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ABSTRACT 

 
When operating a construction robot (e.g., excavator), the operator’s unsafe behavior directly 

affects the safety risk (e.g., underground utility damage occurrence during excavation process). 
Operators’ behavior is greatly influenced by the surrounding environment and further the 
communication with other coworkers (i.e., spotter), and thus there is a need for studying human 
factors during work by investigating how the operator-spotter interaction affects the operator 
when performing the task in a challenging work environment. In this paper, we investigate how 
the different levels of environmental complexities and operator-spotter communication channels 
affect operators’ performance and the accident occurrence during work. A human-centered 
experiment is designed and conducted in environmentally realistic scenarios based on immersive 
virtual reality. The task of operating a virtual excavator as well as the interaction between the 
operator and a spotter are performed in realistic jobsites in which a series of environmental 
stimuli are modeled and simulated. Operators’ cognitive responses and work performance are 
assessed by subjective evaluations and instrument-based measurements (i.e., eye-tracking). This 
study can establish a better understanding about the effectiveness of between-worker 
communication and worker-to-robot interaction during robot operation as well as the influence of 
environmental visual and auditory stimuli on the teleoperator. 
 
INTRODUCTION 

Excavator, as one of the most popular construction robots, is a major source for construction 
accidents which accounts for the largest proportion of fatalities on site. It causes great damage to 
human life and the economy. One of the most fatal excavation accidents was the collision with 
underground utility lines. In the U.S., the number of such incidents is between 400,000 and 
800,000 per year. This causes underground utility damage represents a major drag on national 
economies, $50-100 billion annually in the U.S. Unfortunately, this type of accident is hard to 
avoid, especially in challenging urban areas where are full of unpredictable environmental 
factors. It is well known that a construction jobsite in a crowded urban environment often has a 
dynamic and unstructured nature. This caused great challenges to construction work performance 
and safety. Some of these unpredictable challenging factors in an urban jobsite are task-related 
factors, including inaccurate information of underground utility locations, and uncomfortable 
workspace for workers. These directly affect performance and safety. Other factors are 
environmental distractors including surrounding people or activities, visual distractors such as 
traffic or urban facilities, environment noise. 

To prevent underground utility damage, the most common practice is to use 811, “Call-
before-Dig”, a nationwide phone call or online service to get the location in advance. However, 
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this system is not always sufficient due to unreliable location information caused by inaccurate 
or lost marks or discrepancy between as-built data in drawings and the actual location, especially 
in crowded urban areas. Advanced techniques such as GPR or LiDar and other remote sensing 
and detecting methods improve the location information yet require a well-trained geo-
technician. Nevertheless, despite the advantages of existing practices, more than 70% of 
underground utility strikes happen when utilizing the current damage prevention system, which 
raises the concern that human-centered practice is overlooked in preventing excavation 
accidents. Furthermore, in real-life practice, an excavation task often requires multiple 
construction workers rather than a single operator. This team-based practice can better monitor 
the entire task environment when the operator concentrated on excavator control. In a team-
based excavation practice, a spotter is a human role providing real-time directions to an operator, 
and an operator is obligated to sense and follow spotter’s signals (i.e., verbal commands, body 
language). Once the excavation starts, using a spotter is a key step to prevent damage. In an 
online survey conducted among 104 excavator operators who had at least ten hours of experience 
in operating an excavator for the last six months, over 85% of participants somewhat or strongly 
agreed that using a spotter is always necessary for excavation. The spotter oversees excavation 
tasks and detects potential risks. The collaboration between an operator and a spotter is a 
common practice in a real-world jobsite. 

With this regard, when the operator works with a spotter in a complex urban job site, to 
ensure the excavation safety and efficiency, there is a necessity to assess the operator’s cognitive 
load and the performance on operating the excavator to complete tasks. The objective of this 
paper is to investigate how the operator-spotter communication formats and challenging 
environmental factors affect operator’s cognitive load and excavator control performance. To 
achieve this objective, a virtual excavation environment was designed. To assess the human 
factors of the excavator operator, dependent variables were measured by instrument-based 
assessment and subjective assessment respectively. 

 
BACKGROUND 
 

Excavation in the real-life job site is a complex interactive process that involves human-
machine interaction, and human-environment interaction (Lee et al. 2022; Lee and Ham 2022). 
This process is affected by various factors associated with human workers, task, machine, and 
environment. 

First, modeling a close-to-real job environment is a key step for virtual operation, and this 
process can be challenging and impeded by the algorithm development and hardware issues 
(Prabhakaran et al. 2022). With limited hardware devices, previous studies used the built-in 
scenarios of the commercialized simulation platform developed by construction vehicle 
manufactures and took advantage of the high realistic ready-to-use physics engine (Li et al. 
2020; Su et al. 2013; Bhalerao et al. 2017). Customized virtual scenarios are also developed to 
suit specific research goals (Akyeampong et al. 2014; Ding et al. 2022; Hammad et al. 2016; 
Hong et al. 2020; Vahdatikhaki et al. 2022; Wallmyr et al. 2019). For instance, to compare the 
obstacle avoidance performance between different visual interfaces, Hong et al. 2020 and 
Wallmyr et al. 2019 modeled the surrounding environments mimicking the real jobsites 
including road obstacles, construction accessories, 3D human-character models, and unfavorable 
weather conditions. Hammad et al. 2016 imported real site data from ArcGIS to Unity3D to 
simulate the real job location. For the soil excavation task, it is important to simulate real soil 

Computing in Civil Engineering 2023 572

© ASCE

 Computing in Civil Engineering 2023 

 D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

Te
xa

s A
&

M
 U

ni
ve

rs
ity

 o
n 

01
/2

7/
25

. C
op

yr
ig

ht
 A

SC
E.

 F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
rig

ht
s r

es
er

ve
d.

 



physics to achieve the close-to-real experience. Vahdatikhaki et al. 2022 simulated terrain 
modeling that allowed the virtual soil ground to change dynamically during digging. The real 
environment is also used for teleoperation, and Mixed Reality (MR) techniques were used to 
capture the real environmental data. Nevertheless, virtual, or real job environments in these 
studies are considered as an acceptable yet rather simplified version of real-life scenarios, and 
these scenarios are insufficient to represent a complicated and dynamic urban job scenario. 

Second, regarding human factors, the operator’s work performance is the major parameter 
that reflects how efficiently an operator controls the excavator to complete the task and avoids 
potential accidents. Task completion time and error rate are the primary measurements (Bhalerao 
et al. 2017; Feng et al. 2019; Hong et al. 2020; Lorenz et al. 2020; Mavridis et al. 2015; Okishiba 
et al. 2019) (Ding et al. 2022). For example, Morosi et al. 2019 calculated an overall 
performance score based on the trajectory of the joints, time, distance, speed, and error. 
Moreover, operator’s cognitive responses directly affect task performance. NASA-Task Load 
Index (NASA-TLX) is widely used as a standard measurement to subjectively access the mental 
workload. Instrument-based assessment such as eye tracking techniques have been increasingly 
implemented in construction hazard detection, visual inspection, and human-machine interaction 
to understand the attention and mental efforts. Li et al. 2020, 2019 used a mobile eye tracker to 
assess fatigue in virtual excavator operation. Wallmyr et al. 2019, 2017 used eye tracking to 
examine the attentiveness on MR display and conventional display in the virtual excavator 
operation.  

Despite the efforts of understanding a single-user (e.g., the operator) excavation in various 
task scenarios, research gaps were identified. First, there is a dearth of studies to evaluate the 
operator’s task performance and cognitive load associated with the unsafe behaviors stemmed 
from the challenging environmental factors such as buried utility lines in the task space as well 
as dynamic environmental distractors. Second, the human factors in the existing studies are 
examined in a single-user excavation context which is different from team-based real-life 
practice. 

 
MULTI-WORKER HUMAN-ROBOT COLLABORATION IN CONSTRUCTION  
 

The experiment was conducted in a multi-user hybrid immersive teleoperation system as 
shown in Figure 1 (Liu et al. 2022; Liu and Ham 2022). A total of 20 subjects were recruited in a 
random sampling method. A two-by-two factorial human experiment was performed. Two types 
of communication formats, verbal signal and hand signal, were determined as group factors. All 
20 participants were divided into two groups based on the communication formats. Two levels of 
environments, baseline environment and challenging environment, were determined as condition 
factors. Specifically, the baseline environment was designed as a roadwork scenario with 
minimum environment visual and auditory elements. The challenging environment, on the other 
hand, was designed as a jobsite in a downtown area, including a series of environmental 
distractors such as crowded urban activities, traffic, and environment noises from people, traffic, 
and nearby construction works. Prior to the experiment day, participants were required to review 
an instruction and get familiarized with standard excavator control with joysticks as well as ten 
signals to direct the movement of major excavator components, including bucket, stick, boom, 
and cabinet. All signals were represented in verbal and hand formats. To be familiarize with the 
virtual environment and identity potential discomfort, participants were required to practice the 
basic excavator operation independently in an immersive virtual environment as well as the 
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operation by following the spotter’s signals. The entire practice session lasts 60 minutes. On the 
experiment day, each participant went through a total of four experimental sessions. In session 1, 
the participant completed the eye-tracker calibration. In session 2, the participant performed 
excavation trials with being exposed to two immersive work environments, baseline (BE) vs. 
challenging (CE), respectively. Each trial lasts 5 minutes approximately. In session 3, excavation 
trials were repeated in reversed order. A short break was provided between session 2 and 3. In 
session 4, the participant completed the subjective evaluation.  

In each experimental trial, participants were required to excavate full loads of earthwork 
from the digging area placed in front of the excavator and disposed to the left side. Both 
excavated and disposal areas were clearly white lined, and the utility were modeled under the 
ground surface in the excavated area. Participants were required to dig from and dump to the 
defined task areas as accurately as possible. Moreover, potential collisions with the buried utility 
lines should be avoided. An avatar that captured the spotter’s real-time motions was placed 
within the operator’s field-of-view on the other side of the excavated area. During the entire task 
trial, participants were required to check and follow the spotter’s signals all the time. 
Experimental data were collected by video recorder, eye-tracker, and a log file attached to the 
system. Figure 2 shows the structure of task operation and data collection system. 

 

 
 

Figure 1. The proposed immersive multi-user communication system 
 

RESULTS AND DISCUSSIONS  
 

NASA-TLX. In this experiment, a modified version of NASA-TLX questionnaire was used. 
Five dimensions, namely, mental demand, temporal demand, performance, effort, frustration, 
were included. As shown in Table 1, significant differences are found in all five dimensions in 
the within-group analysis. This indicates that the type of work environment significantly affects 
participants’ workload assessed by NASA-TLX. Regarding between-group results, the mean 
value of total score in verbal group (35.8) is higher than in hand group (32.3). According to the 
results of two-way ANOVA (Table 2), while the environment type has a significant effect (p < 
0.01, F = 40.34), there is no significant effect found regarding the communication formats (p = 
0.43, F = 0.63) or the interaction between two independent variables (p = 0.41, F = 0.71). 
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Figure 2. The structure of task operation and data collection system 
 

Table.1. NASA – TLX: two types of environments 
 

 Mental 
Demand 

Temporal 
Demand 

Performance Effort Frustration Total 

Statistic 
p value 

29.5 
3.73e-06* 

97.0 
0.0046* 

299.0 
0.0059* 

67.0 
0.0003* 

21.5 
1.07e-06* 

29.0 
3.88e-06* 

*p<0.01 
 

Table.2. NASA – TLX: Formats x Types 
 

 sum_sq df F PR(>F) 
Formats 
Types 
Formats: Types 
Residual 

28.9 
1849.6 

32.4 
1650.6 

1.0 
1.0 
1.0 

36.0 

0.630316 
40.340240 
0.706652 

- 

4.324e-01 
2.363e-07* 
4.061e-01 

- 
*p<0.01 

 
Pupillometry. The data of pupil sizes was obtained during all experimental trials. Pupil sizes 

from both eyes were regressed into mean pupil size. To minimize errors due to excessive 
sampling, a procedure of smoothing and down sampling was applied. The linear interpolation 
was applied across blinks. As shown in Figure 3, for the within-group analysis (left), the absolute 
pupil sizes in the challenging environment are found to be higher than in the baseline 
environment. For the between-group analysis (right), the absolute pupil size in the hand-signal 
group and verbal-signal group appears remain similar. In Figure 4, changes of pupil size in 
within-group remain similar (mean_baseline = 0.08mm, mean_challenging = 0.08mm). For 
between-group, the mean value of the changes in verbal group is higher (0.11mm) than the mean 
value in the hand group (0.06mm). Meanwhile, there is no significant difference found in within-
group analysis (p = 0.87, F = 0.025) or between-group analysis (p = 0.25, F = 1.41).  
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Figure 3. Pupil Size (mm), left – baseline vs challenging (within group), right – hand group 

vs verbal group (between group) 
 

 
 

Figure 4. Change in Pupil Size (mm), left – baseline vs challenging (within group), 
right – hand group vs verbal group (within group) 

 
Performance (number of collisions). The mean value of collisions in a challenging 

environment (3.4) is higher than the mean value in the baseline environment (0.25). For between 
group results, the mean value of collision in hand group (1.95) is slightly higher than that of 
verbal group (1.7). One way ANOVA test shows that the environment types have a significant 
effect on the number of collisions made (p <0.01, F = 17.31). There were no significant effects 
found in terms of communication formats (p = 0.74, F = 0.10) or the interaction between two 
independent variables (p = 0.33, F = 0.98). 
 
CONCLUSION 
 

This paper explores if the communication formats between the excavator operator and a 
spotter as well as environmental complexities affect the excavation task performance and 
cognitive load in a team-based excavation process. A two-by-two factorial experiment with 20 
subjects was conducted in a multi-user hybrid-immersive teleoperation system. Subjective 
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assessment of NASA-TLX shows that users’ cognitive workload is higher in challenging 
environments with a significant effect (p <0.01). Pupillometry analysis indicates that cognitive 
workload is higher in challenging urban jobsites, as well as in the group communicating with 
verbal signals. The number of collisions also demonstrates that the type of environment 
significantly affected the safety performance. The contribution of this study is to enable a better 
understanding on selecting the effective communication strategies based on different 
environmental complexities in a collaborative excavation work to ensure safety and reduce the 
mental workload. Future works lies on an in-depth investigation including other assessments 
such as situational awareness and attention. 
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