the
case where F is a real-valued random process indexed by x ∈
X, and the predictive model is a probability transition kernel
KY |F (X). It is further assumed that F is a priori independent
of X . The observed data and the fresh pair are assumed to be
generated from the joint distribution

PF,Zn,Z = PF

( n∏

i=1

PZi|F

)
PZ|F (183)

where PZi|F = PZ|F = PXKY |F (X) for i = 1, . . . , n. Two
simple examples of the above model are 1) noiseless Gaussian
process regression model, where F is a Gaussian process with
a mean function m : X → R and a covariance function k :
X×X → R, and Y = F (X); and 2) binary classification model
with Gaussian process as a latent function [8], where F can be
the same Gaussian process, and KY |F (X)(1|f(x)) = σ(f(x))
with σ(·) being the logistic sigmoid function.

In the same spirit in the parametric case, the MER under
the above nonparametric model can be defined as

MER! = R!(Y |X, Zn) − R!(Y |F (X)), (184)

where R!(Y |X, Zn) and R!(Y |F (X)) are defined according
to the general definition of the Bayes risk in (3), and corre-
spond to (2) and (11) respectively. For the log loss, using the
fact that Hµ(Y |F (X), Zn) = Hµ(Y |F (X)) and following the
same argument as in Corollary 1, we have

MERlog = I(F (X); Y |X, Zn) ≤ 1
n

I(F (X); Y n|Xn). (185)

For the quadratic loss,

MER2 = R2(Y |X, Zn) − R2(Y |F (X)). (186)

In the special case of noiseless Gaussian process regression
model, R2(Y |F (X)) = 0, which implies

MER2 = R2(F (X)|F (X1), . . . , F (Xn)) (187)

= E
[
k(X, X)− k(X, Xn)*Σ(Xn)−1k(X, Xn)

]

(188)

where k(X, Xn) is the covariance vector between F (X) and
(F (X1), . . . , F (Xn)), and Σ(Xn) is the covariance matrix of
(F (X1), . . . , F (Xn)). The above expression may be further
analyzed using the eigenfunction expansion of the covari-
ance function k [8]. For the binary classification model with
Gaussian process as the latent function, or more general
models specified with non-Gaussian processes, the MER may
not have a simple close-form expression.

VI. SUMMARY AND DISCUSSION

We have defined the minimum excess risk in Bayesian
learning with respect to general loss functions, and presented
general methods for obtaining upper bounds for this quantity.
How to lower-bound this quantity is left as an open problem.
We would like to close the paper by discussing the following
two aspects.

A. Tightness and Utility of the Results

Two methods for deriving upper bounds on the MER
have been presented: one method relates the MER to
I(W ; Y |X, Zn); the other one relates it to R2(W |X, Zn) via
various continuity arguments.

With the precise asymptotic expansion of I(W ; Zn), the
first method is suitable for asymptotic analysis for a wide range
of loss functions. Using this method, we have shown that for
any bounded loss function, the MER scales with the data size
n as O(

√
1/n) in general (Corollary 3 and the discussion

thereafter), while for the log loss (Theorem 3), the quadratic
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loss with bounded Y (Theorem 4), and bounded loss under
realizable binary classification models (Corollary 5), this con-
vergence rate can be improved to O(1/n). When the model
parameter lies in a compact subset of Rd, or when the VC
dimension of the generative function class is d, the MER
bounds can also capture the dependence on d, as O(

√
d/n)

or O(d/n) in different settings. An MER lower bound of
Ω(d/n) is derived in a follow-up work [47, Theorem 10]
for the cases where the excess risk of using Ψ∗(X, W ′) as
the plug-in decision rule is lower bounded by ‖W − W ′‖2,
which matches upper bounds in certain settings derived in this
work.

The second method has the potential to provide us with
nonasymptotic upper bounds. The only explicit expression
for R2(W |X, Zn) we have so far is for linear regression,
for which we have derived order-optimal upper bound for
both MERlog (via Corollary 7) and MER2 (via Theorem 9).
In order to obtain explicit upper bounds for problems beyond
linear regression, e.g. logistic regression or nonlinear regres-
sion, we would need upper bounds on R2(W |X, Zn), or other
forms of minimum model parameter estimation error in these
settings. Nevertheless, from the examples on logistic regres-
sion ((87) from Theorem 8, Corollary 6), linear regression
(Theorem 9), and nonlinear regression (Corollary 7), we see
that the MER upper bounds obtained from the second method
depend on n only through R2(W |X, Zn). This explicitly
shows how the model uncertainty translates to the epistemic
uncertainty and contributes to the overall prediction uncer-
tainty. The definition of MER provides such a principled
way to define different notions of uncertainties in Bayesian
learning, and its study guides the analysis and estimation
of these uncertainties, which is an increasingly important
direction of research with wide applications.

B. MER in Bayesian Learning vs. Excess Risk in Frequentist
Learning

The distinguishing feature of Bayesian learning is that the
generative model of data is assumed to be drawn from a known
model family according to some prior distribution, while there
is virtually no restrictions on the admissible decision rules.
As a result, the MER in Bayesian learning is determined by
how accurate the model can be estimated, and there is no
notion of approximation error unless the model family or the
prior distribution is misspecified. This stands in contrast to
the frequentist formulation of statistical learning where the
data-generating model is assumed to be completely unknown,
but the set of admissible decision rules is restricted, and
the excess risk consists of an estimation error part and an
approximation error part [62], [63]. In the discussion on
multiple model families in Section V-A, it is shown that the
MER there not only depends on the accuracy of the model
parameter estimation within a fixed model, but also on a
diameter-like term that upper-bounds the penalty incurred by
a wrong estimate of the model index. The latter quantity may
be viewed as an analogue of the approximation error in the
frequentist setting. Its impact on the MER vanishes as the
data size increases though, as its prefactor, which is the error

probability of model index estimation, would eventually go to
zero.

Despite of the different problem formulations, some MER
upper bounds obtained in this paper share a similar form with
the excess risk bounds in frequentist learning. One example is
when the model is realizable, it is shown in Corollary 5 that the
MER for Bayesian binary classification is O(d/n), where d is
the VC dimension of the generative function class. This result
shares the same form as the “fast rate” results in frequentistic
learning [64], where the distribution is completely unknown,
but the hypothesis space, which is the set of decision rules, has
a VC dimension d. Another example would be the identical
expressions shared by the MER-information relationship in
Corollary 4 and the generalization-information relationship in
the frequentist setting of [14]. These results show the important
roles played by information-theoretic quantities in the theory
of statistical learning.

APPENDIX A
MISCELLANEOUS LEMMAS

1. Regularity Conditions for (30)
The regularity conditions for (30) to hold are listed

here for completeness. These conditions are drawn from in
[40, Section 2]. Let W ⊂ Rd and assume that the densities of
PZ|w exist with respect to the Lebesgue measure for all w ∈
W. Also assume the parameter space W has a non-void interior
and its boundary has a d-dimensional Lebesgue measure
zero.
1) The density pZ|W (z|w) is twice continuously differentiable

in w for almost every z; there exists δ(w) such that for
every j, k ∈ {1, . . . , d},

E
[

sup
w′:‖w′−w‖≤δ(w)

∣∣∣
∂2

∂w′
j∂w′

k

log pZ|W (Z|w′)
∣∣∣
2]

is finite and continuous in w; and for some ξ > 0, for each
j ∈ {1, . . . , d},

E
[∣∣∣

∂

∂wj
log pZ|W (Z|w)

∣∣∣
2+ξ]

is finite and continuous as a function of w.
2) The following two definitions of Fisher information matrix

are equal and positive definite:

[IZ|w]j,k = E
[ ∂

∂wj
log pZ|W (Z|w)

∂

∂wk
log pZ|W (Z|w)

]
,

and

[JZ|w]j,k =
[ ∂2

∂w′
j∂w′

k

DKL(PZ|w‖PZ|w′)
∣∣∣
w′=w

]
.

When Condition 1) is satisfied, [JZ|w]j,k =
−E

[
∂2

∂wi∂wj
log pZ|W (Z|w)

∣∣W = w
]
, and Condition

2) will be satisfied if
∫

∂2

∂i∂j
pZ|W (z|w)dz = 0.

3) For w *= w′, we have PZ|w *= PZ|w′ .
4) The prior on W is continuous and is supported on a

compact subset of the interior of W.
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The following lemma is from [40].
Lemma A1: Under the above conditions,

I(W ; Zn) =
d

2
log

n

2πe
+ h(W ) +

1
2
E

[
log detJZ|W

]
+

o(1) as n → ∞, (189)

where h(W ) is the differential entropy of W , and the expec-
tation is taken with respect to PW .

2. A Transportation Inequality
The following lemma is adapted from [65, Lemma 4.18]

and [46, Theorem 2].
Lemma A2: For distributions P and Q on a set U and a

function f : U → R, suppose there exists a function ϕ over
(0, b) with some b ∈ (0,∞] such that

logEQ

[
e−λ(f(U)−EQf(U))

]
≤ ϕ(λ), ∀ 0 < λ < b. (190)

Then

EQ[f(U)] − EP [f(U)] ≤ ϕ∗−1(DKL(P‖Q)), (191)

where

ϕ∗(γ) = sup
0<λ<b

λγ − ϕ(λ), γ ∈ R (192)

is the Legendre dual of ϕ and ϕ∗−1 is the inverse of ϕ∗,
defined as

ϕ∗−1(x) = sup{γ ∈ R : ϕ∗(γ) ≤ x}, x ∈ R. (193)

Proof of Lemma A2: The Donsker-Varadhan theorem
states that

DKL(P‖Q) = sup
g:U→R

EP [g(U)] − logEQ[eg(U)], (194)

which implies that

DKL(P‖Q)
≥ sup

0<λ<b
λ(EQ[f(U)] − EP [f(U)])−

logEQ[e−λ(f(U)−EQf(U))] (195)

≥ sup
0<λ<b

λ(EQ[f(U)] − EP [f(U)]) − ϕ(λ) (196)

= ϕ∗(EQ[f(U)] − EP [f(U)]). (197)

Consequently, from the definition in (193),

EQ[f(U)] − EP [f(U)] ≤ ϕ∗−1(DKL(P‖Q)), (198)

which proves (191).

3. Series With Growth Rate log n
The following lemma is a restatement of [41, Lemma 6].
Lemma A3: Suppose (a1, a2, . . .) and (b1, b2, . . .) are two

sequences of real numbers such that an =
∑n

i=1 bi for all n.
Then

lim
n→∞

an

log n
= lim

n→∞
nbn, (199)

whenever both limits exist.

4. Convexity of Wp
p (P, Q)

Lemma A4: The pth power of the p-Wasserstein distance is
jointly convex in its two arguments, i.e. Wp

p (P, Q) is convex
in (P, Q).

Proof: By definition,

Wp
p (P, Q) = inf

Π(P,Q)
E(X,Y )∼Π[‖X − Y ‖p]. (200)

For arbitrary (P1, Q1), (P2, Q2), and γ ∈ [0, 1], let Π1 and
Π2 be the optimal couplings for Wp

p (P1, Q1) and Wp
p (P2, Q2)

respectively. Then

Wp
p (γP1 + (1 − γ)P2, γQ1 + (1 − γ)Q2) (201)

≤E(X,Y )∼γΠ1+(1−γ)Π2 [‖X − Y ‖p] (202)

=γE(X,Y )∼Π1 [‖X − Y ‖p]+
(1 − γ)E(X,Y )∼Π2 [‖X − Y ‖p] (203)

=γWp
p (P1, Q1) + (1 − γ)Wp

p (P2, Q2), (204)

where the first inequality is because γΠ1 + (1 − γ)Π2 is a
coupling of γP1 + (1 − γ)P2 and γQ1 + (1 − γ)Q2. This
shows the convexity of Wp

p (P, Q) in (P, Q).

5. Lipschitz Continuity of Multivariate Function
The following lemma states a sufficient condition for a

multivariate function to be Lipschitz continuous [66].
Lemma A5: Suppose a function f : Rn → R is continuously

differentiable everywhere in a convex set X ⊂ Rn. If c > 0 is
such that ‖∇f(x)‖ ≤ c for all x ∈ X, then |f(y) − f(x)| ≤
c‖y − x‖ for all x, y ∈ X.

6. Proof of Lemma 6
With the log loss, the generalized entropy of discrete Y is

the Shannon entropy. We have

H(P ) − H(Q)
= EP [− log P (U)] − EQ[− logQ(U)] (205)

≤ EP [− log Q(U)] − EQ[− logQ(U)] (206)

=
∑

u∈U

(P (u) − Q(u))(− log Q(u)) (207)

≤ (− log min
u∈U

Q(u))dTV(P, Q), (208)

where the first inequality follows from the fact that H(P ) =
infQ EP [− log Q(U)], and the last inequality follows from the
fact that − log Q(u) ∈ [0,− logminu∈U Q(u)] and the dual
representation of the total variation distance.

For the zero-one loss, the generalized entropy of discrete Y
is one minus the maximum probability. We have

(1 − maxu∈Y P (u)) − (1 − maxu∈U Q(u))
=maxu∈Y Q(u) − maxu∈Y P (u) (209)

≤Q(umax) − P (umax) (210)

≤dTV(Q, P ) (211)

where in (210), umax := argmaxu∈Y Q(u); (211) follows
from the fact that dTV(Q, P ) = supE⊂U Q[E] − P [E] for
any pair of distributions on U. The claim follows from the
fact that the total variation distance is symmetric.
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7. Proof of Lemma 8
First note that according to the definition of the W2 distance,

E[U2] = W2
2 (PU , δ0) and E[V 2] = W2

2 (PV , δ0), where
δ0 denotes the point mass at 0. Then

var[U ] − var[V ]
= E[U2] − E[V 2] + (E[U ] + E[V ])(E[V ] − E[U ])
≤ (W2

2 (PU , δ0) −W2
2 (PV , δ0))+

|E[U ] + E[V ]|W1(PU , PV )
≤ (W2(PU , δ0) + W2(PV , δ0))|W2(PU , δ0)−
W2(PV , δ0)| + |E[U ] + E[V ]|W2(PU , PV ) (212)

≤ (
√

E[U2] +
√

E[V 2])W2(PU , PV )+
|E[U ] + E[V ]|W2(PU , PV ) (213)

≤ 2(
√

E[U2] +
√

E[V 2])W2(PU , PV ) (214)

where we have used the triangle inequality for the W2 distance
and the fact that

|E[U ] − E[V ]| ≤ W1(PU , PV ) ≤ W2(PU , PV ). (215)

APPENDIX B
MER UPPER BOUND FOR LINEAR REGRESSION

BASED ON THEOREM 6

To make use of Theorem 6 for linear regression with the
quadratic loss, let Y = W*φ(X) + V where V ∼ N (0,σ2),
and assume X is independent of W . In addition, let W ′ be
sampled from PW |Zn independently of everything else. Since
ψ∗(X, W ′) = W ′*φ(X), we have

(Y −ψ∗(X, W ′))2 = (Y − W ′*φ(X))2

= ((W − W ′)*φ(X) + V )2. (216)

Since W ′ is a conditionally i.i.d. copy of W given (X, Zn),
it can be seen that the conditional distribution of (W −
W ′)*φ(X) given (X, Zn) = (x, zn) is Gaussian with zero
mean and variance 2φ(x)*CW |znφ(x). It follows that con-
ditional on (X, Zn) = (x, zn), (Y − ψ∗(x, W ′))2 has the
same distribution as

(
2φ(x)*CW |znφ(x) + σ2

)
U2, where

U ∼ N (0, 1). As a consequence of the fact that

logE[e−λ(σ2
χU2−E[σ2

χU2])]

= λσ2
χ − 1

2
log(1 + 2σ2

χλ)

≤ σ4
χλ

2 := ϕ(λ) for λ > 0, (217)

the fact that ϕ∗−1(γ) = 2σ2
χ
√
γ, the assumption

that supx,xn φ(x)*CW |znφ(x) ≤ b, the fact that
I(W ; Y |X, Zn) = E[12 log(1 + φ(X)*CW |Znφ(X)/σ2)],
and Theorem 6, we have

MER2

≤ 2(2b + σ2)
√

1
2

log
(
1 +

1
σ2

E
[
φ(X)CW |Znφ(X)

])

(218)

≤ 2(2b + σ2)
√

1
2

log
(
1 +

1
σ2

E[‖φ(X)‖2]E[tr(CW |Xn,Y n)]
)
. (219)

APPENDIX C
PROOF OF THEOREM 15

From the fact that

PY |x,zn =
∑

m′∈M

PM|X,Zn(m′|x, zn)

∫

Wm′

PW |M,X,Zn(dw′|m′, x, zn)KY |x,w′,m′

and the convexity assumption of the statistical distance under
consideration, the proof of the first inequality essentially
follows the same steps of the proof of Lemma 5.

The second inequality is based on the first one, and can be
shown as

E
[
D(PY |X,Zn , KY |X,W,M )

]
(220)

≤ E
[
D(KY |X,W ′,M ′ , KY |X,W,M )

]
(221)

=
∑

m∈M

PM (m)
∫

Wm

PW |M (dw|m) ·
∫

X×Zn

PX,Zn|W,M (dx, dzn|w, m) ·
∑

m′∈M

PM|X,Zn(m′|x, zn) ·
∫

Wm′

PW |X,Zn,M (dw′|x, zn, m′) ·

D(KY |x,w′,m′ , KY |x,w,m) (222)

= S1 + S2 (223)

where the last step is to split the summation over m′ such that

S1 =
∑

m∈M

PM (m)
∫

Wm

PW |M (dw|m)

∫

X×Zn

PX,Zn|W,M (dx, dzn|w, m)

PM|X,Zn(m|x, zn)
∫

Wm

PW |X,Zn,M (dw′|x, zn, m)

D(KY |x,w′,m, KY |x,w,m) (224)

≤
∑

m∈M

PM (m)
∫

Wm

PW |M (dw|m)

∫

X×Zn

PX,Zn|W,M (dx, dzn|w, m)
∫

Wm

PW |X,Zn,M (dw′|x, zn, m)

D(KY |x,w′,m, KY |x,w,m) (225)

= E[D(KY |X,W ′,M , KY |X,W,M )] (226)

and

S2 =
∑

m∈M

PM (m)
∫

Wm

PW |M (dw|m)

∫

X×Zn

PX,Zn|W,M (dx, dzn|w, m) ·
∑

m′ ,=m

PM|X,Zn(m′|x, zn)

∫

Wm′

PW |X,Zn,M (dw′|x, zn, m′)
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D(KY |x,w′,m′ , KY |x,w,m) (227)

≤
(

max
m,m′∈M,m ,=m′

sup
w∈Wm,w′∈Wm′

sup
x∈X

D(KY |x,w′,m′ , KY |x,w,m)
)

∑

m∈M

PM (m)
∫

Wm

PW |M (dw|m)

∫

X,Zn

PX,Zn|W,M (dx, dzn|w, m)
∑

m′ ,=m

PM|X,Zn(m′|x, zn) (228)

= diam(M, D)P[M ′ *= M ] (229)

≤ 2diam(M, D)R01(M |X, Zn) (230)

where the last step follows from Lemma 4 applied to the
zero-one loss.

ACKNOWLEDGMENT

The authors would like to thank Yihong Wu for insightful
comments on an early draft of this work; Lemma 8 is given
by him. They are also thankful to Max Welling and Auke
Wiggers for discussions on different notions of uncertainties
in Bayesian learning. The comments from the anonymous
reviewers of the IEEE TRANSACTIONS ON INFORMATION

THEORY greatly improved the quality of this article, they are
grateful to the reviewers and the area chair.

REFERENCES

[1] C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics). Berlin, Germany: Springer, 2006.

[2] S. Brooks, A. Gelman, G. Jones, and X.-L. Meng, Handbook of Markov
Chain Monte Carlo. London, U.K.: Chapman & Hall, 2011.

[3] M. Welling and Y. W. Teh, “Bayesian learning via stochastic gra-
dient Langevin dynamics,” in Proc. Int. Conf. Mach. Learn., 2011,
pp. 681–688.

[4] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational inference:
A review for statisticians,” J. Amer. Stat. Assoc., vol. 112, no. 518,
pp. 859–877, 2017.

[5] R. M. Neal, Bayesian Learning for Neural Networks. Berlin, Germany:
Springer, 1996.

[6] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight
uncertainty in neural networks,” in Proc. Int. Conf. Mach. Learn., 2015,
pp. 1613–1622.

[7] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian approximation:
Representing model uncertainty in deep learning,” in Proc. Int. Conf.
Mach. Learn., 2016.

[8] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine
Learning (Adaptive Computation and Machine Learning). Cambridge,
MA, USA: MIT Press, 2006.

[9] C. Louizos, K. Ullrich, and M. Welling, “Bayesian compression for deep
learning,” in Proc. Conf. Neural Inf. Process. Syst., 2017.

[10] A. Kendall and Y. Gal, “What uncertainties do we need in Bayesian
deep learning for computer vision,” in Proc. Conf. Neural Inf. Process.
Syst., 2017.

[11] S. Depeweg, J. M. Hernández-Lobato, F. Doshi-Velez, and S. Udluft,
“Decomposition of uncertainty in Bayesian deep learning for efficient
and risk-sensitive learning,” in Proc. ICML, 2018, pp. 1184–1193.

[12] E. Hüllermeier and W. Waegeman, “Aleatoric and epistemic uncertainty
in machine learning: A tutorial introduction,” 2019, arXiv:1910.09457.

[13] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable
predictive uncertainty estimation using deep ensembles,” in Proc. Conf.
Neural Inf. Process. Syst., 2017.

[14] A. Xu and M. Raginsky, “Information-theoretic analysis of general-
ization capability of learning algorithms,” in Proc. Conf. Neural Inf.
Process. Syst., 2017.

[15] L. D. Davisson, “Universal noiseless coding,” IEEE Trans. Inf. Theory,
vol. IT-19, no. 6, pp. 783–795, Nov. 1973.

[16] N. Merhav and M. Feder, “Universal prediction,” IEEE Trans. Inf.
Theory, vol. 44, no. 6, pp. 2124–2147, Oct. 1998.

[17] D. Haussler and M. Opper, “Mutual information, metric entropy
and cumulative relative entropy risk,” Ann. Statist., vol. 25, no. 6,
pp. 2451–2492, 1997.

[18] J. Baxter, “A Bayesian/information theoretic model of learning to learn
via multiple task sampling,” Mach. Learn., vol. 28, no. 1, pp. 7–39,
Jul. 1997.

[19] D. Haussler, M. Kearns, and R. E. Schapire, “Bounds on the sample
complexity of Bayesian learning using information theory and the VC
dimension,” Mach. Learn., vol. 14, no. 1, pp. 83–113, Jan. 1994.

[20] L. L. Cam and G. L. Yang, Asymptotics in Statistics Some Basic
Concepts, 2nd ed. New York, NY, USA: Springer, 2000.

[21] S. Ghosal, J. K. Ghosh, and A. W. van der Vaart, “Convergence rates
of posterior distributions,” Ann. Statist., vol. 28, no. 2, pp. 500–531,
Apr. 2000.

[22] S. Ghosal and A. van der Vaart, “Convergence rates of posterior
distributions for noniid observations,” Ann. Statist., vol. 35, no. 1,
pp. 192–223, Feb. 2007.
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