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Multi-Armed Bandits With Costly Probes
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Abstract— Multi-armed bandits is a sequential decision-
making problem where an agent must choose between multiple
actions to maximize its cumulative reward over time, while facing
uncertainty about the rewards associated with each action. The
challenge lies in balancing the exploration of potentially higher-
rewarding actions with the exploitation of known high-reward
actions. We consider a multi-armed bandit problem with probes,
where before pulling an arm, the decision-maker is allowed to
probe one of the K arms for a cost c ≥ 0 to observe its
reward. We introduce a new regret definition that is based on the
expected reward of the optimal action. We develop UCBP, a novel
algorithm that utilizes this strategy to achieve a gap-independent
regret upper bound that scales with the number of rounds T as
O(

√
KT log T ), and an order optimal gap-dependent upper

bound of O(K log T ). As a baseline, we introduce UCB-naive-
probe, a naive UCB-based approach which has a gap-independent
regret upper bound of O(K

√
T log T ), and gap-dependent

regret bound of O(K2 log T ); and TSP, the Thompson sampling
version of UCBP. In empirical simulations, UCBP outperforms
UCB-naive-probe, and performs similarly to TSP, verifying the
utility of UCBP and TSP algorithms in practical settings.

Index Terms— Multi-armed bandits, online learning, sequential
decision-making, probing.

I. INTRODUCTION

MULTI-ARMED bandits (MAB) is a widely studied
framework for sequential decision-making under uncer-

tainty. In the standard MAB formulation, an agent chooses one
of K actions (often referred to as arms) in each round and
receives a random reward that follows an unknown distribution
associated with the selected action. The objective of the agent
is to maximize the mean reward received in total over T
rounds. To this end, the agent must balance exploration of
the different actions to learn more about their rewards, and
exploitation of the actions that have provided the highest
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rewards so far. The seminal work of [2] showed that the regret,
defined as the difference in expected total rewards between a
given policy and the optimal policy in hindsight, has to grow
at least logarithmically in the number of plays, and developed
asymptotically optimal decision policies. Thereafter, many
other asymptotically efficient policies have been proposed,
including [3], [4], and used in applications in many fields,
such as online advertising [5], [6], clinical trials [7], [8], and
recommendation systems [9], [10].

Fueled by the explosion of data and the need for efficient
and effective decision-making in various domains in recent
years, there has been a surge of interest in multi-armed bandits.
This interest has led to many new developments and insights,
spanning algorithmic design, theoretical analysis, and practical
applications. One area of recent development is bandits with
side information, which allows the agent to receive side
information before making a decision [11], [12], [13]. The side
information can be in the form of partial observations, expert
advice, context of the arms, or prior knowledge about the
reward distributions. Recent work has shown that bandits with
side information can improve the learning rate and robustness
of MAB algorithms, and can be useful in various practical
settings, such as clinical trials and online auctions.

The idea of probing to reduce uncertainty in a decision-
making process has been studied in many areas of research,
such as wireless communication systems [14], stochastic prob-
ing [15], online learning [16], and multi-armed bandits [17],
[18]. In settings that utilize costly expert advice, where either
humans or machine learning models are experts, probing can
be interpreted as getting a prediction of the reward of an
arm from the expert without pulling the arm. In this paper,
we consider a specific variant of this problem, namely multi-
armed bandits with probes. In this problem, the decision-maker
is allowed to probe one arm for a cost c ≥ 0 to observe
its reward for that round. Based on the information obtained
from the probe, the decision-maker can then pull that arm,
or any other arm. The decision-maker can also pull an arm
in a round without probing an arm. This variation of the
MAB problem introduces an additional level of complexity
and challenge, as probing considerably expands the action
space, and the agent must balance exploration and exploitation
while incorporating the decision about whether to probe an
arm in its decision-making process. The main goal of our
work is to develop new algorithms for this framework that
achieve as much cumulative reward as possible. Towards
this end, we propose the UCBP algorithm, and provide its
theoretical analysis. We also consider the extension of this
setting to multiple probes under binary rewards, and propose
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the UCBMP algorithm. Related work for these settings are
provided in detail in §III.

A. Applications

The formulation considered here has numerous applications
across different fields. A good example is online learning with
machine learning (ML) advice. In this setting, ML models are
used to predict the outcomes of actions before deciding on an
action [19], [20], [21] to characterize improved performance
bounds compared to the case without predictions in settings
such as when the predictions are perfect [22], when the
predictions are adversarial [23], or when there is an upper
limit on the error of the predictions [24]. While in this work
we assume that a probe reveals the exact outcome of an arm,
we associate a cost to probing that may be used to model
the computational complexity of using ML predictions. This
work is also useful in the sense that it may serve as a reference
point for future work that relaxes this assumption to include
the cases where probes are noisy reward predictions.

In hyperparameter optimization for machine learning mod-
els, one approach is to have human experts routinely inspect
the learning curves to quickly terminate runs with poor
hyperparameter settings [25]. Our work can be incorporated
into this setting by defining pulling an arm as running the
hyperparameter setting without human expert supervision, and
probing an arm as running it with supervision. Since poor runs
will be quickly terminated, regret will not be incurred from
probes, and only probing cost which reflects the cost of having
a human expert will be incurred. In fraud detection, probing
can represent running a particular check on a given transaction
to estimate the likelihood of fraudulent activity, while pulling
can represent blocking or confirming a transaction.

Another possible application of our work is in wireless
communications. Probes in wireless communications mainly
involve sending small data packets to observe some channel
properties at that time. Prior work generally assume know-
ing the distributions of the rewards of channels [26]. Our
work can be especially useful when these distributions are
unknown. One other application is the cold-start problem in
recommender systems [27], where, when a new item, or arm
is added to the system, it is needed to learn its reward without
suffering too much regret. The general approach is to generate
reward predictions for this new arm from rewards of similar
arms [28]. The probes in our work can be used to model
predictions from such systems and the cost of probe can model
the cost of making predictions. Also, our work can be used to
model some test, or incentivized users that reveal or predict
the reward of the arm without suffering the regret. Then, the
cost of probe can reflect the cost of incentivizing such users.
We also believe our work can be useful in other areas where
bandits are used such as drug trials and ad recommendations.

B. Contributions

1) Formulation: To our knowledge, this work is the first to
consider a multi-armed bandit setting with bounded reward
distributions where before pulling an arm, the agent is
allowed to probe one arm to observe its reward for a cost

c ≥ 0.1 This is an intricate problem different from most
previous bandit formulations as the action set is larger, and
the decision to pull an arm after probing depends on the
probe outcome, which makes the analysis harder.

2) UCBP Algorithm: We identify the optimal strategy to
whether to pull or probe an arm, and if we probe an arm,
we also identify which arm to probe, and which arm to
pull after the probe by evaluating the expected reward
of each action. We provide an order-optimal algorithm
based on UCB that evaluates the value of each action and
uses upper confidence bounds to explore and choose the
optimal action.

3) Regret Upper Bound for UCBP: We provide upper
bounds on the expected cumulative regret of UCBP through
a novel decomposition of regret for this problem setting.
We establish that the gap-independent regret upper bound
scales with O(

√
KT log T ), and that when the reward

distribution is discrete, the gap-dependent regret upper
bound scales with O(K log T ). We also show that the gap-
dependent regret upper bound is order-optimal by showing
that the regret lower bound also scales with Ω(K log T ).

4) Simulations: To demonstrate the empirical performance
of UCBP, we provide two baseline algorithms for
comparison. We provide UCB-naive-probe, a naive UCB-
based algorithm that does not employ the optimal strategy
of the UCBP algorithm; and TSP, a Thompson sampling
version of UCBP. We perform simulations of UCBP, TSP,
UCB-naive-probe, and the standard UCB algorithm on the
MOVIELENS and the Open Bandit datasets.

5) Extension to Multiple Probes: To demonstrate how
our problem setting can be extended to multiple probes,
we provide UCBMP, the multiple probe version of our
algorithm under Bernoulli arm rewards.

II. PROBLEM STATEMENT

In this section we define our problem setting of the multi-
armed bandit model with probes and derive the optimal action
for this setting. The notations of some of the terms used
throughout the paper are given in Table I.

A. Multi-Armed Bandit Model With Probes

We consider a K-armed stochastic bandit problem with the
set of arms [K]. When pulled, arm i ∈ [K] generates a random
reward from a distribution Γi with mean µi and support a
subset of [0, 1]. Arm rewards are independent of each other
and across time. At each round, the agent first selects one of
the following two types of actions. The first type of action,
called pull, is where the agent pulls a particular arm i ∈ [K] to
receive its reward r(t) = ri(t). In the second type of action,
called probe, the agent selects a probe arm i and a backup
arm j ̸= i. First, the probe arm is probed, and its reward ri(t)
is observed. Based on this, the agent can choose to pull the
probe arm to receive reward r(t) = ri(t) − c or the backup
arm to receive reward r(t) = rj(t)−c. Here, c ≥ 0 represents
the known cost of probing.

1Note that this work can easily be extended to the setting where cost of
probing arm i is ci ≥ 0.
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TABLE I
NOTATIONS

We define A = As ∪ Ap as the action set where elements
of A are tuples. Ap is the set of actions that involve probing,
and As is the set of actions that do not involve probing. The
ordered tuple (i, j) ∈ Ap for i, j ∈ [K], i ̸= j indicates arm i
is the probe arm and arm j the backup arm, while (i, ∅) ∈ As

for i ∈ [K] indicates pulling arm i. It can be seen that |A| =
K2. Further, the set of actions that include arm (either as probe
or backup arm) i are denoted as Ai := {a ∈ A : i ∈ a}, and
similarly Ap,i := {a ∈ Ap : i ∈ a} is the set of probe actions
that include arm i.

We also denote the action taken in round t by at ∈ A. When
at = (i, j) in round t, after observing reward ri(t), the agent
needs to decide whether to pull arm i or j. Since the reward
of arm j is unobserved, only its expectation µj can be used.
Hence, optimal decision is pulling arm i if ri(t) > µj , and arm
j otherwise. We call this the optimal reference point decision.
Note that the true µj needs to be known to be able to employ
the optimal point decision strategy. Using this reference point
strategy, it can be seen that the expected reward of playing
action (i, j) is:

v(i,j) = E[max(ri, µj)]−c .

Note that ri here represents a generic reward value sampled
from the arm reward distribution Γi and does not represent
the reward at any specified time t. Hence, the expression
E[max(ri, µj)] represents expectation over the reward distri-
bution of arm i. The calculated v(i,j) values for some example
arm distributions and action choices are given in Table II.

Without loss of generality, we assume that the mean rewards
of the arms are ordered such that µ1 > µ2 ≥ · · · ≥ µK . For
simplicity, we assume there is a unique arm with the highest

TABLE II
EXAMPLE OF EXPECTED ACTION REWARDS UNDER DIFFERENT ARM DIS-

TIBUTIONS. (LEFT) DISTRIBUTIONS OF ARM REWARDS IN A SETTING
WITH 3 DIFFERENT ARMS. THE 3/5 FRACTION IN FRONT OF THE

BINOMIAL DISTRIBUTION IS USED TO SCALE THE REWARDS
INTO RANGE [0,1]. (RIGHT) EXPECTED REWARD v(i,j)

VALUES FOR SEVERAL DIFFERENT
ACTIONS WHEN c = 0

mean, which we refer to as the best arm. In standard K-armed
stochastic bandit, the only option available to the learner is
the pull option. Hence, the optimal action is to choose the
best arm in all rounds, leading to the standard definition of
expected regret given as

Rstd
T = T · µ1 − E

[
T∑

t=1

r(t)

]
.

Unlike standard K-armed bandit, in our setup, the probe
option makes the optimal action non-trivial. Since achieving
even negative regret is straightforward under probe option if
∃(i, j) s.t. E[max(ri, µj)]−c > µ1, it can be seen that T ·
µ1 is a very weak benchmark. When Γi, ∀i ∈ [K] are known
a priori, the maximum expected reward that can be achieved
in a round (the optimal reward) is

ν∗ = max(µ1, max
i∈[K]\{1}

{−c+ E[max(ri, µ1)]},−c

+ E[max(r1, µ2)]) . (1)

This leads to the optimal action, which for simplicity we
assume to be unique, being expressed as

a∗ =


(1, ∅) if ν∗ = µ1

(i, 1) if ν∗ = −c+ E[max(ri, µ1)]
(1, 2) if ν∗ = −c+ E[max(r1, µ2)]

We focus on achieving non-trivial sublinear regret bounds
with respect to the optimal benchmark Tν∗. Hence, we define
the empirical cumulative regret with respect to the optimal
reward as

R̂T = Tν∗ −
T∑

t=1

r(t) , (2)

and the expected cumulative regret as

RT = E[R̂T ] .

To define the gaps of actions a ∈ A, we let νa represent the
expected reward of action a. For a = (i, ∅) such that i ∈ [K],
we have νa = µi. For a = (i, j) such that i, j ∈ [K] and
i ̸= j, we have ν(i,j) = E[max(ri, µj)]−c. The gaps of actions
without probing are defined as ∆(i,∅) := ν∗ − ν(i,∅). Gaps of
actions with probing are defined as ∆(i,j) := ν∗ − ν(i,j), and
the gaps of arms are defined as ∆i := µ1 − µi.

An important remark is that with this regret definition, and
in view of (1), identifying the probe arm and the backup arm
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correctly may not be sufficient to receive the optimal reward
ν∗. To illustrate this, assume that a∗ = (i, 1) for some i ̸= 1.
To receive ν∗ = −c+E[max(ri, µ1)], after probing arm i and
observing ri, the agent needs to pull arm i if ri > µ1 or pull
arm 1 if ri ≤ µ1. This optimal action can only be taken with
the exact knowledge of the mean reward of arm µ1, which
the agent does not have. If one uses an estimate µ̃1(t) of the
reference point at round t, this will lead to an additional regret
of up to

rref(t) := |µ̃1(t)− µ1|
· P(ri ∈ [min(µ1, µ̃1(t)),max(µ1, µ̃1(t))]).

We call the decision to pull arm i using µ̃i(t) as the reference
point decision, and the regret it introduces as the reference
point regret. Rref(T ) :=

∑T
t=1 rref(t) is used to denote the

regret incurred until round T due to reference point error.
We first present a naive UCB-based algorithm, which treats
the reference point as part of the action it takes to serve as
baseline.

UCB-Naive-Probe Algorithm: Before presenting the UCBP
Algorithm, we present a naive UCB-based algorithm that will
serve as baseline. In this algorithm, as will be seen, the
reference point is also a part of the decision process, so we
define actions different than the UCBP algorithm and treat
each action triple as a super arm where actions of the form
a = (i, j, dl) ∈ AN , i ∈ [K], j ∈ [K] \ {i} denote that the
probe arm is arm i, the backup arm is arm j, and the reference
point is dl. AN denotes the action set for this algorithm.

Clearly, for the set of super arms to be finite, we need
to have finitely many reference point values; i.e., the UCB-
naive-probe algorithm can only be used when the reward
distributions of the arms are discrete with finite support. To this
end, we assume that the rewards of the arms are distributed
over a discrete support D in [0, 1], and assume that dl ∈ D, are
the elements of this discrete support (excluding the smallest
one) where 2 ≤ l ≤ |D|.

The actions a = (i, ∅, ∅), i ∈ [K] denote pulling arm
i. We use regular UCB indices for all super arms, and the
arm with the highest UCB index is pulled each round. When
a super arm (i, j, dl) is selected for probing, and ri(t) is
observed through probe, arm i is pulled if ri(t) ≥ dl, and j is
pulled otherwise. The pseudo-code is provided in Algorithm 1.

It can be seen that there are K arms for pull action, and |D|·
(K2 −K) arms for probe action, hence the gap-independent
and gap-dependent regret of this algorithm will scale with
K and |D| as O(

√
|D|K2T log T ), and O(|D|K2 log T ),

respectively. This demonstrates the complexity of the problem
as the action space scales with Õ(|D|K2).

The main goal of our paper is to decrease this dependency
of regret on K and |D| from Õ(|D|K2) to Õ(K) by utilizing
the probe and backup arm selection of the optimal strategy
during probing. Our algorithm that achieves this reduction in
regret is presented in §IV.

III. RELATED WORKS

A. Bandits With Probes

To highlight the novelty in our work, we present prior
work on bandits with probes that are similar to our problem

Algorithm 1 UCB-Naive-Probe
1: Initialize: Na = 0, a ∈ A
2: Sample each super arm once
3: for each round t do
4: at = (it, jt, d(t)) = argmaxa∈A Ua(t)
5: if jt = ∅ then
6: Pull arm it, get r(t) = rit

(t)
7: else
8: Probe arm it, observe reward rit

(t)
9: if rit(t) ≥ d(t) then

10: Pull arm it, get r(t) = rit(t)− c
11: else
12: Pull arm jt, get r(t) = rjt

(t)− c
13: end if
14: end if
15: Update UCB indices and mean estimates
16: end for

setting. To our knowledge, probes were first studied in the
setting of bandits with expert advice in [18], where there
are multiple experts and after pulling an arm, the agent can
observe the reward of any subset of arms by paying cost c for
each observed arm. In [17], there is a limit on the number of
queries allowed. In [31], advice-efficient multiarmed bandits
with experts are studied where only a limited number of
experts can be used at each round.

Recently, the bandit with probes problem for Bernoulli
reward distribution is considered in [29], where an unlimited
number of probes are allowed per round, but each probe has
a cost. They propose an algorithm that achieves O(K2 log T )
gap-dependent regret by utilizing a strategy that orders arms
from highest UCB value to lowest, and probes arms in this
order until observing an arm with a reward of ′1′. In our
work, while we allow only one probe, we consider a more
general bounded reward distribution which requires a more
intricate strategy, and we achieve O(K log T ) regret instead
of O(K2 log T ).

In [30], two different probing models are studied for probes
without cost. In the first model, two arms are probed at each
round, the probe reveals the arm with the higher reward, and
that arm must be pulled. A UCB-based algorithm is proposed
that treats the selection of two arms as a super arm. The
regret is defined as RT = T · µ∗ − E[

∑T
t=1 r(t)] where µ∗

is the mean reward of the arm with the highest mean reward
and r(t) is the reward obtained by the algorithm at round t.
Note that this reward is not defined based on the reward of
the optimal super arm. O(K2 log T ) gap-independent regret
is achieved under this definition, compared to the O(

√
KT )

for the standard UCB algorithm. However, this result follows
mainly due to the regret definition, since it is even possible
to achieve negative regret with this definition as max(ri, rj),
the reward of super arm (i, j), can be larger than µ∗. In the
second model, three arms are probed each round to observe
their rewards, and one of the probed arms is pulled. The
provided algorithm achieves O(K2) regret with same regret
definition. In this paper, we consider a similar scenario where
it is allowed to probe at most one arm, but we allow any arm
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TABLE III
COMPARISON OF OUR WORK WITH PRIOR WORK ON BANDITS WITH PROBES

to be pulled after probing. We also define our regret based on
the optimal action. Comparison of our work with prior work
is summarized in Table III.

B. Probes in Wireless Communications

While there are numerous prior work on probing in wireless
communication systems [14], [32], [33], [34], one notable
study related to our work is [26]. In this work, a wireless
system is considered where each channel j is associated with
a reward of transmission, Xj , whose distribution is known
a priori. It is allowed to probe multiple channels to reveal
its reward before selecting a channel, but there is a cost for
each probe. Since the subsequent probing decisions depend
on the outcome of probes, computing the optimal decision
is nontrivial, and two different algorithms are proposed. The
main difference of [26] from our work is that the reward
distributions of the arms are unknown in our setting.

C. Combinatorial Bandits

Combinatorial bandits is an extension of the standard bandit
framework where the action that can be taken in each round is
composed of a combination of different base arms satisfying
certain constraints, generally referred to as a super arm [35],
[36]. Since the number of possible actions can be as high as
the number of subsets of the arm set, estimating the optimal
action in each round can be computationally challenging.
To overcome this, assumptions like the existence of an oracle
that can efficiently approximate the optimal action [37], the
linearity of the rewards of super arms over the set of arms [38],
or additional constraints that can reduce the size of the action
set are commonly used [39]. Once the agent takes an action,
a reward is received which is a function of the rewards of
the base arms that compose the chosen super arm. There are
two distinct categories of combinatorial bandits based on the
feedback received. In semi-bandit feedback, both the received
reward, and the rewards of the individual base arms that
comprise the super arm are observed. In bandit feedback, only
the received reward is observed.

Our work can be considered a special form of combinatorial
semi-bandits based on our reward function and feedback
model. In the semi-bandit literature, many different reward
functions are studied, including linear [40], nonlinear [35],
and some more distinct reward functions such as receiving
the maximum reward of the selected arms and also observing
which arm produces this max reward [41]. Our setting is
also similar to this maximum reward feedback. In our setting,

we can choose an action that consists of one arm as in (i, ∅)
or two arms as in (i, j). If a probing action (i, j) is selected,
we first observe the reward of arm i, then pull arm i if
ri(t) > Uj(t), and pull the backup arm j otherwise. Since we
choose which arm to pull after the intermediate observation
(after only observing arm i and not arm j), this introduces
uncertainty in our setting as we might not be able to pull the
arm with the highest reward in a round. Hence, our reward
model can be considered a special case of the maximum
reward function that includes this uncertainty.

D. Combinatorial Bandits and Probabilistic Triggering

Probabilistic triggering of arms is a special feedback model
where when an action is played, a random subset of arms
is triggered according to a triggering probability distribu-
tion [42]. The observed reward depends both on the set of arms
in the chosen action, and the set of arms that are triggered.
To aid in theoretical analysis, p∗ is defined as the minimum
positive probability that an arm is triggered by any action.
It is shown in [42, Theorem 3] that the regret lower bound
scales with the factor 1

p∗ for the general combinatorial bandits
with probabilistically triggered arms, which shows that the
regret bounds scale with the factor 1

p∗ when rewards of some
arms in the chosen action are partially observed (observed
only when that arm is triggered). Another variable used to
analyze probabilistic triggering is pi, which is the triggering
probability of arm i.

In [43], a gap-dependent regret upper bound of
O(
∑

i log T/(pi∆i)) is derived for a combinatorial Thompson
sampling based algorithm. To remove the dependency of
regret on such factors, the triggering probability modulated
bounded smoothness assumption is used in [42]. The main
idea behind this assumption is that when an arm is unlikely
to be triggered by an action, the importance of that arm also
diminishes, and changing that arm’s expected mean can only
cause a small change in the expected reward of an action.
Using this assumption, they prove regret bounds that do not
depend on p∗; but do depend on B, the bounded smoothness
constant, for combinatorial bandit problems that satisfy this
assumption. This assumption is used in many other work,
such as in [44] where a combinatorial Thompson sampling
algorithm with regret bounds that do not depend on triggering
probabilities is provided.

Our work is similar to this setting as the probability that
the optimal reference point decision pulls the backup arm
can be understood as the triggering probability. Similar to the
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triggering probability modulated bounded smoothness assump-
tion, we show that the contribution of the backup arm to the
reward of a probe action is upper bounded by the mean reward
of the backup arm times its triggering probability. This lets us
derive regret upper bounds that do not depend on the triggering
probability of the backup arm by using some of the proof
techniques in [41].

E. Cascading Bandits and Probabilistic Triggering

It is an extension of the combinatorial bandit framework
where a list of items from an item pool is recommended
to a user. The user observes the items in the order of the
list and picks the first attractive item. This model presents
additional challenges on analysis as the feedback is received
only for the first attractive item and the items before it in the
list which is referred to as the probabilistic triggering or the
partial observability of the rewards. In [45], the amount of
available feedback at each step is probabilistically estimated
to overcome this challenge. In [46], a minimum probability of
observing the rewards of all the items in the list, p∗, is assumed
to help with the theoretical analysis. The given regret bounds
scale with 1

f∗ , where f∗ is a function that depends on p∗.
However, it was shown later in [42, Lemma 1] that this

cascading bandit problem already satisfies the triggering prob-
ability modulated bounded smoothness assumption and that the
1

f∗ factor in the regret upper bound is not needed. This is due
to being able to express the expected rewards of actions using
triggering probabilities. In [47], a Thompson Sampling based
algorithm with a regret bound of O

(
K log T/∆+K/∆2

)
is

provided. This bound is achieved through a regret analysis that
decomposes the regret in terms of the number of observations
of the suboptimal items by using the properties of the reward
in the cascading bandit setting.

F. Online Learning

In the classical online learning problem, an agent chooses
an action, the loss function at that round is revealed, and
the evaluation of the loss at the chosen action is incurred as
regret. In [16], label efficient prediction with expert advice
is studied, in which, the forecaster, after guessing the next
element of the sequence, can only ask to observe its true value
for a limited number of times. In [48], there are hints in an
online linear optimization problem which are correlated with
the cost function. An algorithm that achieves O(log T ) regret
with O(

√
T ) hints is given.

G. Stochastic Probing

It is a problem where the distributions of a set of elements
are known, but not the actual outcomes, and the aim is
to maximize the expected utility by probing under certain
constraints. This problem has applications such as database
query optimization [49], radar systems [50], and Bayesian
auctions [15]. In Pandora’s problem, each probe has a cost, and
the goal is to maximize the largest observed value minus the
probing costs. While this problem was formulated and solved
in [51], different settings of it are widely studied [52], [53],
[54].

IV. THE UCBP ALGORITHM

We propose an algorithm called Upper Confidence Bound
with Probes (UCBP) that utilizes the structure of the action set
and expected rewards to minimize the regret using the UCB
strategy. The pseudocode of UCBP is provided in Algorithm 2.
Recall that in UCB algorithm [3] for the stochastic K-armed
bandit, at each round t, the arm with the highest UCB index
Ui(t) is pulled, i.e.,

it = argmax
i
Ui(t), Ui(t) = µ̂i(t) +

√
α log t
Ni(t)

, (3)

where µ̂i(t) is the empirical mean reward of arm i, α > 0 is a
constant (to be specified later), and it is the arm that is pulled
in round t, and Ni(t) is the number of times arm i is pulled
until round t. The first term in Ui(t), µ̂i(t) is to exploit the
best performing arm, and the second term, also referred to as
the exploration bonus, is used to explore other arms since it
allows the algorithm pull the arms that have not been pulled
too much. With this formulation, UCB algorithm balances
exploration and exploitation to achieve optimal regret. We use
similar ideas in our UCBP algorithm by appropriately defining
the mean action rewards and the exploration bonuses. The
UCBP algorithm works as follows. At each round t, first, the
empirical mean rewards of arms are determined using

µ̂i(t) =
t−1∑
τ=1

ri(τ)1{i ∈ o(τ)}
Ni(t)

,

where o(t) denotes the set of arms whose reward is observed
(by either pulling or probing) in round t and Ni(t) denotes
the number of times arm i is observed by round t. The UCB
index of each pull action a = (i, ∅) ∈ As is computed as

U(i,∅)(t) = µ̂i(t) + Ci(t) ,

where Ci(t) =
√
3 log(t)/Ni(t). The UCB index of each

probe action a = (i, j) ∈ Ap is computed as

U(i,j)(t) =
t−1∑
τ=1

max(ri(τ), µ̂j(t) + Cj(t))1{i ∈ o(τ)}
Ni(t)

−c+ Ci(t) .

The claim that U(i,j)(t) is a valid UCB index for the probe
action is proven in §B. After the UCB indices are computed for
all actions, the action with the highest UCB index is selected.
If the selected action is a pull action, i.e., at = (i, ∅), then
arm i is pulled, and reward ri(t) is collected. If the selected
action is a probe action, i.e., at = (i, j), first arm i is probed
to observe ri(t). Then arm i is pulled if ri(t) > Uj(t), and
reward ri(t)− c is collected. Otherwise, arm j is pulled, and
reward rj(t)−c is collected. In other words, UCBP uses Uj(t)
as the reference point µ̃j(t) at round t. When calculating
Uj(t), we use α = 27 in (3) in order to guarantee that the
backup arm is chosen sufficiently often to achieve low regret,
hence Uj(t) = µ̂j(t) +

√
27 log(t)/Nj(t) = µ̂j(t) + 3Cj(t).

Next, we explain why the reference point Uj(t) used by
UCBP is the right choice. Let p(i,j) := P(ri ≤ µj) denote
the probability that the backup arm j in action (i, j) is pulled
if the optimal reference point decision strategy is employed.
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Algorithm 2 UCBP
1: Input: cost of probing c, action set A
2: Initialize: Ni = 0, 1 ≤ i ≤ K
3: Sample each arm i ∈ [K] once
4: for each round t do
5: at = argmaxa∈A Ua(t)
6: if at = (it, ∅) is a pull action then
7: Pull arm it, get r(t) = rit

(t)
8: else (at = (it, jt) is a probe action)
9: Probe arm it, observe reward rit(t)

10: if rit(t) > Ujt(t) then
11: Pull arm it, get r(t) = rit

(t)− c
12: else
13: Pull arm jt, get r(t) = rjt

(t)− c
14: end if
15: end if
16: Update UCB indices for all actions
17: end for

Note that since UCBP uses the condition ri(t) > Uj(t) to
pull the backup arm, the probability of UCBP pulling the
backup arm is P(ri ≤ Uj(t)), which is greater than p(i,j),
i.e. P(ri ≤ Uj(t)) ≥ p(i,j) when the confidence bounds hold
(see §B). Employing this reference point decision strategy, the
p(i,j) value in our setting is similar to p∗ in combinatorial
bandits with probabilistically triggered arms, where the p∗

defined as the minimum positive probability that an arm is
triggered by any action [42].

This lets us use the triggering probability modulated
bounded smoothness assumption in [41]. The main idea behind
this assumption is that when an arm is unlikely to be triggered
by an action, the importance of that arm also diminishes,
and changing that arm’s expected mean can only cause a
small change in the expected reward of an action. Using this
assumption, regret bounds that do not depend on p∗, but do
depend on B, the bounded smoothness constant, are proved
for combinatorial bandit problems that satisfy this assumption.
We also use techniques in their proof such as the reverse
amortization trick to derive regret upper bounds that do not
depend on p(i,j).

A. Analysis of UCBP

We now characterize the performance of the UCBP
algorithm by providing theoretical upper and lower bounds
on the expected cumulative regret. We refer the readers to the
Appendix for detailed proofs of the results presented in this
section.

B. Regret Decomposition

In order to prove gap-independent and gap-dependent regret
results, we employ a divide and conquer approach. This section
presents several results on decomposition of the regret that will
be utilized in the gap-independent and gap-dependent analysis.

We start by defining an event under which UCB indices
of UCBP concentrate sufficiently to guarantee low regret.
Consider arm i ∈ [K]. Assume that arm i is observed u

times up to round t. Denote u i.i.d. samples from arm i as
r̃i(1), . . . , r̃i(u). Define

µ̂i(t, u) :=
u∑

τ=1

r̃i(τ)
u

.

Consider pull action a = (i, ∅). Assume that arm i is
observed u times up to round t. Define

ν̂(i,∅)(t, u) := µ̂i(t, u)

as the empirical reward,

U(i,∅)(t, u) := ν̂(i,∅)(t, u) +

√
3 log t
u

as the upper confidence bound, and

L(i,∅)(t, u) := ν̂(i,∅)(t, u)−
√

3 log t
u

as the lower confidence bound of pull action (i, ∅) at round t
when arm i is observed u times.

Consider probe action a = (i, j). Assume that arm i is
observed r times and arm j is observed s times up to round
t. Denote r i.i.d. samples from arm i and s i.i.d samples from
arm j, by r̃i(1), . . . , r̃i(r) and r̃j(1), . . . , r̃j(s). Define

v̂(i,j)(t, r, s) :=
r∑

τ=1

max(r̃i(τ), µ̂j(t, s))
r

− c

as the empirical probing reward,

U(i,j)(t, r, s) :=
r∑

τ=1

max
(
r̃i(τ), µ̂j(t, s) +

√
3 log t

s

)
r

−c+
√

3 log t
r

as the upper confidence bound, and

L(i,j)(t, r, s) :=
r∑

τ=1

max
(
r̃i(τ), µ̂j(t, s)−

√
3 log t

s

)
r

−c−
√

3 log t
r

as the lower confidence bound of probe action a = (i, j)
at round t when arm i is observed r times, and arm j is
observed s times. For the sake of notation brevity, when
a = (i, ∅), Ua(t, r, s) = Ua(t, r) and La(t, r, s) = La(t, r)
will be assumed.

Define the following events:

Et,a :=
{

min
r≤t,s≤t

Ua∗(t, r, s) ≥ ν∗∧ max
u≤t,v≤t

La(t, u, v) ≤ νa

}
,

Et :=
⋂

a∈A
Et,a,

E(T ) :=
T⋂

t=K+1

Et ,

where Et is the good event at round t, the event where a
suboptimal selection is not made due to confidence intervals
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not holding, and E(T ) is the event that such a suboptimal
selection is not made for all rounds K + 1 ≤ t ≤ T .

Since we incur regret whenever a suboptimal action is taken,
or when the decision to pull the probe arm or the backup arm
after observing the outcome of the probe is incorrect, we upper
bound the expected number of times each suboptimal action
or decision is chosen by the UCBP Algorithm.

Let a = (i, j) represent a probe action. First, we define
r̂a(t) = ri(t)1 {ri(t) > Uj(t)} + rj(t)1 {ri(t) ≤ Uj(t)} as
the reward received from action a in round t when Uj(t) is
used as the reference point, and ra(t) = ri(t)1 {ri(t) > µj}+
rj(t)1 {ri(t) ≤ µj} as the reward received from action a in
round t when µj is used as the reference point, i.e., the optimal
reference point decision is employed.

When a probe action a = (i, j) ∈ Ap is taken in round t,
we call the regret incurred due to using Uj(t) instead of µj as
the reference point error, which is given as da(t) = ra(t) −
r̂a(t). This regret da(t) is additive to the regret of choosing a
suboptimal action a, since da(t) captures the additional regret
of the incorrect decision compared to the correct decision
when deciding to pull the probe arm or the backup arm. The
definition of da(t) can be expanded to include pull actions
a ∈ As in the following way:

da(t) =

{
0 if a = (i, ∅)
ra(t)− r̂a(t) if a = (i, j)

Let Ba(t) denote the event that the reference point error of
action a is zero at round t, i.e., Ba(t) = {r̂a(t) = ra(t)}. The
following result decomposes RT into multiple parts, which
will be separately bounded in our gap-independent and gap-
free analysis.

Lemma 1 (Regret Decomposition): When UCBP is run on
the action setA and the cost of probing is c ≥ 0, its cumulative
expected regret can be decomposed as

RT ≤ Rs(T ) +Rref(T ) +
T∑

t=K+1

P(Ec
t ) +K ,

where

Rref(T ) := E

[
T∑

t=K+1

∑
a∈A

1 {at = a,Bc
a(t), Et} · da(t)

]
(4)

represents the cumulative regret incurred from the reference
point error until round T , and

Rs(T ) := E

[
T∑

t=K+1

∑
a∈A

1 {at = a, Et} · (ν∗ − ra(t))
]

(5)

denotes the cumulative regret incurred until round T from
suboptimal action choices (without the reference point error).

Proof: Regret given in (2) can be written as

R̂T ≤
T∑

t=K+1

(ν∗ − r̂a(t)(t)) +K ,

where the summation starts from K due to the initialization
phase of UCBP and since rewards are bounded in [0, 1].

R̂T can be further decomposed based on the good event Et
as

R̂T ≤
T∑

t=K+1

∑
a∈A

1 {at = a, Et} · (ν∗ − r̂a(t))

+
T∑

t=K+1

∑
a∈A

1 {at = a, Ec
t } · (ν∗ − r̂a(t)) +K

≤
T∑

t=K+1

∑
a∈A

1 {at = a, Et} · (ν∗ − r̂a(t))

+
T∑

t=K+1

1 {Ec
t } · 1 +K .

Since regret incurred from the reference point error when
an action involving probing is chosen is additive to the regret
from the suboptimality of the chosen action, conditioning on
Ba(t), we write

R̂T =
T∑

t=K+1

∑
a∈A

[1 {at = a,Ba(t), Et} · (ν∗ − ra(t))

+1 {at = a,Bc
a(t), Et} · (ν∗ − ra(t) + da(t))]

+
T∑

t=K+1

1 {Ec
t }+K . (6)

We continue bounding the expected regret by taking the
expectation of (6).

RT ≤ E

[
T∑

t=K+1

∑
a∈A

[1 {at = a,Ba(t), Et} · (ν∗ − ra(t))

+1 {at = a,Bc
a(t), Et} · (ν∗ − ra(t) + da(t))]]

+ E

[
T∑

t=K+1

1 {Ec
t }

]
+K

= E

[
T∑

t=K+1

∑
a∈A

[1 {at = a, Et} · (ν∗ − ra(t))

+1 {at = a,Bc
a(t), Et} · da(t)]]

+ E

[
T∑

t=K+1

1 {Ec
t }

]
+K

= E

[
T∑

t=K+1

∑
a∈A

[1 {at = a, Et} · (ν∗ − ra(t))

+1 {at = a,Bc
a(t), Et} · da(t)]]

+
T∑

t=K+1

P (Ec
t ) +K . (7)

Observing (7), we obtain the final result:

RT ≤ Rs(T ) +Rref(T ) +
T∑

t=K+1

P(Ec
t ) +K .

Each term in Lemma 1 can be further decomposed to
facilitate regret analysis. Next, we state how Rs(T ) in (5)
can be decomposed. Recall that o(t) ⊂ at is the set of
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arms whose reward is observed in round t. Define Ht =
(a1, r(1), o(1), · · · , at−1, r(t − 1), o(t − 1)) as the history
of UCBP up to choosing action at, and let E[·|Ht] be the
conditional expectation given this history.

Lemma 2 (Rs(T ) Decomposition): When UCBP is run on
the action set A and the cost of probing is c ≥ 0, Rs(T ) can
be decomposed as Rs(T ) = 2Rs,1(T ) + 2Rs,2(T ), where

Rs,1(T ) := E

[
T∑

t=K+1

∑
(i,·)∈A

1 {at = (i, ·), Et} · Ci(t)
]
,

Rs,2(T ) := E

[
T∑

t=K+1

∑
(i,j)∈Ap

1 {at = (i, j), Et}

· P (ri(t) ≤ µj + 2Cj(t)|Ht) · Cj(t)

]
.

Proof: Let R̃t :=
∑

a∈A 1 {at = a, Et}(ν∗− ra(t)), and

note that Rs(T ) = E

[∑T
t=K+1 R̃t

]
. E[R̃t] can be expressed

as:

E[R̃t] = E
[
E[R̃t|Ht]

]
= E

[
E

[∑
a∈A

1 {at = a, Et}(ν∗ − ra(t))|Ht

]]

= E

[∑
a∈A

1 {at = a, Et}E [(ν∗ − ra(t))|Ht]

]

= E

[∑
a∈A

1 {at = a, Et}(ν∗ − νa)

]
= E [1 {Et}(ν∗ − Uat

(t) + Uat
(t)− νat

)]
≤ E [1 {Et}(ν∗ − Ua∗(t) + Uat

(t)− νat
)] (8)

≤ E [1 {Et}(Uat
(t)− νat

)] (9)

= E

[∑
a∈A

1 {at = a, Et}(Ua(t)− νa)

]

= E

[
E

[∑
a∈A

1 {at = a, Et}(Ua(t)− νa)|Ht

]]
(10)

where (8) follows from Uat
(t) ≥ Ua∗(t) since the UCBP

algorithm selects the action with the highest UCB index,
and (9) follows from ν∗ ≤ Ua∗(t) under the event Et.

We will upper bound Ua(t)− νa separately for pull actions
and probe actions under event Et given Ht. First, if a = (i, j)
is a probe action, using Corollary 18, it can be seen that

Ua(t)− νa ≤ 2Ci(t) + 2P (ri(t) ≤ µj + 2Cj(t)|Ht) · Cj(t) .
(11)

Second, if a = (i, ∅) is a probe action, then

Ua(t)− νa = Ui(t)− µi

= µ̂i(t) + Ci(t)− µi

≤ µi + Ci(t) + Ci(t)− µi

≤ 2Ci(t) . (12)

Plugging (11) and (12) into (10), and summing over rounds,

Rs(T ) = E

[
T∑

t=K+1

∑
(i,j)∈Ap

1 {at = (i, j), Et}

· 2 (Ci(t) + P (ri(t) ≤ µj + 2Cj(t)|Ht) · Cj(t))

]

+ E

[
T∑

t=K+1

∑
(i,∅)∈As

1 {at = (i, ∅), Et} · 2Ci(t)

]
= 2Rs,1(T ) + 2Rs,2(T ) .

C. Gap-Independent Expected Regret Upper Bound

Theorem 3 (Gap-Independent Expected Regret Upper
Bound): When UCBP is run on the action set A and the cost
of probing is c ≥ 0, its cumulative expected regret is upper
bounded as

RT ≤ 8(
√
6 +
√
3)
√
KT log T +

2π2K2

3
+K .

This theorem shows that the gap-independent regret of
UCBP is O(

√
KT log T ), which has the same order as

the gap-independent regret of the stochastic K-armed bandit
problem.

Proof: We will upper bound the regret by upper bounding
each term in Lemma 1. First, we consider the decomposition
of Rs(T ) given in Lemma 2. We start by upper bounding
Rs,1(T ). Recall that Ai denotes the set of all actions that
involve arm i as the probe or pull arm.

Rs,1(T ) = E

[
T∑

t=K+1

K∑
i=1

1 {at ∈ Ai, Et} · Ci(t)

]

= E

[
T∑

t=K+1

K∑
i=1

1 {at ∈ Ai, Et} ·

√
3 log t
Ni(t)

]

≤
√

3 log T · E

[
T∑

t=K+1

K∑
i=1

1 {at ∈ Ai} ·

√
1

Ni(t)

]

≤
√
3 log T · E

[
K∑

i=1

T∑
t=K+1

1 {i ∈ o(t)} ·

√
1

Ni(t)

]
(13)

≤
√
3 log T · E

 K∑
i=1

Ni(T )∑
x=1

√
1
x

 (14)

≤ 2
√
3 log T · E


√√√√K

K∑
i=1

Ni(T )

 , (15)

where (13) follows from the fact that whenever at ∈ Ai,
we have i ∈ o(t), (14) follows from the fact that whenever
i ∈ o(t) then Ni(t) is incremented by 1, and (15) follows
from Cauchy-Schwarz inequality. Since up to two arms may
be observed in a round,

∑K
i=1Ni(T ) ≤ 2T , and using this we

obtain

Rs,1(T ) ≤ 2
√
6KT log T . (16)
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Next, we upper bound Rs,2(T ). Note that due to the
reference point decision strategy employed by UCBP, the
following holds under the good event Et
P (j ∈ o(t)|at = (i, j),Ht)

= P (ri(t) ≤ Uj(t)|at = (i, j),Ht)

= P

(
ri(t) ≤ µ̂j(t) +

√
27 log t
Ni(t)

∣∣∣∣∣Ht

)
= P (ri(t) ≤ µ̂j(t) + 3Cj(t)|Ht)
≥ P (ri(t) ≤ µj + 2Cj(t)|Ht)

Using this, Rs,2(T ) can be upper bounded as

Rs,2(T )

= E

[
T∑

t=K+1

∑
(i,j)∈Ap

1 {at = (i, j), Et}

· P (ri(t) ≤ µj + 2Cj(t)|Ht) · Cj(t)

]

≤ E

[
T∑

t=K+1

∑
(i,j)∈Ap

1 {Et}

· P (ri(t) ≤ µj + 2Cj(t)|Ht) · Cj(t)

· E
[
1 {at = (i, j)} · 1 {j ∈ o(t)}

P (ri(t) ≤ Uj(t)|Ht)

∣∣∣Ht

]]
(17)

= E

 T∑
t=K+1

E

 ∑
(i,j)∈Ap

1 {at = (i, j), j ∈ o(t), Et}

·Cj(t) ·
P (ri(t) ≤ µj + 2Cj(t)|Ht)

P (ri(t) ≤ Uj(t)|Ht)

∣∣∣∣∣Ht

]]

≤ E

[
T∑

t=K+1

E

[ ∑
(i,j)∈Ap

1 {at = (i, j), j ∈ o(t), Et}

· Cj(t)|Ht

]]

= E

[
T∑

t=K+1

∑
(i,j)∈Ap

1 {at = (i, j), j ∈ o(t), Et} · Cj(t)

]

= E

[
T∑

t=K+1

K∑
j=1

∑
a∈A(·,j)

1 {at = a, j ∈ o(t), Et} · Cj(t)

]

= E

[
T∑

t=K+1

K∑
j=1

1
{
at ∈ A(·,j), j ∈ o(t), Et

}
· Cj(t)

]

≤ E

[
K∑

j=1

T∑
t=K+1

1 {j ∈ o(t)} · Cj(t)

]

=
√

3 log T · E

[
K∑

i=1

T∑
t=K+1

1 {i ∈ o(t)} ·

√
1

Ni(t)

]

≤
√

3 log T · E

 K∑
i=1

Ni(T )∑
x=1

√
1
x



≤ 2
√

3 log T · E


√√√√K

K∑
i=1

Ni(T )

 ,
where (17) follows from the tower rule and the fact that under
the event at = (i, j), the event j ∈ o(t) can happen if and
only if ri(t) ≤ Uj(t). The last two inequalities follow the
same reasoning as in (12) and (14). Using

∑K
i=1Ni(T ) ≤ 2T ,

we get

Rs,2(T ) ≤ 2
√
6KT log T . (18)

Combining (16) and (18) with Rs(T ) = 2Rs,1(T ) +
2Rs,2(T ) from Lemma 2, we get

Rs(T ) ≤ 8
√
6
√
KT log T .

It can be seen from Lemma 19 that,
T∑

t=K+1

P(Ec
t ) ≤

2π2K2

3
.

Also, using the fact that Rref(T ) ≤ 8
√
3KT log T from

Lemma 21, we arrive at the final bound on RT :

RT = Rs(T ) +Rref(T ) +
T∑

t=K+1

P(Ec
t ) +K

≤ 8(
√
6 +
√
3)
√
KT log T +

2π2K2

3
+K .

D. Gap-Dependent Expected Regret Upper Bound

Theorem 4 (Gap-dependent expected regret upper bound):
When UCBP is run on the action set A and the cost of probing
is c ≥ 0, its expected cumulative regret is upper bounded as

RT ≤
K∑

i=1

192 log T
∆min,i

+Rref(T ) +
2π2K2

3
+K ,

where ∆min,i = mina∈Ai:∆a>0 ∆a, and Rref(T ) is the refer-
ence point regret.

Further assuming that the distributions Γi for each i ∈ [K]
are defined over a discrete support D in [0, 1], using the upper
bound of Rref(T ) in Lemma 5, regret can be upper bounded
as

RT ≤
K∑

i=1

192 log T
∆min,i

+
K∑

i=1

96 log T
γi

+
2π2K2

3
+K ,

where we use dl ∈ D, 1 ≤ l ≤ |D| to denote the elements
of the set D; and we let γi := minl |dl − µi| if µi ̸∈ D, and
γi := minl |dl − dl+1| if µi ∈ D.

Note that the cost of probing c is included in the gap of
actions. This shows that the gap-dependent regret of UCBP
is O(K log T ) when the reward distribution is discrete. This
result is order optimal, as it matches the lower bound given
in Lemma 5, and also the regret lower bound of the standard
UCB algorithm. If the reward distribution is not discrete, then
the regret upper bound is O(

√
KT log T ).

Proof Sketch. The proof follows some of the steps in the
proof of Theorem 4 in [41]. We first decompose regret due to
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suboptimal action selections and regret due to reference point
error. After this step, one key idea is to show that

Ua(t)− νa ≤ 2Ci(t) + 2P (ri(t) ≤ µj + 2Cj(t)|Ht) · Cj(t),

where P (ri(t) ≤ µj + 2Cj(t)|Ht) is the triggering probability
of the backup arm. This property is combined with the fact
that UCBP pulls the backup arm if ri(t) ≤ Uj(t) for an
action (i, j), to conjecture that the backup arm is pulled with a
probability greater than or equal to the triggering probability.
This lets regret be upper bounded by the expected regret
of the round in which the backup arm is actually triggered.
Reverse amortization trick in [41, Theorem 4] is used to
upper bound this expected regret, which can than be summed
over the rounds of the algorithm to obtain the regret upper
bound due to suboptimal action selections. The regret due to
reference point decision error is upper bounded by using the
fact that reference point decision regret cannot be incurred
when Cj(t) ≤ γj/4 for a backup arm j. The detailed proof is
in Appendix D.

We now provide upper bounds on reference point regret,
which is incurred since the algorithm does not have informa-
tion on the true means, and only uses the estimated means
in the reference point decision. We show that for arbitrary
reward distributions, Rref(T ) = O(

√
KT log T ), while tighter

upper bounds can be established with additional assumptions
on reward distributions.

Lemma 5: a) Regret due to the reference point error is upper
bounded as:

Rref(T ) ≤ 8
√
3KT log T .

b) If the distributions Γi for each i ∈ [K] are defined over a
discrete support D in [0, 1], then Rref(T ) is upper bounded as

Rref(T ) ≤
K∑

i=1

96 log T
γi

,

where we use dl ∈ D, 1 ≤ l ≤ |D| to denote the elements
of the set D; and we let γi := minl |dl − µi| if µi ̸∈ D, and
γi := minl |dl − dl+1| if µi ∈ D.

It can be seen that γi > 0 always holds. Proof of Lemma 5
is given in Appendix E.

Theorem 6 (Lower Bound on Expected Regret): For the
multi-armed bandit setting with costly probes where the
optimal action is unique, the lower bound on the expected
cumulative regret for any uniformly good algorithm, as defined
in [2], is:

lim inf
T→∞

RT

log T
≥ C(Γ),

where C(Γ) is the minimal value of the following linear
optimization problem:

min
ba≥0, ∀a∈A\{a∗}

∑
a∈A\{a∗}

ba∆a

s.t. ∀i ∈ [K],
∑

a∈Ai,a̸=a∗

ba ≥
[

min
a∈Ai,a̸=a∗

{DKL(Γa||Γ∗)}
]−1

where Ai = {(i, j) : j ∈ ([K] ∪ {∅}) \ {i}} ∪ {(j, i) :
j ∈ [K] \ {i}}, Γ(i,∅) = Γi, Γ(i,j) = max(ri, µj) − c is

the distribution function of action (i, j) for i ̸= j, Γ∗ is the
distribution function of the optimal action, and DKL(·||·) is
the Kullback-Leibler divergence.

Proof of this result is given in Appendix F. It can be seen
that the lower bound on regret of UCBP is Ω(K log T ) since
C(Γ) is Ω(K). Since the upper bound on expected regret is
also O(K log T ) under discrete rewards in Theorem 4, we can
conclude that the gap-dependent upper bound of the UCBP
algorithm is order-wise optimal.

Finally, we state in the corollaries below regret upper
bounds for UCB-naive-probe, which was introduced in §II.

Corollary 7: If the rewards of the arms are distributed over
the discrete support D, when UCB-naive-probe is run on A
and the cost of probing is c ≥ 0, the gap-independent upper
bound for the expected regret, denoted as RU (T ), is:

RU (T ) ≤ 4
√

2|D|K2T log T

+
π2[(|D| − 1)(K2 −K) +K]

3
+ |D|K2

= O(
√
|D|K2T log T ) +O(1) .

Corollary 8: If the rewards of the arms are distributed over
the discrete support D, the gap-dependent upper bound for
RU (T ) is:

RU (T ) ≤
∑

a∈AN\{u∗}

8 log T
∆a

+ |D|K2

+
π2[(|D| − 1)(K2 −K) +K]

3
= O(|D|K2 log T ) +O(1) .

where ∆(i,∅,∅) = ∆i,

∆(i,j,dl) = c+ ν∗ − E [ri · 1 {ri ≥ dl}+ µj · 1 {ri < dl}] ,

and u∗ is the optimal action in this setting.
The proofs of both Corollary 7 and 8 are provided in

Appendix G.

E. Discussion of the Results

To our knowledge, this work is the first to consider a
multi-armed bandit setting with arbitrary bounded reward
distributions where before pulling an arm, the agent is allowed
to probe one arm to observe its reward for a cost c ≥ 0. This
is a complex problem setting different from most previous
bandit formulations both due to the large action space of
K2 actions, and the possibility of still incurring regret due
to the reference point error even when the chosen action is
optimal. Further, the use of a stronger regret benchmark that
uses the optimal action rather than µ∗ makes the analysis
rather intricate. We provide a gap-dependent regret bound of
O(K log T ) and a gap-independent bound of O(

√
KT log T )

for UCBP that match the order of the regret bounds of the
standard UCB algorithm for the standard UCB problem.

Compared to UCB-naive-probe, and to the prior work for
slightly different settings whose regrets scale with Õ(K2)
on the number of arms, the regret of UCBP scales with
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Õ(K) since UCBP narrows down the action space by uti-
lizing the structure of the problem. UCB-naive-probe further
incurs an additional D term in regret as the reference
point value affects the mean reward of a super arm. We
would like to note that we assume cost of probing c as
a constant for simplicity of the theoretical analysis, but
this work can easily be extended to the setting where c
is time dependent or cost of probing is different for each
arm.

Algorithm 3 TSP
1: Input: cost of probing c, action set A, exploration

parameter β
2: Initialize: Ni = 0, 1 ≤ i ≤ K
3: Sample each arm once
4: for each round t do
5: Sample θi(t) ∼ N

(
µ̂i(t), β

Ni(t)

)
6: i∗t ← argmaxj θj(t)
7: i∗∗t ← argmaxj ̸=i∗t

θj(t)
8: γi(t) ∼ N

(
ψ̂(i,i∗t )(t),

β
Ni(t)

+ β
Ni∗t

(t)

)
, ∀i ̸= i∗t

9: γi∗t
(t) ∼ N

(
ψ̂(i∗t ,i∗∗t )(t),

β
Ni∗(t)(t)

+ β
Ni∗∗t

(t)

)
10: j∗t = argmaxi∈[K] γi(t)
11: kt = i∗t if j∗t ̸= i∗t , else kt = i∗∗t

12: if θi∗t
(t) > γj∗

t
(t) then

13: Pull arm i∗t , get r(t) = rt(i∗t )
14: else
15: Probe arm j∗t , observe reward rt(j∗t )
16: if rt(j∗t ) > µ̂kt(t) then
17: Pull arm j∗t , get r(t) = rt(j∗t )− c
18: else
19: Pull arm kt, get r(t) = rt(kt)− c
20: end if
21: end if
22: Update µ̂i(t), and Ni(t) = Ni(t − 1) + 1 for all

observed arms i ∈ o(t)
23: end for

F. Simulations

We now evaluate the performance of the proposed UCBP
Algorithm in a real world setting. Since to our knowledge,
there are no other bandit algorithms for our specific problem
setting, we compare our results with the results from the
UCB-naive-probe algorithm which we introduced as a baseline
in §II; with TSP, the Thompson sampling based version of
UCBP; and standard UCB that does not do any probing. The
TSP algorithm operates as follows. First, samples θi(t) for
mean arm rewards are generated for arms using a Gaussian
distribution with mean µ̂i(t) and variance β

Ni(t)
, where β >

1 is the exploration parameter. To estimate the mean probe
reward, the backup arm will either be i∗t = argmaxj θj(t) or
i∗∗t = argmaxj ̸=i∗t

θj(t) depending on the probe arm. Note
that this step is not done explicitly in the UCBP algorithm as
the backup arm for the probing action with the highest UCB
value is already either the arm with highest or second highest

UCB value. After this step, the mean probe reward for action
(i, j) can be calculated using these samples as

ψ̂(i,j)(t) =
t−1∑
τ=1

max(ri(τ), θj(t))1{i ∈ o(τ)}
Ni(t)

−c.

We generate samples for the mean probe action reward using a
Gaussian distribution with mean ψ̂(i,i∗t )(t) and variance β

Ni(t)
+

β
Ni∗t

(t) for i ̸= i∗t , and using a Gaussian distribution with mean

ψ̂(i∗t ,i∗∗t )(t) and variance β
Ni∗ (t) +

β
Ni∗∗t

(t) for i ̸= i∗t when the
probe arm is i∗t . The action that has the largest sample value is
chosen. If this action is probing, i.e. a = (i, j), similar to the
UCBP algorithm, arm i is probed to observe ri(t), then arm i is
pulled if ri(t) > µ̂j(t), and arm j otherwise. The pseudo-code
of TSP is provided in Algorithm 3. The simulation results of
UCB-naive-probe, UCBP, TSP, and UCB are provided below
for the MOVIELENS and the Open Bandit datasets. We would
like to note that we also clip the UCB indexes of UCB, UCBP,
and UCB-naive-probe algorithms at 1 in the simulations. This
reduces the number of probes in UCBP and UCB-naive-probe
algorithms when the probing cost is high.

1) The MOVIELENS Dataset: The MOVIELENS dataset
contains a total of 1M ratings on a total of 3883 movies,
where a total of 6040 users rated the movies on a scale
of 1 to 5 [55]. Using this dataset, we aim to provide the
best genre recommendations to a population with an unknown
demographic. To fit each movie into one genre, we pick one
genre uniformly at random from the genres associated with
each movie. We model each genre as an arm, where there
are K = 18 arms, and the reward of an arm is obtained by
sampling the rating of one of the users for a movie in that
genre, chosen uniformly at random. The rewards of the arms
are normalized to be between [0, 1], and the mean reward of
best action is around 0.864, and the reward of the best action
without probing (the mean reward of the best arm) is around
0.792.

Our experimental results for this setting are shown in
Figure 1, where we plot the cumulative regret averaged over
100 independent trials for 500, 000 rounds when the cost of
probing is c = 0 (Upper Left), c = 0.075 (Upper Middle),
c = 0.25 (Upper Right), c = 0.5 (Lower Left), and c = 1
(Lower Right). When c = 0, optimal action involves probing,
and when c = 0.075 or higher; optimal action is pulling an
arm without probing. The shaded area represents error bars
with one standard deviation.

It can be seen that UCB has a linear regret curve when
c = 0, and logarithmic regret curve when c = 0.075 or
higher. This is as expected since UCB does not probe and
hence cannot pull the optimal action when c = 0, which leads
to linear regret. All other algorithms have a logarithmic regret
curve. As expected, it can be seen that the UCBP algorithm
outperforms the baseline UCB-naive-probe algorithm in all
cost values tested. Comparing UCBP and TSP, it can be seen
that both have very similar regret curves. UCBP performs
slightly better than TSP when c = 0 and c = 0.075; and UCBP
performs better with a larger difference than TSP when c =
0.25. While Thompson Sampling based algorithms are known
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Fig. 1. Plots of the cumulative empirical regret of the UCB, UCBP, TSP and UCB-naive-probe algorithms for recommending the best genre in the MOVIELENS
dataset.

to perform better empirically than UCB based algorithms in
general, it was shown in [56] that Thompson Sampling might
perform suboptimally in combinatorial bandits or in settings
with high dimensions; hence these results are not unexpected.
Comparing UCB with UCBP and TSP, it can be seen that UCB
has much higher regret when c = 0 as it cannot choose the
optimal action. When c = 0.075, the optimal action is pulling
an arm directly, and probing is only slightly suboptimal. UCB
has less regret in this case, as both UCBP and TSP need to
spend some pulls on learning that probe actions are optimal.
When c = 0.25 and higher, plots of UCB and UCBP overlap
as UCBP does not choose to probe when the probe cost is
too high and its behavior converges to UCB. UCB-naive-probe
also does not choose to probe, but has higher regret than UCB
or UCBP due to a larger regret from the initialization phase
of the algorithm where all arms need to be pulled once.

2) The Open Bandit Dataset: Open Bandit Dataset is a
public real-world logged bandit dataset provided by ZOZO,
Inc., the largest fashion e-commerce company in Japan [57].
The dataset includes data from three different campaigns, and
we selected the campaign from “Men” items which contains
a total of 4, 077, 727 data points showing whether the user
clicked on the item or not when an item is recommended
in one of the three positions, left, middle, or right. To make
the clicks independent from the position, we only select the
1, 358, 878 data points recommended in the left position.
We model each item as an arm, there are K = 34 arms
in total, and the rewards are binary indicating whether the
user clicked on the item. The mean reward of best action is
around 0.01697, and the reward of the best action without
probing (the mean reward of the best arm) is around 0.00872.
The goal is to recommend the best item to a cold (new)
user. Our experimental results for this setting are shown in
Figure 2, where we plot the cumulative regret averaged over
20 independent trials for 2, 000, 000 rounds when the cost of
probing an arm is c = 0 (Upper Left), c = 0.005 (Upper

Middle), c = 0.01 (Upper Right), c = 0.5 (Lower Left), and
c = 1 (Lower Right). The shaded area represents error bars
with one standard deviation.

Again it can be seen that UCB has a linear regret curve
when c = 0 or c = 0.005, and logarithmic regret curve when
c = 0.01 or higher since the optimal action involves probing
in the former case. It can be seen that all other algorithms
have a logarithmic regret curve, and both the UCBP and
the TSP algorithm outperforms the baseline UCB-naive-probe
algorithm. This validates the usefulness of UCBP in practical
settings. Comparing UCBP and TSP, it can be seen that TSP
performs better than UCBP in all plots. Since this dataset has
Bernoulli distribution, it may be argued that the performance
difference between UCBP and TSP depends on the distribution
of arm rewards.

Comparing UCB with UCBP and TSP, it can be seen that
UCB has much higher regret when c = 0 or c = 0.005 as it
cannot choose the optimal action. When c = 0.01, the optimal
action is pulling an arm directly, and probing is only slightly
suboptimal. UCB has less regret in this case, as both UCBP
and TSP need to spend some pulls on these suboptimal probe
actions. When c = 0.5 and higher, plots of UCB and UCBP
are very close as UCBP does not choose to probe when the
probe cost is too high and its behavior converges to UCB.
The slight difference in the regret plots can be explained
by the fact that a probe action obtains samples from two
arms in a single round. Regarding UCB-naive-probe, it can
be seen again that it has higher regret than UCB or UCBP
due to a larger regret from the initialization phase of the
algorithm.

V. EXTENSION TO MULTIPLE PROBES

One natural extension of our work is allowing multiple
probes. Since the multiple probe setting is a much more
complicated problem, here we study it only for Bernoulli
arm rewards, and leave the consideration of more general
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Fig. 2. Plots of the cumulative empirical regret of the UCBP and UCB-naive-probe algorithms for recommending the best item in the Open Bandit dataset.

Algorithm 4 UCBMP
1: Input: cost of probing c, action set A
2: Initialize: Ni = 0, 1 ≤ i ≤ K
3: Sample each arm once
4: for each round t do
5: S(t) = argsorti − Ui(t)
6: Evaluate Pi(t) values using Eq. (19)
7: s(t) = argmaxi Pi(t)
8: j ← 0
9: for i = 1 to s(t) do

10: Probe arm Si(t), observe reward ri(t)
11: if ri(t) = 1 then
12: j ← i
13: break
14: end if
15: end for
16: If j = s(t) and rj(t) = 0, j ← K
17: Pull arm Sj(t), receive reward rj(t)
18: Update UCB indices for all observed arms
19: end for

bounded arm reward distributions for future work. Under
Bernoulli arm rewards, the optimal strategy is to order the
arms from highest to lowest mean reward, and probe the
arms in this order until obtaining a reward of 1 if the cost
to probe arms is ignored. But since probes have a cost, the
optimal strategy also needs to terminate probing if the cost
of probing exceeds the expected increase in reward through
probing. Hence, the optimal action will have an upper limit
on how many arms are allowed to be probed. For this end,
we define Ri as the expected reward when at most i probes
are allowed. It can be seen that Ri values can be evaluated as
follows:

R0 = µ1

R1 = µ1 + (1− µ1) · µ2−c

R2 = µ1 + (1− µ1) · µ2 + (1− µ1)
· (1− µ2) · µ3−c · (2− µ1)

Ri = µ1 · (1− c) +
i+1∑
j=2

µj ·
j−1∏
k=1

(1− µk)

− c ·
i−1∑
j=2

j · µj ·
j−1∏
k=1

(1− µk)

−i · c ·
i−1∏
j=1

(1− µj), 3 ≤ i ≤ K − 1

Using these expected reward values, the upper limit on the
number of allowed probes in the optimal action can then be
found as:

s∗ = arg max
0≤i≤K−1

Ri

The optimal action can then be represented with the tuple
a∗ = (1, · · · , s∗), i.e. if s∗ ̸= 0 to probe arms from arm
1 to arm s∗ in the given order until observing a reward of
1 and then pulling that arm. If no arm is probed or none of
the probed arms produce a reward of 1, then the arm with
(s∗ + 1)th highest mean reward is pulled. The optimal reward
can be written as ν∗ = Rs∗ .

We propose an algorithm called Upper Confidence Bound
with Multiple Probes (UCBMP) that utilizes this optimal
strategy to choose the optimal action. Since only the empir-
ical mean estimates of the arms are known, UCBMP uses
the UCB upper bound of empirical arm mean rewards to
determine in which order arms should be probed. For this
end, let S(t) denote the ordered K-tuple whose elements
are ordered by decreasing upper confidence values of arm
rewards Ui(t). At each round t, UCBMP first constructs
this K-tuple S(t), and then uses it to evaluate Pi(t),
the upper bound on the expected reward when at most i
probes are allowed. These estimated Pi(t) values can be
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Fig. 3. Plots of the cumulative empirical regret of the UCBMP algorithm
in a Bernoulli reward bandit setting with K = 10 arms for various probing
cost values.

found as:

P0(t) = US1(t)(t)
P1(t) = US1(t)(t) + (1− US1(t)(t)) · US2(t)(t)−c
P2(t) = US1(t)(t) + (1− US1(t)(t)) · US2(t)(t)

+ (1− US1(t)(t)) · (1− US2(t)(t)) · US3(t)(t)
−c · (2− US1(t)(t))

Pi(t) = US1(t)(t) · (1− c)

+
i+1∑
j=2

USj(t)(t) ·
j−1∏
k=1

(1− USk(t)(t))

−c ·
i−1∑
j=2

j · USj(t)(t) ·
j−1∏
k=1

(1− USk(t)(t))

−i · c ·
i−1∏
j=1

(1− USj(t)(t)), 3 ≤ i ≤ K − 1

(19)

The maximum number of probes that are allowed in round
t, s(t); is found as s(t) = argmax0≤i≤K−1 Pi(t). Arms are
probed in the order of S(t) until observing a reward of 1, and
then that arm is pulled. If a reward of 1 is not observed in
s(t) probes, then arm Ss(t)+1(t) is pulled. The reward r(t)
is received from the arm that is pulled. The pseudo-code is
provided in Algorithm 4.

The regret of UCBMP can be written as R(T ) = T · ν∗ −∑T
t=1 r(t). To evaluate the performance of UCBMP in real

world applications, we ran simulations for a Bernoulli bandit
setting with K = 10 arms, where their mean reward vec-
tor is µ = [0.7, 0.69, 0.68, 0.67, 0.66, 0.65, 0.63, 0.6, 0.5, 0.4].
The simulation results for this setting for cost values
c = [0, 0.05, 0.15, 0.18, 0.2, 0.25] are provided in Fig. 3.
The optimal number of probes is s∗ = 9 when cost is
0, 0.05, 0.15, or 0.18; is s∗ = 7 when cost is 0.2; and is

s∗ = 0 when c = 0.25. As can be seen from the plots,
regret of UCBMP scales sublinearly with t. While the plots
can not be directly compared as the optimal reward value
changes with cost, it can still be seen that in general regret
increases with cost. This is because the number of arms that
can be probed is higher when cost is low, which provides
more reward observations per round. Also note that the plot
for c = 0.25 converges slower because of this effect, since
the optimal action is not to make any probes, arm reward
observations are collected slower in time. The theoretical
analysis of UCBMP is much more intricate, hence we leave
the regret analysis of UCBMP as future work.

VI. CONCLUDING REMARKS

In this paper, we introduce a previously unexplored setting
for the multi-armed bandit problem with probes, where before
pulling an arm, the agent is allowed to probe one arm
to observe its reward, which is sampled from a bounded
distribution, for a cost c ≥ 0. We introduce a new regret
definition that is based on the expected reward of the
optimal action, and we identify the optimal strategy. We pro-
vide UCBP, a novel algorithm that utilizes this strategy to
achieve a gap-independent regret upper bound that scales with
O(
√
KT log T ), and a gap-dependent bound that scales with

O(K log T ) if rewards are discrete. To demonstrate the empir-
ical performance of UCBP, we provide a naive UCB-based
approach that has a gap-independent regret upper bound on
the order of O(

√
K2T log T ), and a gap-dependent bound on

the order of O(K2 log T ). We use this algorithm as a baseline
in our simulations, and simulation results corroborate the better
performance of UCBP over the UCB-naive-probe algorithm,
and validate the utility of UCBP in practical settings.

Our work opens multiple directions for future research.
In Section V, we extend our setting to multiple probes for each
round when the reward distributions of arms are Bernoulli,
and we provide the UCBMP algorithm. This can be further
extended by providing the theoretical analysis of UCBMP, and
extending UCBMP to more general bounded arm reward distri-
butions in future work. Another interesting future direction is
to extend our bandit results to the case with imperfect probes.
We believe this can be accomplished by deriving confidence
intervals for the probe reward since the upper confidence index
of the probe outcome can be used to decide whether to pull the
probe arm or the backup arm. We anticipate the regret analysis
for this case to be challenging since the uncertainty of the
actions with probes will induce further suboptimal actions to
be taken by the algorithm. Lastly, the case where the rewards
of different arms are correlated can also be considered. In this
case, the correlation between arms can be used to predict the
rewards of the other arms from the probe outcome, thereby
providing more utility to the probes.

APPENDIX A
PRELIMINARIES

Before presenting the regret analysis of the UCBP
algorithm, we start by presenting some well-known properties.
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Fact 9 (Hoeffding’s Inequality): Let Z1, Z2, · · · , Zn be
independent random variables bounded between ai ≤ Zi ≤ bi,
then for any δ > 0, we have

P
(∑n

i=1 Zi

n
− E[Z] ≥ δ

)
≤ e

− 2n2δ2∑n
i=1(bi−ai)

2
.

Lemma 10 ([2, Theorem 2]): Consider a K-armed bandit
problem with reward distributions Γ = (Γ1, · · · ,ΓK), Γ ∈ Θ
where Γi, i ∈ [K] is the reward distribution of arm i. Also
define Θi = {Γ : µ(Γi) > maxj ̸=i µ(Θj)} as the parameter
set where arm i is the unique optimal arm. An algorithm
π ∈ Π is defined as uniformly good if for all Γ ∈ Θi,
Rπ(T ) = o(T a), for all a > 0. Let DKL(·||·) denote
the Kullback-Leibler divergence. Assume that DKL(Γ||λ),
satisfies the following two conditions:

a) 0 < DKL(Γ, λ) <∞ whenever µ(λ) > µ(Γ), and
b) ∀ϵ > 0 and ∀ϵ > 0 and ∀ Σ, λ ∈ Θ such that µ(λ) >

µ(Σ), ∃δ = δ(ϵ,Σ, λ) > 0 for which |DKL(Γ, λ) −
DKL(Γ, λ′)| < ϵ whenever µ(λ) ≤ µ(λ′) ≤ µ(λ) + δ

Also assume that Θ is such that ∀λ ∈ Θ and ∀δ > 0, ∃λ′ ∈
Γ such that µ(λ) < µ(λ′) < µ(λ) + δ.

Let π ∈ Π be a uniformly good algorithm. Under these
assumptions, for any Γ ∈ Θj , it holds that

lim inf
T→∞

E [Ni(T )]
log T

≥ 1
DKL(Γi,Γ∗)

, ∀i ̸= j

Fact 11 (Conditional Probabilities): The probability of an
event A can be upper bounded by conditioning on an event B
as follows

P (A) = P (A,B) + P (A,Bc)
= P (A|B)P (B) + P (A|Bc)P (Bc)
≤ P (A|B) + P (Bc) .

Upper bounds of similar form are used throughout the proof.
Fact 12: We include the following trivial bounds for the

max function when b > 0, c > 0:

(i)max(a, b+ c) ≤ max(a, b) + c

(ii)max(a, b− c) ≥ max(a, b)− c
(iii)max(a, b)± c = max(a± c, b± c) .

(iv) We also note the following inequality when a, b > 0:

E[max(ri, a)] + bP(ri < a)
≤ E[max(ri, a+ b)]
≤ E[max(ri, a)] + bP(ri ≤ a+ b) .

Corollary 13: The mean reward of a probe action a = (i, j)
can be upper bounded as

ν(i,j) ≤ µi + p(i,j) · µj

Proof:

ν(i,j) = E [max(ri, µj)]
= E [max (ri, µj)1 {ri > µj}

+max (ri, µj)1 {ri ≤ µj}]
= E [ri1 {ri > µj}+ µj1 {ri ≤ µj}]

=
∫

r>µj

rfi(r)dr +
∫

r≤µj

µjfi(r)dr

=
∫

r>µj

rfi(r)dr +
∫

r≤µj

rfi(r)dr

+
∫

r≤µj

(µj − r)fi(r)dr

=
∫
rfi(r)dr +

∫
r≤µj

(µj − r)fi(r)dr

≤ µi +
∫

r≤µj

µjfi(r)dr

= µi + P (ri ≤ µj)µj = µi + p(i,j) · µj

where fi(r) is used to denote the probability distribution
function of the reward of arm i.

Corollary 14: Letting ν(i, µ) := E [max(ri, µ)], ν(i, µ +
δ)− ν(i, µ) can be upper bounded as

ν(i, µ+ δ)− ν(i, µ) ≤ δ · P (ri ≤ µ+ δ)

Proof:

ν(i, µ) =E [max (ri, µ) · I (ri > µ) + max (ri, µ) · I (ri ≤ µ)]
=E [ri · I (ri > µ) + µ · I (ri ≤ µ)]
=E [ri · I (ri > µ)] + µ · P (ri ≤ µ)

=
∫

r>µ

rfi(r)dr +
∫

r≤µ

µfi(r)dr

=
∫

µ<r≤µ+δ

rfi(r)dr +
∫

r>µ+δ

rfi(r)dr

+
∫

r≤µ

µfi(r)dr.

where fi(r) is used to denote the probability distribution
function of the reward of arm i. Similarly,

ν(i, µ+ δ)
=E [max (ri, µ+ δ) · I (ri > µ+ δ)

+max (ri, µ+ δ) · I (ri ≤ µ+ δ)]
=E [ri · I (ri > µ+ δ) + (µ+ δ) · I (ri ≤ µ+ δ)]
=E [ri · I (ri > µ+ δ)] + (µ+ δ) · P (ri ≤ µ+ δ)

=
∫

r>µ+δ

rfi(r)dr +
∫

r≤µ+δ

(µ+ δ)fi(r)dr

=
∫

r>µ+δ

rfi(r)dr +
∫

r≤µ+δ

(µ+ δ) fi(r)dr

=
∫

r>µ+δ

rfi(r)dr +
∫

µ<ri≤µ+δ

(µ+ δ) fi(r)dr

+
∫

r≤µ

(µ+ δ) fi(r)dr.

Then,

ν(i, µ+ δ)− ν(i, µ) = δ

∫
r≤µ

fi(r)dr

+
∫

µ<ri≤µ+δ

(µ+ δ − r) fi(r)dr

≤ δ
∫

r≤µ

fi(r)dr
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+ δ

∫
µ<ri≤µ+δ

fi(r)dr

≤ δ
∫

r≤µ+δ

fi(r)dr

≤ δ · P (ri ≤ µ+ δ)

APPENDIX B
DERIVATION OF CONFIDENCE INTERVALS FOR ACTIONS

In this section we derive the high probability confidence
intervals for the pull and probe actions of UCBP.

Fact 15: The following holds for all i ∈ [K] and u < t.

P

(
µ̂i(t, u)− µi >

√
3 log t
u

)
≤ e−6 log t = t−6 , (20)

P

(
µi − µ̂i(t, u) >

√
3 log t
u

)
≤ e−6 log t = t−6 . (21)

Proof: We prove (20).

P

(
µ̂i(t, u)− µi >

√
3 log t
u

)

≤ P

(∑u
τ=1 r̃i(τ)
u

− µi ≥
√

3 log t
u

)

≤ e−
2u2

(√
3 log t

u

)2

u = t−6 ,

where the last line follows from Fact 9. (21) can be proven
via a similar argument.

Corollary 16: The following holds for all a = (i, ∅) ∈ As

and u < t.

P
(
ν̂(i,∅)(t, u) > U(i,∅)(t, u)

)
≤ t−6 ,

P
(
ν̂(i,∅)(t, u) < L(i,∅)(t, u)

)
≤ t−6 .

Proof: The result follows from Fact 15 by observing that
ν̂(i,∅)(t, u) := µ̂i(t, u).

Corollary 17: The following two inequalities hold for all
a = (i, j) ∈ Ap and r, s < t.

P
(
ν(i,j) > U(i,j)(t, r, s)

)
≤ P

ν(i,j) ≥ r∑
τ=1

max
(
r̃i(τ), µ̂j(t, s) +

√
3 log t

s

)
r

−c+
√

3 log t
r

)
≤ 2t−6 ,

and

P
(
ν(i,j) < L(i,j)(t, r, s)

)
≤ P

ν(i,j) ≤ r∑
τ=1

max
(
r̃i(τ), µ̂j(t, s)−

√
3 log t

s

)
r

−c−
√

3 log t
r

)
≤ 2t−6 .

Proof: We have

P

ν(i,j) ≥ r∑
τ=1

max
(
r̃i(τ), µ̂j(t, s) +

√
3 log t

s

)
r

−c+
√

3 log t
r

)

= P

ν(i,j) ≥ r∑
τ=1

max
(
r̃i(τ), µ̂j(t, s) +

√
3 log t

s

)
r

−c+
√

3 log t
r

, µ̂j(t, s) ≥ µj −
√

3 log t
s

)

d+ P

ν(i,j) ≥ r∑
τ=1

max
(
r̃i(τ), µ̂j(t, s) +

√
3 log t

s

)
r

−c+
√

3 log t
r

, µ̂j(t, s) < µj −
√

3 log t
s

)

≤ P

(
ν(i,j) ≥

r∑
τ=1

max (r̃i(τ), µj)
r

−c+
√

3 log t
r

)

+ P

(
µ̂j(t, s) < µj −

√
3 log t
s

)

≤ P

(
E[max(ri, µj)]−c ≥

r∑
τ=1

max (r̃i(τ), µj)
r

−c

+

√
3 log t
r

)
+ t−6 (22)

= P

(
r∑

τ=1

max (r̃i(τ), µj)
r

− E[max(ri, µj)]

≤ −
√

3 log t
r

)
+ t−6

≤ 2 t−6 , (23)

where (22) uses Fact 15, and (23) follows from the fact that
{max(r̃i(τ), µj)}rτ=1 forms a sequence of i.i.d. random vari-
ables with mean E[max(ri, µj)] together with the Hoeffding
bound in Fact 15 for i.i.d. random variables.

Similarly, we have

P

ν(i,j) ≤ r∑
τ=1

max
(
r̃i(τ), µ̂j(t, s)−

√
3 log t

s

)
r

−c−
√

3 log t
r

)

= P

ν(i,j) ≤ r∑
τ=1

max
(
r̃i(τ), µ̂j(t, s)−

√
3 log t

s

)
r
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−c−
√

3 log t
r

, µ̃j(s) ≤ µj +

√
3 log t
s

)

+ P

ν(i,j) ≤ r∑
τ=1

max
(
r̃i(τ), µ̂j(t, s)−

√
3 log t

s

)
r

−c−
√

3 log t
r

, µ̂j(t, s) > µj +

√
3 log t
s

)

≤ P

(
ν(i,j) ≤

r∑
τ=1

max (r̃i(τ), µj)
r

−c−
√

3 log t
r

)

+ P

(
µ̂j(t, s) > µj +

√
3 log t
s

)

≤ P

(
E[max(ri, µj)]−c ≤

r∑
τ=1

max (r̃i(τ), µj)
r

−c

−
√

3 log t
r

)
+ t−6 (24)

= P

(
r∑

τ=1

max (r̃i(τ), µj)
r

− E[max(ri, µj)] ≥
√

3 log t
r

)
+ t−6

≤ 2 t−6 , (25)

where again (24) uses Fact 15, and (25) follows from the
fact that {max(r̃i(τ), µj)}rτ=1 forms a sequence of i.i.d.
random variables with mean E[max(ri, µj)] together with the
Hoeffding bound in Fact 15 for i.i.d. random variables.

Corollary 18: For probe action a = (i, j) ∈ Ap, the
following holds at round t given Ht and under event Et.

U(i,j)(t)− ν(i,j)
≤ 2Ci(t) + 2P (ri(t) ≤ µj + 2Cj(t)|Ht) · Cj(t) .

Proof: We have

U(i,j)(t) =
Ni(t)∑
τ=1

max (r̃i(τ), µ̂j(t) + Cj(t))
Ni(t)

−c+ Ci(t)

≤
Ni(t)∑
τ=1

max (r̃i(τ), µj + 2Cj(t))
Ni(t)

−c+ Ci(t) (26)

≤ E [max(ri, µj + 2Cj(t))|Ht]−c+ 2Ci(t) (27)

where (26) is due to µ̂j(t) ≤ µj +Cj(t) on Et. (27) is due to

Ni(t)∑
τ=1

max (r̃i(τ), µj + 2Cj(t))
Ni(t)

≤E [max(ri, µj + 2Cj(t))|Ht]

on Et. Note that given Ht, Cj(t) is deterministic so we can
use Fact 15 as in the proof of Corollary 17. To proceed, note
that

E [max(ri, µj + 2Cj(t))|Ht]

=
∫

r

max(r, µj + 2Cj(t))f(r)dr

=
∫

r≤µj

max(r, µj + 2Cj(t))f(r)dr

+
∫

µj<r≤µj+2Cj(t)

max(r, µj + 2Cj(t))f(r)dr

+
∫

µj+2Cj(t)<r

max(r, µj + 2Cj(t))f(r)dr

=
∫

r≤µj

(µj + 2Cj(t))f(r)dr

+
∫

µj<r≤µj+2Cj(t)

(µj + 2Cj(t))f(r)dr

+
∫

µj+2Cj(t)<r

rf(r)dr

≤
∫

r≤µj

(µj + 2Cj(t))f(r)dr

+
∫

µj<r≤µj+2Cj(t)

(r + 2Cj(t))f(r)dr

+
∫

µj+2Cj(t)<r

rf(r)dr

=
∫

r≤µj

µjf(r)dr +
∫

r>µj

rf(r)dr

+ 2
∫

r≤µj+2Cj(t)

Cj(t)f(r)dr

=
∫

r

max(r, µj)f(r)dr + 2P(ri(t) ≤ µj + 2Cj(t)) · Cj(t)

= E [max(ri, µj)] + 2P(ri(t) ≤ µj + 2Cj(t)) · Cj(t) .

Using this, it can be seen that

U(i,j)(t) ≤ E [max(ri, µj)]
+ 2 · P (ri(t) ≤ µj + 2Cj(t)|Ht) · Cj(t)

−c+ 2Ci(t)
= ν(i,j) + 2Ci(t)

+ 2 · P (ri(t) ≤ µj + 2Cj(t)|Ht) · Cj(t).

APPENDIX C
EXPECTED NUMBER OF VIOLATIONS OF GOOD EVENT

Lemma 19: We have
∑T

t=K+1 P(Ec
t ) ≤ 2π2K2

3 .
Proof: Note that

T∑
t=1

1
{
Ec

t,a

}
=

T∑
t=1

1

{
min

r≤t,s≤t
Ua∗(t, r, s) ≥ ν∗

∧ max
u≤t,v≤t

La(t, u, v) ≤ νa

}
≤

T∑
t=1

t∑
r=1

t∑
s=1

t∑
u=1

t∑
v=1

1 {Ua∗(t, r, s) ≥ ν∗

∧La(t, u, v) ≤ νa} .

By the monotonicity of expectation, it holds that
T∑

t=1

P
(
Ec

t,a

)
≤

T∑
t=1

t∑
r=1

t∑
s=1

t∑
u=1

t∑
v=1

P (Ua∗(t, r, s) ≥ ν∗

∧La(t, u, v) ≤ νa)
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≤
T∑

t=1

t∑
r=1

t∑
s=1

t∑
u=1

t∑
v=1

4t−6 (28)

≤
T∑

t=1

4t−2 ≤ 2π2

3
,

where we used Corollary 17 in (28). The result follows using
Et =

⋂
a∈A Et,a.

T∑
t=1

P (Ec
t ) =

T∑
t=1

P

(⋃
a∈A
Ec

t,a

)

≤
∑
a∈A

T∑
t=1

P
(
Ec

t,a

)
=

2π2K2

3
.

APPENDIX D
PROOF OF THEOREM 4

Recall the regret decomposition in Lemma 1 and Lemma 2.
Define o(t) ⊂ at as the set of arms whose reward is

observed in round t; and Ht = (a1, r(1), o(1), · · · , at−1, r(t−
1), o(t − 1)) as the history of UCBP up to choosing action
at, and let E[·|Ht] be the conditional expectation given
this history. Using Lemma 2, Rs(T ) can be decomposed
as

Rs(T ) = 2E

 T∑
t=K+1

∑
(i,·)∈A

1 {at = (i, ·), Et} · Ci(t)


+ 2E

 T∑
t=K+1

∑
(i,j)∈Ap

1 {at = (i, j), Et}

·P (ri(t) ≤ µj + 2Cj(t)|Ht) · Cj(t)] .

To proceed, we note the following condition for an action
to be chosen at round t by UCBP. Given event Et, for action
a to occur in round t, the upper confidence index of action a
needs to be above the upper confidence index of the optimal
action a∗ at round t. Hence, the action a can only be chosen
in round t if

Ua∗(t) ≤ Ua(t)

is satisfied. If a = (i, j) is a probe action, using Corollary 18,
and the fact that ν∗ ≤ Ua∗(t), we have

ν∗ ≤ Ua∗(t)
≤ Ua(t)
≤ νa + 2Ci(t) + 2P (ri(t) ≤ µj + 2Cj(t)|Ht) · Cj(t) .

Hence, action a = (i, j) can be chosen only if

∆a ≤ 2Ci(t) + 2P (ri(t) ≤ µj + 2Cj(t)|Ht) · Cj(t) .

Similarly, if a = (i, ∅) is a pull action, it can be chosen only
if

∆a ≤ 2Ci(t) .

Defining ∆min,i = mina∈Ai:∆a>0 ∆a, we apply the reverse
amortization trick that is used in [42, Theorem 4] for an action
at = (it, jt) as follows.

∆at ≤ 2Cit(t) + 2P (rit(t) ≤ µjt + 2Cjt(t)|Ht) · Cjt(t)
≤ −∆at + 4Cit(t)

+ 4P (rit(t) ≤ µjt + 2Cjt(t)|Ht) · Cjt(t) (29)

≤
(
−∆at

2
+ 4Cit(t)

)
+ P (rit(t) ≤ µjt + 2Cjt(t)|Ht)

·
(
−∆at

2
+ 4Cjt

(t)
)

(30)

≤ 4

(
−∆min,it

8
+

√
3 log T

Nit
(t− 1)

)
+ 4P (rit

(t) ≤ µjt
+ 2Cjt

(t)|Ht)

·

(
−∆min,jt

8
+

√
3 log T

Njt
(t− 1)

)
,

where Eq. (29) is one of the main observations for the reverse
amortization trick which brings the gap to the right side of the
equation, and the fact that P (rit

(t) ≤ µj + 2Cjt
(t)|Ht) ≤ 1

is used in Eq. (30). Similarly, for the case where at = (it, ∅)
the following can be obtained

∆at
≤ 4

(
−∆min,it

8
+

√
3 log T

Nit(t− 1)

)
.

Define

κi,T (ℓ) =

{
4
√

3 log T
ℓ , if 1 ≤ ℓ ≤ Li,T ,

0, if ℓ > Li,T ,

where Li,T = 192 log T
(∆min,i)

2 . It can be seen that the reverse
amortization trick greatly simplifies upper bounding the regret
since regret is not incurred when ℓ > Li,T . Regret can be
written in terms of this κi,T (ℓ) term as

Rs(T )

≤ E

 T∑
t=K+1

∑
(i,j)∈Ap

1 {at = (i, j), Et}· [κi,T (Ni(t))

+P (ri(t) ≤ µj + 2Cj(t)|Ht) ·κj,T (Nj(t))]]

+ E

 T∑
t=K+1

∑
(i,∅)∈As

1 {at = (i, ∅), Et}

·κi,T (Ni(t))]

= E

 T∑
t=K+1

∑
(i,j)∈Ap

1 {at = (i, j), Et}

·P (ri(t) ≤ µj + 2Cj(t)|Ht) ·κj,T (Nj(t))]

+ E

 T∑
t=K+1

∑
(i,j)∈A

1 {at = (i, j), Et} · κi,T (Ni(t))


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= E

[
T∑

t=K+1

∑
(i,j)∈Ap

1 {Et} · P (ri(t) ≤ µj + 2Cj(t)|Ht)

· κj,T (Nj(t)) · E [1 {at = (i, j)}

· 1 {j ∈ o(t)}
P (ri(t) ≤ Uj(t)|Ht)

∣∣∣Ht

]]

+ E

 T∑
t=K+1

∑
(i,j)∈A

1 {at = (i, j), Et} · κi,T (Ni(t))


(31)

= E

 T∑
t=K+1

E

 ∑
(i,j)∈Ap

1 {at = (i, j), j ∈ o(t), Et}

·κj,T (Nj(t)) ·
P (ri(t) ≤ µj + 2Cj(t)|Ht)

P (ri(t) ≤ Uj(t)|Ht)

∣∣∣∣∣Ht

]]

+ E

 T∑
t=K+1

∑
(i,j)∈A

1 {at = (i, j), Et} · κi,T (Ni(t))


where (31) follows from the tower rule and the fact that the
under event at = (i, j), the event j ∈ o(t) can happen if
and only if ri(t) ≤ Uj(t). To proceed, we use the fact that
P (ri(t) ≤ µj + 2Cj(t)|Ht) ≤ P (ri(t) ≤ Uj(t)|Ht). Then,

Rs(T )

≤ E

 T∑
t=K+1

E

 ∑
(i,j)∈Ap

1 {at = (i, j), j ∈ o(t), Et}

·κj,T (Nj(t))

∣∣∣∣∣Ht

]]

+ E

 T∑
t=K+1

∑
(i,j)∈A

1 {at = (i, j), Et} · κi,T (Ni(t))


= E

 T∑
t=K+1

∑
(i,j)∈Ap

1 {at = (i, j), j ∈ o(t), Et}

·κj,T (Nj(t))]

+ E

 T∑
t=K+1

∑
(i,j)∈A

1 {at = (i, j), Et} · κi,T (Ni(t))


= E

 T∑
t=K+1

∑
(i,j)∈A

1 {at = (i, j), Et} · [1 {i ∈ o(t)}

·κi,T (Ni(t)) + 1 {j ∈ o(t)} · κj,T (Nj(t))]]

= E

[
T∑

t=K+1

K∑
i=1

1 {i ∈ o(t), Et} · κi,T (Ni(t))

]

= E

 K∑
i=1

Ni(T−1)∑
s=0

κi,T (s)

 (32)

≤
K∑

i=1

Li,T∑
s=0

κi,T (s)

=
K∑

i=1

Li,T∑
s=1

4

√
3 log T
s

≤ 4
√

3 log T
K∑

i=1

Li,T∑
s=1

√
1
s

≤ 8
√

3 log T
K∑

i=1

√
Li,T

≤
K∑

i=1

192 log T
∆min,i

(33)

where Eq. (32) follows from the fact that Ni(t) increases by
1 when i ∈ o(t). It can be seen from Lemma 19 that,

T∑
t=K+1

P(Ec
t ) ≤

2π2K2

3
.

Combining this with (33), it can be concluded that:

RT = Rs(T ) +Rref(T ) +
T∑

t=K+1

P(Ec
t ) +K

≤
K∑

i=1

192 log T
∆min,i

+Rref(T ) +
2π2K2

3
+K

Also, using the fact that Rref(T ) ≤ 12 log T
γi

from Lemma 21,
it can also be seen that

RT = Rs(T ) +Rref(T ) +
T∑

t=K+1

P(Ec
t ) +K

≤
K∑

i=1

192 log T
∆min,i

+
K∑

i=1

96 log T
γi

+
2π2K2

3
+K

APPENDIX E
UPPER BOUND ON REFERENCE POINT REGRET

Lemma 20: Given Ht, under the event that the confidence
intervals hold in round t, the upper bound on reference point
regret if action (i, j), ∀i ∈ [K] is chosen at round t is

d(i,j)(t) ≤ 4Cj(t)1 {Uj(t) ≥ ri(t) ≥ µj , j ∈ o(t)} .

Proof: To upper bound d(i,j)(t), notice that when ri(t)
is not between the values of Uj(t) and µj , d(i,j)(t) = 0 will
hold since the decision will not be incorrect in these instances.
Hence, the decision to pull the probe arm or the backup arm
can be incorrect only when ri(t) is between the values of
Uj(t) and µj , and this can be analyzed in two different cases.
Assuming the observed reward from the probe is ri(t), the first
case is when Uj(t) ≥ ri(t) ≥ µj . Then, the UCBP algorithm
will decide to pull the backup arm j, and hence j ∈ o(t), and
UCBP will get expected reward µj even though the optimal
decision is to pull arm i and get reward ri(t). The gap in
reward compared to the optimal decision is d(i,j)(t) = ri(t)−
µj ≤ Uj(t) − µj ≤ 4Cj(t) in this case. The second case is
when µj ≥ ri(t) ≥ Uj(t), but this cannot happen when the
confidence bounds hold.

Lemma 21: The cumulative reference point regret Rref(T )
given in (4) is upper bounded as

Rref(T ) ≤ 8
√
3KT log T .
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Proof: To derive an upper bound on the reference point
regret, it can be seen from Lemma 20 that d(i,j)(t) ≤ 4Cj(t).
We define Na(T ) :=

∑T
t=K+1 1 {at = a} as the total number

of times action a is taken until round T ; and Bj(T ) :=∑K
i=1,i ̸=j N(i,j)(T ) as the total number of times action (·, j) is

taken until round T . We also let A(·,j) denote the set of probe
actions with backup arm j. Let Tj = {K + 1 ≤ t ≤ T : j ∈
o(t)}. Let TA,j = {K + 1 ≤ t ≤ T : at ∈ A(·,j), j ∈ o(t)}.

Denote the ith element of each set S above by S(i). Note
that

Nj(Tj(1)) = 1, Nj(Tj(2)) = 2, . . . ,
Nj(Tj(k)) = k, . . . , Nj(Tj(|Tj |)) = |Tj | ,

and

Nj(TA,j(1)) ≥ 1, Nj(TA,j(2)) ≥ 2, . . . ,
NA,j(Tj(k)) ≥ k, . . . , Nj(TA,j(|Tj |)) ≥ |TA,j | .

Using the above display, we obtain∑
t∈TA,j

√
1

Nj(t)
≤

|TA,j |∑
x=1

√
1
x
≤ 2
√
|TA,j | . (34)

which will be used in the rest of the proof. With these
definitions and properties, Rref(T ) can be upper bounded as
follows

Rref(T )

= E

[
T∑

t=K+1

∑
a∈A

1 {at = a} · da(t)
∣∣∣E(T )]

= E

[
K∑

j=1

∑
a∈A(·,j)

T∑
t=K+1

1 {at = a} · da(t)
∣∣∣E(T )]

= E

[
K∑

j=1

∑
a∈A(·,j)

T∑
t=K+1

(1 {at = a, j ∈ o(t)} · da(t)

+1 {at = a, j /∈ o(t)} · da(t))
∣∣∣E(T )]

= E

[
K∑

j=1

T∑
t=K+1

(
1
{
at ∈ A(·,j), j ∈ o(t)

}
· dat

(t)

+1
{
at ∈ A(·,j), j /∈ o(t)

}
· dat

(t)
) ∣∣∣E(T )]

= E

[
K∑

j=1

T∑
t=K+1

1
{
at ∈ A(·,j), j ∈ o(t)

}
· dat

(t)
∣∣∣E(T )] (35)

≤ E

[
K∑

j=1

T∑
t=K+1

1
{
at ∈ A(·,j), j ∈ o(t)

}
· 4Cj(t)

∣∣∣E(T )]

= 4
√

3 log T · E

[
K∑

j=1

T∑
t=K+1

1
{
at ∈ A(·,j), j ∈ o(t)

}
·

√
1

Nj(t)

∣∣∣E(T )]

≤ 4
√
3 log T · E

[
K∑

j=1

∑
t∈TA,j

√
1

Nj(t)

∣∣∣E(T )]

≤ 8
√
3 log T · E

 K∑
j=1

√
|TA,j |

 (36)

≤ 8
√
3 log T · E

√√√√K
K∑

j=1

|TA,j |


≤ 8
√
3KT log T ,

where (35) follows from the fact that when at ∈ A(·,j) and
j /∈ o(t), dat(t) = 0, (36) follows from (34), and the last
inequality follows from

∑K
j=1 |TA,j | ≤ T which holds since

in each round only one action is chosen.
Lemma 22: If the distributions Γi for each i ∈ [K] are

defined over a discrete support D in [0, 1], the cumulative
reference point regret until round T can be upper bounded as:

Rref(T ) ≤
K∑

i=1

96 log T
γi

,

where we use dl ∈ D, 1 ≤ l ≤ |D| to denote the elements
of the set D; and we let γi := minl |dl − µi| if µi ̸∈ D, and
γi := min1≤l≤|D|−1 |dl − dl+1| if µi ∈ D.

Proof: We proceed bounding Rref(T ) from (36) in
Lemma 21. Note that ri can only take discrete values under the
discrete distribution, i.e. ri ∈ dl, 1 ≤ l ≤ |D|. Hence, regret
can only be incurred when {∃l : Uj(t) ≥ dl ≥ µj , 1 ≤ l ≤
|D|}, since d(i,j)(t) = 0 otherwise. From this, it can be seen
that d(i,j)(t) = 0 when 4Cj(t) < γj since it cannot be the
case that µi ≤ dl ≤ Ui(t) for 1 ≤ l ≤ |D| when 4Cj(t) < γj .
Hence, for action (i, j), regret can only be incurred for the
rounds where

4Cj(t) = 4

√
3 log t
Nj(t)

≥ γj

happens. Rearranging the terms,

Nj(t) ≤
48 log t
γ2

j

≤ 48 log T
γ2

j

which also means

|TA,j | ≤
48 log T
γ2

j

Using this, Rref(T ) can be upper bounded as

Rref(T ) ≤
K∑

j=1

96 log T
γj

.
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APPENDIX F
PROOF OF THEOREM 6

In the standard K-armed bandit problem, the reward distri-
butions of arms are given by Γi, ∀i ∈ [K]. However, in our
multi-armed bandit setting with probes, the agent chooses
actions that are composed of one or more arms. To characterize
the distributions of these actions, we define

Γ(i,j) as the distribution function of action (i, j), and Γ∗ as
the distribution function of the optimal action a∗.

We denote the distribution function of action (i, ∅) as Γ(i,∅),
it can be seen that its distribution is the same as the distribution
function of arm i, i.e. Γ(i,∅) = Γi. We also use DKL(·||·)
to denote the Kullback-Leibler divergence function. From
Lemma 10, we know that the following holds for the standard
multi-armed bandit problem:

lim inf
T→∞

E [Ni(T )]
log T

≥ 1
DKL(Γi,Γ∗)

To expand this result into our problem setting of multi-
armed bandits with probes, we note the dependency between
different actions. First, it can be seen that taking action a =
(i, j) yields in a sample of arm i, and if the backup arm is
pulled, it also yields in a sample of arm j. Therefore, letting
Ai = {(i, j) : j ∈ ([K]∪{∅})\{i}}∪{(j, i) : j ∈ [K]\{i}},
it can be seen that taking an action a ∈ Ai may possibly yield
samples of arm i (it may not yield in a sample when arm i is
the backup arm and the backup arm is not pulled). We let si(t)
denote the total number of samples obtained for arm i up to
round t when the reward of arm i is observed through taking
an action a ∈ Ai. Further, also note that one reward sample
of action (i, j) can be produced from one reward sample of
arm i and one sample from arm j (these samples need not be
from the same time instant as we assume the stochasticity of
the reward samples across time). Let s(i,j)(t) denote the total
number of samples obtained on action a = (i, j) when all
the information from samples of all actions up to round t are
used to produce samples of other actions, i.e. when samples
of arms i and j are used to obtain the maximum possible
number of samples of action a = (i, j), it can be seen that
s(i,j)(t) = min(si(t), sj(t)).

Now that we have seen that s(i,j)(t) captures the total
amount of samples obtained from action a = (i, j) (by also
utilizing the information obtained for action a = (i, j) when an
action a′ ∈ Ai∪Aj is taken), Lemma 10 can be used to lower
bound the total number of samples (sampled or constructed
from other samples) of an action a as:

lim inf
T→∞

E
[
s(i,j)(T )

]
log T

≥ 1
DKL(Γ(i,j),Γ∗)

(37)

Combining (37) with the fact that s(i,j)(t) =
min(si(t), sj(t)), we have that

lim inf
T→∞

E [si(T )]
log T

≥ 1
DKL(Γ(i,j),Γ∗)

Deriving similar inequalities for all actions that involve arm
i, which are (i, ∅), and for some j ̸= i, (i, j) and (j, i), and

excluding the optimal action a∗, we have

lim inf
T→∞

E [si(T )]
log T

≥
[

min
a∈Ai,a̸=a∗

{DKL(Γa||Γ∗)}
]−1

(38)

where Ai = {(i, j) : j ∈ ([K] ∪ {∅}) \ {i}} ∪ {(j, i) : j ∈
[K] \ {i}}. It can be seen that si(t) can be upper bounded by
the following:

si(t) ≤
∑

j∈[K]∪{∅}
(i,j)̸=a∗

N(i,j)(t) +
K∑

j=1
j ̸=i, (j,i)̸=a∗

N(j,i)(t) (39)

since in the best case, when an action (i, j) is taken,
the rewards of both arm i and arm j can be observed.
Combining (38) and (39), we have

lim inf
T→∞

E
[∑

a∈Ai,a̸=a∗ Na(t)
]

log T

≥
[

min
a∈Ai,a̸=a∗

{DKL(Γa||Γ∗)}
]−1

(40)

Denoting lim infT→∞
E[Na(T )]

log T = ba, (40) can be rewritten
as: ∑

a∈Ai,a̸=a∗

ba ≥
[

min
a∈Ai,a̸=a∗

{DKL(Γa||Γ∗)}
]−1

, ∀i ∈ [K]

Using the number of samples of the suboptimal actions, the
expected cumulative regret can be given as

RT ≥
∑

a∈A\{a∗}

E [Na(T )]∆a

lim inf
T→∞

RT

log T
≥ lim inf

T→∞

∑
a∈A\{a∗} E [Na(T )]∆a

log T

lim inf
T→∞

RT

log T
≥

∑
a∈A\{a∗}

ba∆a

Therefore, we can conclude that for the multi-armed bandit
setting with costly probes where there is a unique optimal
action, the expected cumulative regret for any uniformly good
algorithm, as defined in [2], is lower bounded as

lim inf
T→∞

RT

log T
≥ C(Γ),

where C(Γ) is the minimal value of the following linear
optimization problem:

min
ba≥0, ∀a∈A\{a∗}

∑
a∈A\{a∗}

ba∆a

s.t. ∀i ∈ [K],
∑

a∈Ai,a̸=a∗

ba ≥
[

min
a∈Ai,a̸=a∗

{DKL(Γa||Γ∗)}
]−1

,

Γ(i,∅) = Γi, Γ(i,j) = max(ri, µj) − c is the distribution
function of action (i, j) for i ̸= j, Γ∗ is the distribution
function of the optimal action, and DKL(·||·) is the Kullback-
Leibler divergence.

Also note that C(Γ) is Ω(K). This can be seen by summing
all the constraint equations:

K∑
i=1

 ∑
a∈Ai,a̸=a∗

ba

 ≥ K∑
i=1

[
min

a∈Ai,a̸=a∗
{DKL(Γa||Γ∗)}

]−1

(41)
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TABLE IV
NOTATIONS FOR THE UCB-NAIVE-PROBE ALGORITHM

We have that

K∑
i=1

 ∑
a∈Ai,a̸=a∗

ba

 =
K∑

i=1

 ∑
a∈Ai,a̸=a∗

lim inf
T→∞

E [Na(T )]
log T


≤ 2

∑
a∈A\{a∗}

lim inf
T→∞

E [Na(t)]
log T

We define Di
KL = mina∈Ai,a̸=a∗ {DKL(Γa||Γ∗)}. Then,

(41) can be rewritten as:

∑
a∈A\{a∗}

lim inf
T→∞

E [Na(t)]
log T

≥ 1
2

K∑
i=1

Di
KL

From this, it can be concluded that the lower bound on
regret of UCBP is Ω(K log T ).

APPENDIX G
DERIVATION OF THE EXPECTED REGRET UPPER BOUND

OF THE UCB-NAIVE-PROBE ALGORITHM

We provide the regret analysis of the UCB-naive-probe
algorithm in this section. The table for the notations used in
this section is provided in Table IV. Note that actions for
this algorithm are defined over 3-tuples of the form (i, j, dl)
and (i, ∅, ∅). The action a = (i, j, dl) denotes that the probe
arm is arm i, the backup arm is arm j, and the reference
point is dl. While definitions of variables are the extensions
of the variables defined for the 2-tuple actions in the UCBP
algorithm to the setting with 3-tuple actions, we briefly define
them for this setting for completeness. For pulling actions, ν
is defined as ν(i,∅,∅) = µi, i ∈ [K], and for probing actions,
ν(i,j,dl) = −c + E [ri · 1 {ri ≥ dl}+ rj · 1 {ri < dl}] , i, j ∈
[K], i ̸= j, dl ∈ D, l ∈ [D] \ {1} (to exclude the smallest
possible discrete value). ν̂a(t) is the empirical estimation of
νa. Na(t) is the number of times action a is chosen up to
round t. The confidence interval can be defined as:

C(i,j,dl)(t) =

√
2 log t

N(i,j,dl)(t)

Using this, the UCB indices for super arms are defined as
Ua(t) = ν̂a(t) + Ca(t). The optimal action is denoted as
u∗. The gaps of actions are defined as ∆(i,j,dl) = ν∗ −
E [ri · 1 {ri ≥ dl}+ µj · 1 {ri < dl}] + c, and ∆(i,∅,∅) = ∆i.

We first start with the gap-dependent upper bound as
the gap-independent bound will be derived from the gap-
dependent bound.

A. Gap-Dependent Regret Upper Bound For
UCB-Naive-Probe

Regret is incurred whenever a suboptimal action is taken.
Therefore, we upper bound the expected number of times
each suboptimal super arm is pulled by the UCB-naive-probe
algorithm. Similar to the regret analysis of UCBP, first, the
regret is decomposed into components reflecting the regret
of each suboptimal action. We condition the occurrence of
suboptimal actions on the event that the confidence intervals
hold to help upper bound the number of times each suboptimal
action is chosen, and then we sum the regret from each to
obtain the expected regret of the UCB-naive-probe algorithm.
The empirical regret of the UCB-naive-probe algorithm can
be written as:

R̂U (T ) =
T∑

t=|D|K2+1

∑
a∈A

1 {at = a} · (ν∗ − ra(t)) + |D|K2

Expected regret can be obtained by taking the expectation
of this expression

RU (T ) = E
[
R̂U (T )

]
= E

 T∑
t=|D|K2+1

E

[∑
a∈A

1 {(at = a}

·(ν∗ − ra(t))
∣∣Ht

]]
+ |D|K2

We condition this expression using E(T ) := {|ν̂a(t) − νa| ≤
Ca(t), ∀a ∈ A}, the event that all confidence intervals hold
in round t. Then the expected regret can be upper bounded as:

RU (T )

≤ E

 T∑
t=|D|K2+1

E

[∑
a∈A

1 {(at = a)}

·(ν∗ − ra(t))
∣∣Ht

] ∣∣∣E(T )]
+ E

 T∑
t=|D|K2+1

P(Ec
1(t))


= E

 T∑
t=|D|K2+1

∑
a∈A\{u∗}

1 {(at = a)}

∣∣∣∣∣E(T )
 ·∆a

+ E

 T∑
t=|D|K2+1

P(Ec
1(t))


=

∑
a∈A\{u∗}

E

 T∑
t=|D|K2+1

1 {(at = a)}

∣∣∣∣∣E(T )
 ·∆a

+ E

 T∑
t=|D|K2+1

P(Ec
1(t))


Defining

E [Na(T )] := E

 T∑
t=|D|K2+1

1 {(at = a)}

∣∣∣∣∣E(T )
 ,
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RT can be upper bounded as:

RU (T ) ≤
∑

a∈A\{u∗}

E [Na(T )] ·∆a

+ E

 T∑
t=|D|K2+1

P(Ec
1(t))

 (42)

To upper bound E [Na(T )] , we will show that the suboptimal
action a ̸= u∗ cannot occur at any round t ≤ T if the total
number of times the super arm a has been sampled (pulled or
probed) is Na(T ) ≥ 8 log T

∆2
a

. We start by noting that for action
a to occur, the upper confidence index of action a needs to be
above the upper confidence index of the optimal action u∗ at
round t. Hence, the arm can only be pulled if

ν̂u∗(t) + Cu∗(t) < ν̂a(t) +

√
2 log t
Na(t)

is satisfied. Using the fact that ν∗ ≤ ν̂u∗(t) + Cu∗(t), and
ν̂a(t) ≤ νa + Ca(t) under the event E(T ), we have

ν∗ < νa + 2

√
2 log t
Na(t)

Na(t) ≤
8 log t
∆2

a

This means that action a can only be taken in rounds t ≤ T
when Na(t) < 8 log t

∆2
a

is satisfied. Noticing that this can happen
at most 8 log T

∆2
a

times until round T upper bounds the expected
number of times action a is taken, hence

E [Na(t)] ≤
8 log T
∆2

a

(43)

We now bound the term
∑T

t=1 P(Ec
t ) where Et is the event

that all confidence bounds hold in round t. Note that from (21)
and (20), we have that the probability that the confidence
interval for any arm a does not hold is upper bounded by 2t−3.
Using this, through a union bound over all the probabilities of
each confidence interval not holding, we have that

E

[
T∑

t=1

P(Ec
t )

]
≤

K∑
i=1

T∑
t=1

2t−3 +
|D|∑
l=2

K2−K∑
i=1

T∑
t=1

2t−3 (44)

= 2((|D| − 1)(K2 −K) +K)
T∑

t=1

t−3

≤ π2[(|D| − 1)(K2 −K) +K]
3

(45)

where the first summation term in the right side of (44) is for
the actions of the form (i, ∅, ∅), and the second term is for the
actions of the form (i, j, dl). In (45), we again use the fact
that

∑∞
n=1

1
n2 = π2

6 .
Combining (43) and (45), it can be concluded that

RU (T ) ≤
∑

a∈AN\{u∗}

8 log T
∆a

+
π2[(|D| − 1)(K2 −K) +K]

3
+ |D|K2

= O(|D|K2 log T ) +O(1)

□

B. Gap-Independent Regret Upper Bound For
UCB-Naive-Probe

The gap-independent upper bound can be obtained from the
gap dependent upper bound by dividing the action set into two
as follows

AN,1 :=

{
a ∈ A \ {u∗} : ∆a ≥

√
8|D|K2 log T

T

}

AN,2 :=

{
a ∈ A \ {u∗} : ∆a <

√
8|D|K2 log T

T

}

Using (42), we have

RU (T ) ≤
∑

a∈AN\{u∗}

E [Na(T )] ·∆a

+ E

 T∑
t=|D|K2+1

P(Ec
1(t))


≤

∑
a∈AN,1\{u∗}

E [Na(T )] ·∆a

+
∑

a∈AN,2\{u∗}

E [Na(T )] ·∆a

+
π2[(|D| − 1)(K2 −K) +K]

3
+ |D|K2

For a ∈ AN,1, use E [Na(t)] ≤ 8 log T
∆2

a
, and for a ∈ AN,2, use

∆a ≤
√

8|D|K2 log T
T . Then

RU (T ) ≤
∑

a∈AN,2\{u∗}

E [Na(t)] ·
√

8|D|K2 log T
T

+
π2[(|D| − 1)(K2 −K) +K]

3

+
∑

a∈AN,1\{u∗}

8 log T
∆2

a

·∆a + |D|K2

Using
∑

a∈AN,2\{u∗} E [Na(t)] ≤ T , and the fact that
|AN,1| ≤ |D|K2 we have

RU (T ) ≤
∑

a∈AN,1\{u∗}

8 log T
∆a

+ T

√
8|D|K2 log T

T

+
π2[(|D| − 1)(K2 −K) +K]

3
+ |D|K2

≤
∑

a∈AN,1\{u∗}

√
8T log T
|D|K2

+ T

√
8|D|K2 log T

T

+
π2[(|D| − 1)(K2 −K) +K]

3
+ |D|K2

≤ |D|K2 ·

√
8T log T
|D|K2

+
√
8|D|K2T log T

+
π2[(|D| − 1)(K2 −K) +K]

3
+ |D|K2

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on January 27,2025 at 14:18:12 UTC from IEEE Xplore.  Restrictions apply. 



642 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 71, NO. 1, JANUARY 2025

≤ 4
√

2|D|K2T log T

+
π2[(|D| − 1)(K2 −K) +K]

3
+ |D|K2

= O(
√
|D|K2T log T ) +O(1)

□
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