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An Invitation to the
Euler Characteristic Transform

Elizabeth Munch

Abstract. The Euler characteristic transform (ECT) is a simple to define yet powerful rep-
resentation of shape. The idea is to encode an embedded shape by tracking how the Euler
characteristic, a simple integer-valued topological invariant, changes as the shape is built up in
a particular direction. Because the ECT has been shown to be injective on the space of embed-
ded simplicial complexes, it has been used for applications spanning a range of disciplines,
including plant morphology and protein structural analysis. In this survey article, we present a
comprehensive overview of the Euler characteristic transform, highlighting the main idea on
a simple leaf example, and surveying its key concepts, theoretical foundations, and available
applications.

1. INTRODUCTION. Data can come in many forms and one of the aspects of that
data that we might want to quantify is shape. In this case, and in many applications, we
use the word ”shape” to mean exactly what the non-mathematically trained layperson
might think: How exactly does this object take up space in my 3D world? However,
what might be simple to describe in a qualitative sense (smooth, bumpy, round, wig-
gly, long, etc) becomes particularly difficult to measure quantitatively. It is even more
difficult to find ways to provide a value of similarity for the shapes being measured.
Is this one more wiggly than the other? Are the smooth and bumpy ones more similar
than the smooth and wiggly?

Existing methods for encoding and comparing 3D shapes usually require additional
information that may not be available. For instance, we may require that the shape
comes pre-annotated with landmarks (e.g., [1]). Alternatively, we start without this
additional input but must find maps between the shapes to be able to relate different
regions (e.g., [2]). The former classes often require manual expert input which is both
labor intensive and prone to bias; while the later is computationally intensive.

In this paper, we focus on a newly available method of shape quantification and
comparison built from the tools of topological data analysis (TDA) [3–5]; that is, the
use of tools from (Algebraic) topology to encode shape and structure in data. The
construction we focus on in this paper is the Euler characteristic transform (ECT) [6],
which encodes information about a shape in a way that does not require either maps
between pairs of shapes to compare, or landmark information. And yet, it is still a
complete representation of a shape and thus has been used in applications ranging
from plants [7] to proteins [8], to cells [9], to bones [10].

In this case, the tool used from topology is arguably one of the simplest and most
elegant topological invariants: the Euler characteristic. Defined first in an unpublished
manuscript by Francesco Maurolico in 1537 [11] but rediscovered and made more gen-
eral by Leonard Euler in 1758 [12], the Euler characteristic provides a single integer as

doi.org/10.1080/00029890.2024.2409616
MSC: 55N31, 62R40, 68T09
© 2024 The Author(s). Published with license by Taylor & Francis Group, LLC.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited. The terms on which this article has been published
allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

January 2025] AN INVITATION TO THE EULER CHARACTERISTIC TRANSFORM 15

http://orcid.org/0000-0002-9459-9493
http://dx.doi.org/10.1080/00029890.2024.2409616
http://creativecommons.org/licenses/by/4.0/


Figure 1. A figure showing the Euler characteristic for the tetrahedron, cube, and octahedron. Since they are
all homotopic to a sphere, the Euler characteristic is 2 in every case.

a measurement for a shape. In its simplest form, consider a polyhedron K with vertices
V , edges E, and faces F such as the examples of Figure 1. The Euler Characteristic is
defined to be the alternating sum

χ(K) = |V | − |E| + |F |.
This can be generalized to any triangulable space, in particular to our case of interest,
those of simplicial complexes, which we will discuss in more detail later.

The power of the Euler characteristic comes from the fact that it is a topological
invariant; that is, any homotopic spaces will have the same Euler characteristic. This
can be seen through its connection to homology, another topological invariant mea-
suring properties of the shape of a space. While we will try to avoid going down a
rabbit hole to define homology in this paper, the Euler characteristic is equivalent to
the alternating sum of the ranks of the homology groups [13, Thm. 2.44].

We wish to use the Euler characteristic in computational and applied settings to
automatically differentiate shapes. Unfortunately, the Euler characteristic is a rather
coarse invariant in the sense that many spaces could have the same value and so cannot
be distinguished by this number alone. Thus if our shape is represented by only its
Euler characteristic, we will likely do a poor job of classification and representation
in any form.

For this reason, we combine the Euler characteristic with a tool that can, in a mathe-
matically provable way, distinguish these different shapes in 3D. The directional trans-
form is a way of using information about an embedded shape to define a filtration
which is a main building block in the field of TDA. Fixing a direction in R

3, repre-
sented as a vector on the sphere ω ∈ S

2, we can define a function on the space K ⊆ R
3

which has levelsets perpendicular to ω. Retaining the portion of K with function value
below a particular a, we can record how the Euler characteristic changes as the value
a changes. In this way, we can use the Euler characteristic spread out over multiple
threshold values; and further, encode this information over any choice of ω. The result
is the Euler characteristic transform (ECT) which we explore in this paper.

2. THE ECT. To simplify statements and exposition, in this paper we assume our
input data is an embedded simplicial complex living in R

d for d = 2 or d = 3.1 A sim-
plicial complex is a combinatorial object consisting of building blocks of increasing
dimension: vertices, edges, triangles, tetrahedra, and higher dimensional analogues.
Specifically, a (geometric) k-simplex is the convex hull of k + 1 affinely independent
points in R

d , denoted σ = {v0, . . ., vk}. A simplex τ is a face of a simplex σ if the ver-
tex sets are nested, i.e., τ ⊆ σ : in this case we write τ ≤ σ . A (geometric) simplicial

1The most general results in this area work instead with O-minimal structures [14], and of course can be
extended for higher d , but the generality is often not needed for our applied settings.
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complex K consists of a set of geometric simplices in R
d such that (i) every face of a

simplex in K is also in K; and (ii) if two simplices σ and τ are in K , then their inter-
section is either empty or a face of both. For the purposes of this work, particularly in
the face of applications, we will assume that all simplicial complexes contain finitely
many simplices. Further, we assume that the geometric realization of all complexes
are contained in some finite radius ball, |K| ⊆ B(0, R) = {x ∈ R

d | ‖x‖ ≤ R}.

Figure 2. At left we have a simplicial complex with simplex-wise function fω labeled for the horizontal
choice of ω = 0. At right we have the corresponding Euler characteristic curve.

The main algebraic tool we will use here is that of the Euler characteristic.

Definition 1. The Euler characteristic of a simplicial complex K is an alternating
sum of counts of simplices in each dimension. Specifically, if cp is the number of p-
simplices in K , then

χ(K) =
∑

p

(−1)pcp = c0 − c1 + c2 − c3 · · · .

Focusing on our case of simplicial complexes embedded in at most dimension 3,
this simplifies to

χ(K) = |vertices| − |edges| + |triangles| − |tetrahedra|.
However, while homeomorphic spaces are promised to have the same Euler charac-
teristic, this does not mean that non-homeomorphic spaces must have different Euler
characteristics. For example, the (empty) torus and the circle both have Euler char-
acteristic 0 so cannot be differentiated by this number alone despite not being home-
omorphic. Thus, we combine the Euler characteristic with the directional transform,
defined next. Given a simplicial complex K in R

d , we fix a direction ω ∈ S
d−1 thought

of as a unit vector in R
d . This choice of direction gives us a simplex-wise function

fω : K −→ R

σ �−→ maxv∈σ 〈v, ω〉

where 〈x, y〉 = ∑
xiyi is the standard dot product of the input vectors. See Figure 2

for an example. This function is set up so that we can study the sublevel sets defined
as

Ka = {σ ∈ K | fω(σ ) ≤ a}.
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Note that our function fω is defined so that Ka satisfies the requirements of a simplicial
complex for any a.

The Euler Characteristic Curve (ECC)2 for direction ω is a function which returns
the Euler characteristic for each sublevel set. Specifically, this is

ECCω : R −→ Z

a �−→ χ(Ka).

Again, see Figure 2 for an example. In practice, we have assumed that all simplicial
complexes live in a ball of radius R; so for computational purposes we often restrict
the domain to ECCω : [−R, R] → Z.

A priori, we do not know which direction to use to encode information about our
particular simplicial complex K , so we put all of the directions together into a giant
function called the Euler Characteristic Transform.

Definition 2. Given a simplicial complex K embedded in R
d , the Euler Characteristic

Transform (ECT) is

ECT(K) : S
d−1 −→ Z

R

ω �−→ ECCω

where Z
R denotes functions from R to Z.

It has been shown that even though the Euler characteristic cannot distinguish be-
tween many non-homeomorphic spaces, the ECT with the added geometric informa-
tion can.

Theorem 3. [16, 17] The ECT is injective on the space of constructible sets in R
d .

Specifically, if ECT (K) �= ECT (K ′), then K �= K ′.

The above theorem was first proved for simplicial complexes embedded in dimen-
sion up to 3 by Turner et al. [6]. In this work, it is a consequence of the proof of
their main result which focuses on the so-called persistent homology transform (PHT),
where each direction of the sphere results in a persistence diagram rather than an Euler
characteristic curve. As persistent homology is also outside the scope of this article,
we direct the interested reader to [3] for further specifics on this front. Subsequently,
using the machinery of Euler calculus [18], this theorem was extended concurrently
by [17] and [16] to nice enough subsets in any ambient dimension.

A fern leaf example. We will show this procedure on the example of a binarized im-
age of a fern leaf shown in Figure 3 from [19]. While technically speaking this input
is binary pixel data (entries of 1 correspond to pixels included in the fern leaf), we
can assume that we have triangulated each square included in the leaf and treat the
subset of R2 as a simplicial complex. We have also centered the image, and assume
the coordinates of the pixels are relative to this origin. In Figure 3, we see the induced

2The ECC for an arbitrary filtration function has a longer history than the ECT which is outside of the
scope of this short paper; see e.g., [15] and references therein. Note that the ECC is not actually a curve but a
piecewise constant function. To the best of our knowledge, the first use of the term was in [15] and arose from
similar terms used in image processing and astronomy. Perhaps ”filtered Euler characteristic” is a better term
but at this point ECC is too deeply embedded in the literature for us to take a stand.
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Figure 3. The function fω on the same fern leaf image is shown for ω = π/4, 3π/4, 3π/2, and 7π/4 where
the function value of a pixel is given by color-scale. See the online version for color images.

function fω on this fern leaf for four different choices of ω. Note that different direc-
tions induce different functions on the data where level sets are perpendicular to the
direction chosen.

Focusing for a moment on the case of ω = 3π/4, we can look at the Euler charac-
teristic of sublevel sets χ(Ka) for a few values of a. In Figure 4, we have the sublevel
sets for a = −150, −50, 0, 50, 150. At each step in this filtration, we compute the
Euler characteristic χ(Ka) and plot the value as a step function shown in the bottom
left of the figure. The ECC starts close to zero, as we at first only see several connected
components (positive small contribution from β0) and few holes (negative small con-
tribution from β1). The function decreases until its final value of χ(K) = −197 since
the full fern leaf has only a few connected components (positive small contribution
from β0) but many holes (negative large contribution from β1). Note that the ECC for
the fern in any direction will start at 0 when the function a is lower than the mini-
mum value of fω, and stabilizes to χ(K) for the entire fern leaf when a is above the
maximum value of fω.

Since we can compute the ECC in any direction ω, we can then represent the ECT
by computing ECCω for a discretized collection of directions and a discrete set of
thresholds, resulting in what we call an ECT matrix for the case of a shape in the
plane. In the example of Figure 5, we have 64 evenly spaced directions on the circle;
and compute χ(Ka) for values from −200 to 200. For this particular example, we see
that the values start around 0 at the bottom of the leaf, and then non-monotonically
decrease until it is −197 at the top thresholds a, which is the Euler characteristic
of the full fern leaf. The values stay positive the longest in the directions ω that are
approximately parallel to the fern leaflets, e.g., ω = π/2 for the bottom pieces and
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Figure 4. Fixing a direction ω = 3π/4, the first five images are the portion of fern leaf with fω ≤ a for
a ∈ {−150,−50, 0, 50, 150}. The full ECC for this ω is given in the last panel.

ω 
 11π/8 for the top, which can be seen in the bright, positive valued peaks in the
ECT matrix.

3. SOME MODIFICATIONS AND APPLICATIONS. As with so many simple
yet powerful ideas, there is a growing body of literature of variations on the ECT
which we survey here.

Some notes on matrix representations. Note that at least up to coordinates, this
matrix representation of Figure 5 is dependent on the embedding in the fern leaf.
Rotating the leaf by θ about the origin can be thought of as reindexing the directions
ω �→ ω + θ , and so the resulting matrix will simply be a shift of the columns. However
this does mean that if we wish to compare this ECT to a similar fern leaf, we would
likely want to ensure that the inputs are aligned in the ambient space beforehand, using
a tool such as Procrustes [20].

Another thing to note with this example is that in drawing the matrices, we have
aligned the entries with the threshold value a so that each entry corresponds to
χ(f −1

ω (−∞, a]). However, depending on the application, a common modification is
the following. Fix a number of thresholds to use, T . Then for a fixed direction ω, the
ECC is computed at T equally spaced thresholds between the minimum and maxi-
mum function values on the shape for that fixed ω. The matrix commonly used to
represent the data in this setting has entry M[i, ω] = χ(f −1

ω (−∞, aω
i ]) where aω

i is
the ith threshold in direction ω, but we do not necessarily have the same aω

i and aω′
i if

ω �= ω′. This later version is often useful in the case where we want to ignore global
size differences; or in order to expand the amount of information stored in the matrix
by not having long strings of constant entries in some directions.

For example, in the application of Amézquita et al. [7], the shapes to be studied
were scans of barley seeds, all of which have a similar oblong shape with a char-
acteristic indentation on one side. Prior to computation of the ECT, the seeds were
aligned using PCA. The overall similarity of the shapes (as opposed to comparison
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Figure 5. The ECT for the fern leaf is shown at left, with x-axis given by the direction ω in the circle; and
y-axis given by the choice of threshold. The shading gives the Euler characteristic for the thresholded fern
χ(Ka) in the given direction. See online version for color figures.

of proverbial apples and oranges) meant that the ECT representation could be passed
directly to machine learning algorithms as coordinate entries in the ECT aligned from
one seed to the next. Further, rather than encoding the ECT over equally spaced values
over the entire bounding box, the representation used was equally spaced values over
the maximum and minimum values in a fixed direction, leading to a more compact
representation of the shapes.

The SECT. A variant of the ECT which is quickly gaining traction in applications
due to its theoretical properties is the smooth Euler characteristic transform (SECT),
which was first defined in [21] and further investigated in [22, 23]. The idea is to get
away from the step-function nature of the ECT, which causes issues with definitions of
stability and access to statistical methodologies, by replacing the ECC with continuous
functions.

First, we modify the ECT to be centered in the following sense. Recall that all
our simplicial complexes are assumed to be contained in a ball of radius R. Fixing a
direction ω ∈ S

d−1, we can compute the average function value in this direction

ECCω = 1

2R

∫ R

−R

ECCω(a) da.

We can replace the ECCω with the 0-centered a �→ (
ECCω(a) − ECCω

)
. Fixing a

direction, the Smooth Euler Characteristic Curve (SECC) is defined to be

SECCω : [−R, R] −→ R

t �−→ ∫ t

−R

(
ECCω(a) − ECCω

)
da.

Using our assumptions, we can see that this function is 0 for the endpoints t = ±R; or
more generally for t < −R and t > R if we wish to extend the definition to R. Then
the Smooth Euler Characteristic Transform (SECT) is defined to be

SECT(K) : S
d−1 −→ R

[−R,R]

ω �−→ SECCω.

The main reason for using this construction over the ECT is that the resulting functions
have a Hilbert space structure, while still retaining injectivity results as an immediate
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Figure 6. The SECT of the fern leaf example. In this case, each entry in the matrix at entry (ω, t) is∫ t

−R

(
ECCω(a) − ECCω

)
da.

consequence of Theorem 3. The SECT of the Fern leaf from Figure 3 discussed in the
previous section can be seen in Figure 6.

Parameterized families of ECTs. Another variation of the ECT arises in the case
of a collection of ECTs for an evolving family of shapes. In one example, the au-
thors of [9] study time-lapse video of changing intestinal organioids. In their setting,
there is a shape K(s) for each time parameter s ∈ [0, S]. They define what they call
the DETECT (DEtecting Temporal shape changes with the Euler Characteristic Trans-
form) of the sequence as a function [0, S] → R

[−R,R] given by

s �→
(

x �→
∫
Sd−1

δx ◦ SECCK(s)
ω dω

)
.

Here, δx(f ) = f (x) is the evaluation functional and SECCK(t)
ω is the smooth Euler

characteristic curve for the shape K(s) at time s. Specifically, this function gives the
integral of the SECC over all directions but at a fixed height so that the resulting
representation is orientation invariant.

A related version of this problem is that studied in [24], where they start with a
function f : Rd → R. Then they define the Lifted Euler Characteristic Transform
(LECT) by taking the ECT of a levelset of this function f −1(t):

LECT(f )(v, h, t) := χ
({x ∈ R

d | x · v ≤ h, f (x) = t}) .

The superlevelset version, of course acronymed to be SELECT, is similarly defined as

SELECT(f )(v, h, t) := χ
({x ∈ R

d | x · v ≤ h, f (x) ≥ t}) .

Then using the injectivity of Theorem 3, all of these variants can be shown to be
injective as well.

Computational considerations. Computing the Euler characteristic transform is par-
ticularly appealing due to its computational complexity, as the needed information is
an alternating sum of counts of simplices over a given direction. In this paper, we
have computed examples using the demeter3 package for Python. A newer package

3github.com/amezqui3/demeter
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in Python, ECT4 is available with a focus on 2D embedded graphs and CW complexes.
An R-package called SINATRA5 is also available with a version specifically for protein
data called SINATRA-Pro.6 Further computational speedups are available for stream-
ing ECC data [15], as well as using GPU capabilities [25].

Of course if this sort of construction is to be useful in applications, we need to be
able to get away from the full mathematical generality of Theorem 3. Specifically, for
this construction to be an injective representation, we assume we have the full ECT
for every direction ω ∈ S

d−1. But of course, this is not reasonable in practice since
computers and image scans are restricted to finite representations of data. In [16],
they show a theoretical upper bound on the minimum number of directions ω1, . . ., ωm

needed [16, Thm 7.14] to be estimated by

m ≥ (2bδ + 1)(1 + 3
δ
)2 + O(

3bδ

δ2 )6

where δ controls the curvature, and bδ is an upper bound for the number of critical
values in the Euler characteristic curves in a δ-ball of directions. We will note that this
bound is not tight, so there are many open questions about how to choose the number
of directions in practice. Further, it is an open question whether data driven sampling
could ensure the directions used are focused on the “interesting” directions of the data.

Reconstruction. With an injective representation such as the ECT, a common ques-
tion, particularly from the domain scientists, is whether we can take a given ECT and
reconstruct the original shape used to compute it. This is particularly useful when we
want to be able to talk about things like an “average” shape. The lack of a well-posed
inverse problem in other sorts of TDA constructions, such as the desire for a “best”
homology class representative in persistent homology, often leads to difficulties with
interpretation of the results for domain science questions. Because the ECT is injec-
tive, in theory this should be possible. Work to date has done this for planar graphs
[26], simplicial complexes [26], greyscale images [27], and in related cases where we
have augmented versions of the persistent homology transform [28,29]. We also point
the reader to the thesis of Sam Micka for an excellent introduction to the topic [30].

Instances of ECT in deep learning. Increasingly, recent work has begun to bring
together the ECT and machine learning methods for classification and regression prob-
lems. For instance, the ECT representation of barley seeds in [7] was passed to a sup-
port vector machine to classify the seeds by genetic line. A recent preprint by Paik
[31] opens the door to bringing the power of graph neural nets to classification via the
ECT. Another recent preprint [32] uses the ECT to build a loss function in the case of
shape reconstruction problems.

4. CONCLUSION. The Euler Characteristic Transform (ECT) is a powerful repre-
sentation of shape. The basic tool, that of the Euler characteristic, is simple enough
to explain to any mathematically curious person even while hiding deep mathemati-
cal underpinnings. We suspect that this construction could make for interesting high
school or undergraduate student projects, particularly if the students have some basic
coding abilities. Since the reach of this tool has been so far limited, it is likely that the
ECT has the potential to be used in many more shape analysis applications. In par-

4munchlab.github.io/ect/
5github.com/lcrawlab/SINATRA
6github.com/lcrawlab/SINATRA-Pro

January 2025] AN INVITATION TO THE EULER CHARACTERISTIC TRANSFORM 23

https://munchlab.github.io/ect/
https://github.com/lcrawlab/SINATRA
https://github.com/lcrawlab/SINATRA-Pro


ticular, its definition as an alternating sum of counts of simplicies makes for very fast
computation, especially when held up against other computation times for TDA tools.

The main drawback, which perhaps is the same as its injective strength, is that the
ECT in standard formulations requires shape alignment prior to its use in learning
pipelines. However, more work-arounds are being found, such as integrating out the
dependence of the spherical coordinate in [9] or the use of rotation invariant neural
networks in [31].

One interesting future direction is that of using the directional transform with other
sorts of representations of shape. Of course, the original definition [6] was related to
using the persistence diagram as the representation in each direction. However other
sorts of shape descriptors in TDA can be used in conjunction with filtrations of this
form such as the extended persistence diagram [33] or merge trees [34]. Further, we
note that this paper has been focused on the directional transform version combined
with Euler characteristics. However there are many more cases where encoding evolv-
ing Euler characteristics are useful in the more general setting of function data [35–37].
With potential use in so many applications, we hope that this survey will make the Eu-
ler characteristic transform construction even more accessible to the shape analysis
community.
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