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Abstract—We examine a K -armed multi-armed bandit problem
involving probes, where the agent is permitted to probe one arm
for a cost ¢ > 0 to observe its reward before making a pull.
We identify the optimal strategy for deciding whether to probe
or pull an arm. In the case of probing an arm, we also make
a decision on which arm to pull after observing the probe’s
outcome. Additionally, we introduce a novel regret definition
based on the expected reward of the optimal action. We propose
UCBP, a novel algorithm that utilizes this strategy. UCBP achieves
a gap-independent regret upper bound in 7" rounds that scales
with O(/KT logT), and an order optimal gap-dependent upper
bound that scales with O (K log T'). We provide UCB-naive-probe,
a naive UCB-based approach which has a gap-independent regret
upper bound on the order of O(K+/TlogT), and gap-dependent
regret on the order of O(K 2log T) as a baseline. We provide
empirical simulations to verify the utility of the UCBP algorithms
in practical settings, and show that UCBP outperforms UCB-
naive-probe in simulations.

I. INTRODUCTION

The multi-armed bandit problem is a classic dilemma in
decision-making under uncertainty. The metaphorical bandit
refers to a set of slot machine arms, and the multi-armed aspect
indicates that there are multiple such arms available for the
decision-maker to choose from. Each arm of the bandit is
associated with an unknown probability distribution of rewards.
The goal of the decision-maker, often referred to as an agent,
is to maximize the cumulative reward over a sequence of trials
or pulls. The seminal work of [1] showed that the regret, which
is the difference in expected total rewards between a given
policy and the optimal policy, grows at least logarithmically
in the number of plays, and developed asymptotically optimal
decision policies. Since then, other policies have also been
devised, including [2], [3], and used in applications in many
fields, such as online advertising [4], [5], clinical trials [6], [7],
recommendation systems [8].

In the past few years, there has been a notable increase in
interest surrounding MABS, driven by the demand for proficient
and impactful decision-making across diverse domains. A
recent avenue of exploration involves bandits with side informa-
tion, enabling the agent to obtain additional information before
making a decision. [9]-[11]. The side information may manifest
as partial observations, expert guidance, context information, or
prior knowledge pertaining to the reward distributions. In this
paper, we consider a specific variant of this problem, namely
multi-armed bandits with probes.
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The concept of employing probing to diminish uncertainty in
the decision-making process has been explored across various
research domains, such as wireless communication systems
[12], stochastic probing [13], online learning [14], and multi-
armed bandits [15], [16]. In our scenario, the agent is provided
with the opportunity to probe an arm by incurring a cost ¢ > 0
to observe its reward before actually pulling that arm. This
modification to the MAB problem introduces an added layer
of complexity and difficulty, given that probing significantly
enlarges the set of possible actions. In scenarios employing
costly expert advice, whether from humans or machine learning
models acting as experts, the act of probing can be understood
as obtaining a reward prediction from the expert without
actually pulling the arm. The main goal of our work is to
develop new algorithms for this framework that achieve as
much cumulative reward as possible.

A. Applications

The problem setting under consideration has diverse appli-
cations across various fields. One example is hyperparameter
optimization for machine learning models, where a common
strategy involves having human experts regularly examine
learning curves to promptly end runs with suboptimal settings
[17]. In this setting, "pulling an arm" can be understood as
executing the hyperparameter setting without human expert
oversight and "probing an arm" can be understood as executing
it with supervision. This approach ensures that runs with poor
settings are quickly terminated, preventing regret from probes
and incurring only the probing cost, which reflects the expense
of involving a human expert.

Another example is online learning with machine learning
(ML) advice where ML models are used to predict the outcomes
of actions before actually taking an action [18]-[20] in order
to improve the quality of action taken in settings such as
when the predictions are perfect [21], when the predictions
are adversarial [22], or when there is an upper limit on the
error of the predictions [23]. While in this work we make
the assumption that a probe provides the precise outcome of
an arm, we assign a cost to probing that can be employed to
capture the computational complexity associated with using
ML predictions. This work is also valuable as a foundation
for future work that may relax this assumption, incorporating
scenarios where probes yield noisy reward predictions.
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Another possible application is in wireless communications.
Probing is mainly used there to send small data packets to
observe some channel properties at that time. Prior work
generally assume knowing the distributions of the rewards
of channels [24]. Our work can be especially useful when
these distributions are unknown.

In queuing, such as when queuing patients in the emergency
room of a hospital according to urgency of the problem, probing
can be represented as the hospital staff doing small tests to
determine the urgency of the situation, and arm pulls can be
represented as the patient actually being treated by the doctor.

B. Contributions

1) Formulation: To our knowledge, this work is the first to
consider a multi-armed bandit setting with bounded reward
distributions where before pulling an arm, the agent is
allowed to probe one arm to observe its reward for a cost
¢ > 0. This is an intricate problem different from most
previous bandit formulations as the action set is larger.

2) UCBP Algorithm: We identify the optimal strategy, and
provide an order-optimal algorithm based on UCB that
evaluates the value of each action and uses upper confidence
bounds to balance exploration and exploitation.

3) Regret Upper Bound for UCBP: Through a novel decom-
position of regret, we establish that the gap-independent
regret upper bound scales with O(/KT logT), and when
the reward distribution is discrete, the gap-dependent regret
bound scales with O(K logT'). We also show that the gap-
dependent regret upper bound is order-optimal by showing
that the regret lower bound also scales with Q(K logT).

II. MULTI-ARMED BANDIT MODEL WITH PROBES

We consider a K-armed stochastic bandit problem with the
set of base arms [K], where arm i € [K] is associated with a
fixed reward distribution I'; that is independent of the reward
distributions of other arms with mean p;. At each round, the
agent selects one of the following two types of actions. The
first type of action, referred to as pull, is where the agent pulls
arm ¢ € [K] to receive its reward r(t) = r;(¢) drawn from T';.
In the second type of action, referred to as probe, the agent
selects a probe arm i and a backup arm j # i. The probe
arm is probed to observe its reward 7;(t), then; the agent can
choose to pull the probe arm to receive reward r(t) = r;(t) —c
or the backup arm to receive r(t) = r;(t) — ¢ where ¢ > 0 is
the known cost of probing.

A, is defined the set of actions that involve probing, and
A as the set of actions that do not involve probing, and A :=
Ag U A,. The ordered tuple (i,5) € A, fori,j € [K], i # j
indicates arm ¢ is the probe arm and arm j the backup arm,
while (i,0) € A, for ¢ € [K] indicates pulling arm ¢. Clearly,
|A| = K2. Further, A,; := {a € A, : i € a} is the set of
actions that include base arm (either as probe or backup arm)
i. When a(t) = (4, j), after observing reward r;(t), the agent
needs to decide whether to pull arm ¢ or 5. The optimal decision
here is to pull arm ¢ if r;(¢) > p;, and arm j otherwise. We
call this the optimal reference point decision. It can be seen

that when this optimal strategy is used, the expected reward
of playing action (i, j) is: v(; jy = E[max(r, u;)] — c.

For simplicity, we assume there is a unique arm with
the highest mean, referred to as the best arm. Without
loss of generality, we assume that the mean rewards of
the arms are ordered such that puy > peo > -+ > ug.
When I';, Vi € [K]| are known a priori, the optimal reward
is v* = max(u1, max;e g\ (13{—c + E[max(r;, p1)]}, —c +
E[max(r1, u2)]). Then, the optimal action is

(1L,0) if v = m
a* =4 (4,1) if v* = —c+ E[max(r;, u1)]
(1,2) if v* = —c + E[max(ry, u2)]

Unlike standard K-armed bandit, in our setup, the probe
option makes the optimal action non-trivial as achieving
negative regret is possible under the probe option if 3(i, j) s.t.
E[max(r;, u;)] — ¢ > pq1 when Ty, the reward of the best
arm is used as a benchmark. Hence, we define the empirical
cumulative regret with respect to the optimal reward. Using

this, the expected cumulative regret can be written as
T

Ry :=Tv* — Zr(t), and Ry := E[Ry].

t=1

Let v, represent the expected reward of action a. Then, v, =
w; when a = (4,0), i € [K]. Fora = (i,7) such that 4, j € [K]
and i # j, v(; jy = E[max(r;, p;)] — c. The gaps of actions
are defined as A(; gy := v* — v 0y, and A 5y == V" — v 5),
and the gaps of base arms are defined as A; := pu; — p;. We
remark that with this regret definition, identifying the probe arm
and the backup arm correctly may not be sufficient to receive
the optimal reward v*. To illustrate this, assume that a* =
(i,1) for some i # 1. To receive v* = —c¢ + E[max(r;, p1)],
after probing arm ¢ and observing 7;, the agent needs to pull
arm ¢ if r; > pq or pull arm 1 if r; < py. However, this
optimal action can only be taken with the exact knowledge
of the reference point p1, which the agent does not have. If
one uses an estimate fi1(t) of the reference point at round
t, this will lead to an additional regret of up to ref(t) :=
it (£) = [B(ry € [min (s, iy (), max(jar, 1 (£))]). We call
the decision to pull arm ¢ using fi;(t) as the reference point
decision, and the regret it introduces as the reference point
regret. Rpet(T) 1= 23:1 Tf(t) is used to denote the regret
incurred until round 7" due to the reference point error. We
first present a naive UCB-based algorithm, which treats the
reference point as part of the action it takes to serve as baseline.

UCB-naive-probe algorithm: We treat each action triple
as a super arm. a = (4,4,d;) € An, i € [K], j € [K]\ {i}
denotes that the probe arm is arm 4, the backup arm is arm
j, and the reference point is d;. Ay denotes the action set
for this algorithm. UCB-naive-probe algorithm can only be
used when the reward distributions of the arms are discrete
for the set of super arms to be finite. Hence, we assume that
D in [0,1] is the finite support of the rewards of the arms,
and that d; € D are the elements of D (excluding the smallest
one) where 2 < [ < |D|. The actions a = (i,0,0), i € [K]
denote pulling arm i. We use standard UCB indices for all
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Algorithm 1 UCB-naive-probe

1: for each round ¢t do

2 ar = (i, Jt, d(t)) = argmaxge 4 Uy (t)

3 if j; = () then

4 Pull arm 4y, get r(t) = r¢(iz)

5: else

6 Probe arm 4., observe reward 7 (i;)
7 if 7:(i;) > d(t) then

8 Pull arm 4y, get 7(t) = r(iy) — ¢
9

else
10: Pull arm j;, get r(t) = r:(js) — ¢
11: end if
12: end if
13: Update UCB indices and mean estimates
14: end for
TABLE I

COMPARISON OF OUR WORK WITH PRIOR WORK ON BANDITS WITH PROBES

Work  Probe Model Reward Distr.  Regret Defn.
Can probe multiple arms, . .

[26] can pull any arm, ¢ > 0 Bernoulli Opt. policy
Probe 2 arms, pull the one

(27] with highest reward, ¢ = 0 Bounded Best arm
Probe 3 arms, pull the one .

(271 with highest reward, ¢ = 0 Bounded Best arm

Ours Can probe one arm, can pull Bounded Opt. action

any arm, ¢ > 0

super arms, and the arm with the highest UCB index is pulled
each round. When a super arm (i, j,d;) is chosen and 7;(t) is
observed by probing; arm i is pulled if r;(¢) > d;, and j is
pulled otherwise. The pseudo-code is given in Algorithm 1.
It is shown in the long version of the manuscript that
the gap-dependent regret scales with O(|D|K?logT), and
the gap-independent regret scales with O(y/|D|K?T logT)
[25]. This dependence of regret on O(|D|K?) demonstrates
the complexity of the problem. The main goal of our paper
is to decrease this dependency of regret on K and |D|
from O(|D|K?) to O(K) by utilizing the optimal action and
optimal reference point decision strategies described above.
Our algorithm that achieves this reduction in regret is in §IV.

III. RELATED WORKS

Bandits with Probes: To our knowledge, probes were first
studied in the context of bandits with expert advice in [16]
featuring multiple experts, where the agent, after pulling an
arm, has the ability to observe the reward of any chosen subset
of arms by incurring a cost ¢ for each observed arm. More
recently, there has been consideration of the bandit with probes
problem specifically for Bernoulli reward distributions [26],
where an unlimited number of probes are allowed per round, but
each probe has a cost. They suggest an algorithm that attains
O(K?1ogT) gap-dependent regret by employing a strategy that

probes arms in order of their highest UCB value to the lowest.

In our work, while we permit only one probe, we consider a
more general bounded reward distribution which necessitates

a more intricate strategy, and we achieve O(K logT') regret.
In [27], two different models are studied for probes without
cost. In the first model, at each round, two arms are probed,
and the probe reveals the arm with the higher reward, which
must be pulled. The proposed UCB-based algorithm achieves
O(K?logT) gap-independent regret. However, the regret is
defined on the base arm with highest mean, and not on the
optimal super arm. This regret bound follows mainly due to this
regret definition, since it is even possible to achieve negative
regret when max(r;,r;), the reward of super arm (i, j), is
larger than pq. In the second model, three arms are probed
each round, and one of them is pulled. The provided algorithm
achieves O(K?) regret. In this paper, we explore a comparable
scenario where the option to probe is limited to at most one
arm, but any arm is permitted to be pulled after probing. We
also define regret based on the optimal action. Comparison of
our work with prior work is summarized in Table I.

Probes in Wireless Communications: One notable prior
work related to ours is [24]. Here, a wireless system is
considered where the reward distribution of each channel is
known a priori. It is allowed to probe multiple channels to
reveal its reward before selecting a channel, but there is a cost
for each probe. The main difference of [24] from our work is
that the reward distributions of the arms are unknown in our
setting. Other prior work on probing in wireless communication
systems include [12], [28]-[30].

Combinatorial bandits: It is an extension of the standard
bandit framework where an action is composed of a combina-
tion of different base arms satisfying certain constraints [31],
[32]. One work that is of interest is the combinatorial bandits
with probabilistically triggered arms [33], where when an action
is played, a random subset of arms is triggered according to a
triggering probability distribution. They show in [33, Theorem
3] that the regret lower bound scales with the factor pi for the
general combinatorial bandits with probabilistically triggered
arms. They also show that regret bounds that do not depend
on p*, but do depend on B, the bounded smoothness constant,
if the problem setting satisfies the triggering probability
modulated bounded smoothness assumption.

IV. THE UCBP ALGORITHM

We propose an algorithm called Upper Confidence Bound
with Probes (UCBP) that utilizes the structure of the action
set and expected rewards to minimize the regret. The pseudo-
code is provided in Algorithm 2. At each round ¢, first, the
empirical mean rewards of arms are determined using fi;(t) =
Zi_:ll ri(7)1{i € S(7)}/N;(t) where S(t) denotes the set of
arms whose reward is observed (by either pulling or probing)
in round ¢ and N;(¢) denotes the number of times arm 4
is observed by round ¢. The UCB indexes for each arm i
are computed as U;(t) = f1;(t) + C(; ) (t) where C(; g)(t) =
v/3log(t)/N;(t). Then, the probe UCB indexes are evaluated
for probe actions by using P; ;(t) = 2(; j)(t) +C(; ;)(t), where
Do) (8) = D202y (max(ri(r), o (£)1{i_€ S(r)})/Ni(t) —
¢, and C; j)(t) = /3log(t)/N;(t) + \/3log(t)/N;(t). Here
D(;,;) represents the empirical mean reward of action (4, ),
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Algorithm 2 UCBP

1: Sample each base arm once
2: for each round ¢t do

3 if = argmax; U;(t)

4 ay = (ji, k) = argmax,ea, Pa(t)
S: if Ui;f (t) > Pat (t) then
6 Pull arm 3}, get r(t) = r:(i})

7 else

8 Probe arm j;, observe reward r;(j;)
9 if rt(jt) > Ukt (t) then

10: Pull arm j;, get r(t) = r(je) — ¢
11: else

12: Pull arm k¢, get r(t) = ry(ky) — ¢
13: end if

14: end if

15: Update UCB indices for all arms

16: end for

and C(; j)(t) is the exploration bonus associated with action
(i, 7). Lastly, the UCB indexes of the actions U;(t), Vi € [K];
and P,(t), Ya € A\ [K] are compared and the one with
highest UCB index is chosen. If this action is probing, i.e.
a = (i,7), arm ¢ is probed to observe r;(t), then arm ¢ is
pulled if 7;(t) > Uj(t), and arm j otherwise. In other words,
UCBP uses Uj;(t) as the reference point fi;(t) at round t.

A. Analysis of UCBP

To characterize the performance of UCBP, we provide
theoretical upper and lower bounds on the expected cumulative
regret. We first state a mild assumption on the reward
distributions of the arms that are required for the theoretical
analysis. We refer the readers to the longer version of the
manuscript for proofs of the presented results [25].

Assumption 1. For each I'; and T';, 4,5 € [K], i # j, we
have P(r; < p;) > € for some € > 0.

Assumption 1 ensures that the backup arm is pulled at least
€ fraction of the time by UCBP in expectation when a probe
action is taken since € < P(r; < p;) < P(r; < Uj(t)) if
the confidence bounds hold. This assumption is needed, since
if for some arm j € [K] the gap of actions (j,-) and (j,0)
are much larger than the gap of the actions (-, j); then the
algorithm will predominantly choose actions (-, j), meaning
arm j will only be selected as the backup arm, which might
not produce enough samples for arm j. This assumption is
similar to p* in combinatorial bandits with probabilistically
triggered arms, where p* is defined as the minimum positive
probability that an arm is triggered by any action [33]. In
[33], to remove the dependency of regret on p*, the triggering

probability modulated bounded smoothness assumption is used.

This assumption states that the change in the reward of an
action if the mean vector is perturbed by a given amount is
upper bounded by the triggering probability times the bounded
smoothness coefficient B and the amount of perturbation,
which enables regret to be upper bounded by an expression

that contains the triggering probability. Using this assumption,
regret bounds that do not depend on p*, but do depend on B,
are proved for combinatorial bandit problems that satisfy this
assumption. However, they also prove in [33, Theorem 3] that
in settings where this assumption is not necessarily satisfied,
regret lower bound scales with the factor 1%’ demonstrating
that the L factor in regret bound cannot be avoided without
making additional assumptions. In our setting, this triggering
probability modulated bounded smoothness assumption cannot
be used, as observing the backup arm in a probe action is not
an event with a constant probability, but rather a choice of the
algorithm that depends on the reward distribution of the probe
arm, and on the estimated mean of the backup arm.

Theorem IV.1 (Gap-independent Expected Regret Upper
Bound). Under Assumption 1, when UCBP is run on the
action set A and the cost of probing is ¢ > 0, its cumulative
expected regret is upper bounded as

46 KT logT 22 K2
€

Ry < + Ruy(T) + + K

where R,(T) is the reference point regret.

In Lemma IV.3, we show that Rt(T) = O(v/KTlogT),
which together with Theorem IV.1 shows that the gap-
independent regret of UCBP is O(v/KT logT).

Theorem IV.2 (Gap-dependent Expected Regret Upper Bound).
Under Assumption 1, when UCBP is run on A and given ¢ > 0,
the expected cumulative regret is upper bounded as

K
12logT
Rr < Z 5.g

i=1

22 K2
il + K, where

+ Rf(T) +

5 — pi/8 if a* = (i,0)
’ min(p;, A g))/9  otherwise

where p; = minge 4, \{a+} (€Aa).

Note that the cost of probing c is included in the gap of
actions. In Lemma IV.3, we show that R.¢(T) = O(K logT)
when the rewards are discrete. Together with Theorem V.2, this
shows that the gap-dependent regret of UCBP is O(K logT)
under discrete rewards.

We now provide upper bounds on reference point regret,
which is incurred as the algorithm only uses the estimated
means instead of the true means in the reference point decision.
We show that for arbitrary reward distributions, Rf(T) =
O(v/KTlogT), while tighter upper bounds can be established
with additional assumptions on reward distributions.

Lemma IV.3. a) Ry(7) < 228 loel

b) If the distributions I'; for each i € [K] are defined over a
discrete support D in [0, 1], then Ryer(T) is upper bounded as
Ret(T) < 32K 2410g T/(ev;) where we use dj € D, 1 <
[ < |D| to denote the elements of the set D; and we let
vi = miny |d; — p;| if p; € D, and ~; := ming |d; — dj4q] if
Wi € D . It can be seen that v; > 0 always holds. Under this
assumption, it can be seen that the gap-dependent regret upper
bound is O(K logT).
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Fig. 1. Plots of the cumulative empirical regret of the UCBP and UCB-naive-
probe algorithms for recommending the best genre in the MOVIELENS dataset.

Theorem IV.4 (Lower Bound on Expected Regret). For the
multi-armed bandit setting with costly probes where the optimal
action is unique, the lower bound on the expected cumulative
regret for any uniformly good algorithm, as defined in [1], is
liminfr_ o I;%TTT > C(T'), where C(T') is the minimal value
of the following linear optimization problem:

min bo Ay
ba>0, YacA\{a*} ae%{ﬂ} “

Vi), Y b (DralCalir)]

a€A;,a#ta”

where A; = {(i,5) : j € (K]JU{OD\ {1 ULG, ) + 5 € [K]\
{i}}, Loy = i, T j) = max(ry, pj) — c is the distribution
function of action (i, j) for i # j, I'* is the distribution function
of a*, and Dy, (+||-) is the KL divergence.

It can be seen that UCBP regret lower bound is Q(K log T")
since C'(T") is Q(K). As the regret is also O(K logT) under
discrete rewards in Theorem IV.2, excluding the e term, we
can conclude that the gap-dependent upper bound of UCBP is
order-wise optimal.

min
a€A;,a#ta*

B. Discussion of the Results

To our knowledge, this work is the first to consider a multi-
armed bandit setting with arbitrary bounded reward distributions
where before pulling an arm, the agent is allowed to probe
an arm to observe its reward for a cost ¢ > 0. This problem
setting is intricate and distinct from the majority of prior bandit
formulations, primarily owing to the extensive range of K2
involved actions. Further, the possibility of still incurring regret
due to the reference point error even when the chosen action
is optimal creates additonal challenges.

Compared to UCB-naive-probe, regret of UCBP scales
with O(K) since UCBP narrows down the action space by
utilizing the structure of the problem. Due to the probabilistic
observability of the backup arm, we incur an additional 1/e
term in regret, but this is in line with the lower bound given in
[33, Theorem 3]. We note that even though we assume cost of
probing c as a constant for simplicity of the theoretic analysis,
this work can easily be extended to the setting where c is time
dependent or cost of probing c; is different for each arm 1.

C. Simulations

We now provide simulation results to characterize the
performance of UCBP in a real world setting. Since to our
knowledge, there are no other bandit algorithms for our specific
problem setting, we compare our results with the results from
the UCB-naive-probe algorithm which we introduced in §II.

The MOVIELENS Dataset: The MOVIELENS dataset
contains a total of 1M ratings on a total of 3883 movies,
where users rated the movies on a scale of 1 to 5 [34]. We
study the problem of providing the best genre recommendations
to a population with an unknown demographic in this dataset.
Each genre is modeled as an arm (there are K = 18 arms),
and the reward of an arm is obtained by randomly sampling
the rating of one of the users for a movie in that genre. The
average reward of the best action is around 4.17. In Figure 1,
we plot the cumulative regret averaged over 100 independent
trials for 500, 000 rounds when the cost of probing is ¢ = 0,
¢ = 0.3, and ¢ = 1. The shaded area represents error bars with
one standard deviation. It can be seen that both algorithms have
a logarithmic regret curve, and UCBP outperforms the baseline
UCB-naive-probe algorithm. Further simulation results on the
Open Bandit Dataset is provided in the long version of the
manuscript [25].

V. CONCLUDING REMARKS

In this paper, we focus on problem setting of the multi-armed
bandits with probes. We introduce a new regret definition that
is based on the expected reward of the optimal action, and
we identify the optimal strategy that attains this reward. We
provide UCBP, a novel algorithm that utilizes this strategy
to achieve a gap-independent regret upper bound that scales
with O(v/KTlogT), and a gap-dependent bound that scales
with O(K logT) if rewards are discrete. To demonstrate the
empirical performance of UCBP in simulations, we introduce
a naive UCB-based algorithm as a baseline. Simulation results
corroborate the better performance of UCBP over UCB-naive-
probe, and validate the utility of UCBP in practical settings.

Our work opens multiple directions for future research. One
interesting future direction is to extend our bandit results to the
case with noisy probes. We believe that confidence intervals of
probe rewards can be derived in this setting that can then be
used to decide whether to pull the probe arm or the backup arm.
Another interesting open direction is the case where the rewards
of different arms are correlated. In this case, the correlation
between arms can be used to predict the rewards of the other
arms from the probe outcome, thereby providing more utility
to the probes.

ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation through Grant # CCF-2007834, by the Office of
Naval Research through Grant # N00014-23-1-2275, and by the
CyLab Enterprise Security Initiative. Cem Tekin acknowledges
the support by the Turkish Academy of Sciences Distinguished
Young Scientist Award Program (TUBA-GEBIP-2023).

Authorized licensed use limited to: Carnegie Mellon University Libraries. Dowrx@ged on January 27,2025 at 18:01:31 UTC from IEEE Xplore. Restrictions apply.



[1]

[2

—

[3

=

[4]

[5

=

[7]

[8

=

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

REFERENCES

T. Lai and H. Robbins, “Asymptotically efficient adaptive allocation
rules,” Advances in Applied Mathematics, vol. 6, no. 1, pp. 4-22, 1985.
P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine Learning, vol. 47, pp. 235-256,
2002.

R. Agrawal, “Sample mean based index policies with o(log n) regret
for the multi-armed bandit problem,” Advances in Applied Probability,
vol. 27, no. 4, pp. 1054-1078, 1995.

E. M. Schwartz, E. T. Bradlow, and P. S. Fader, “Customer acquisition
via display advertising using multi-armed bandit experiments,” Marketing
Science, vol. 36, no. 4, pp. 500-522, 2017.

D. Chakrabarti, R. Kumar, F. Radlinski, and E. Upfal, “Mortal multi-
armed bandits,” Advances in Neural Information Processing Systems,
vol. 21, 2008.

Y. Varatharajah and B. Berry, “A contextual-bandit-based approach for
informed decision-making in clinical trials,” Life, vol. 12, no. 8, 2022.
W. H. Press, “Bandit solutions provide unified ethical models for random-
ized clinical trials and comparative effectiveness research,” Proceedings
of the National Academy of Sciences, vol. 106, no. 52, pp. 22387-22392,
2009.

N. Silva, H. Werneck, T. Silva, A. C. Pereira, and L. Rocha, “Multi-armed
bandits in recommendation systems: A survey of the state-of-the-art and
future directions,” Expert Systems with Applications, vol. 197, p. 116669,
2022.

T. Lu, D. Pal, and M. Pal, “Contextual multi-armed bandits,” in
Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, pp. 485-492, 2010.

S. Mannor and O. Shamir, “From bandits to experts: On the value of
side-observations,” Advances in Neural Information Processing Systems,
vol. 24, 2011.

J. Langford and T. Zhang, “The epoch-greedy algorithm for multi-
armed bandits with side information,” Advances in Neural Information
Processing Systems, vol. 20, 2007.

W. U. Bajwa, J. Haupt, A. M. Sayeed, and R. Nowak, “Compressed
channel sensing: A new approach to estimating sparse multipath channels,”
Proceedings of the IEEE, vol. 98, no. 6, pp. 1058-1076, 2010.

A. Gupta and V. Nagarajan, “A stochastic probing problem with
applications,” in Integer Programming and Combinatorial Optimization:
16th International Conference, IPCO 2013, Valparaiso, Chile, March
18-20, 2013, pp. 205-216, 2013.

N. Cesa-Bianchi, G. Lugosi, and G. Stoltz, “Minimizing regret with label
efficient prediction,” IEEE Transactions on Information Theory, vol. 51,
no. 6, pp. 2152-2162, 2005.

Y. Efroni, N. Merlis, A. Saha, and S. Mannor, “Confidence-budget
matching for sequential budgeted learning,” in International Conference
on Machine Learning, pp. 2937-2947, 2021.

Y. Seldin, P. Bartlett, K. Crammer, and Y. Abbasi-Yadkori, “Prediction
with limited advice and multiarmed bandits with paid observations,” in
International Conference on Machine Learning, pp. 280-287, 2014.

A. Klein, S. Falkner, J. T. Springenberg, and F. Hutter, “Learning curve
prediction with bayesian neural networks,” in International Conference
on Learning Representations, 2017.

S. Gollapudi and D. Panigrahi, “Online algorithms for rent-or-buy
with expert advice,” in International Conference on Machine Learning,
pp. 2319-2327, 2019.

E. Bamas, A. Maggiori, and O. Svensson, “The primal-dual method
for learning augmented algorithms,” Advances in Neural Information
Processing Systems, vol. 33, pp. 20083-20094, 2020.

K. Anand, R. Ge, A. Kumar, and D. Panigrahi, “Online algorithms with
multiple predictions,” in International Conference on Machine Learning,
pp. 582-598, 2022.

S. Wang, J. Li, and S. Wang, “Online algorithms for multi-shop ski
rental with machine learned advice,” Advances in Neural Information
Processing Systems, vol. 33, pp. 8150-8160, 2020.

A. Rakhlin and K. Sridharan, “Online learning with predictable se-
quences,” in Conference on Learning Theory, pp. 993-1019, 2013.

T. Lykouris and S. Vassilvitskii, “Competitive caching with machine
learned advice,” Journal of the ACM (JACM), vol. 68, no. 4, pp. 1-25,
2021.

N. B. Chang and M. Liu, “Optimal channel probing and transmission
scheduling for opportunistic spectrum access,” IEEE/ACM Transactions
on Networking, vol. 17, no. 6, pp. 1805-1818, 2009.

[25]

[26]

(27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

E. C. Elumar, C. Tekin, and O. Yagan, “Multi-armed bandits with costly
probes,” 2024. Submitted to IEEE Transactions on Information Theory.
Available at https://users.ece.cmu.edu/~oyagan/Journals/ProbingBandits.
pdf.

J. Zuo, X. Zhang, and C. Joe-Wong, “Observe before play: Multi-
armed bandit with pre-observations,” ACM SIGMETRICS Performance
Evaluation Review, vol. 46, no. 2, pp. 89-90, 2019.

A. Bhaskara, S. Gollapudi, S. Im, K. Kollias, and K. Munagala,
“Online learning and bandits with queried hints,” in /4th Innovations in
Theoretical Computer Science Conference, ITCS 2023, January 10-13,
2023, MIT, Cambridge, Massachusetts, USA, 2023.

S. Guha, K. Munagala, and S. Sarkar, “Optimizing transmission rate in
wireless channels using adaptive probes,” in Proceedings of the Joint
international Conference on Measurement and Modeling of Computer
Systems, pp. 381-382, 2006.

L.-J. Chen, T. Sun, G. Yang, M. Y. Sanadidi, and M. Gerla, “Ad hoc
probe: path capacity probing in wireless ad hoc networks,” in First
International Conference on Wireless Internet (WICON’05), pp. 156-163,
2005.

A. Johnsson, B. Melander, and M. Bjorkman, “Bandwidth measurement
in wireless networks,” in Challenges in Ad Hoc Networking: Fourth
Annual Mediterranean Ad Hoc Networking Workshop, June 21-24, 2005,
Ile de Porquerolles, France, pp. 89-98, Springer, 2006.

W. Chen, Y. Wang, and Y. Yuan, “Combinatorial multi-armed bandit:
General framework and applications,” in International Conference on
Machine Learning, pp. 151-159, 2013.

N. Cesa-Bianchi and G. Lugosi, “Combinatorial bandits,” Journal of
Computer and System Sciences, vol. 78, no. 5, pp. 1404-1422, 2012.
Q. Wang and W. Chen, “Improving regret bounds for combinatorial
semi-bandits with probabilistically triggered arms and its applications,”
Advances in Neural Information Processing Systems, vol. 30, 2017.

F. M. Harper and J. A. Konstan, “The MovieLens datasets: History and
context,” ACM Transactions on Interactive Intelligent Systems (TIIS),
vol. 5, no. 4, pp. 1-19, 2015.

Authorized licensed use limited to: Carnegie Mellon University Libraries. Dowrx@g6éd on January 27,2025 at 18:01:31 UTC from IEEE Xplore. Restrictions apply.



